
Platform-independent Robust Query Processing

Srinivas Karthik∗ Jayant R. Haritsa∗ Sreyash Kenkre† Vinayaka Pandit†
∗ Database Systems Lab, Indian Institute of Science, Bangalore, India

Email: {srinivas, haritsa}@dsl.serc.iisc.ernet.in
† IBM Research, Bangalore, India

Email: {srekenkr, pvinayak}@in.ibm.com

Abstract—To address the classical selectivity estimation
problem in databases, a radically different approach called
PlanBouquet was recently proposed in [3], wherein the esti-
mation process is completely abandoned and replaced with a
calibrated discovery mechanism. The beneficial outcome of this
new construction is that, for the first time, provable guarantees
are obtained on worst-case performance, thereby facilitating
robust query processing.

The PlanBouquet formulation suffers, however, from a
systemic drawback – the performance bound is a function of not
only the query, but also the optimizer’s behavioral profile over
the underlying database platform. As a result, there are adverse
consequences: (i) the bound value becomes highly variable,
depending on the specifics of the current operating environment,
and (ii) it becomes infeasible to compute the value without
substantial investments in preprocessing overheads.

In this paper, we present SpillBound, a new query process-
ing algorithm that retains the core strength of the PlanBouquet
discovery process, but reduces the bound dependency to only
the query. Specifically, SpillBound delivers a worst-case mul-
tiplicative bound of D2 + 3D, where D is simply the number of
error-prone predicates in the user query. Consequently, the bound
value becomes independent of the optimizer and the database
platform, and the guarantee can be issued just by inspecting the
query, without incurring any additional computational effort.

We go on to prove that SpillBound is within an O(D)
factor of the best possible deterministic selectivity discovery
algorithm in its class. Further, a detailed empirical evaluation
over the standard TPC-H and TPC-DS benchmarks indicates
that SpillBound provides markedly superior worst-case perfor-
mance as compared to PlanBouquet in practice. Therefore, in
an overall sense, SpillBound offers a substantive step forward
in the quest for robust query processing.

I. INTRODUCTION

A long-standing problem plaguing database systems is that
the predicate selectivity estimates used for optimizing declara-
tive SQL queries are often significantly in error [11], [10]. This
results in highly sub-optimal choices of execution plans, and
corresponding blowups in query response times. The reasons
for such substantial deviations are well documented [16],
and include outdated statistics, coarse summaries, attribute-
value independence (AVI) assumptions, complex user-defined
predicates, and error propagations in the query execution tree.
It is therefore of immediate practical relevance to design query
processing techniques that limit the deleterious impact of these
errors, and thereby provide robust query processing.

We use the notion of Maximum Sub-Optimality (MSO),
introduced in [3], as a measure of the robustness provided by

a query processing technique to errors in selectivity estima-
tion. Specifically, given a query, the MSO of the processing
algorithm is the worst-case ratio, over the entire selectivity
space, of its execution cost with respect to the optimal cost in-
curred by an oracular system that magically knows the correct
selectivities. It has been empirically determined that MSOs
can reach very large values on current database engines [3]
– for instance, with Query 19 of the TPC-DS benchmark, it
goes as high as a million!1 More importantly, worrisomely
large sub-optimalities are not rare – for the same Q19, the
sub-optimalities for as many as 40% of the locations in the
selectivity space were higher than 1000.

As explained in [3], most of the previous approaches to
robust query processing (e.g. [11], [1], [13], [8]), includ-
ing the influential POP and Rio frameworks, are based on
heuristics that are not amenable to bounded guarantees on
the MSO measure. A notable exception to this trend is the
PlanBouquet algorithm, recently proposed in [3], which
provides, for the first time, a provable MSO guarantee. Here,
the selectivities are not estimated, but instead, systematically
discovered at run-time through a calibrated sequence of cost-
limited executions from a carefully chosen set of plans, called
the “plan bouquet”. The search space for the bouquet plans
is the Parametric Optimal Set of Plans (POSP) [6] over the
selectivity space. The PlanBouquet technique guarantees
MSO ≤ 4 ∗ |PlanBouquet|. 2

A. PlanBouquet

We describe the working of PlanBouquet with the help
of the example query EQ shown in Figure 1, which enumerates
orders for cheap parts costing less than 1000. To process
this query, current database engines typically estimate three
selectivities, corresponding to the two join predicates (part on
lineitem) and (lineitem on orders), and the filter predicate
(p retailprice < 1000). While it is conceivable that the filter
selectivity may be estimated reliably, it is often difficult to
ensure similarly accurate estimates for the join predicates. We
refer to such predicates as error-prone predicates, or epp in
short (shown bold-faced in Figure 1).

Example Execution: Given the above query,
PlanBouquet constructs a two-dimensional space
corresponding to the epps, covering their entire selectivity
range ([0, 1] ∗ [0, 1]), as shown in Figure 2(a).3 A location
(x, y) in the 2D space corresponds to a scenario in which the
selectivities of (part on lineitem) and (lineitem on orders)

1Assuming that estimation errors can range over the entire selectivity space.
2A more precise bound is given later in this section.
3Please view the diagrams from a color copy to ensure clarity of contents.

select * from lineitem, orders, part where
p partkey = l partkey and o orderkey = l orderkey
and p retailprice < 1000

Fig. 1: Example Query (EQ)

are x and y, respectively. Further, associated with each
location in the space are the optimal plan for the location and
its execution cost. On this selectivity space, a series of iso-cost
contours, IC1 through ICm, are drawn – each iso-cost contour
ICi has an associated cost CCi, and represents the connected
selectivity curve along which the cost of the optimal plan(s),
as determined by the optimizer, is equal to CCi. Further, the
contours are selected such that the cost of the first contour
IC1 corresponds to the minimum query cost C at the origin
of the space, and in the following intermediate contours, the
cost of each contour is double that of the previous contour.
That is, CCi = 2(i−1)C for 1 < i < m. The last contour’s
cost, CCm, is capped to the maximum query execution cost at
the top-right corner of the space.

As a case in point, in Figure 2(a), there are five hyperbolic-
shaped contours, IC1 through IC5, with their costs ranging
from C to 16C. Each contour has a set of optimal plans
covering disjoint segments of the contour – for instance,
contour IC2 is covered by plans P2, P3 and P4.

The union of the optimal plans appearing on all the
contours constitutes the “plan bouquet” – so, in Figure 2(a),
plans P1 through P14 form the bouquet. Given this set, the
PlanBouquet algorithm operates as follows: Starting with
the cheapest contour IC1, the plans on each contour are
sequentially executed with a time limit equal to the contour’s
budget.4 If a plan fully completes its execution within the
assigned time limit, then the results are returned to the user,
and the algorithm finishes. Otherwise, as soon as the time
limit of the ongoing execution expires, the plan is forcibly
terminated and the partially computed results (if any) are
discarded. It then moves on to the next plan in the contour
and starts all over again. In the event that the entire set of
plans in a contour have been tried out without any reaching
completion, it jumps to the next contour and the cycle repeats.

The basic idea underlying PlanBouquet is that it can
be shown, under certain mild assumptions, that the first time
the (unknown) query location falls within the hypograph of
a contour, the execution of some plan on the contour is
guaranteed to complete the query within the assigned budget.
5 By hypograph we mean the search region below the contour
curve (after extending, if need be, the corner points of the
contour to meet the axes of the search space). A pictorial view
is shown in Figure 2(b), which focuses on contour IC3 – here,
the hypograph of IC3 is the Region-1 marked with red dots.

Now consider the case where the query is located at q,
in the intermediate region between contours IC3 and IC4, as
shown in Figure 2(a). To process this query, PlanBouquet

4We assume a perfect cost model, an issue discussed later in this section.
5All points in the ESS fall within the hypograph of at least one contour,

and the algorithm is therefore guaranteed to complete the query.

q

IC2|2C

P3

P2

P5

P6

P8

P9

P10

P11

IC4|8C

P12

P13

P4

P7

IC3|4C

IC5|16C

IC1|C P1

P14

(a) Selectivity Discovery

P5

P6

P8

P9

P10

P7

IC3|4C

Region-2

Region-1

Region-3

q

(b) Pruned Regions - IC3

Fig. 2: PlanBouquet and SpillBound

would invoke the following budgeted execution sequence:

P1|C,P2|2C,P3|2C,P4|2C,P5|4C, . . . , P10|4C,P11|8C,P12|8C

with the execution of the final P12 plan completing the query.

Performance Guarantees: By sequencing the plan execu-
tions and their time limits in the calibrated manner described
above, the overheads entailed by this “trial-and-error” exercise
can be bounded, irrespective of the query location in the space.
In particular, it is shown that MSO ≤ 4∗ρ, where ρ is the plan
cardinality on the “maximum density” contour. The density of
a contour refers to the number of plans present on it – for
instance, in Figure 2(a), the maximum density contour is IC3
which features 6 plans.

Limitations: The PlanBouquet formulation, while
breaking new ground, suffers from a systemic drawback – the
specific value of ρ, and therefore the bound, is a function of
not only the query, but also the optimizer’s behavioral profile
over the underlying database platform (including data contents,
physical schema, hardware configuration, etc.). As a result,
there are adverse consequences: (i) The bound value becomes
highly variable, depending on the specifics of the current
operating environment – for instance, with TPC-DS Query 25,
PlanBouquet’s MSO guarantee of 24 under PostgreSQL
shot up, under an identical computing environment, to 36 for
a commercial engine, due to the change in ρ; (ii) It becomes
infeasible to compute the value without substantial investments
in preprocessing overheads; and (iii) Ensuring a bound that is
small enough to be of practical value, is contingent on the
heuristic of “anorexic reduction” [5] holding true.

B. SpillBound

The goal of our work is to develop a robust query
processing approach that offers an MSO bound which is
solely query-dependent, irrespective of the underlying database
platform. That is, we desire a “structural bound” instead of a
“behavioral bound”. In this paper, we present a new query
processing algorithm, called SpillBound, that materially
achieves this objective. Specifically, it delivers an MSO bound
that is only a function of D, the number of predicates in the
query that are prone to selectivity estimation errors. Moreover,
the dependency is in the form of a low-order polynomial,
with MSO expressed as (D2 + 3D). Consequently, the bound
value becomes: (i) independent of the underlying database

platform 6, (ii) known upfront by merely inspecting the query,
and not incurring any preprocessing overhead, (iii) indifferent
to the anorexic reduction heuristic, and (iv) certifiably low in
value for practical values of D.

Example Execution: SpillBound shares the core
contour-wise discovery approach of PlanBouquet, but its
execution strategy differs markedly. Specifically, it achieves a
significant reduction in the cost of the sequence of budgeted
executions employed during the selectivity discovery process.
For instance, in the example scenario of Figure 2(a), the
sequence of budgeted executions correspond to the plans
highlighted in blue:

P1|C,P2|2C,P3|2C,P6|4C,P8|4C,P12|8C

with P12 again completing the query. Note that the reduced
executions result in cost savings of more than 50% over
PlanBouquet.

The advantages offered by SpillBound are achieved by
the following key properties – Half-space Pruning and Contour
Density Independent execution – of the algorithm.

Half-space Pruning: PlanBouquet’s hypograph-based
pruning of the selectivity discovery space is extended to
a much stronger half-space-based pruning. This is vividly
highlighted in Figure 2(b), where the half-space corresponding
to Region-2 is pruned by the (budget-limited) execution of
P8, while the half-space corresponding to Region-3 is pruned
by the (budget-limited) execution of P6. Note that Region-
2 and Region-3 together subsume the entire Region-1 that is
covered by PlanBouquet when it crosses IC3. Our half-
space pruning property is achieved by leveraging the notion
of “spilling”, whereby operator pipelines are prematurely
terminated at chosen locations in the plan tree, in conjunction
with run-time monitoring of operator selectivities.

Contour Density Independent Execution: In the example
scenario, while advancing through the various contours in the
discovery process, SpillBound executes at most two plans
on each contour. In general, when there are D error-prone
predicates in the user query, SpillBound is guaranteed to
make a quantum progress in its discovery process, based on
cost-budgeted execution of at most D carefully chosen plans
on the contour. Here, a quantum progress refers to a step in
which the algorithm either (a) jumps to the next contour, or
(b) fully learns the selectivity of some epp (thus reducing the
effective number of epps).

Specifically, in each contour, for each dimension, one plan
is chosen to be executed in spill-mode (therefore at most D
in the contour). The plan chosen for spill-mode execution is
the one that provides the maximal guaranteed learning of the
selectivity along that dimension. In our example, P8 and P6

are the two plans chosen for contour IC3 along the X and Y
dimensions, respectively.

C. Performance Results

A natural question to ask is whether there might exist
some alternative selectivity discovery algorithm, based on half-
space pruning, that could provide a much better MSO than
SpillBound. In this regard, we theoretically show that no

6Under the assumption that D remains constant across the platforms.

deterministic technique in this class can provide an MSO
less than D. This result establishes that the SpillBound
guarantee is no worse than a factor O(D) in comparison to
the best possible algorithm in its class.

The bounds delivered by PlanBouquet and
SpillBound are, in principle, uncomparable, due to the
inherently different nature of their parametric dependencies.
However, in order to assess whether the platform-independent
feature of SpillBound is procured through a deterioration
of the numerical bound, we have carried out a detailed
experimental evaluation of both the approaches on standard
benchmark queries, operating on the PostgreSQL engine.
Moreover, we have empirically evaluated the MSO obtained
for each query through an exhaustive enumeration of the
selectivity space.

Our experiments indicate that for the most part,
SpillBound provides similar guarantees to PlanBouquet,
and occasionally, much tighter bounds. As a case in point,
for TPC-DS Query 91 with 4 error-prone predicates, the
MSO bound is 52.8 with PlanBouquet, but comes down
to 28 with SpillBound. More pertinently, the empirical
MSO of SpillBound is significantly better than that of
PlanBouquet for all the queries. For instance, the empirical
MSO for Q91 decreases drastically from PlanBouquet’s 34
to just 7 for SpillBound.

Caveats: While arbitrary selectivity estimation errors are
permitted in our study, we have assumed the optimizer’s
cost model to be perfect – that is, only optimizer costs are
used in the evaluations, and not actual run times. While this
assumption is certainly not valid in practice, improving the
model quality is, in principle, an orthogonal problem to that
of cardinality estimation errors. Dealing with imprecise cost
models, and other such practical deployment considerations,
are discussed in Section VII.

We hasten to also add that SpillBound is not a substitute
for a conventional query optimizer. Instead, it is intended to
complementarily co-exist with the traditional setup, leaving
to the user’s discretion, the specific approach to employ for
a query instance. When small estimation errors are expected,
the native optimizer could be sufficient, but if larger errors are
anticipated, SpillBound is likely to be the preferred choice.

Organization: The remainder of this paper is organized
as follows: In Section II, a precise description of the robust
execution problem is provided, along with the associated
notations. The building blocks of SpillBound are presented
in Section III. The SpillBound algorithm and the proof of
its MSO bound are presented in Section IV. The lower bound
analysis is carried out in Section V, while the experimental
framework and performance results are enumerated in Sec-
tion VI. Pragmatic deployment aspects are discussed in Sec-
tion VII, and the related literature is reviewed in Section VIII.
Finally, our conclusions are summarized in Section IX.

II. PROBLEM FRAMEWORK

In this section, we present the key concepts, notations, and
the formal problem definition. For ease of presentation, we
assume that the error-prone selectivity predicates (epps) for
a given user query are known apriori, and defer the issue of
identifying these epps to Section VII.

A. Error-prone Selectivity Space (ESS)

Consider a query with D epps. The set of all epps is
denoted by EPP = {e1, . . . , eD} where ej denotes the jth epp.
The selectivities of the D epps are mapped to a D-dimensional
space, with the selectivity of ej corresponding to the jth
dimension. Since the selectivity of each predicate ranges over
[0, 1], a D-dimensional hypercube [0, 1]D results, henceforth
referred to as the error-prone selectivity space, or ESS. In
practice, an appropriately discretized grid version of [0, 1]D

is considered as the ESS. Note that each location q ∈ [0, 1]D

in the ESS represents a specific instance where the epps of
the user query happen to have selectivities corresponding to
q. Accordingly, the selectivity value on the jth dimension is
denoted by q.j. We call the location at which the selectivity
value in each dimension is 1, i.e, q.j = 1,∀j, as the terminus.

The notion of a location q1 dominating a location q2 in the
ESS plays a central role in our framework. Formally, given two
distinct locations q1, q2 ∈ ESS, q1 dominates q2, denoted by
q1 � q2, if q1.j ≥ q2.j for all j ∈ 1, . . . , D. In an analogous
fashion, other relations, such as 6�, �, and 6≺ can be defined
to capture relative positions of pairs of locations.

B. Search Space for Robust Query Processing

We assume that the query optimizer can identify the
optimal query execution plan if the selectivities of all the epps
are correctly known.7 Therefore, given an input query and its
epps, the optimal plans for all locations in the ESS grid can be
identified through repeated invocations of the optimizer with
different epp values. The optimal plan for a generic selectivity
location q ∈ ESS is denoted by Pq , and the set of such optimal
plans over the complete ESS constitutes the Parametric Optimal
Set of Plans (POSP) [6].8

We denote the cost of executing an arbitrary plan P
at a selectivity location q ∈ ESS by Cost(P, q). Thus,
Cost(Pq, q) represents the optimal execution cost for the
selectivity instance located at q. In this framework, our search
space for robust query processing is simply the set of tuples
< q, Pq, Cost(Pq, q) > corresponding to all locations q ∈ ESS.

Throughout the paper, we adopt the convention of using
qa to denote the actual selectivities of the user query epps
– note that this location is unknown at compile-time, and
needs to be explicitly discovered. For traditional optimizers,
we use qe to denote the estimated selectivity location based
on which the execution plan Pqe is chosen to execute the
query. However, this characterization is not applicable to plan
switching approaches like PlanBouquet and SpillBound
because they explore a sequence of locations during their
discovery process. So, we denote the deterministic sequence
pursued for a query instance corresponding to qa by Seqqa .

C. Maximum Sub-Optimality (MSO) [3]

We now present the performance metrics proposed in [3]
to quantify the robustness of query processing.

A traditional query optimizer will first estimate qe, and then
use Pqe to execute a query which may actually be located at

7For example, through the classical DP-based search of the plan space [15].
8Letter subscripts for plans denote locations, whereas numeric subscripts

denote identifiers.

qa. The sub-optimality of this plan choice, relative to an oracle
that magically knows the correct location, and therefore uses
the ideal plan Pqa , is defined as:

SubOpt(qe, qa) =
Cost(Pqe , qa)

Cost(Pqa , qa)
(1)

The quantity SubOpt(qe, qa) ranges over [1,∞).

With this characterization of a specific (qe, qa) combina-
tion, the maximum sub-optimality that can potentially arise
over the entire ESS is given by

MSO = max
(qe,qa)∈ESS

(SubOpt(qe, qa)) (2)

The above definition for a traditional optimizer can
be generalized to selectivity discovery algorithms like
PlanBouquet and SpillBound. Specifically, suppose the
discovery algorithm is currently exploring a location q ∈ Seqqa
– it will choose Pq as the plan and Cost(Pq, q) as the
associated budget. Extending this to the whole sequence, the
analogue of Equation 1 is defined as follows:

SubOpt(Seqqa , qa) =

∑
q∈Seqqa

Cost(Pq, q)

Cost(Pqa , qa)
(3)

leading to

MSO = max
qa∈ESS

SubOpt(Seqqa , qa) (4)

D. Problem Definition

With the above framework, the problem of robust query
processing is defined as follows:

For a given input query Q with its EPP, and the search
space consisting of tuples < q, Pq, Cost(Pq, q) > for all q ∈
ESS, develop a query processing approach that minimizes the
MSO guarantee.

As in [3], the primary assumptions made in this paper
that allow for systematic construction and exploration of the
ESS are those of plan cost monotonicity (PCM) and selectivity
independence (SI). PCM may be stated as: For any two
locations qb, qc ∈ ESS, and for any plan P ,

qb � qc ⇒ Cost(P, qb) > Cost(P, qc) (5)

That is, it encodes the intuitive notion that when more data is
processed by a query, signified by the larger selectivities for
the predicates, the cost of the query processing also increases.
On the other hand, SI assumes that the selectivities of the epps
are all independent – while this is a common assumption in
much of the query optimization literature, it often does not
hold in practice. In our future work, we intend to look into
extending SpillBound to handle the more general case of
dependent selectivities.

E. Geometric View and Notations

We now present a geometric view of the discovery space
and some important notations. Consider the special case of
a query with two epps, resulting in an ESS with X and Y
dimensions. Now, incorporate a third Z dimension to capture
the cost of the POSP plans on the ESS, i.e, for q ∈ ESS, the

value of the Z-axis is Cost(Pq, q). This 3D surface, which
captures the cost of the POSP plans on the ESS, is called the
Optimal Cost Surface (OCS). Associated with each point on
the OCS is the POSP plan for the underlying location in the
ESS. A sample OCS corresponding to the example query EQ
in the Introduction is shown in Figure 3, which provides a
perspective view of this surface. In this figure, the optimality
region of each POSP plan is denoted by a unique color. So,
for example, the region with blue points corresponds to those
locations where the “blue plan” is the optimal plan.9

Fig. 3: 3D Cost Surface on ESS

Discretization of OCS: Let Cmin and Cmax denote the
minimum and maximum costs on the OCS, corresponding
to the origin and the terminus of the 3D space, respectively
(an outcome of the PCM assumption). We define m =
dlog2(Cmax

Cmin
)e+1 hyperplanes that are parallel to the XY plane

as follows. The first hyperplane is drawn at Cmin. For i =
2, . . . ,m−1, the ith hyperplane is drawn at Cmin·2i−1. The last
hyperplane is drawn at Cmax. These hyperplanes correspond to
the m isocost contours IC1, . . . ICm. The isocost contour ICi
is essentially the 2D curve obtained by intersecting the OCS
with the ith hyperplane. We denote the cost of ICi by CCi.
The set of plans that are on the 2D curve of ICi are referred
to as PLi. For example, in Figure 3, PL4 includes the purple
and maroon plans (in addition to plans that are not visible in
this perspective). The hypograph of an isocost contour ICi is
the set of all locations q ∈ ESS such that Cost(Pq, q) ≤ CCi.

The above geometric intuition and the formal notations
readily extend to the general case of D epps, and these
notations are summarized in Table I for easy reference.

III. BUILDING BLOCKS OF SpillBound

The platform-independent nature of the MSO bound of the
SpillBound is enabled by the key properties of half-space
pruning and contour density independent execution. In this
section, we present these two building blocks of our approach.

A. Half-space Pruning

Half-space pruning is the ability to prune half-spaces from
the search space based on a single cost-budgeted execution
of a contour plan. We now present how half-space pruning is

9Since Figure 3 is only a perspective view of the OCS, it does not capture
all the POSP plans.

Notation Meaning
epp (EPP) Error-prone predicate (its collection)
ESS Error-prone selectivity space
D Number of dimensions of ESS
e1, . . . , eD The D epps in the query
q ∈ [0, 1]D A location in the ESS space
q.j Selectivity of q in the jth dimension of ESS
Pq Optimal Plan at q ∈ ESS

qa Actual run-time selectivity
Cost(P, q) Cost of plan P at location q
ICi Isocost Contour i
CCi Cost of an isocost contour ICi
PLi Set of plans on contour ICi

TABLE I: Notations

achieved by executing query plans in spilling mode. While
the use of spilling to accelerate selectivity discovery had
been mooted in [3], they did not consider its exploitation for
obtaining guaranteed search properties.

We use spilling as the mechanism for modifying the
execution of a selected plan – the objective here is to utilize
the assigned execution budget to extract increased selectivity
information of a specific epp. Since spilling requires modi-
fication of plan executions, we shall first describe the query
execution model.

1) Execution Model: We assume the demand driven it-
erator model, commonly seen in database engines, for the
execution of operators in the plan tree [4]. Specifically, the
execution takes place in a bottom up fashion with the base
relations at the leaves of the tree.

In conventional database query processing, the execution of
a query plan can be partitioned into a sequence of pipelines [2].
Intuitively, a pipeline can be defined as the maximal con-
currently executing subtree of the execution plan. The entire
execution plan can therefore be viewed as an ordering on its
constituent pipelines. We assume that only one pipeline is
executed at a time in the database system, i.e, there is no
inter-pipeline concurrency – this appears to be the case in
current engines. To make these notions concrete, consider the
plan tree shown in Figure 4 – here, the constituent pipelines
are highlighted with ovals, and are executed in the sequence
{L1, L2, L3, L4}.

Finally, we assume a standard plan costing model that
estimates the individual costs of the internal nodes, and then
aggregates the costs of all internal nodes to represent the
estimated cost of the complete plan tree.

2) Spilling Mode of Execution: We now discuss how to
execute plans in spilling mode. For expository convenience,
given an internal node of the plan tree, we refer to the set
of nodes that are in the subtree rooted at the node as its
upstream nodes, and the set of nodes on its path to the root
as its downstream nodes.

Suppose we are interested in learning about the selectivity
of an epp ej . Let the internal node corresponding to ej in
plan P be Nj . The key observation here is that the execution
cost incurred on Nj’s downstream nodes in P is not useful for
learning about Nj’s selectivity. So, discarding the output of
Nj without forwarding to its downstream nodes, and devoting
the entire budget to the subtree rooted at Nj , helps to use the

Group Aggregate

Sort

Seq. Scan

Hash Join

Item

HashSeq. Scan

Promotion
Hash Join

HashNested Loop Join

Bitmap Scan

Customer

Index Scan

Catalog Sales

Seq. Scan

Date Dim

Hash

L1

L4

L2

L3

N1

N3

N4

N6

N7

N5

N8

N9

N10

N11

N12

N13

N14

N2

Hash Join

Demographics

Fig. 4: Execution Plan Tree of TPC-DS Query 26

budget effectively to learn ej’s selectivity. Specifically, given
plan P with cost budget B, and epp ej chosen for spilling,
the spill-mode execution of P is simply the following: Create
a modified plan comprised of only the subtree of P rooted at
Nj , and execute it with cost budget B.

Since a plan could consist of multiple epps (red coloured
nodes in Figure 4), the sequence of spill node choices should
be made carefully to ensure guaranteed learning on the selec-
tivity of the chosen node – this procedure is described next.

3) Spill Node Identification: Given a plan and an ordering
of the pipelines in the plan, we consider an ordering of epps
based on the following two rules:

Inter-Pipeline Ordering: Order the epps as per the ex-
ecution order of their respective pipelines; in Figure 4,
since L4 is ordered after L2, the epp nodes N3 and
N4 are ordered after N9 and N10.

Intra-Pipeline Ordering: Order the epps by their
upstream-downstream relationship, i.e., if an epp node
Na is downstream of another epp node Nb within the
same pipeline, then Na is ordered after Nb; in the
example, N3 is ordered after N4.

It is easy to see that the above rules produce a total-ordering
on the epps in a plan – in Figure 4, it is N10, N9, N4, N3.
Given this ordering, we always choose to spill on the node
corresponding to the first epp in the total-order. The selectivity
of a spilled epp node is fully learnt when the corresponding
execution goes to completion within its assigned budget. When
this happens, we remove the epp from EPP and it is no

longer considered as a candidate for spilling in the rest of
the discovery process.

As a result of this procedure, note that the selectivities of
all predicates located upstream of the currently spilling epp
will be known exactly – either because they were never epps,
or because they have already been fully learnt in the ongoing
discovery process. Therefore, their cost estimates are accurate,
leading to the following half-space pruning property.

Lemma 3.1: Consider a location q ∈ ESS and the cor-
responding contour plan Pq . Let epp ej be selected by the
spill node identification mechanism. When Pq is executed with
budget Cost(Pq, q) and spilling on ej , then we either learn (a)
the exact selectivity of ej , or (b) that qa.j > q.j.

Proof: For an internal node N of a plan tree, we use
N.cost to refer to the execution cost of the node. Let Nj denote
the internal node corresponding to ej in plan Pq . Partition
the internal nodes of Pq into the following: Upstream(Nj),
{Nj}, and Residual(Nj), where Upstream(Nj) denotes the
set of internal nodes of Pq that appear before node Nj in the
execution order, while Residual(Nj) contains all the nodes in
the plan tree excluding Upstream(Nj) and {Nj}. Therefore,
Cost(Pq, q) =

∑
N∈Upstream(Nj)

N.cost+Nj .cost+
∑

N∈Residual(Nj)

N.cost.

The value of the first term in the summation is known
with certainty because Upstream(Nj) does not contain any
epp. Further, the quantity Nj .cost is computed assuming
that the selectivity of Nj is q.j. Since the output of Nj is
discarded and not passed to downstream nodes, the nodes in
Residual(Nj) incur zero cost. Thus, when Pq is executed in
spill-mode, the budget is sufficiently large to either learn the
exact selectivity of ej (if the spill-mode execution goes to
completion) or to conclude that qa.j is greater than q.j.

Remark. During the entire discovery process of
SpillBound, only contour plans are considered for
spill-mode executions. Moreover, when we mention the
spill-mode execution of a particular plan on a contour, it
implicitly means that the budget assigned is equal to the cost
of the contour. For ease of exposition, if the epp chosen to
spill on is ej for a plan P , we shall hereafter highlight this
information with the notation P j .

B. Contour Density Independent Execution

We now show how the half-space pruning property can be
exploited to achieve the contour density independent (CDI)
execution property of the SpillBound algorithm. For this
purpose, we employ the term “quantum progress” to refer to a
step in which the algorithm either jumps to the next contour, or
fully discovers the selectivity of some epp. Informally, the CDI
property ensures that each quantum progress in the discovery
process is achieved by expending no more than |EPP| number
of plan executions.

For ease of understanding, we present here the technique
for the special case of two epps referred to by X and Y ,
deferring the generalization for D epps to the next section.

Consider the 2D ESS shown in Figure 5, and assume that
we are currently exploring contour IC3. The two plans for
spill-mode execution in this contour are identified as follows:
We first identify the subset of plans on the contour that spill on

P x
5

P y
6

P x
8

P y
9

P y
10

P x
7

IC3

qx
max

qy
max

Px
max : P8

Py
max : P6

(qx
max.x,q

y
max.y)

Fig. 5: Choice of Contour Crossing Plans

X using the spill node identification algorithm – these plans
are identified as P x

5 , P x
7 , P x

8 in Figure 5. The next step is to
enumerate the subset of locations on the contour where these
X-spilling plans are optimal. From this subset, we identify the
location with the maximum X coordinate, referred to as qxmax,
and its corresponding contour plan, which is denoted as P x

max.
The P x

max plan is the one chosen to learn the selectivity of X
– in Figure 5, this choice is P x

8 .

By repeating the same process for the Y dimension, we
identify the location qymax, and plan P y

max, for learning the
selectivity of Y – in Figure 5, the plan choice is P y

6 . Note that
the location (qxmax.x, q

y
max.y) is guaranteed to be either on or

beyond the IC3 contour.

The following lemma shows that the above plan identifi-
cation procedure satisfies the CDI property.

Lemma 3.2: In contour ICi, if plans P x
max and P y

max are
executed in spill-mode, and both do not reach completion, then
Cost(Pqa , qa) > CCi, triggering a jump to the next contour
ICi+1.

Proof: Since the executions of both P x
max and P y

max
do not reach completion, we infer that qxmax.x < qa.x and
qymax.y < qa.y. Therefore, qa strictly dominates the location
(qxmax.x, q

y
max.y) whose cost, by PCM, is greater than CCi.

Thus Cost(Pqa , qa) > CCi.

IV. SPILLBOUND ALGORITHM

In this section, we present our new robust query processing
algorithm, SpillBound, which leverages the properties of
half-space pruning and CDI execution. We begin by introduc-
ing an important notation: Our search for the actual query
location, qa, begins at the origin, and with each spill-mode
execution of a contour plan, we monotonically move closer
towards the actual location. The running selectivity location,
as progressively learnt by SpillBound, is denoted by qrun.

For ease of exposition, we first present a version, called
2D-SpillBound, for the special case of two epps, and then
extend the algorithm to the general case of several epps.

A. The 2D-SpillBound Algorithm

To provide a geometric insight into the working of
2D-SpillBound, we will refer to the two epps, e1 and

e2, as X and Y , respectively. 2D-SpillBound explores
the doubling isocost contours IC1, . . . , ICm, starting with
the minimum cost contour IC1. During the exploration of a
contour, two plans P x

max and P y
max are identified, as described

in Section III-B, and executed in spill-mode. The order of
execution between these two plans can be chosen arbitrarily,
and the selectivity information learnt through their execution is
used to update the running location qrun. This process contin-
ues until one of the spill-mode executions reaches completion,
which implies that the selectivity of the corresponding epp has
been completely learnt.

Without loss of generality, assume that the learnt selectivity
is X . At this stage, we know that qa lies on the line X =
qa.x. Further, the discovery problem is reduced to the 1D case,
which has a unique characteristic – each isocost contour of
the new ESS (i.e. line X = qa.x) contains only one plan, and
this plan alone needs to be executed to cross the contour, until
eventually some plan finishes its execution within the assigned
budget. In this special 1D scenario, there is no operational
difference between PlanBouquet and 2D-SpillBound,
so we simply invoke the standard PlanBouquet with only
the Y epp, starting from the contour currently being explored.
Note that plans are not executed in spill-mode in this terminal
1D phase because spilling in the 1D case weakens the bound,
as explained in [9].

IC1

qa = (0.04,0.1)

IC2

IC3

P x
1

P x
2

P y
4

P x
3

P x
5

P x
6

P y
7

P y
8

P y
9

P x
10

IC4

P y
11

P y
12

P y
13

P y
14 P y

15

IC5 P x
16

P y
17

P x
18

P y
19

qrunmovement

p4

p6

p7

p10

p11

P11, P19

p2

IC6P y
20

Fig. 6: Execution trace for TPC-DS Query 91

1) Execution Trace: An illustration of the execution of
2D-SpillBound on TPC-DS Query 91 with two epps is
shown in Figure 6. In this example, the join predicate Catalog
Sales on Date Dim, denoted by X , and the join predicate
Customer on Customer Address, denoted by Y , are the two
epps (both selectivities are shown on a log scale).

We observe here that there are six doubling isocost contours
IC1, . . . , IC6. The execution trace of 2D-SpillBound (blue
line) corresponds to the selectivity scenario where the user’s
query is located at qa = (0.04, 0.1).

On each contour, the plans executed by 2D-SpillBound
in spill-mode are marked in blue – for example, on IC2, plan
P4 is executed in spill-mode for the epp Y . Further, upon
each execution of a plan, an axis-parallel line is drawn from
the previous qrun to the newly discovered qrun, leading to
the Manhattan profile shown in Figure 6. For example, when
plan P6 is executed in spill-mode for X , the qrun moves from
(2E-4,6E-4) to (8E-4,6E-4). To make the execution sequence
unambiguously clear, the trace joining successive qruns is also
annotated with the plan execution responsible for the move –
to highlight the spill-mode execution, we use pi to denote the
spilled execution of Pi. So, for instance, the move from (2E-
4,6E-4) to (8E-4,6E-4) is annotated with p6.

With the above framework, it is now easy to see that the
algorithm executes the sequence p2, p4, p6, p7, p10, p11, which
culminates in the discovery of the actual selectivity of the Y
epp. After this, the 1D PlanBouquet takes over and the
selectivity of X is learnt by executing P11 and P19 in regular
(non-spill) mode.

This example trace of 2D-SpillBound exemplifies how
the benefits of half-space pruning and CDI execution are real-
ized. It is important to note that 2D-SpillBound may exe-
cute a few plans twice – for example, plan P11 – once in spill-
mode (i.e., p11) and once as part of the 1D PlanBouquet
exploration phase. In fact, this notion of repeating a plan
execution during the search process substantially contributes
to the MSO bound in the general case of D epps.

2) Performance Bounds: Consider the situation where qa
is located in the region between ICk and ICk+1, or is directly
on ICk+1. Then, the 2D-SpillBound algorithm explores
the contours from 1 to k + 1 before discovering qa. In this
process,

Lemma 4.1: The 2D-SpillBound algorithm ensures
that at most two plans are executed from each of the contours
IC1, . . . , ICk+1, except for one contour in which at most three
plans are executed.

Proof: Let the exact selectivity of one of the epps be
learnt in contour ICh, where 1 ≤ h ≤ k + 1. From CDI exe-
cution, we know that 2D-SpillBound ensures that at most
two plans are executed in each of the contours IC1, · · · , ICh.
Subsequently, PlanBouquet begins operating from contour
ICh, resulting in three plans being executed in ICh, and one
plan each in contours ICh+1 through ICk+1.

We now analyze the worst-case cost incurred by
2D-SpillBound. For this, we assume that the contour with
three plan executions is the costliest contour ICk+1. Since the
ratio of costs between two consecutive contours is 2, the total
cost incurred by 2D-SpillBound is bounded as follows:

TotalCost ≤ 2 ∗ CC1 + . . .+ 2 ∗ CCk + 3 ∗ CCk+1

= 2 ∗ CC1 + . . .+ 2 ∗ 2k−1 ∗ CC1 + 3 ∗ 2k ∗ CC1
= 2 ∗ CC1

(
1 + . . .+ 2k

)
+ 2k ∗ CC1

= 2 ∗ CC1
(
2k+1 − 1

)
+ 2k ∗ CC1

≤ 2k+2 ∗ CC1 + 2k ∗ CC1
= 5 ∗ 2k ∗ CC1 (6)

From the PCM assumption, we know that the cost for an
oracle algorithm (that apriori knows the location of qa) is lower

bounded by CCk. By definition, CCk = 2k−1 ∗ CC1. Hence,

MSO ≤ 5 ∗ 2k ∗ CC1
2k−1 ∗ CC1

= 10 (7)

leading to the theorem:

Theorem 4.2: The MSO bound of 2D-SpillBound for
queries with two error-prone predicates is bounded by 10.

Remark: Note that even for a ρ value as low as 3, the MSO
bound of 2D-SpillBound is better than the 4 ∗ 3 = 12
offered by PlanBouquet.

B. Extending to Higher Dimensions

We now present SpillBound, the generalization of the
2D-SpillBound algorithm to handle D error-prone predi-
cates e1, . . . , eD. Before doing so, we hasten to add that the
EPP set, as mentioned earlier, is constantly updated during the
execution, and epps are removed from this set as and when
their selectivities become fully learnt.

The primary generalization that needs to be achieved is
to select, prior to exploration of a contour ICi, the best set
(wrt selectivity learning) of |EPP| plans that satisfy the half-
space pruning property and ensure complete coverage of the
contour. To do so, similar to the 2D case, the plan P j

max
corresponding to ej ∈ EPP is identified as follows: Among the
contour locations for which the corresponding plan spills on
ej , the location with the maximum value on the jth coordinate
is chosen, and the contour plan at the chosen location is
assigned to be P j

max. In essence, among all plans that could
provide a guaranteed learning of ej’s selectivity through spill-
mode execution, the plan that provides the highest guaranteed
learning is chosen.

A subtle but important point to note here is that, during
the exploration of ICi, the identity of P j

max may change as
the contour processing progresses. This is because some of the
plans that were assigned to spill on other epps, may switch to
spilling on ej due to their original epps being completely learnt
during the ongoing exploration. Accordingly, we term the first
execution of a P j

max in contour ICi as a fresh execution, and
subsequent executions on the same epp as repeat executions.

Finally, it is possible that a specific epp may have no plan
on ICi on which it can be spilled – this situation is handled
by simply skipping the epp. The complete pseudocode for
SpillBound is presented in Algorithm 1 – here, Spill-Mode-
Execution(P j

max,ej ,CCi) refers to the execution of plan P j
max

spilling on ej with budget CCi.

With the above construction, the following lemma can be
proved in a manner analogous to that of Lemma 3.2:

Lemma 4.3: In contour ICi, if no plan in the set
{P j

max|ej ∈ EPP} reaches completion when executed in spill-
mode, then Cost(Pqa , qa) > CCi, triggering a jump to the next
contour ICi+1.

1) Performance Bounds: We now present an overview of
how the MSO bound is obtained for SpillBound – the full
proof is available in [9].

In the worst-case analysis of 2D-SpillBound, the ex-
ploration cost of every intermediate contour is bounded by

Algorithm 1 The SpillBound Algorithm
Init: i=1, EPP = {e1, . . . , eD};
while i ≤ m do . for each contour

if |EPP| = 1 then . only one epp left
Run PlanBouquet to discover the selectivity of the
remaining epp starting from the present contour;
Exit;

end if
Run the spill node identification procedure on each plan in
the contour ICi, i.e, plans in PLi, and use this information
to choose plan P j

max for each epp ej ;
exec-complete = false;
for each epp ej do

exec-complete = Spill-Mode-Execution(P j
max,ej ,CCi);

Update qrun.j based on selectivity learnt for ej ;
if exec-complete then

/*learnt the actual selectivity for ej*/
Remove ej from the set EPP;
Break;

end if
end for
if ! exec-complete then

i = i+1; /* Jump to next contour */
end if
Update ESS based on learnt selectivities;

end while

twice the cost of the contour. Whereas the exploration cost of
the last contour (i.e., ICk+1) is bounded by three times the
contour cost because of the possible execution of a third plan
during the PlanBouquet phase. We now present how this
effect is accounted for in the general case.

Repeat Executions: As explained before, the identity of
plan P j

max may dynamically change during the exploration of a
contour ICi, resulting in repeat executions. If this phenomenon
occurs, the new P j

max plan would have to be executed to ensure
compliance with Lemma 4.3. We observe that each repeat
execution of an epp is preceded by an event of fully learning
the selectivity of some other epp, leading to the following
lemma (proof in [9]):

Lemma 4.4: The SpillBound algorithm executes at
most D fresh executions in each contour, and the total number

of repeat executions across contours is bounded by
D(D − 1)

2
.

Suppose that the actual selectivity location qa is located in
the region between ICk and ICk+1, or is directly on ICk+1.
Then, the total cost incurred by the SpillBound algorithm
in discovering qa is the sum of costs from fresh and repeat
executions in each of the contours IC1 through ICk+1. Further,
the worst-case cost is incurred when all the repeat executions
happen at the costliest contour, namely ICk+1. Hence, the total
cost of SpillBound is given by

k+1∑
i=1

(#fresh executions(ICi)) ∗ CCi + D(D−1)
2 ∗ CCk+1

Since the number of fresh executions on any contour is
bounded by D, we obtain the following theorem (proof on
similar lines to the 2D scenario):

Theorem 4.5: The MSO bound of the SpillBound algo-
rithm for any query with D error-prone predicates is bounded
by D2 + 3D.

V. LOWER BOUND

In this section, we present a lower bound on MSO for a
class of deterministic half-space pruning algorithms denoted
by E , that includes SpillBound in its ambit. Consider an
algorithm A ∈ E . For any potential plan P , A is assumed
to have the following information for any instance of the
triple < q, ej , l > where q ∈ ESS, j ∈ {1, . . . , D}, and
0 ≤ l ≤ 1: (i) Cost(P, q) and (ii) PredCost(P, ej , l) which
denotes the cost budget required by an execution of P that
allows A to infer that qa.j ≥ l. Since, SpillBound requires
PredCost(P, ej , l) information for only one epp combination,
the algorithms in the class E are given access to even more
information than SpillBound. Thus the lower bound result
on MSO for algorithms in class E applies to SpillBound
as well.

The goal of A is to discover the unknown query location
qa. The actions and outcomes of a generic step of A can be
one of the following: (i) a plan P is executed to completion
incurring Cost(P, qa), (ii) a plan P is executed with budget
Cost(P, q) for a q ∈ ESS and A infers that q 6� qa, (iii)
a plan P is executed with budget PredCost(P, ej , q.j) (for
example in spill mode) and learns (a) that qa.j ≥ q.j, or (b)
qa.j exactly.

Notion of Separation: At any stage of the execution of
A, it maintains a partition of the ESS into two sets: a set
which is guaranteed not to contain qa and its complement
which contains qa. We say that these two sets are separated.
Formally, for two disjoint subsets of ESS, U1 and U2, we say
that A separates the set U1∪U2 into U1 and U2, if in a single
step we infer that qa /∈ U1 and qa ∈ U2.

Consequence of Deterministic Behavior: Since A is deter-
ministic, its sequence of steps for two different qas is identical
till a step wherein their respective sets for possible locations
of qa differs. We let A(q) denote the sequence of steps that
A takes when qa = q. Since A is deterministic, its action at
a step is determined completely by the actions and outcomes
of previous steps. Suppose, for q1, q2 ∈ U , both A(q1) and
A(q2) separate a set U ⊆ ESS. Then, the consequence of
deterministic behavior is that the steps in both A(q1) and
A(q2) are identical at least till they separate U .

Construction of ESS: We construct a special D-
dimensional ESS which is used in our proof. Our construction
is such there will be exactly D plans P1, P2, . . . , PD and their
cost structure is as follows:

Cost(Pi, q) = D ∗ q.i
Cost(Pi, ej , q.j) = D ∗ q.j ∀q ∈ ESS, epp j

It can be verified that our construction satisfies the PCM
property for all D plans.10 Further, we are interested in a set
of locations V = {q1, . . . , qD} given by qi.j = 1/D if j = i,
else qi.j = 1. Finally, the POSP plan at qi is Pi and has a cost
of 1.

10More precisely, a relaxed version of PCM wherein the relation “>” in
Equation 5 is replaced by “≥”. The analysis for strict PCM is deferred to [9].

Using the above notion of separation, we can prove the
following claim for the specially constructed ESS.

Claim 5.1: Let qa ∈ V . Let V1, V2 be such that V1∩V2 = φ
and V1∪V2 = V3 ⊆ V . If A separates V3 into V1 and V2, then
either |V1| = 1 or |V2| = 1.

This claim can be leveraged to establish Theorem 5.1.

Theorem 5.1: For any algorithm A ∈ E and D ≥ 2, there
exists a D-dimensional ESS where MSO of A is at least D.

The proofs of Claim 5.1 and Theorem 5.1 are deferred to [9].

VI. EXPERIMENTAL EVALUATION

As mentioned earlier, the MSO guarantees delivered by
PlanBouquet and SpillBound are not directly compara-
ble, due to the inherently different nature of their dependen-
cies on the ρ and D parameters, respectively. However, we
need to assess whether the platform-independent feature of
SpillBound is procured at the expense of a deterioration in
the numerical bounds. Accordingly, we present in this section
an evaluation of SpillBound on a representative set of
complex OLAP queries, and compare its MSO performance
with that of PlanBouquet. The experimental framework,
which is similar to that used in [3], is described first, followed
by an analysis of the results.

A. Database and System Framework

Our test workload is comprised of representative SPJ
queries from the TPC-DS and TPC-H benchmarks, operating at
their base sizes of 100GB and 1GB, respectively. The number
of relations in these queries range from 4 to 10, and a spectrum
of join-graph geometries are modeled, including chain, star,
branch, etc. The number of epps range from 2 to 6, all corre-
sponding to join predicates, giving rise to challenging multi-
dimensional ESS spaces. Due to space limitations, we present
only the results for TPC-DS queries here – the corresponding
results for the TPC-H queries are available in [9].11

To succinctly characterize the queries, the nomenclature
xD Qz is employed, where x specifies the number of epps,
and z the query number in the TPC-DS benchmark. For
example, 3D Q15 indicates TPC-DS Query 15 with three of
its join predicates considered to be error-prone.

The database engine used in our experiments is a modified
version of PostgreSQL 8.4 [14] engine, with the primary
changes being the incorporation of spilling and time-limited
execution of plans. Due to the intrusive nature of spilling,
we are not in a position to provide experimental results on
commercial database engines.

The MSO guarantee for PlanBouquet on the original
ESS typically turns out to be very high due to the large values
of ρ. Therefore, as in [3], we conduct the experiments for
PlanBouquet only after carrying out the anorexic reduction
transformation [5] at the default λ = 0.2 replacement threshold
– we use ρRED to refer to this reduced value.

In the remainder of this section, for ease of exposition, we
use the abbreviations PB and SB to refer to PlanBouquet

11Results for additional performance metrics such as average sub-optimality
and sub-optimality distributions are also available in [9].

and SpillBound, respectively. Further, we use MSOg (MSO
guarantee) and MSOe (MSO empirical) to distinguish between
the MSO guarantee and the empirically evaluated MSO ob-
tained on our suite of queries.

B. Comparison of MSO guarantees (MSOg)

A summary comparison of MSOg for PB and SB over
almost a dozen TPC-DS queries of varying dimensionality
is shown in Figure 7 – for PB, they are computed as
4(1+λ)ρRED, whereas for SB, they are computed as D2+3D.

We observe here that in a few instances, specifically
4D Q26 and 4D Q91, SB’s guarantee is noticeably tighter
than that of PB – for instance, the values are 28 and 52.8,
respectively, for 4D Q91. In the remaining queries, the bound
quality is roughly similar between the two algorithms. There-
fore, contrary to our fears, the MSO guarantee is not found to
have suffered due to incorporating platform independence.

Fig. 7: Comparison of MSO Guarantees (MSOg)

C. Variation of MSO Guarantee with Dimensionality

In our next experiment, we investigated the behavior of
MSOg as a function of ESS dimensionality for a given query.
We present results here for an example TPC-DS query, namely
Query 91, wherein the number of epps were varied from 2
upto 6 – the corresponding performance profile is shown in
Figure 8. We observe here that while SB is marginally worse
at the lowest dimensionality of 2, it becomes appreciably better
than PB with increasing dimensionality – in fact, at 6D, the
values are 96 and 54 for PB and SB, respectively.

Fig. 8: Variation of MSOg with Dimensionality (Q91)

D. Comparison of Empirical MSO (MSOe)

We now turn our attention to evaluating the empirical MSO,
MSOe, incurred by the two algorithms. There are two reasons
that it is important to carry out this exercise: Firstly, to evaluate
the looseness of the guarantees. Secondly, to evaluate whether
PB, although having weaker bounds in theory, provides better
performance in practice, as compared to SB.

The assessment was accomplished by explicitly and ex-
haustively considering each and every location in the ESS to
be qa, and then evaluating the sub-optimality incurred for this
location by PB and SB. Finally, the maximum of these values
was taken to represent the MSOe of the algorithm.

The MSOe results are shown in Figure 9 for the entire suite
of test queries. Our first observation is that the empirical per-
formance of SB is far better than the corresponding guarantees
in Figure 7. In contrast, while PB also shows improvement,
it is not as dramatic. For instance, considering 6D Q18, PB
reduces its MSO from 57.6 to 35.2, whereas SB goes down
from 54 to just 16.

The second observation is that the gap between SB and PB
is accentuated here, with SB performing substantially better
over a larger set of queries. For instance, consider query
5D Q29, where the MSOg values for PB and SB were 52.8
and 40, respectively – the corresponding empirical values are
42.3 and 15.1 in Figure 9.

Finally, even for a query such as 4D Q7, where PB had a
marginally better bound (24 for PB and 28 for SB in Figure 7),
we find that it is SB which behaves better in practice (16.1 for
PB and 13.9 for SB in Figure 9).

Fig. 9: Comparison of Empirical MSO (MSOe)

E. Analysis of Looseness of SB’s MSOg

We now profile the execution of the queries to investigate
the significant gap between SB’s MSOg and MSOe values.
Recall that the analysis (Section IV-B1) bounded the cost of
repeat executions by attributing all of them to the last contour,
i.e., ICk+1. Moreover, the number of fresh executions in all
the contours, including ICk+1, was assumed to be D. This
results in the execution cost over ICk+1 being the dominant
contributor to MSOg . To quantitatively assess this contribution,
we present in Table II the drilled-down information of: (i) the
number of fresh executions of plans on ICk+1, and (ii) the
number of repeat executions of plans on ICk+1. For each of
these factors, we present both the theoretical and empirical
values. Note that the specific qa locations used for obtaining

these numbers corresponds to the locations where the MSO
was empirically observed.

Query Fresh Executions in
ICk+1

Repeat Executions
in ICk+1

Bound Empirical Bound Empirical
3D Q15 3 2 3 1
3D Q96 3 2 3 0
4D Q7 4 3 6 0

4D Q26 4 4 6 4
4D Q27 4 4 6 0
4D Q91 4 3 6 0
5D Q19 5 2 10 0
5D Q29 5 4 10 2
5D Q84 5 3 10 1
6D Q18 6 4 15 1
6D Q91 6 6 15 7

TABLE II: Sub-optimality Contribution of ICk+1

Armed with the statistics of Table II, we conclude that
the main reasons for the gap are the following: Firstly, while
the number of repeat executions in contour ICk+1, as per
the analysis, is D(D − 1)/2, the empirical count is far fewer
– in fact there are no repeat executions in queries such as
3D Q96, 4D Q7, 4D Q27, 4D Q91 and 5D Q19. While it is
possible that repeat executions did occur in the earlier lower
cost contours, their collective contributions to sub-optimality
are not significant.

Secondly, by the time the execution reaches the ICk+1

contour, it is likely that the selectivities of some of the epps
have already been learnt. The bound however assumes that
all selectivities are learnt only in the last contour. As a case in
point, for 5D Q19, the selectivities of three of the five epps
had been learnt prior to reaching the last contour.

VII. DEPLOYMENT ASPECTS

Over the preceding sections, we have conducted a the-
oretical characterization and empirical evaluation of the
SpillBound algorithm. We now discuss some pragmatic
aspects of its usage in real-world contexts. Most of these issues
have already been previously discussed in [3], in the context of
the PlanBouquet algorithm, and we summarize the salient
points here for easy reference.

First, our assumption of a perfect cost model. If we were
to be assured that the cost modeling errors, while non-zero,
are bounded within a δ error factor, then the MSO guarantees
in this paper will carry through modulo an inflation by a factor
of (1+ δ)2 [9]. That is, the MSO guarantee of SpillBound
would be (D2 + 3D)(1 + δ)2.

Second, with regard to identification of the epps that
constitute the ESS, we could leverage application domain
knowledge and query logs to make this selection, or simply be
conservative and assign all uncertain predicates to be epps.

Third, the construction of the contours in the ESS is
certainly a computationally intensive task since it is predicated
on repeated calls to the optimizer, and the overheads increase
exponentially with ESS dimensionality. However, for canned
queries, it may be feasible to carry out an offline enumeration;
alternatively, when a multiplicity of hardware is available, the
contour constructions can be carried out in parallel since they
do not have any dependence on each other.

Fourth, while PlanBouquet can directly work off the
API of existing query optimizers, SpillBound is intrusive
since it requires changes in the core engine to support plan
spilling and monitoring of operator selectivities. However,
our experience with PostgreSQL is that these facilities can
be incorporated relatively easily – the full implementation
required only a few hundred lines of code.

Finally, while PlanBouquet is dependent on the highly
variable parameter ρ, it is possible that ρ itself is a weak
function of D. Therefore, when D becomes really large,
SpillBound’s quadratic dependency on D may make its
bounds weaker than those of PlanBouquet. However, our
experience suggests that this transition does not happen for the
D settings that are typically seen in current applications.

VIII. RELATED WORK

Our work materially extends the PlanBouquet approach
presented in [3], which is the first work to provide worst-
case guarantees for query processing performance. As al-
ready highlighted, the primary new contribution is the pro-
vision of a structural bound with SpillBound, whereas
PlanBouquet delivered a behavioral bound. Further, the
performance characteristics of SpillBound are substantively
superior to those of PlanBouquet, as illustrated in the
experimental study.

A detailed comparison to the prior literature on selectivity
estimation issues is provided in [3]. For completeness, we
summarize the salient features here. The prior work can be
classified into the following three categories:

Improving Estimation Accuracy: A comprehensive survey
on the standard estimation techniques is available in [7].
Typically, histograms are used in current systems for storing
statistical summaries of attribute value distributions, and their
use is based on untenable assumptions such as Attribute Value
Independence (AVI). Recently [17] took a step towards remov-
ing the independence assumption, but their work is restricted
to handling two-dimensional histograms, and is inefficient for
databases subject to frequent updates.

Bounding Estimation Error Impact: Techniques to mini-
mize the adverse impact of errors in selectivity estimations are
proposed in [12]. However, they do not address of recovering
from large errors, which are quite common in practice, and
also do not provide any guarantees.

Plan-switching Approaches: Plan-switching techniques
have been considered for over two decades, and include
influential systems such as POP [11] and Rio [1]. The key
difference of SpillBound and PlanBouquet with regard
to this prior work is the provision of performance guarantees.
Further, they use the optimizer’s plan choice as the starting
point, and re-optimize at run-time if the estimates are found
to be significantly in error. In contrast, SpillBound (and
PlanBouquet) always start executing plans from the origin
of the selectivity space, ensuring both repeatability of the query
execution strategy as well as controlled switching overheads.

IX. CONCLUSIONS AND FUTURE WORK

We presented SpillBound, a query processing algorithm
that delivers a worst-case performance guarantee dependent

solely on the dimensionality of the selectivity space (D2 +
3D). This substantive improvement over PlanBouquet is
achieved through a potent pair of conceptual enhancements:
half-space pruning of the ESS thanks to a spill-based execution
model, and bounded number of executions for jumping from
one contour to the next. The new approach facilitates porting
of the bound across database platforms, easy knowledge of the
bound value, low magnitudes of the bound, and indifference
to the efficacy of the anorexic reduction heuristic. Further, our
experimental evaluation on complex high-dimensional OLAP
queries demonstrated that SpillBound provides competitive
guarantees to its PlanBouquet counterpart, while the em-
pirical performance is significantly superior.

In our future work, we intend to look into developing auto-
mated assistants for guiding users in deciding whether to use
the native query optimizer or SpillBound for executing their
queries. We also plan to work on extending SpillBound to
handle the case of dependent predicate selectivities. Finally,
we wish to leverage the empirical observation that plan cost
functions are typically concave across the selectivity space, to
further tighten the MSO guarantees of SpillBound.

Acknowledgments: We thank the anonymous reviewers and
Anshuman Dutt for their valuable comments on this work.

REFERENCES

[1] S. Babu, P. Bizarro, and D. DeWitt. Proactive re-optimization. In ACM
SIGMOD Conf., 2005.

[2] S. Chaudhuri, V. Narasayya, and R. Ramamurthy. Estimating progress
of execution for sql queries. In ACM SIGMOD Conf., 2004.

[3] A. Dutt and J. Haritsa. Plan bouquets: Query processing without
selectivity estimation. In ACM SIGMOD Conf., 2014.

[4] G. Graefe. Query evaluation techniques for large databases. ACM
Computing Surveys, 1993.

[5] D. Harish, P. Darera, and J. Haritsa. On the production of anorexic plan
diagrams. In VLDB Conf., 2007.

[6] A. Hulgeri and S. Sudarshan. Parametric query optimization for linear
and piecewise linear cost functions. In VLDB Conf., 2002.

[7] Y. Ioannidis. The history of histograms (abridged). In VLDB Conf.,
2003.

[8] N. Kabra and D. DeWitt. Efficient mid-query re-optimization of sub-
optimal query execution plans. In ACM SIGMOD Conf., 1998.

[9] S. Karthik, J. Haritsa, S. Kenkre, and V. Pandit. Platform-
independent robust query processing. Tech. Report TR-2015-02,
DSL/SERC, IISc, 2015, http://dsl.serc.iisc.ernet.in/publications/report/
TR/TR-2015-02.pdf.

[10] V. Leis, A. Gubichev, A. Mirchev, P. Boncz, A. Kemper, and T. Neu-
mann. How good are query optimizers, really? In VLDB Conf., 2016.

[11] V. Markl, V. Raman, D. Simmen, G. Lohman, H. Pirahesh, and M. Cil-
imdzic. Robust query processing through progressive optimization. In
ACM SIGMOD Conf., 2004.

[12] G. Moerkotte, T. Neumann, and G. Steidl. Preventing bad plans by
bounding the impact of cardinality estimation errors. PVLDB, 2(1),
2009.

[13] T. Neumann and C. Galindo-Legaria. Taking the edge off cardinality
estimation errors using incremental execution. In BTW, 2013.

[14] PostgreSQL. http://www.postgresql.org/docs/8.4/static/release.html.
[15] P. Selinger, M. Astrahan, D. Chamberlin, R. Lorie, and T. Price. Access

path selection in a relational database management system. In ACM
SIGMOD Conf., 1979.

[16] M. Stillger, G. Lohman, V. Markl, and M. Kandil. LEO - DB2’s learning
optimizer. In VLDB Conf., 2001.

[17] K. Tzoumas, A. Deshpande, and C. Jensen. Efficiently adapting
graphical models for selectivity estimation. VLDB Journal, 22(1), 2013.

