
Robust Query Processing

Srinivas Karthik ∗

srinivas@dsl.serc.iisc.ernet.in
Supervised by Jayant R. Haritsa ∗

∗Database Systems Lab, Indian Institute of Science
Expected Graduation Date: July 2017

Abstract—Robust query processing, a long-standing problem,
is about performance, predictability and ability to avoid sudden
disruptions in performance. While query optimizer being an
important component of query processing, my thesis focuses on
query optimizer robustness which is mainly plagued with the
problem of cardinality mis-estimates. Moreover, it is well known
that these mis-estimates can lead to orders of magnitude sub-
optimal performance.

In order to mitigate this problem, there has been consid-
erable work in the literature such as improving quality of
statistical meta-data, feedback-based adjustments, on-the-fly re-
optimization of queries, etc. Most of these previous approaches
are based on heuristics and do not offer worst-case performance
bounds. The notable exception to the heuristics based approaches
is the PlanBouquet approach which provides a provable worst-
case performance guarantees. In PlanBouquet, the selectivities
are not estimated but are discovered at run-time using a set
(or bouquet) of plans. The PlanBouquet formulation suffers,
however, from a systemic drawback – the performance bound
is a function of not only the query, but also the underlying
database platform. Thus the bound value becomes highly vari-
able. Moreover, it is infeasible to compute the bound value without
substantial investments in preprocessing overheads.

We present SpillBound, the first algorithm for robust query
processing that provides a platform-independent worst-case bound.
Specifically, SpillBound delivers a worst-case multiplicative
bound of D2 + 3D, where D is simply the number of error-
prone predicates in the user query. Consequently, the bound value
becomes independent of the optimizer and the database platform,
and the guarantee can be issued just by inspecting the query
without incurring any additional computational effort. Overall,
SpillBound offers a new platform-independent approach to
robust query processing.

I. INTRODUCTION

In computer science, robustness can be defined as the
ability of a computer system to cope with errors during
execution. While in the context of data management, robust-
ness is usually associated with recovery from failure, disaster
preparedness, etc. In particular, robust query processing is
about performance, predictability and ability to avoid sudden
disruptions in performance. The importance of robustness in
query processing is showcased by the fact that there have been
two Dagstuhl seminars on this topic [3], [4]. Drilling down
further, the notion of robustness in query processing has been
categorized into the following three types [16]:

1) query optimizer robustness: “the ability of the optimizer
to choose a good plan as expected conditions change”

2) query execution robustness: “the ability of the query
execution engine to process a given plan efficiently under

different runtime conditions”

3) workload management robustness: “characterizes how
database system performance is vulnerable to unexpected
query performance”

Although each of these robustness aspects has challenges,
my thesis focuses on the query optimizer robustness.

Query optimizer robustness: Current optimizers use a cost
model and a cardinality model for choosing a plan. Here cost
provide an estimate of the time required for data processing
which is a function of system hardware. On the other hand,
cardinality indicates the quantity of data processing which
is a function of data distribution and data correlations. It is
well known that there are errors in cost model as well as
cardinality estimates. However, Lohman, in [11], mentions that
errors induced by cost model have limited impact (<30%,
on an average). He adds to it saying that the same is not
true with inaccurate cardinality estimates (of the intermediate
results) which can lead to sub-optimal performance by orders
of magnitude.

The reasons for error in cardinality estimation are due
to coarse summaries, insufficient or stale system metadata,
violation of simplifying assumptions and complex user-defined
predicates [14]. Moreover, it has been shown that, even if
estimation errors on the base relations are small the errors
can propagate exponentially with respect to the number of
joins in the query execution tree [9] leading to poor execution
performance. There has been a lot of prior work in query
processing in order to mitigate this problem which can be
categorized into the following:

1) Improving Accuracy: A comprehensive survey on the
standard estimation techniques is available in [8]. Typically,
histograms are used in current systems storing the statistical
summary of attribute values, and are based on assumptions
such as Attribute Value Independence (AVI) and uniformity of
data distributions. Recently [15] takes a step towards removing
the independence assumption, but their work is restricted to
handling two-dimensional histograms and is inefficient for
databases subject to updates.

2) Bounding Error Impact: Techniques to minimize the
adverse impact of errors in selectivity estimations are proposed
in [6], [13]. However, [13] does not address the problem
of recovering from large estimation errors. Moreover, both
techniques run into the basic infeasibility of a single plan to
be near-optimal across the entire selectivity space.

3) Plan-switching Approaches: Plan-switching techniques
have been considered for over two decades, and include

influential systems such as POP [12] and Rio [1]. Further,
they use optimizer’s estimated plan as the initial seed, and then
re-optimize if the estimates were found to be significantly in
error. In particular, POP may get stuck with a poor plan since
its validity ranges are defined using structure-equivalent plans
only. Similarly, Rio’s sampling-based heuristics for monitoring
selectivities may not work well for join selectivities and its
definition of plan robustness on the basis of performance at
corners (principal diagonal) has not been justified.

Given this rich body of literature, none of them pro-
vide guarantees on the worst-case execution performance
with the exception of a recently proposed approach called
PlanBouquet [2].

A. PlanBouquet

In this approach, the compile-time estimation process is
completely abandoned – instead, selectivities are discovered
at run-time by observing the query completion status of a
calibrated sequence of cost-limited executions from a carefully
chosen set of plans, called the “plan bouquet”. Conceptually,
the plan bouquet can be viewed as a sequence of “isocost
bucket”s, each consisting of a group of plans that are executed
with a common cost budget, and the budget doubling from
one bucket to the next. The buckets are explored sequentially,
starting with the cheapest, and the process terminates when a
plan is completely executed to completion within its assigned
budget.

As mentioned before, a unique benefit of PlanBouquet
is that it provides guaranteed bounds on worst-case execution
performance. They use the notion of Maximum Sub-Optimality
(MSO), introduced in [2], as a measure of the robustness of
a query processing technique to errors in selectivity estima-
tion. Specifically, given a declarative query MSO of a query
processing algorithm is the worst-case ratio, over the entire
selectivity space, of the cost expended by the algorithm with
respect to the optimum cost incurred by an oracular system
that magically knows the correct selectivities. Then, the MSO
of PlanBouquet is bounded by 4 ∗ ρ, where ρ refers to the
plan cardinality of the largest isocost bucket.

B. Limitations of PlanBouquet

The PlanBouquet formulation, while breaking new
ground, suffers from a systemic drawback – the size of the
plan bouquet, and therefore the bound, is a function of not only
the query, but also the optimizer’s behavioral profile over the
underlying database platform (including data contents, physical
schema, hardware configuration, etc.). As a result, there are
adverse consequences: (i) the bound value becomes highly
variable, depending on the specifics of the current operating
environment; (ii) it becomes infeasible to compute the value
without substantial investments in preprocessing overheads.
Moreover, ensuring a bound that is small enough to be of
practical value, is contingent on the heuristic of “anorexic
reduction” [5] holding true.

C. SpillBound

With an objective to develop a bound that is solely query-
dependent, and not on the specifics of the platform on which
the query is executing (i.e. a “structural bound” instead of a

“behavioral bound”), we proposed a new query processing al-
gorithm, called SpillBound in [10], that materially achieves
this platform-independent objective. 1

Specifically, SpillBound delivers an MSO bound that is
only a function of D, the number of predicates in the query
that are prone to selectivity estimation errors. Moreover, the
dependency is in the form of a low-order polynomial, with
MSO expressed as (D2 + 3D).

SpillBound obtains its freedom from systemic depen-
dencies through a potent pair of conceptual enhancements:
First, it extends PlanBouquet’s hypograph-based pruning of
the selectivity discovery space to a much stronger halfspace-
based pruning. Second, the calibrated advancement through
the discovery space is attained with at most a fixed number,
specifically D, of plan executions at each advance, whereas
these advances may entail an arbitrary number of executions
in PlanBouquet.

From a theoretical perspective, a natural question to ask is
whether there might exist some alternative selectivity discovery
algorithm, based on half-space pruning, that could provide
a much better MSO than SpillBound. In this regard, we
formally showed that no deterministic algorithm based on half-
space pruning can provide an MSO less than D. This result
shows that the SpillBound bound is no worse than a factor
O(D) in comparison to the best possible algorithm in its class.
The details of the lower bound proof can be seen in [10].

II. PROBLEM FRAMEWORK

In this section, we present the key concepts, notations, and
the formal problem definition. Given a user query, current
database engines typically estimate selectivities for the filter
and join predicates. While it is conceivable that the filter
selectivities may be estimated reliably, it is often difficult to
ensure similarly reliable estimates for the join predicates. We
refer to such predicates as error-prone predicates, or epp in
short. For ease of presentation, we assume that the set of error-
prone selectivity predicates for a given user query is known
apriori.

A. Error-prone Selectivity Space (ESS)

Consider a query with D epps – the individual epps
are denoted by {e1, . . . , eD}, and the full set by EPP. The
selectivities of the D epps are mapped to a D-dimensional
space, with the selectivity of ej corresponding to the jth
dimension. Since the selectivity of each predicate ranges over
[0, 1], a D-dimensional hypercube [0, 1]D results, henceforth
referred to as the error-prone selectivity space, or ESS. In
practice, an appropriately discretized grid version of [0, 1]D

is considered as the ESS. Note that each location q ∈ [0, 1]D

in the ESS represents a specific instance where the epps of
the user query happen to have selectivities corresponding to
q. Accordingly, the selectivity value on the jth dimension is
denoted by q.j.

1under the mild assumption that the number of predicates prone to estima-
tion errors, is same across database platforms.

B. Search Space for Robust Query Processing

Suppose we have as input, a query and its epps. At query
compilation time, the optimal plans for all locations in the
ESS grid can be identified through repeated invocations of the
optimizer with different epp values. The optimal plan for a
generic selectivity location q ∈ ESS is denoted by Pq , and the
set of such optimal plans over the complete ESS constitutes
the Parametric Optimal Set of Plans (POSP) [7].

We denote the cost of executing an arbitrary plan P at a
selectivity location q ∈ ESS by Cost(P, q). Thus, Cost(Pq, q)
represents the optimal execution cost for the epp selectivity
instance q. With this framework, our search space for robust
query processing is simply the set of < q, Pq, Cost(Pq, q) >
tuples corresponding to all the locations q ∈ ESS.

We adopt the convention of using qa to denote the actual
selectivities of the user query epps – note that this location is
unknown at compile-time, and needs to be explicitly discov-
ered.

C. Maximum Sub-Optimality (MSO) [2]

Let us now precisely define the robustness metric
MSO. Plan switching approaches like PlanBouquet and
SpillBound explore a sequence of locations during their
discovery process. So, we denote the deterministic sequence
pursued for a query instance corresponding to qa by Seqqa .
Specifically, suppose the discovery algorithm is currently ex-
ploring a location q ∈ Seqqa – it will choose Pq as the plan and
Cost(Pq, q) as the associated budget. Thus the sub-optimality
incurred by an algorithm which pursues Seqqa , relative to an
oracle that magically knows qa and therefore uses the ideal
plan Pqa , is defined as:

SubOpt(Seqqa , qa) =

∑
q∈Seqqa

Cost(Pq, q)

Cost(Pqa , qa)
(1)

Moreover, the maximum sub-optimality that can potentially
arise over the entire ESS is given by

MSO = max
qa∈ESS

SubOpt(Seqqa , qa) (2)

D. Problem Definition

With the above framework, the problem of robust query
processing is defined as follows:

For a given input query Q along with its EPP and the search
space consisting of tuples < q, Pq, Cost(Pq, q) > for all q ∈
ESS, develop a query processing approach that minimizes MSO
guarantee.

The primary assumptions made in [2] and in this paper
that allow for systematic construction and exploration of the
ESS are those of Plan Cost Monotonicity (PCM) and Selectivity
Independence (SI). PCM encodes the intuitive notion that when
more data is processed by a query, signified by the larger
selectivities for the predicates, the cost of the query processing
also increases. This assumption is found to be true for virtually
all the plans generated by PostgreSQL on the benchmark
queries. On the other hand, SI assumes that the selectivities
of the EPP are all independent – while this is a common

assumption in much of the query optimization literature, it
often does not hold in practice. In our future work, we intend to
look into extending SpillBound to handle the more general
case of dependent selectivities.

The conceptual and material improvements offered by
SpillBound are best understood in the wake of the limi-
tations of PlanBouquet. Thus, we next present the working
of PlanBouquet with the help of an example query EQ
shown in Figure 1. In the subsequent Section, again with the
assistance of EQ, we move on to describing SpillBound.
EQ enumerates orders for cheap parts costing less than 1000.
We assume the epps for EQ correspond to the two join
predicates (part on lineitem) and (lineitem on orders),
shown bold-faced in Figure 1.

select * from lineitem, orders, part where
p partkey = l partkey and o orderkey = l orderkey
and p retailprice < 1000

Fig. 1: Example Query (EQ)

III. PlanBouquet [2]

Example Execution: Given the above query,
PlanBouquet constructs a two-dimensional space
corresponding to the epps, covering their entire selectivity
range [0, 1]2, as shown in Figure 2(a). As mentioned before,
every location in the space correspond to a particular
combination of the selectivities of the epps. On this diagram,
a series of iso-cost contours, IC1 through ICm, are drawn
– each iso-cost contour ICi has an associated cost CCi,
and represents the set of locations whose cost equal to CCi.
Further, the contours are selected such that the cost of the
first contour IC1 corresponds to the minimum query cost
C at the origin of the space, and the cost of each of the
following contour is double that of the previous contour. That
is, CCi = 2(i−1)C for 1 < i < m. The last contour’s cost,
CCm, is capped to the maximum query execution cost at the
top-right corner of the space.

In Figure 2(a), there are five hyperbolic-shaped contours,
IC1 through IC5, with their costs going from C to 16C. Each
contour has a set of optimal plans covering disjoint segments
of the contour – for instance, contour IC2 is covered by plans
P2, P3 and P4.

The union of the optimal plans appearing on all the
contours constitutes the “plan bouquet” – so, in Figure 2(a),
plans P1 through P14 form the bouquet. Given this set, the
PlanBouquet algorithm operates as follows: Starting with
the cheapest contour IC1, the plans on each contour are
sequentially executed with a time limit equal to the contour’s
budget. 2 If a plan fully completes its execution within the
assigned time limit, then the results are returned to the user,
and the algorithm terminates. Otherwise, as soon as the time
limit of the ongoing execution expires, the plan is forcibly
terminated and the partially computed results (if any) are
discarded, after which we move on to the next plan in the

2We assume a perfect cost model, although it can be relaxed to handle
bounded cost model errors

contour and start all over again. In the event that all the plans in
a contour have been tried out without any reaching completion,
we move on to the next contour and the cycle repeats.

q

IC2|2C

P̃3

P̃2

P5

(0,0)

(0,1) (1,1)

(1,0)SEL (p partkey=l partkey)

SE
L

(o
or

de
rk

ey
=l

or
de

rk
ey

)

P̃6

P̃8

P9

P10

P11

IC4|8C

P̃12

P13

P4

P7

IC3|4C

IC5|16C

IC1|C P̃1

P14

(a) Selectivity Discovery

P5

P̃6

P̃8

P9

P10

P7

IC3|4C

Region-2

Region-1

(0,0)

(0,1) (1,1)

(1,0)SEL (p partkey=l partkey)

SE
L

(o
or

de
rk

ey
=l

or
de

rk
ey

)

Region-3

q

(b) Pruned Regions - IC3

Fig. 2: PlanBouquet and SpillBound

The basic idea underlying PlanBouquet is that it can
be shown, under certain mild assumptions, that the first time
the (unknown) query location falls within the hypograph of
a contour, the execution of some plan on the contour will
complete the query within the assigned budget. By hypograph
we mean the search region below the contour curve (after
extending, if need be, the corner points of the contour to
meet the axes of the search space). A pictorial view is shown
in Figure 2(b), which focuses on contour IC3 – here, the
hypograph of IC3 is the Region-1 marked with red dots.

Now consider the case where the query is located at q,
in the region between contours IC3 and IC4, as shown in
Figure 2(a). To process this query, PlanBouquet would
invoke the budgeted execution sequence:

P1|C,P2|2C,P3|2C,P4|2C,P5|4C, . . . , P10|4C,P11|8C,P12|8C

with the execution of the final plan P12 completing the query.

Performance Guarantees and limitations: By sequencing
the plan executions and their time limits in the calibrated
manner described above, the overheads entailed by this “trial-
and-error” exercise can be bounded, irrespective of the query
location in the space. In particular, they obtain MSO ≤ 4∗ρ,
where ρ is the plan cardinality on the “maximum density”
contour, with density referring to the number of plans on a
contour (in Figure 2(a), the maximum density contour is IC3
which features 6 plans). On the flip side, the specific value of
ρ is dependent on both the query and the database operating
environment. For instance, in the case of Query 25 of the
TPC-DS benchmark with three epps, PlanBouquet’s MSO
guarantee which was 24 under PostgreSQL shot up, under the
identical database and computing environment, to 36 for a
commercial engine, due to the change in ρ.

IV. SpillBound [10]

While sharing the core discovery approach of
PlanBouquet, the execution of SpillBound differs
markedly. In the case of the example scenario in Figure 2(a),
the sequence of budgeted executions would be (with associated
plans having tilde symbol in Figure 2(a))

P1|C,P2|2C,P3|2C,P6|4C,P8|4C,P12|8C

with P12 again completing the query – the reduced ex-
ecutions result in a cost savings of more than 50% over
PlanBouquet. The advantages offered by SpillBound are
achieved by the following two key properties of the algorithm.

1) Half-space Pruning: PlanBouquet’s hypograph-
based pruning of the selectivity discovery space is extended
to a much stronger half-space based pruning. This is vividly
highlighted in Figure 2(b), where the half-space (rectangular
region) that includes Region-2 (whole region which is to
the left of vertical dotted line) is pruned by the (budget-
limited) execution of P8, while the half-space (rectangular
region) that includes Region-3 (whole region which is below
the horizontal dotted line) is pruned by the (budget-limited)
execution of P6. The half-space pruning property is achieved
by leveraging the notion of “spilling”, whereby operator
pipelines are prematurely terminated at chosen locations in the
plan tree, in conjunction with run-time monitoring of operator
selectivities. Specifically, this property is predicated on the
following theorem.

Theorem 4.1: Consider a location q ∈ ESS and the corre-
sponding POSP plan Pq . Let ej be a carefully selected epp
such that there are no other epps in the subplan of Pq rooted at
node corresponding to ej . When the plan Pq is executed with
budget Cost(Pq, q) and spilling on ej , then we either learn
the exact selectivity of ej , or infer that qa.j > q.j.

2) Contour Density Independent Execution: In the exam-
ple scenario, while advancing through the various contours in
the discovery process, SpillBound executes at most two
plans on each contour. In general, when there are D error-
prone predicates in the user query, SpillBound is guaran-
teed to either cross a contour by executing (in spill-mode) at
most D carefully chosen plans (one for each dimension) on the
contour, or learn the exact selectivity of one of the epps (thus
reducing the effective number of epps), irrespective of the
actual number of plans on the contour. The plans are chosen in
such a way that they provide the maximal guaranteed learning
of the selectivity along that dimension. In our example, P8 and
P6 are the two plans chosen for contour IC3 along the X and
Y dimensions, respectively.

V. PERFORMANCE RESULTS

The bounds delivered by PlanBouquet and
SpillBound are, in principle, uncomparable, due to the
inherently different nature of their parametric dependencies.
However, in order to assess whether the platform-independent
feature of SpillBound is procured through a deterioration
of the numerical bound value, we have carried out a detailed
experimental evaluation of both approaches on standard
TPC-H and TPC-DS benchmark queries, operating on the
PostgreSQL engine.

Our experiments indicate that for the most part,
SpillBound provides similar guarantees to PlanBouquet,
and occasionally, much tighter bounds. As a case in
point, for TPC-DS Query 91 with 4 error-prone pred-
icates the MSO drops from 52.8 with PlanBouquet
to 28 with SpillBound. More pertinently, the empir-
ical MSO of SpillBound is significantly better than
that of PlanBouquet for all the queries. Here, empiri-
cal MSO refers to the maximum sub-optimality incurred by

SpillBound by exhaustively considering each and every
location in the ESS to be qa. For the same query Q91, the
empirical MSO decreases drastically from PlanBouquet’s
34 to just 7 for SpillBound. These empirical MSO numbers
suggest the looseness of the MSO theoretical bound. More
experimental results are captured in [10].

VI. FUTURE WORK

Now, let us see some of the interesting research directions
for PlanBouquet based approach. The first four of these
refer to the current limitations of our approach.

1) Reducing preprocessing overheads: The construction of
the contours in the ESS is certainly a computationally intensive
task since it is predicated on repeated calls to the optimizer, and
the overheads increase exponentially with ESS dimensionality.
Furthermore, using multiple hardware, these overheads could
be brought down significantly since the task is inherently
parallelizable. Although it appears a feasible investment of
time for canned queries, the same may not be true for ad hoc
queries.

2) Taxonomy on the usage of SpillBound and traditional
optimizers: the goal here is to provide a characterization of
datasets or queries to decide on when to use SpillBound or
traditional optimizers for a given user query. This potentially
depends on the quality of selectivity estimates.

3) Making PlanBouquet and SpillBound incremen-
tal with updates: If the size of the database increases/decreases
significantly then the already computed ESS would no longer
be useful as of now. Thus a simple solution is to recompute
the ESS again from scratch. It would be useful to develop an
incremental solution with respect to updates.

4) Relaxing the selectivity independence assumption: In our
work, we assume that the selectivities of the predicates in
the query are independent with respect to each other. Often
this assumption is not true in practice since the predicates
could be correlated. Handling it in a naive way could lead
to unreasonably high MSO bound values.

5) Bridging the gap between O(D2) upper bound and
O(D) lower bound on MSO: Currently, SpillBound offers
an D2 +3D (O(D2)) upper bound on MSO which is a factor
O(D) away from the best possible algorithm in its space. We
would like to design a new algorithm which reduces the upper
bound further thereby moving closer towards the lower bound.

6) Exploiting concavity in plan cost functions: The pre-
vious objective of improving the MSO upper bound could
be achieved by possibly exploiting the concavity property of
plan cost functions on every projection. We have empirically
observed, under PostgreSQL, that the majority of the plan cost
functions obey this property across the selectivity space over
standard benchmark query templates.

7) Other performance metrics: In this work, our objective
has been to minimize the MSO which means that the worst-
case sub-optimality incurred for any query instance in the ESS
would be same. In certain practical scenarios, it would be
desirable to relax the worst-case sub-optimality of some query
instances for the more important ones. The importance for
every query instance q ∈ ESS could be modeled by assigning

a relative weight w(q). Thus the weighted version of MSO,
denoted by WSO, can be defined as follows:

WSO =

∑
qa∈ESS w(qa) ∗ SubOpt(Seqqa , qa)∑

qa∈ESS w(qa)
(3)

This weighted version of the problem has the following use
cases: 1) by appropriately assigning weights one could achieve
lesser worst-case sub-optimality for costlier queries than the
cheaper ones (which is often desirable) 2) weights could also
represent the likelihood of selectivities of a query instance
coinciding with the actual selectivities 3) with all weights
being equal refers to minimizing the average-case equivalent
of MSO, referred to as ASO [2].

REFERENCES

[1] S. Babu, P. Bizarro, and D. DeWitt. Proactive re-optimization. In ACM
SIGMOD Conf., 2005.

[2] A. Dutt and J. Haritsa. Plan bouquets: Query processing without
selectivity estimation. In ACM SIGMOD Conf., 2014.

[3] G. Graefe, W. Guy, H. Kuno, and G. Paulley, editors. Robust Query
Processing, 5.08. - 10.08.2012, Dagstuhl Seminar Proceedings 12321.
Germany, 2012.

[4] G. Graefe, A. König, H. Kuno, V. Markl, and K. Sattler, editors. Robust
Query Processing, 19.09. - 24.09.2010, Dagstuhl Seminar Proceedings
10381. Germany, 2010.

[5] D. Harish, P. Darera, and J. Haritsa. On the production of anorexic plan
diagrams. In VLDB Conf., 2007.

[6] D. Harish, P. Darera, and J. Haritsa. Identifying robust plans through
plan diagram reduction. PVLDB, 1(1), 2008.

[7] A. Hulgeri and S. Sudarshan. Parametric query optimization for linear
and piecewise linear cost functions. In VLDB Conf., 2002.

[8] Y. Ioannidis. The history of histograms (abridged). In VLDB Conf.,
2003.

[9] Y. Ioannidis and S. Christodoulakis. On the propagation of errors in
the size of join results. In ACM SIGMOD Conf., 1991.

[10] S. Karthik, J. Haritsa, S. Kenkre, and V. Pandit. Platform-independent
robust query processing. Tech. Report http://dsl.serc.iisc.ernet.in/
publications/report/TR/TR-2015-02.pdf.

[11] G. Lohman. Is query optimization a solved problem? http://wp.sigmod.
org/?p=1075.

[12] V. Markl, V. Raman, D. Simmen, G. Lohman, H. Pirahesh, and M. Cil-
imdzic. Robust query processing through progressive optimization. In
ACM SIGMOD Conf., 2004.

[13] G. Moerkotte, T. Neumann, and G. Steidl. Preventing bad plans by
bounding the impact of cardinality estimation errors. PVLDB, 2(1),
2009.

[14] M. Stillger, G. Lohman, V. Markl, and M. Kandil. LEO - db2’s learning
optimizer. In VLDB Conf., 2001.

[15] K. Tzoumas, A. Deshpande, and C. Jensen. Efficiently adapting
graphical models for selectivity estimation. VLDB Journal, 22(1), 2013.

[16] J. Wiener, H. Kuno, and G. Graefe. Benchmarking query execution
robustness. In Performance Evaluation and Benchmarking. Volume
5895 of LNCS Series, Springer, 2009.

Biography: Srinivas Karthik received master of technol-
ogy degree in computer science and engineering from Indian
Institute of Technology (IIT) Bombay, India in 2011. Then he
joined IBM, India Research Lab and worked there for couple
of years. From 2013, he is a Ph.D. student at Indian Institute of
Science (IISc), working in the area of robust query processing.

