
MIRA: Multilingual Information Processing
on Relational Architecture

A. Kumaran

Department of Computer Science and Automation,
Indian Institute of Science, Bangalore, India

kumaran@csa.iisc.ernet.in

Abstract. In today’s global village, it is critical that the key information tools,
such as web search engines, e-Commerce portals and e-Governance, work across
multiple natural languages, seamlessly. We propose a new flexible architecture
– Multilingual Information processing on Relational Architecture (MIRA)
– that supports the multilingual processing functionality of the primary storage
mechanism for such deployments – the relational database systems, effectively
and efficiently. We propose new linguistic matching operators that enhances the
standard lexicographic matching of database systems into phonetic and semantic
domains. We further show that the performance of the systems may be made
language-neutral. Our proposed architecture is based on standards and hence
amenable for easy implementation in any type of query processing and information
retrieval systems. In this paper, we present our approach to implement the above
architecture and outline the host of research issues that are opened up due to the
inherently fuzzy nature of the alternative matching semantics.

1 Introduction

In an increasingly multilingual digital world1, the key information and commerce ap-
plications, such as e-Commerce portals, digital libraries, search engines etc., must work
across multiple natural languages, seamlessly. A critical requirement to achieve this goal
is that the principal underlying data source – relational database management systems –
should manage multilingual data effectively and efficiently. Our proposal, Multilingual
Information processing on Relational Architecture (MIRA), attempts to enhance the
relational database systems with multilingual features and to make the query perfor-
mance nearly language neutral. Further, our proposed architecture is amenable for easy
implementation in any type of query processing and information retrieval systems.

Specifically, we propose multilingual operators that extend and complement the
standard lexicographic matching operator, to match text strings across languages based
on enhanced matching semantics. We propose a phonetic matching operator that matches
proper names, after transforming them to equivalent phonemic strings, and a semantic
matching operator that matches attributes based on their meanings, transformed using

1 Currently, two-thirds of Internet users are non-native English speakers [1] and it is predicted
that the majority of web-data will be multilingual by 2010 [2].

W. Lindner et al. (Eds.): EDBT 2004 Workshops, LNCS 3268, pp. 12–23, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

MIRA: Multilingual Information Processing on Relational Architecture 13

ontological hierarchies. In both cases, the performance of the operators is shown to be
at a level acceptable for online user interaction. Further, to make the performance of
queries on multilingual data comparable to monolingual processing, we propose a new
compressed storage format that results in a near language-neutral performance when
implemented on commercial database systems.

The alternative semantics for the matching operators and the inherently fuzzy nature
of such matching opened up several interesting issues that may be possible extensions
of our current research. We are also expanding the scope of our application domains, to
test the viability of our multilingual architecture.

2 A Sample Multilingual Application

Consider a hypothetical e-Commerce application – Books.com that sells books across
the globe, with a sample product catalog in multiple languages as shown in Figure 1.
The product catalog shown may be considered as a logical view assembled from data
from several databases (each aligned with the local language needs), but searchable in a
unified manner for multilingual users.

Fig. 1. Hypothetical Books.com Catalog

2.1 Multilingual Name Searches

In this environment, suppose a user wants to search for the works of an author in all
(or a specified set of) languages. The SQL:1999 compliant query requiring specification
of the authors name in several languages is undesirable, due to requirement of lexical
resources in each of the languages and high error levels in data input even when working
on mono-lingual data2.We propose a simple query syntax, as shown in Figure 2, that takes
input name in one language, namely English, but returns all phonemically equivalent
names in the user-specified set of languages, namely, English, Hindi, Arabic and
Tamil.

A sample phonetic query and the corresponding answer set, when issued on
Books.com, are given in Figure 2. The returned tuples have in Author column the multi-
lexical strings that are phonemically close to the query string in English, namely,Nehru.

2 The error rate for name attributes in English is estimated to be approximately 3% [9].

14 A. Kumaran

The specification of ALL for the list of languages would have brought all records con-
taining author names that are phonetically equivalent to Nehru, irrespective of the
languages. The Threshold parameter specified in the query determines the quality of
matches, as described later in the paper.

SELECT Author,Title,Language FROM Books
WHERE Author LexEQUAL ‘Nehru’ Threshold 0.25
IN { English, Hindi, Arabic, Tamil }

Fig. 2. A Sample LexEQUAL Query and Result Set

We refer matching on multilexical text strings, based on their phonemic equivalence
as Multilexical Phonemic Matching. Though restricted to proper names, such matching
represent a significant part of the user query strings in text databases and search engines,
as proper and generic names constitute a fifth of normal corpora [9].

2.2 Multilingual Concept Searches

Consider the query to retrieve all History books in Books.com, in a set of languages
of users choice. The current SQL:1999 compliant query, having the selection condi-
tion as Category = "History" would return only those books that have Category
as History, in English. A multilingual user may be served better if all the History
books in all the languages (or in a set of languages specified by her) are returned. A
simple SQL query, as given in Figure 3, and the corresponding result set may be
desirable.

SELECT Author,Title,Category FROM Books
WHERE Category SemEQUAL ‘History’
IN { English, Hindi, French, Tamil }

Fig. 3. A Sample SemEQUAL Query and Result Set

The output contains all books that have their category values that are semantically
equivalent to History in English. Note that in addition to all books with Category

MIRA: Multilingual Information Processing on Relational Architecture 15

having a value equivalent to History, the categories that are subsumed by History3

are also retrieved. We refer matching text strings based on their generalized meanings,
irrespective of the languages, as Multilingual Semantic Matching.

It should be specially noted here that though our solution methodology is designed
for matching multilingual strings, it is equally applicable for extending the standard
matching semantics of mono-lingual text strings. For example, the LexEQUAL operator
may be used for matching the English name Catherine and all its variations, such
as Kathrin and Katerina. Similarly, the SemEQUAL operator, may be used for
matching Disk Drive with Computer Storage Devices.

3 MIRA Implementation Strategy

In this section, we outline our strategy for implementing the MIRA architecture. We
explain the ontology of text data in relational systems and show how we define the
semantics for the new operators for phonemic and semantic matching of multilingual
text data.

Fig. 4. Ontology for Text Data

Our view of storage and semantics of textual information in databases is shown in
Figure 4. The semantics of what gets stored is sketched in the top part of the figure, and
how the text data is stored is outlined by the lower half of the figure. Multilingual text
strings are stored in a normalized alphabet (such as English, Hindi, Arabic, Chinese, etc.)
and orthogonally in a specific encoding (such as ASCII, Unicode, etc.). Semantically, the
text attributes may represent a wide variety of information, from simple strings to full
documents; however, we consider only two specific type of attributes; first, those that
store proper names, whose value is primarily in the vocalization of the name, tagged as

3 Historiography (the study of of history writing and written histories) and
Autobiography are considered as specialized branches of History itself.

16 A. Kumaran

Proper Names in the figure above. Second, those that lend themselves to be described
using ontological hierarchies, tagged as Singular Concepts above. We broadly classify all
other attributes as Documents which may require more sophisticated Natural Language
Processing algorithms that process the documents on complex semantics.

3.1 Phonemic Matching Strategy

In this section we briefly sketch our phonetic matching approach that extends earlier
works in monolingual world [16] to matching of multilingual names. We further en-
hance the performance of such matching by defining a phonemic index based on the
classic Soundex algorithm [10] and by adopting q-gram techniques [7] that has been
successfully used in approximate matching of monolingual names to multilingual world.
Interested readers are referred to [13–15] for details of the matching algorithm and its
performance.

LexEQUAL (Sl, Sr , e)
Input: Strings Sl, Sr , Error Threshold, e

Languages with TTP transformations, SL
1. Ll← Language of Sl;Lr ← Language of Sr;
2. if Ll ∈ SL and Lr ∈ SL then
3. Tl←transform(Sl,Ll); Tr←transform(Sr ,Lr);
4. Smaller← (| Tl | ≤ | Tr | ? |Tl| : |Tr|);
5. if editdistance(Tl, Tr) ≤ (e ∗ Smaller)
6. then return TRUE else return FALSE;
7. else return NORESOURCE;

editdistance(SL, SR)
Input: String SL, String SR

Output: Edit-distance k

1. Ll← | SL |; Lr ← | SR |;
2. Create DistMatrix[Ll, Lr] and initialize to Zero;
3. for i from 0 to Ll do DistMatrix[i, 0]← i;
4. for j from 0 to Lr do DistMatrix[0, j]← j;
5. for i from 1 to Ll do
6. for j from 1 to Lr do

7. DistMatrix[i, j]←Min

{
DistMatrix[i− 1, j]+InsCost(SLi)

DistMatrix[i− 1, j − 1]+SubCost(SRj ,SLi)
DistMatrix[i, j − 1]+DelCost(SRj)

}

8. return DistMatrix[Ll, Lr];

Fig. 5. The LexEQUAL Algorithm

We propose a phonemic matching strategy (shown as dotted line in Figure 4) in
LexEQUAL operator, as follows: First, the multilingual text strings are transformed to

MIRA: Multilingual Information Processing on Relational Architecture 17

their equivalent phonemic representations in International Phonetic Alphabet (IPA)4 [3],
obtained using standard text-to-phoneme (TTP) converters. The phoneme strings are
stored in the Unicode [4] encoding format, as specified by Unicode Consortium, using
basic Latin and IPA supplement code charts. The resulting phoneme strings represent a
normalized form of proper names across languages, thus providing a means of compar-
ison. Further, when the text data is stored in multiple scripts, this may be the only means
of comparing them. Since the phoneme sets of two languages are seldom identical, we
employ approximate matching techniques to match the phoneme strings. Thus, the mul-
tilexical comparisons are inherently fuzzy, making it only possible to produce a likely,
but not perfect, set of answers with respect to the user’s intentions.

In the algorithm shown in Figure 5, the LexEQUAL operator accepts two to-be-
compared multilingual text strings and a User Match Threshold parameter that deter-
mines the quality of match, as inputs. The strings are transformed to their equivalent
phonemic strings in IPA [3] alphabet by the Transform function, implemented using
standard TTP converters. The editdistance function computes the traditional Leven-
shtein edit distance or a modified distance metric, as appropriate. The value for the user
match threshold parameter may be fixed by application administrators, depending on
the domain and the application requirements.

LexEQUAL Match Quality. While the performance of above algorithm can be opti-
mized, we emphasize that the ideal parameters will depend on the data set and the domain
of interest. The User Match Threshold and Cost Matrix (the replacement cost between
a given pair of characters) parameters may be tuned at user or application level, based
on the characteristics of the domain. We detail our experiments and a methodology for
tuning the parameters for optimal matching in [15].

LexEQUAL Operator Performance. Since the approximate matching implemented
as UDF affects the query run-times adversely, we outline two different techniques for
improving the performance of the query processing – the Q-Gram Filters and an Approx-
imate Phonetic Index. Both these techniques cheaply return a set of candidate strings,
which are further processed using the expensive UDF calls to weed out the false-positives.
Our experimental results show that these techniques vastly improve the performance of
phonetic matching.

3.2 Semantic Matching Strategy

Our strategy for matching multilingual data based on semantics in SemEQUAL opera-
tor is as shown in Figure 6. First, we convert the query string to a set of concepts using
a standard linguistic resources, such as WordNet [5]. The WordNet is a lexico-semantic
database that provides, the context for all noun word-forms in standard taxonomical hier-
archies covering all concepts expressible in a language. We propose to leverage the rich
semantic hierarchies available in WordNet and match two different word forms, based on
the concept that they map on to in WordNet’s taxonomic hierarchy. Further, the matching

4 IPA provides a complete set of phonemes of all the world’s languages, thus providing a common
representation for the vocalization of the proper name.

18 A. Kumaran

may be on specializations of the meaning of the query string, using semantic closure5

computed using WordNet. In addition to English WordNet, there are several initiatives
such as Euro-WordNet and Indo-WordNet around the world [6], to interlink concepts of
WordNets in different languages. Once the multilingual word forms are mapped onto
semantic primitives using WordNet of the appropriate language, the resulting semantic
primitives may be compared for equivalence, generalization or specialization based on
the common concept hierarchy between the languages.

SemEQUAL (StringData, StringQuery , TL)
Input: Strings StringData, StringQuery

Set of Target Languages TL
Output: TRUE or FALSE

[Optional] Gloss of Matched Synset
1. (LD ,LQ)← LangOf (StringData, StringQuery);
2. (WD ,WQ)←WordNetOf (LD ,LQ);
3. SD ← Synset of StringData inWD; SQ← Synset of StringQuery inWQ;
4. T CQ← TransitiveClosure(SQ, TL);
5. if T CQ ∩ SD is not empty then

return TRUE else return FALSE;
6. [Opt.] return Gloss of the Matched Synset;

TransitiveClosure (S, TL)
Input: String S, Target Language Set TL
Output: The specializations of S
1. LS ← Language of String S;
2. WL←WordNet of Language LS ;
3. S ← SC ← Synsets of S inWL; SN ← φ;
4. repeat until no change in S:
5. for every element s in SC
6. SN ← SN ∪ hypernyms of s

∪ Synsets linked to s through
InterLangIndex to L ε TL
not yet traversed to;

7. S ← S ∪ SN ; SC ← SN ; SN ← φ;
8. return S

Fig. 6. The SemEQUAL Algorithm

The SemEQUAL function takes as input, strings StringData and StringQuery . The
transitive closures are computed by the TransitiveClosure function, using Is-A rela-
tionships within a language and using Inter-Language-Index across languages.
In the implementation, only the WordNets corresponding to the target languages spec-
ified in the query are traversed. Once the transitive closure is computed, set-processing

5 The semantic closure of a concept in a taxonomic (or ontological) hierarchy, is the set of nodes
reachable from a given node, by tracing the parent-child relationships.

MIRA: Multilingual Information Processing on Relational Architecture 19

routines are used for computing set-memberships. The output is TRUE if the specified
matching condition is met. Since the query string, StringQuery , may match on any one of
the several synsets (which are possible semantics of the same word form), SemEQUAL
may be made optionally to return the Gloss of the synset on which the StringQuery is
matched.

The transitive closure function is implemented using the recursive SQL feature
defined in SQL:1999 [8], which was found to be adequate functionally to imple-
ment the SemEQUAL operator. However, as expected, the cost of computing se-
mantic closures was high. Since the linguistic ontological hierarchies are typically
large (containing as much as 100,000 concepts), and since the domain-specific on-
tologies are typically much smaller than the WordNet ontology, our experiments
with WordNet ontological hierarchies may provide a worst-case performance sce-
nario for SemEQUAL matching.

SemEQUAL Operator Performance. We first analyzed the performance of SemE-
QUAL, expressed using standard SQL:1999 features, in relational database systems. A
direct implementation on three commercial database systems indicates that supporting
multilingual semantic processing is unacceptably slow. However, by tuning the schema
and access structures to match the characteristics of WordNet, we are able to bring the
response times down to a few milliseconds, which we expect to be sufficient for most
applications. The details of our implementations and optimization techniques would be
published in a forthcoming technical report.

3.3 General Multilingual Query Performance

While most commercial database systems support management of multilingual data, we
found that the relative performance in handling multilingual data, compared with stan-
dard Latin based scripts was upto 300% slower.A comprehensive study of the differential
performance of popular database management systems with respect to multilingual data
is given in [12]. Worse, we found that the query optimizer’s prediction accuracy differs
substantially between them. We analyzed the parameters contributing to the slowdown
and narrowed down the differential performance to primarily the storage size of the
Unicode format and its effect on in-memory processing, and secondarily due to the
Unicode-specific function call overheads.

To alleviate the primary problem, We propose Cuniform, a compressed format that
is trivially convertible to Unicode, yet occupying equivalent storage space when the
data is expressed in native ASCII-based scripts. Our initial experimental results with
Cuniform indicate that it largely eliminates the performance degradation for multilingual
scripts with small repertoires, and makes the performance of queries nearly language-
neutral, for languages with small repertoire. Further, by partitioning the multilingual
data in language specific tables, we may be able to achieve a higher performance than
monolingual data, under certain assumptions on the distribution of data among different
languages.

20 A. Kumaran

4 MIRA Implementation Architecture

Our proposed architecture for multilingual query processing is shown in Figure 7. The
shaded boxes emphasize the new processing modules, and the iconized boxes represent
resources (lexical or semantic) that are to be installed.

TTP (1)
Cost

Matrix

TTP (n)

String
Query

Matched
Record[s]

Match
Threshold

Matched
String[s]

Transaction Manager

SQL
Recursive
Closure

Set
Member−

−ship

Category
Query

DatabaseCuniform
Map

Unicode
Unicode
Codes Hierarchy

Onto−

Onto−
Hierarchy

LexEQUAL SemEQUAL

Approximate
Matching
Function

SQL
1999
Closure

Fig. 7. MIRA Architecture

4.1 Design Goals for MIRA

We define the following design goals for the MIRA architecture, to implement the
multilingual features and performance requirements in a usable, useful and scalable
manner.

Relational Systems Oriented. Our focus is on relational database systems due to their
popularity as data repositories for most operational data.
Attribute Data Oriented. Our architecture will focus on processing attribute-level data,
for supporting multilingual keyword searches.
Standards Based. We rely on standard linguistic resources to promote uniformity and
consistency across different information processing systems.
Light-Weight Processing Components. Our architecture will focus on OLTP environ-
ments, and hence light-weight components for handling text data.
Customizable Matching. The matching quality must be customizable by users, de-
pending on the domain and application requirements.
Modular and Dynamic Architecture. The linguistic resources must be easily added,
to make MIRA language aware, dynamically.

MIRA: Multilingual Information Processing on Relational Architecture 21

5 Conclusion and Future Research Issues

In our thesis, we propose an architecture for processing multilingual data transparently
across languages, on the traditional information processing platforms, such as relational
database management systems. A survey on the functionality and performance of the
current systems indicate that the state-of-the-art falls short of these requirements on
several counts, motivating our research on multi-lingual database systems.

From the efficiency perspective, we profiled in [12] the performance of standard re-
lational operators (e.g. Select, Join) applied on multilingual data in commercial database
systems. Our results showed that severe performance penalties may be incurred, upto
about 300%, when compared against equivalent query processing on ASCII based data.
We proposed efficient compressed storage format, Cuniform, to reduce these penalties
and demonstrated that the query processing can be made nearly language-neutral.

From the functionality perspective, we introduced a new SQL multilingual operator
called LexEQUAL [13–15], for syntactic matching of attribute data across languages.We
confirmed the feasibility of our strategy by measuring the quality metrics, namely Recall
and Precision, in matching a real, tagged multilingual data set. Further, we showed that
the poor performance associated with the UDF implementation of approximate matching
may be improved by orders of magnitude, by employing optimization techniques. We
also proposed a new SQL operator – SemEQUAL, intended for matching multilingual
text attribute data based on their meanings, leveraging the rich taxonomic hierarchies
in cross-linked WordNets in different natural languages. Our experiments with Word-
Net on three commercial database systems, confirmed the utility of the SemEQUAL
operator, but underscored the inefficiencies in computing transitive closure, an essential
component for semantic matching. By tuning the storage and access structures to match
the characteristics of resources in the linguistic domain, we speeded up the closure com-
putation by 2 to 3 orders of magnitude – to a few milliseconds – making the operator
viable for supporting user online query processing.

In summary, in the performance area, we have profiled and optimized the multilingual
performance of popular database systems. In the functional area, we have defined two
operators – namely, LexEQUAL for phonetic matching and SemEQUAL for semantic
matching of multilingual attributes, and shown that they may be efficiently implemented
on existing relational database management systems. We expect that such operators may
effectively and efficiently complement the standard lexicographic matching, thereby
representing a first step towards the ultimate objective of achieving complete multilingual
functionality in database systems.

5.1 Research Issues

The following open issues are being addressed as a part of our current research.

Real-Life Application and Multilingual Performance Suites. We need to identify a
real-life application that can benefit from the multilingual processing and establish user
work-flows using the multilingual operators. Such an application may provide a test-
bed for performance suites to calibrate and compare different database management
systems on multilingual performance [11], along the lines of TPC benchmarks for OLTP
applications.

22 A. Kumaran

Automatic Fine-tuning of Phonetic Match Quality. In LexEQUAL operator for pho-
netic matching, clearly the parameters for the best match quality depends on the phoneme
set of the languages being considered and the requirements of the application domain.
For example, a Homeland Security application may require tighter matches, where as a
Telephone Subscriber Search application may be willing to tolerate much looser matches.
We are currently automating the determination of optimal match parameters, based on
user-defined training sets.

Approximate Indexes for Efficient Searches. Several approximate indexing method-
ologies offer search capability on pre-generated phonemic strings corresponding to
names. We define the Search Efficiency of an index tree as the fraction of data elements in
the database that were examined. The search efficiency indicates the effectiveness of the
index structure in narrowing down the search. However, we find that all the approximate
indexes are inefficient in searches, as shown in Figure 8. For example, about 75% of the
strings in the database are retrieved as candidate matches for a user match threshold of
0.5, while less than 1% of the database are real matches.

0

10

20

30

40

50

60

70

80

90

100

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9 1

N
um

be
r

of
 c

om
pa

ris
on

s
as

 a
 p

er
ce

nt
ag

e
of

 th
e

da
ta

ba
se

Edit distance

Approximate string searching

"BKTree"
"FQTree"
"FHTree"
"VPTree"

"MVPTree"
"MTree"
"cluster"

"MTB"
"Bisector"

"ActualMatches"

Fig. 8. Search Efficiency of Approximate Indexes

We are exploring the better partitioning and clustering techniques for building effec-
tive approximate indexes, to improve the search efficiency.

Domain-Specific Ontologies. While our performance experiments in semantic match-
ing with WordNet taxonomic hierarchies had established performance characteristics of
SemEQUAL, we expect the domain-specific ontologies to be more useful in semantic
searching applications. Experiments (for performance and tightness) must be conducted
using smaller and more precise domain specific ontologies, to ascertain the value of
SemEQUAL operator.

MIRA: Multilingual Information Processing on Relational Architecture 23

References

1. The Computer Scope Limited. http://www.NUA.ie/Surveys.
2. The Web Fountain Project. http://www.almaden.ibm.com/WebFountain.
3. The International Phonetic Association. http://www.arts.gla.ac.uk/IPA/.
4. The Unicode Consortium. http://www.unicode.org.
5. The WordNet. http://www.cogsci.princeton.edu/˜wn.
6. The Global WordNet Association. http://www.globalwordnet.org.
7. L. Gravano, P. Ipeirotis, H. Jagadish, N. Koudas, S. Muthukrishnan, and D. Srivastava. Ap-

proximate string joins in a database (almost) for free. In Proc. of the 27th VLDB Conf., Rome,
Italy, 2001.

8. ISO/IEC. Standard 9075-1-5:1999, Information Technology – Database Languages – SQL.
International Organization for Standardization, 1999.

9. D. Jurafskey and J. Martin. Speech and Language Processing. Pearson Education, 2000.
10. D. E. Knuth. The Art of Computer Programming (Vol 3: Sorting and Searching). Addison–

Wesley, Reading, Massachusetts, United States, 2nd edition, 1993.
11. A. Kumaran and J. R. Haritsa. On database support for multilingual environments. In Proc.

of the 13th IEEE Research Issues in Data Engineering Workshop (held in conjunction with
19th IEEE Intl. Conf. on Data Engineering), Bangalore/Hyderabad, India, 2003.

12. A. Kumaran and J. R. Haritsa. On the costs of multilingualism in database systems. In Proc.
of the 29th VLDB Conf., Berlin, Germany, 2003.

13. A. Kumaran and J. R. Haritsa. LexEQUAL: Multilexical matching operator in SQL. In Proc.
of the 23rd ACM SIGMOD Intl. Conf. on Management of Data, Paris, France, 2004.

14. A. Kumaran and J. R. Haritsa. Supporting multilexical queries in SQL. In Proc. of the 20th
IEEE Intl. Conf. on Data Engineering, Boston, United States, 2004.

15. A. Kumaran and J. R. Haritsa. Supporting multiscript matching in database systems. In Proc.
of the 9th Extending Database Technology Conf., Heraklion-Crete, Greece, 2004.

16. J. Zobel and P. Dart. Phonetic string matching: Lessons from information retrieval. In Proc.
of 19th ACM SIGIR Conf., Zurich, Switzerland, 1996.

http://www.NUA.ie/Surveys
http://www.almaden.ibm.com/WebFountain
http://www.arts.gla.ac.uk/IPA/
http://www.unicode.org
http://www.cogsci.princeton.edu/~wn
http://www.globalwordnet.org

	Introduction
	A Sample Multilingual Application
	Multilingual Name Searches
	Multilingual Concept Searches

	MIRA Implementation Strategy
	Phonemic Matching Strategy
	Semantic Matching Strategy
	General Multilingual Query Performance

	MIRA Implementation Architecture
	Design Goals for MIRA

	Conclusion and Future Research Issues
	Research Issues

