Approximate Analysis of Real-Time Database Systems

Jayant R. Haritsa *
Supercomputer Education and Research Centre
Indian Institute of Science

Bangalore 560012, INDIA

Abstract

During the past few years, several studies have been
made on the performance of real-time database sys-
tems with respect to the number of iransactions that
miss their deadlines. These studies have used either
stmulation models or database testbeds as their perfor-
mance evaluation tools. We present here a prelimi-
nary analytical performance study of real-time trans-
action processing. Using a series of approzimations,
we derive simple closed-form solutions to reduced real-
time database models. Although quantitatively approz-
imate, the solutions accurately capture system sensi-
tivity to workload parameters and indicate conditions
under which performance bounds are achieved.

1 Introduction

In a broad sense, a real-time database system (RT-
DBS) is a transaction processing system that is de-
signed to handle workloads where transactions have
service deadlines. The objective of the system is to
meet these deadlines, that is, to process transactions
before their deadlines expire. Therefore, in contrast to
a conventional DBMS where the goal usually is to min-
imize transaction response times, the emphasis here is
on satisfying the timing constraints of transactions.

Transactions may miss their deadlines in a real-
time database system due to contention for physical
resources (CPUs, disks, memory) and logical resources
(data). During the last few years, several detailed
studies {1, 3, 5] have evaluated the performance of
various real-time transaction resource scheduling poli-
cies with respect to the number of missed transaction
deadlines. These studies have either used simulation
models [1, 3] or used database testbeds [5] as their
performance evaluation tools. The lack of analytical

*This work was initiated while the author was with the Sys-
tems Research Center, Univ. of Maryland (College Park) and
was supported in part by a SRC Post-Doctoral Fellowship.

1063-6382/94 $3.00 © 1994 IEEE

10

Killed
a 4 Transactions
Input J DATA | [Successful
Transaction ©o0o0 0o Transactions
Rater [—] 200 [Ta=an
DBMS 6 0 00 o0

Figure 1.1: RTDBS Model

studies may be attributed to the complexity of real-
time database systems. Accurately modeling a real-
time database system involves incorporating transac-
tion time constraints, scheduling at multiple resources,
concurrency control, buffer management, etc., and this
appears to be mathematically intractable. In fact, the
exact solutions to extremely simplified special cases
are themselves complex (e.g. [8]).

While exact solutions appear infeasible or too com-
plex to be of utility, we show in this paper that it
is possible to derive simple approzimate solutions to
reduced models of real-time database systems. Al-
though the solutions are quantitatively approximate,
they satisfactorily capture system sensitivity to work-
load parameters and indicate conditions under which
performance limits are achieved. In essence, we are
able to estimate performance {rends and bounds.

We investigate here the performance of real-time
database systems where transactions have deadlines
to the start of service (i.e. laxities). In our reduced
model (Figure 1.1), transactions arrive in a stream to
the real-time database system. Each transaction upon
arrival requests the scheduler for access (read or write)
to a set of objects in the database. A transaction that
is granted access to its data before its laxity expires is
considered to be “successful”. Successful transactions
access their data for some period of time and then exit
the system. Transactions that are not successful are
“killed”, that is, they are removed from the system
wait queue when their laxities expire. Our goal is to

derive the steady-state fraction of input transactions
that are killed (o in Figure 1.1), as a function of the
workload and system parameters. We consider only
data contention in our model since it is a fundamental
performance limiting factor, unlike hardware resource
contention which can be reduced by purchasing more
resources and/or faster resources. While abundant re-
sources are usually not to be expected in conventional
database systems, they may be more common in RT-
DBS environments since many real-time systems are
sized to handle transient heavy loading.

Using a series of approximations, we develop here
a simple closed-form solution for the above RTDBS
model, which merely involves finding the roots of a
cubic equation. This approximate solution accurately
captures the qualitative behavior of the model. Fur-
ther, it also provides quantitative results that are
fairly close to the exact values (as determined by sim-
ulation). Taking advantage of the simplicity of the
approximate solution, we derive interesting corollar-
ies, some of which are unique to the database environ-
ment. For example, we show that the absolute values
of certain database parameters play a role in deter-
mining system performance, unlike the corresponding
classical real-time systems where performance is de-
termined solely by normalized quantities.

2 Model and Notation

We consider a system where transaction arrivals
are Poisson with rate A, transaction data processing
times are exponentially distributed with mean 1/y,
and transaction laxities are (independently) exponen-
tially distributed with mean 1/ (A, u,y > 0). We as-
sume that the database is large, that it is accessed uni-
formly, and that each transaction atomically requests
its entire data set (1.e. static locking or predeclaration
[9]). We also assume that each transaction requests J
data objects and that J is much smaller than N, the
database size (this is usually true in practice).

The database scheduler queues and processes trans-
actions in arrival order. A transaction is allowed ac-
cess to its data only if it has no data conflicts with
currently executing transactions and if all transactions
that arrived prior to it have either been successful or
been killed. While this type of fcfs policy is not typi-
cal of real-time systems, there are database situations,
however, where this policy may be used due to fairness
requirements. A practical example is that of brokers
submitting real-time buy and sell orders in a stock ex-
change, wherein fcfs processing may be used to main-
tain fairness among brokers. In addition, a fcfs policy

11

provides a baseline against which more sophisticated
real-time scheduling disciplines can be evaluated.

In the subsequent discussions, we use a (0 < & < 1)
to denote the steady-state fraction of input transac-
tions that are killed. To succinctly characterize our
system configuration, we use the queueing-theoretic
notation M/M/Ny /M, where the first M denotes the
Poisson transaction arrival process, the second M de-
notes the exponential transaction service time distri-
bution, Ny denotes the number of servers, and the
last M denotes the exponential transaction laxity dis-
tribution. In typical queueing systems, the number of
servers is usually constant. However, in the database
environment, the number of “servers”, that is, the
number of transactions that can be simultaneously
processed, is variable depending on N, J, and the
current sequence of transaction data requests (i.e. the
level of data contention). We therefore use the nota-
tion N; for the server descriptor, thereby highlighting
the variability in the number of servers. With this con-
vention, our real-time database model is represented
by a M/M/Nj /M queueing system, and our goal is to
characterize the a behavior of this system.

3 Related Work

There is an extensive literature on the analysis of
queueing systems with deadlines. In particular, queue-
ing systems such as M/M/1/M and M/M/m/M have
been solved exactly with respect to the o metric
[2, 11]. However, these results are applicable only
to systems with a constant number of servers. They
are not useful for determining the performance of our
queueing model since the number of servers in the
database is variable, as explained in Section 2.

Database systems where queueing is not allowed
were considered in [8, 7]. In these systems, a transac-
tion that cannot receive service as soon as it arrives is
immediately killed (equivalently, all transactions have
zero laxity). The exact solution for this model was
shown to be quite complex in [8] and approximations
to the solution for large databases were presented in
[7, 8]. In our model, where queueing is included, the
situation becomes more complicated, especially since
the number of servers is variable.

The performance of locking protocols in database
systems has been extensively analyzed. However, vir-
tually all of these studies (e.g. [9, 10]) have been
been made in the context of conventional database sys-
tems where transactions do not have service deadlines.
Therefore, their results are not directly applicable to
the real-time environment.

apA ap(1 — ap)A
J UEUE ,..T.-.
AT TTE L PATAlQ S o)A
tr=res : BASE
Body Head

Figure 4.1: Queueing Model

4 Analysis of M/M/Nj/M

In this section, we present an approximate solu-
tion to the M/M/N;/M queueing system described
in Section 2. Our solution is in two parts: First, we
characterize «y, the steady-state fraction of transac-
tions that successfully manage to reach the head of the
transaction wait queue but are killed while waiting for
their data conflicts to disappear. Next, we compute
ap, the steady-state fraction of transactions that are
killed before they reach the head of the queue, that is,
while they are in the body of the queue. These quan-
tities are related to the overall « of the system by the
following equation (derived by elementary flow analy-
sis of Figure 4.1 which shows the queueing model)

l—a=(1-ap)(1—as) (1
Therefore, if we are able to separately compute the
“head-of-queue” and “body-of-queue” performance
statistics, we can then easily derive the overall system
performance. Qur motivation for taking this two-step
approach is to decouple the data conflict analysis from
the queueing analysis and thereby simplify the perfor-
mance modeling.

In the following derivations, we refer to p = A/u as
the system offered load, and to § = p/7v as the normal-
ized mean laxity (following the terminology of [11]).
Further, we refer to £ = J/N as the database access
ratio. For ease of explanation, we initially derive re-
sults for the case where transactions access their data
objects only in write (exclusive lock) mode. Later, in
Section 7, these results are extended to the situation
where data is accessed in both read and write modes.

4.1 Head-Of-Queue Performance

In this section, we compute aj (0 < ap < 1), the
probability that a transaction which has successfully
managed to reach the head of the queue is killed while
waiting in this position.

Lemma 1 The value of ay, ts approzimately given by

ap = A(l —a) (2)

12

pEJ

1+6°

Proof: Consider a transaction that reaches the head
of the queue when k database objects are currently
locked and finds that some of the data objects it re-
quires are in this locked set (i.e. the transaction has
data conflicts). The probability that this transaction
is killed while waiting for the conflicting locks to be
released is given by

where the coefficient A =

J
Qpie = ZPconIk,i Pea:p|i (3)

i=1

where P.on|,; is the probability that the transaction
conflicts on i of its requested J objects, and P.gps
is the probability that the transaction’s laxity expires
before these ¢ objects are released.

We approximately model the head waiter’s request
of J data items from the N database objects as J
samplings with replacement, that is, as a sequence of
Bernoulli trials. In this situation, the probability of
exactly ¢ conflicts is given by

Peonlk,i = ({ > (7]:7);' - 7’:‘;)""

since the probability of requesting an already locked
k

(4)

item is —.

We next compute Pegp|i, Which is the probability that
the head waiter’s laxity expires before all of its ¢ con-
flicting locks are released. Due to the assumption of
uniform access to the database and since J <« N, the
probability of having more than one conflict with the
same transaction is small. We therefore assume that
each of the 7 conflicts occurs with a different trans-
action. The cumulative distribution of the maximum
of 7 identically-distributed exponential variables with
parameter p is given by

Frnas(i)(t) = (1 — e™#)’

Only values of ¢ that are greater than the remaining
laxity of the waiting transaction have to be considered
and since the expression e~ #* tends to 0 with increas-
ing ¢, we make the approximation that

Frnao(iy(t) = (1 — ie™#)

Since transaction laxities are exponentially distributed
(with parameter v), and by virtue of the memoryless
property of exponential distributions, we obtain

i i i
Pegpli = / ie™H ye T dt = LR
0

p+y 146 (5)

Substituting the above results in Equation 3 gives

i(Y -2 ()

N(H&)Z(T a-m

¢
b (6)

since the second summation is identically equal to 1.

Ok

We now go on to compute ay, the unconditional
probability that a head-of-queue waiter is killed. Us-
ing Py to denote the probability of k objects being
locked, cp, can be expressed as

£ £
ahIZaMkPk =Zk1+6Pk =133
k k

E(k)
(M

Here, E(k) is the average number of locked objects and
is easily computed using Little’s formula [6]. The rate
at which transactions obtain locks is A(1 — a)J and
locks are held for a mean duration of 1/u. It therefore
follows from Little’s formula that

(1

Al - a)J
B == -0 @)
Combining Equations 7 and 8, we finally obtain
_ ¢ _ p€J
[}

Note that in the above derivation, a series of ap-
proximations were made to obtain a simple expres-
sion for ap. The expression is asymptotically exact as
N — o0.

4.2 Body-Of-Queue Performance

In this section, we compute oy (0 < o < 1),
the steady-state probability that a transaction in the
queue is killed before reaching the head of the queue,
that is, while it is in the body of the queue.

Lemma 2 The value of ap is a unique root of the
cubic equation

oy +Bal 4+ Cay+ D=0 9)

where the coefficients B, C, and D, are given by

1 6

B —
FErw il Sl wrw:

(+

13

2 1 1 1 2

c m)—;g(m)—p—zﬁ—j(l-*'g)

(1-
1

b P

Over the range of valid parametric values, the equation
has ezactly one root in [0,1] - this is the required root.

Proof: A detailed proof of this lemma is given in
the Appendix. Here, we will sketch the outline of the
proof. The basic idea behind our solution is to treat
the transaction wait queue itself as an M/G/1 system
with the head of queue position playing the role of the
“server”. That is, we treat the wait queue as being
composed of a (pseudo)server and a secondary queue.
As shown in the Appendix, it is possible to express
the “service-time” distribution of this system (i.e. the
distribution of the time spent at the head-of-queue
position) with the following equation

fi(t) = (1 - E)uo(t) + E(u+7)e” 41 (10)
where E = p€J(1 —a;)(1 — @) and ug(t) is the impulse
function [6].

From Equation 10, we infer that a fraction (1 — E)
of the input transactions have a service time of zero
while the remainder have an exponentially distributed
service time with parameter (u++). The transactions
that have a service time of zero are those that are killed
before they reach the head of the queue and those that
immediately enter the database on reaching the head
of the queue. The remaining transactions either enter
the database after waiting for some time at the head
of the queue or are killed during their wait at the head
of the queue.

In [6], formulas for computing the waiting time dis-
tribution of M/G/1 queues are given in terms of the
service-time distribution. Substituting the service-
time distribution from Equation 10 in these formu-
las, the cumulative distribution function of the waiting
time in the body of the queue works out to

Fy(t) = 1 — Ge~(rM(-G)t

p 6£J

(11)

where G = —— (l—a (1-a).

Recall that ay is (by definition) the fraction of transac-
tions that are killed because their laxity is smaller than
their waiting time in the body of the queue. Therefore,

*© G
_ _ gy — O
ap —/0 (1= Fy(t))ye " dt 515 - G170

(12)

After substituting for G, the above equation expresses
ayp in terms of the system input and output parame-
ters. Using this equation in conjunction with Equa-
tions 1 and 2, and after some algebraic manipulations,
we finally arrive at the cubic equation described in the
lemma. The proof that this equation has only a single
root in [0,1] is given in [4].

(]

An important point to note here is that the above
derivation is approximate. This is because the M/G/1
queueing results that were used in the derivation as-
sume independence between the task arrival process
and the service time distribution. In our case, how-
ever, the head-of-queue “service-time” distribution
(Equation 10) is dependent on the task arrival pro-
cess since it involves terms (e.g. p) that are a function
of the arrival process.

4.3 System Performance

In this section, we combine the results derived
above for the head-of-queue and body-of-queue statis-
tics to compute o (0 < a < 1), the overall fraction of
killed transactions.

Theorem 1 For the M/M/NJ/M system, the
steady-state fraction of transactions that are killed s
approximalely given by

—1_ (1 - ab)
a= T3 A(L = ap) (13)
where ap is obtained from Lemma 2, and A = ip—f_‘-_-‘]—&

is the coefficient derived in Lemma 1.

Proof: The above expression for a is obtained by
combining Equations 1 and 2.

]

From the above results, we observe that the perfor-
mance of an M/M/Nj/M real-time database system
is determined by p, 6,£ and J. This is in contrast to
classical M/M/1/M real-time systems where the sys-
tem performance is dependent only on p and § [11].

5 Quality of Approximations

In this section, we compare the accuracy of the ap-
proximate analysis with respect to the exact solution,

14

as determined by simulation® of the queueing system.
In Figures 5.1 through 5.4, we plot «, the fraction
of killed transactions, as a function of p, the system
load, for different combinations of § (the normalized
mean laxity) and £ (the database access ratio). The
transaction size, J, is set to 10 in these experiments,
and all data objects are requested in write (exclusive
lock) mode. Four different values of £, which span
the range from a large-sized database to an extremely
small database were considered. The chosen £ valués
were 0.0001, 0.001, 0.01 and 0.1, which correspond to
database sizes of 100000, 10000, 1000, and 100 respec-
tively. Note that while § < 1 was assumed in the
analysis, the performance for larger values of £ was
also evaluated in order to observe at what stage the
analysis broke down when the assumptions were not
satisfied.

For each of the ¢ settings, we evaluated the o per-
formance for three values of §, the normalized laxity.
The selected 6 values were 0.1, 1.0 and 10.0, thus cov-
ering a spectrum of transaction slack times (6§ = 0.1
corresponds to transaction laxities being small com-
pared to processing times, § = 1.0 makes the laxi-
ties comparable to processing times, and § = 10.0 re-
sults in laxities that are much greater than processing
times).

In Figure 5.1, which captures the large database
situation, we observe that under light loads, the ana-
lytical solution (solid lines) provides an excellent ap-
proximation to the exact solution (broken lines) for
all the laxities. At heavier loads, the quantitative
matching deteriorates to some extent (for the large
laxity case), but the qualitative agreement is main-
tained throughout the entire loading range. This ex-
periment confirms that, for large databases, the sim-
ple cubic approximation is a good estimator of system
performance.

The above experiment is repeated for progressively
decreasing database sizes in Figures 5.2 through 5.4.
From these figures, it is clear that the approximations
provide reasonably accurate performance predictions
until & goes above 0.01. Further, even when £ is as
large as 0.1 (Figure 5.4), the gqualilative agreement
between the analysis and the exact solution remains
very close. Therefore, although our analytical solution
is heavily based on the assumption that the database
is large, it captures system performance trends for
smaller-sized databases as well.

1 All o simulation results in this paper show mean values that
have relative half-widths about the mean of less than 5% at the
95% confidence level.

P d="la-lmi e

P la-luul

1.0

0.8

0.6 1

0.41

0.21

G———8 §=0.1 1.0

A
L
P
H
A
0.0 50.0 kqgg 150.0 200.0
Figure 5.1: &€= 0.0001
G—H8 §=Q.1 1.0
6—9© §5=10
&2 §=100
0.8 1
A 0.6
L
|
H
A 041

0.21

0.0 ————————
00 200 409 600

Figure 5.3: £=0.01

15

Figure 5.2: £ = 0.001

G—8 §=0.1
66— §5=10
&/A §=100

Figure 5.4: £ =0.1

6 Observations

In this section, we derive interesting corollaries from
the « solution constructed in Section 4.

6.1 Extreme Laxity Cases

We consider two extreme cases here, one where the
laxity tends to 0, and the other where the laxity tends
to 0o, keeping the remaining workload and system pa-
rameters fixed. When laxity tends to 0, transaction
wait queues do not form and a; — 0. Substituting
6 =0 and ap = 0 in Equation 13 gives

1

—0 = =1—-—F-
QAf=0 = Ap 1+ ped

(14)
Conversely, when laxity tends to oo, it is clear from
Equation 2 that ap — 0. Substituting § — oo in
the equation for a; (Equation 9) and simplifying, we
obtain

Aso0o — Qp =

1 .
;_W o> IVET (g5

otherwise

This equation shows that when transactions are will-
ing to wait almost indefinitely to obtain service, they
do not get killed unless the system offered load is
greater than 1/y/£J. From Equation 8, this criti-
cal system load corresponds to the average number
of locked database objects being V'N.

6.2 Performance Crossover

An interesting feature of Figures 5.1 and 5.2 is that
the large laxity (6 = 10.0) performance is worse than
the small laxity (6 = 0.1) performance over virtually
the entire loading range. Further, in Figure 5.3, a
performance crossover (at p = 4.0) is clearly observed
between the large laxity and the small laxity perfor-
mances (the crossover occurs in Figures 5.1 and 5.2
also but is not clear due to the scale of the graph).
This means that under light loads, large laxity results
in improved performance, whereas under heavy loads,
it is the other way around. Therefore, there is a critical
loading point after which increased laxity can degrade
performance. This may appear counter-intuitive since
the expectation is that an increase in laxity should
result in better performance, as observed in the corre-
sponding classical real-time systems [11]. The reason
for the difference in the database context is that trans-
actions do not ask for generic servers, but for servers
with “identity” (i.e. for specific data objects). As a

16

result, transactions get queued up behind transactions
that develop data conflicts and increased laxities re-
sult in longer queues and more conflicts. Under heavy
loads, the queues become long enough that more and
more transactions are killed while waiting in the queue
although they have been provided with greater laxity.
In short, the increased willingness to wait on the part
of individual transactions is more than outweighed by
the increased system queueing times that result from
this willingness to wait.

6.3 Crossover Point

In this subsection, we compute the crossover load-
ing point beyond which the a performance with § —
00 becomes worse than that with § = 0. By equating
the o results obtained for 6 = 0 and § — oo, and after
some algebraic manipulations, we obtain

o _ { VET ifVET <1 (16)

erossover = 1.0 otherwise
From this expression for acressover, it 1 clear that with
decreasing £ (the database access ratio), the crossover
occurs at lower and lower values of a. For example,
with £ = 0.001 and J = 10, the acrossover €valuates
to 0.1. This means that from the system perspective,
for loading levels that result in a kill fraction greater
than 0.1, a workload of transactions that are willing to
wait almost indefinitely is more difficult to handle than
a workload of transactions that find only immediate
service acceptable.

6.4 Performance Bounds

By evaluating the partial derivative of & w.r.t. § in
Equation 13, the following corollary is obtained (the
proof is provided in [4]):

Corollary 1 The a performance under light loads
(p — 0) is a decreasing function of 6. Conversely,
under heavy loads, (p — 00), the o performance is an
increasing function of 6.

From this corollary, we infer that é — oo provides the
lower bound on « under light loads, and the upper
bound on « under heavy loads. Conversely, § = 0 pro-
vides the upper bound on « under light loads, and the
lower bound on « under heavy loads. Of course, since
these bounds are derived from the approximations,
they aren’t exact numerical bounds on the queueing
model itself; however, they serve to indicate the con-
ditions under which these bounds would be achieved
for the original system. In short, Equations 14 and 15
provide estimates of the o performance range in the
light-load and heavy-load regions, respectively.

1.0} G—8 j=1
o0—o J=2
+——t J=5
*x—X 7=10

081&a—2 J=20
¥—v J=50

A 0.61
L
P
H
A 0.41
021
0.0 50 15.0 20.0

Figure 6.1: Effect of J (6=1.0)

6.5 Effect of Transaction Size

We show in Figure 6.1 and Figure 6.2 the ef-
fect of varying the transaction size while keeping the
database access ratio fixed (i.e., the database size is
scaled in proportion to the transaction size). For this
experiment, we set £ = 0.001 and graph « as a func-
tion of p for different values of J, the transaction size.
In Figure 6.1, 6 is set to 1.0 and in Figure 6.2, 6 is set
to 10.0. It is clear from these figures that the absolute
value of the transaction size plays a significant role
in determining system performance. This is in con-
trast to the classical M/M/1 and M/M/1/M systems
where performance is determined solely by normalized
quantities [11].

7 Read and Write Access

In the derivations of Section 4, it was assumed that
transactions accessed all their data objects in write
(exclusive lock) mode. The following lemma extends
this analysis to include read (shared lock) data ac-
cesses (the proof is given in [4]).

Lemma 3 Let each transaction request a fraction
w(0 € w < 1) of its J data objects in write mode
and the remainder in read mode. Then, Lemmas 1
and 2 and Theorem 1 apply in exactly the same form

Cd="la-leie

17

1.0} o—8a j=1
6—=o0 J=2
J=5
J
0.8 J
J
0.61
0.4
0.21
0.0 =8 QA0
0.0 5.0 &2‘% 15.0 20.0

Figure 6.2: Effect of J (6=10.0)

except that £ is to be replaced by Ew(2 —w) in all the
equations.

When w = 1 (all data items requested in write mode),
the expression &w(2 — w) reduces to &, as should be
expected. Conversely, when w = 0 (all data items
requested in read mode), the expression {w(2 — w) re-
duces to 0. Substituting this value in the o solution
results in @« = 0. This is as expected since no data
conflicts occur when data is accessed only in shared
mode, that is, the database behaves like an “infinite
server”.

8 Conclusions

In this paper, we have attempted a preliminary ana-
lytical study on the performance of real-time database
systems with respect to the number of missed trans-
action deadlines. Our goal was to provide insight
into RTDBS behavioral characteristics, rather than
to quantify actual system performance. To this
end, we modeled the real-time database as an an
M/M/N;/M queueing system and developed an ap-
proximate closed-form solution for computing the frac-
tion of killed transactions in this system. The so-
lution is based on decoupling the queueing analysis
from the database conflict analysis and then treating
the transaction wait queue itself as an M/G/1 system.

The solution only requires finding the roots of a cubic
equation, unlike typical Markovian models where the
computational complexity is often a function of the
parameter values. Due to its simplicity, the approxi-
mate solution provided us with insight into the sensi-
tivity of system performance to workload parameters
and also yielded conditions under which performance
limits would be reached.

Our study showed that, for medium and large-
sized databases, the approximate analysis provides
extremely good qualitative agreement with the cor-
responding simulation-derived exact results. In ad-
dition, the quantitative results are also fairly accu-
rate, especially under light loads. For small-sized
databases, the qualitative matching was retained al-
though there was considerable deterioration in quan-
titative accuracy under heavy loads.

Our experiments showed that the absolute value
of transaction size, independent of its relation to
database size, plays a significant role in determining
system performance. Therefore, we recommend that
designers of real-time database applications should try
to minimize the size of their transactions. Our results
also showed that unlike classical real-time systems,
where increased task laxity usually results in improved
performance, increased transaction laxity worsens per-
formance under heavy loads. We provided a quantita-
tive characterization of the loading level beyond which
increased laxity results in degraded performance. We
also showed that laxity tending to infinity provides
the best performance under light loads, while laxity
tending to zero is the best under heavy loads.

In our model, the transaction scheduler used a fcfs
processing policy. Different performance behaviors
may show up for prioritized scheduling disciplines.
However, it is our view that the approximate anal-
ysis methodology described here can be successfully
used to analyze these other cases also and we have had
some preliminary encouraging results in this regard in
our ongoing research. Some of the other assumptions
in our model were that transaction laxities and pro-
cessing times are exponentially distributed. We are
currently working on extending the analysis to deter-
ministic distributions of laxities and processing times.

References

[1] Abbott, R., and Garcia-Molina, H., “Scheduling
Real-Time Transactions: A Performance Evalua-
tion,” ACM Trans. on Database Systems, 17(3),
September 1992.

18

{2] Haugen, R., and Skogan, E.; “Queueing Systems
with Stochastic Time Out”, IEEE Trans. on Com-
munications, 28(12), December 1980.

[3] Haritsa, J., “Transaction Scheduling in Firm Real-
Time Database Systems,” Ph.D. Thesis, Com-
puter Sciences Dept., Univ. of Wisconsin, Madi-

son, August 1991.
(4]

Haritsa, J., “Performance Analysis of Real-Time
Database Systems,” Technical Report 92-96, Sys-
tems Research Center, Univ. of Maryland, College

Park, September 1992.
(5]

Huang, J., “Real-Time Transaction Processing:
Design, Implementation, and Performance Evalu-
ation,” Ph.D. Thesis, Computer and Information

Science Dept., Univ. of Massachusetts, Amherst,
May 1991.

Volume 1:

(6]

Kleinrock, L., “Queueing Systems,”
Theory, John Wiley & Sons, 1975.

[7] Lavenberg, S., “A Simple Analysis of Exclusive
and Shared Lock Contention in a Database Sys-
tem,” Proc. of jth ACM SIGMETRICS Conf. on
Measurement and Modeling of Computer Systems,

May 1984.

Mitra, D., and Weinberger, P., “Some Results on
Database Locking: Solutions, Computational Al-
gorithms and Asymptotics,” Mathematical Com-
puter Performance and Reliability, lazeolla, G.,
Courtois, P., and Hordijk, A. (eds.), North-
Holland, 1984.

[9] Tay, Y., Goodman, N., and Suri, R., “Locking Per-
formance in Centralized Databases,” ACM Trans.

on Database Systems, Dec. 1985.

[10] Thomasian, A., and Ryu, 1., “A recursive solu-
tion method to analyze the performance of static
locking systems,” IEEE Trans. on Software Engi-
neering, Oct. 1989.

[11] Zhao, W, and Stankovic, A., “Performance Anal-
ysis of FCFS and Improved FCFS Scheduling Al-
gorithms for Dynamic Real-Time Computer Sys-
tems,” Proc. of 10th IEEE Real-Time Syslems
Symposium, December 1989.

Appendix

We present here the detailed proof for Lemma 2.
The first step is to compute fi(t), the service
time distribution of transactions at the head-of-queue
(pseudo)server. Both transactions that are killed be-
fore they reach the head of the queue and transactions
that immediately enter the database on reaching the
head of the queue have an effective service time of
zero. Denoting the service time random variable by
zp, we have

fh(O) = P(:ch = 0) = (ab + (1 — ab) * (1 — Pcon)) uo(t)
(17)
where P,,, is the probability that a transaction at the
head of the queue has to wait due to data conflict and
uo(t) is the impulse function. A quick way to compute
P.on is to realize that it is equivalent to the head-of-
queue kill fraction in a system where tasks have zero
laxity. Using the result in Equation 2, we have

Peon = Apls=0 = pr(l - CY)

Substituting this expression for P, in Equation 17
and simplifying, we obtain

0) = (1-E)uo(t)
where E = p€J(1 — ap)(1 — a) .

The transactions that do not fall into the above
categories either gain entry into the database before
their laxity expires or are killed while positioned at
the head of the queue. The service time distribution
for a transaction with remaining laxity [is given by

Futt = peH 0<t<!
MU= e mlug(t—1) t>1

(18)

(19)

where the first equation corresponds to the case where
the transaction’s data conflict disappears before its
laxity expires, and the second equation corresponds
to the case where the transaction is killed.

Therefore, the unconditional pdf of the service time
distribution when the service time is greater than 0 is

>0 = / (ne™ 4+ e #ug(t — 1)) ye " dl
1
= (p+7)e A

Combining the expressions in Equations 18 and 20,
the complete service time pdf is given by

fa(t) = (1 — E)uo(t) + E(p +y)e~ W+t (21)

Then, using the well-known M/G/1 results [6], we ob-
tain the corresponding waiting-time distribution to be

w(t) = (1= pa)uo(t) + (1 = pp)ABe™ 1= (29)

(20)

19

where p, is the “utilization” of the head-of-queue
server. Consequently, the CDF of the waiting time

is given by
t
/ w(t) dt
0

(I-pn)(1+

Fu(t)

AE _ -
py BT

The pj, parameter is easily computed as

E

Bty

from the distribution given in Equation 21.
Substituting this value of p; in the above equation for
F,(t) and simplifying, we have

Ph=ATp = A

Fy(t) = 1 — Ge~(rMA-G)t (23)
26¢]
where G = %(1 —ap)(1—a).

Recall that o 1s the probability of a transaction being
killed due to its laxity being smaller than its wait time
in the body of the queue. Therefore,

ay = /000(1 — Fy(t))ye~ " dt

Substituting for Fy,(¢) from Equation 23 and evaluat-
ing the integral, the above expression reduces to

_ G
T 246-G(1+96)

(471 (24)

Substituting for G in this equation, and then solving
for ap, we have

ol + Pap+1=0 (25)

1 + 1)
1+6 p2€J(1 —a)’
From the flow equation (Equation 1) and from Equa-
tion 2, we can express « in terms of «y as

B (1-a3)
1+ A(l - ab)

where P = 2 — (2 4+ 6)(

(26)

Substituting this expression for « in Equation 25 and
making algebraic manipulations, we finally obtain

o+ Bal 4+ Cay+D =0

where B, C, and D are the coefficients given in Equa-
tion 9.

0

