Robust Heuristics for Scalable Optimization of Complex SQL Queries

Gopal Chandra Das Jayant R. Haritsa
Database Systems Laboratory, SERC/CSA
Indian Institute of Science, Bangalore, INDIA

[xample. Consider the 15-relation ar-Chain” join
1 Introduction E le. Consider the 15-relation “Star-Chain”

Modern database systems incorporatgiary optimizer relations R, through R, and Ry; throughRy5 join in a

chain formation — this join graph is structurally similar to

ting th larativ L ri mitt rs. A<) L)
ecuting the decla atve SQL queries SUb. ed by users different instances of the Star-Chain join graph were imple
dynamic-programming-based approach is used to exhaus-
plan alternatives and, using a cost model, to identify the l?P—a;ldvxllﬁzrg?rciZt:aerFrjr:%Seesn':ﬁgvr?ulgEe?ng ggtg\/ﬁsttg?e?f
optimal choice. While dynamic programmif@P) works o
a dozen base relations, it usually fails to scale beyond this
stage due to its inherent exponential space and time com- @ @Q
complex quenes'wnh alarge number of base relations, suph @ < Y @ D < @
as those found in current decision-support and enterprise ! o/ 2 oy w E
management applications. @
have been proposed in the literature. Some completely jet- @
tison the DP approach and resort to alternative techniques
nigues (e.g. [5]), whereas others have retained DP by us- . .
ing heuristics to prune the search space to computationally The relative performance results are shown in Table 1.
is “Iterative Dynamic Programming1DP) [3]whereinDP ~ Bad (B) plans, is refined with the addition of Ideal (1),
is employed bottom-up until it hits its feasibility limitna meaning the recommended plan is either identical to that
of the execution plans currently under consideration. Theally, the Worst-case (W) plan-cost increase ratio w.r.t. DP
experimental evaluation of IDP in [3] indicated that by ap- IS given, and an overall plan-quality factpr,defined as the
to almost always obtain “good” (within a factor of twice of Metric w.r.t. DP, is tabulated.
the optimal) plans, and in the few remaining cases, mostly : _

Query Join Tech- Plan-Quality
13 ” G

plans,.and rargly, a b.ad plarll. ' 5p 11067 0 T o o 1 1

While IDP is certainly an innovative and powerful ap- | giar-chain-15! 1DP 2 |aa|sa| 2] 109 283

20 0

qguery frameworks wherein it can fail to consistently pro-
duce good plans, let alone the optimal choice. This is es-
increasing the complexity of the join graphs. Worse, this
shortcoming is exacerbated when the number of relations The table shows that, relative to DP, for which all plans

graph shown in Figure 1, where relatidy star-joins with

to identify the most efficient “query execution plan” for ex- Queries 8 and 9 of the TPC-H benchmark [8]. A hundred
tively enumerate the combinatorially large search space ofmented on the PostgreSQL engine [4], and optimized with
very well for moderately complex queries with up to around cuted in each teration).
plexity. Therefore, DP becomes practically infeasible for @

To address the above problem, a variety of approaches
such as randomized algorithms (e.g. [7]) or genetic tech- Figure 1. Star-Chain Join Graph
manageable levels. In the latter class, a well-known giyate Here, the classification of Good (G), Acceptable (A), and
theniterativelyrestarted with aignificantly reduced subset ~Produced by DP, or within 1% of this optimal. Addition-
propriate choice of algorithmic parameters, it was possibl Geometric Mean of the plan-costs normalized to the same
“acceptable” (within an order of magnitude of the optimal) Graph nique | | ALB| W ,
proach, we have found that there are a variety of common sppP | 80 0 12 | 1.02
pecially so whenstar or clique components are present, Table 1. Plan Quality (DP, IDP, SDP)
participating in the query is scaled upwards. are Ideal by definition, a sizeable fraction of the plansdeli

ered by IDP areather inefficient- 56% are beyond a factor 6

:) x " bP ——
of 2 with regard to the optimal, and 2% are beyond a factor PRI T
5r S| =

of 10. Further, IDP produces the ideal plan only for a very
few (2%) queries. In the worst-case, the IDP plan is about 4

11 times slower than the optimal plan, and {heverall =)
plan-quality metric is close to 3, way above the ideal value g} 3+ «
of 1. g
oL
Skyline Dynamic Programming 1L v

We have attempted to address the above problem of con- o
sistency in plan quality by proposing a new pruning strat-
egy for the DP search space. Our heuristic, called “Sky-
line Dynamic Programming(SDP), is based on two novel
premises: (a) Selectively applying pruning to ombgal
segments of the join graph that are expected to be diffi-
cult to optimize, and not to the entire join graph; and, (b)
Adopting a multi-wayskylinebased pruning strategy on a Effect of Scaling. When the Star-Chain join graph is
sub-plan feature vector that incorporatests cardinalites ~ Scaled up to 23 relations, DP becomes computationally in-
andselectivities feasible, due to running out of physical memory. However,
Through a detailed study, running to millions of complex Poth IDP and SDP are able to run to completion and in Ta-
star and star-chain queries on rich relational schemasimpl ble 3, we show IDP’s performance relative to SDP, that is,
mented on the PostgreSQL engine, we have found SDP tdreating SDP as ideal. We see there that the quality gap
berobustwith regard to consistently providing high-quality Petween SDP and IDicreaseswith close to 90% of the
plans —in fact, for a large fraction of the queries, it proetc |DP plans falling in the bad category relative to SDP. Fur-
ideal plans A quantitative instance is shown in Table 1, ther, with regard to the overheads, shown in Table 4, SDP
where SDP gives the ideal plan in 80% or more of the cases'eduires about aarder of magnitudéess effort than IDP.
for Star-Chain-15, while the remaining sub-optimal cheice
are all good plans — in fact, very good plans, since in the

0.4 0.6 0.8 1
Optimization Time Overhead (in sec)

0 0.2

Figure 2. Plan Quality (p) vs. Effort Tradeoff

! Query Join Tech- Plan-Quality
worst-case, the plan selected by SDP is only 22% slower Graph nique | | GIAI|IBI| W
than the optimal. Finally, the value is 1.02, very close to DP s = = 1 = " "
the ideal of 1. Star-Chain-23| IDP | 0 | 0 | 12| 88| 25.3| 16.2
Equally important, SDP’s improvement is not achieved sSbP | 100/ 0| 0 | O 1 1
at the cost of increasing the optimization time and space
overheads — on the contrary, due to its aggressive pruning . _
strategy, SDP is completes the optimization process with Table 3. Scaled Join Graph: Plan Quality
overheads perceptibly lower than that of IDP. This is quan-
titatively shown in Table 2 where the space and time over-
heads of SDP are at least a third lower than that of IDP.
Query Join Tech- | Memory Time Costing
Query Join | Tech- | Memory Time Costing Graph nique | (inMB) (insec) (in plans)
Graph niqgue | (inMB) (insec) (in plans) DP * * *
bP 32.39 1.00 8.3E5 Star-Chain-23| IDP 460.37 54.7 4.5E6
Star-Chain-15| IDP 7.39 0.20 1.3E5 SDP 55.33 1.08 0.4E6
SDP 4.33 0.10 0.5E5

Table 4. Scaled Join Graph: Overheads

Table 2. Optimization Overheads

To put the above results in perspective, Figure 2 shows a
plot of the plan-quality against the the optimization over- high-quality query execution plans, as compared to prior
head, for DP, IDP (withk = 4 andk = 7) and SDP. We pruning approaches. Moreover, like IDP, it can be easily
see here that SDP produces a much better “knee-of-theintegrated with current optimizers — in fact, as mentioned
tradeoff” between input effort and output quality, as com- earlier, all our experiments have been conducted through
pared to IDP. direct implementatioon the PostgreSQL engine.

In a nutshell, SDP consistently and efficiently produces

2 The SDP Algorithm skyline set on the CS values, and finally the skyline set on
the RS values. The JCRs featured in the three skylines are

A common characteristic of the previous approaches to Unioned, and all remaining JCRs are pruned. Thatis, we re-
limiting the DP search space was to apply the pruning uni- tain only those JCRs that are able to survive in at least
versally over thentire query join graphHowever, we have Of the three skylines
observed that in practice, it is the presencehab rela- An example of the pruning process is shown in Table 5,
tions (defined as relations that join withree or morerela- ~ Where from the Prune Group on root hub 1, which con-
tions) that are primarily responsible for the high overteead Sists of JCRs{1-2-3, 1-2-5, 1-3-5, 1-4-5, 1-5}{6the sur-
of DP in the optimization process. The notion of a hub re- Vivor JCRs are{1-2-3, 1-2-5, 1-4-5, 1-5%while {1-3-5}
lation applies not only to the base relations in the original iS Pruned (the digits are the relation identifiers).
query graph, but also to the intermedidt@n-Composite-
Relations (JCRghat are computed during the optimization
process. Based on this observation, SDP selectively applie
pruningonly to JCRs containing hub relationigaving the

Prune Feature Vector Skylines
Group [R,C,S] CS| RS

RC
1-2-3 | [187638, 49386, 3.9E-5] / | / -
LS i . 1-2-5 | [122879,52132, 1.0E-5] / | v/ | V/
remaining JCRs to be optimized under the aegis of the tra- 1-35 | [242620, 56021, 1.OE5] - - -
d|t|on§\l e>'<hagst|ve. DP. . 1-45 | [241562, 55388, 6.65-6] - Y
In its first iteration, SDP implements the standard DP 1-5-6 | [385375, 52632, 4.5E-6] - VARV

algorithm, identifying the best access plan for each indi-
vidual relation. Then, in the second iteration, all pais&vi
join-composites (excluding cartesian products) of thebas Table 5. Multi-way Skyline Pruning

relations are enumerated, as in standard DP. These JCRs

are split into two setsPruneGroup (PG) andFreeGroup

(FG), with the splitting based on whether or notthe JCR in- Further Details. The complete details of the design and
cludes a complete hub from the immediately previous level implementation of the SDP algorithm, and its performance
—i.e. a“hub-parent”. Subsequently the pruning strategy de evaluation, are available in the full version of this paf@&r [
scribed below is applied, and the output is the set of length-

2 “survivor JCRs”. These survivor JCRs, along with all the References

survivor JCRs of previous levels then form the input to DP

of the next level, and the process iteratively continues in [1] S. Borzsonyi, D. Kossmann and K. Stock&he Sky-

this manner until a stage is reached where there are only line Operator.Proc. of 17th IEEE Intl. Conf. on Data
two additional relations to be joined for each composite. At Engineering (ICDE), 2001.

this point, by definition, there cannot be any hub-relations [2] G. Das and J. Haritsa.Scalable Optimization
present, and therefore, the standard DP algorithm is em- of Complex SQL QueriesTech. Report TR-
ployed for the last two levels. 2006-01, DSL, Indian Inst. of Science, 2006.

http://dsl.serc.iisc.ernet.in/publications/repor&1TR-2006-01.pdf

Pruning Strategy. The pruning strategy in SDP has two [3] D. Kossmann and K. Stockelterative dynamic pro-

B ; i gramming: a new class of query optimization algo-
steps: First, the JCRs in the PruneGroup are assigned to rithms. ACM Trans. on Database Systems (TODS).

sub-groups that are formed with respect to the “root hubs”, 25(1), 2000.

that is, the hub relations of the original join graph. The

second step is to apply the function, described neithin [4] PostgreSQL Database Systewww.postgresgl.com
each sub-grougto prune a subset of the JCRs presentinthe [5] postgres Genetic Optimizer.

sub-group. www.postgresqgl.org/docs/7.4/static/geqo-intro2.html

We characterize JCRs with a feature-vector comprised of

the following attributes: [RWS(R), CoST(C), SELECTIV- [6] P. Selinger, M. Astrahan, D. Chamberlin, R. Lorie

and T. Price.Access Path Selection in a Relational

ITY (S)], corresponding to the number of rows output by the Database Management Systeltoc. of ACM SIG-

JCR, the lowest cost of producing this output, and the out- MOD Intl. Conf. on Management of Data, 1997.

put selectivity of the JCR relative to the product of the size [7] M. Steinbrunn, G. Moerkotte and A. Kempéfeuris-

of its base relations, respectively. . tic and Randomized Optimization for the Join Order-
Theskylineconcept [1] is employed on this feature vec- ing Problem.Intl. Journal on Very Large Data Bases

tor for pruning JCRs. Specifically, we computeligjunc- (VLDB), 1997.

tive multiway skylinen pairwise combinations of the RCS [8] Transaction Processing Performance Council.

attributes in the feature vector. That is, we first identify http://tpc.org/
the skyline set of JCRs based on their RC values, then the

