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Abstract

The indexing technique commonly used for long strings,
such as genomes, is the suffix tree, which is based on a verti-
cal (intra-path) compaction of the underlying trie structure.
In this paper, we investigate an alternative approach to in-
dex building, based on horizontal (inter-path) compaction
of the trie. In particular, we present SPINE, a carefully en-
gineered horizontally-compacted trie index. SPINE consists
of a backbone formed by a linear chain of nodes represent-
ing the underlying string, with the nodes connected by a
rich set of edges for facilitating fast forward and backward
traversals over the backbone during index construction and
query search. A special feature of SPINE is that it collapses
the trie into a linear structure, representing the logical ex-
treme of horizontal compaction.

We describe algorithms for SPINE construction and for
searching this index to find the occurrences of query pat-
terns. Our experimental results on a variety of real genomic
and proteomic strings show that SPINE requires signifi-
cantly less space than standard implementations of suffix
trees. Further, SPINE takes lesser time for both construc-
tion and search as compared to suffix trees, especially when
the index is disk-resident. Finally, the linearity of its struc-
ture makes it more amenable for integration with database
engines.

1. Introduction

A wide variety of applications require searching for ex-
act or approximate matches over long text strings [6]. For
example, performing global alignment between a pair of
genomes that each run to millions or billions of nucleotides
is a common task undertaken by biologists, the core op-
eration of which is searching for maximal unique matches
across the genomic strings [4]. Since brute-force searching
techniques do not scale to such long strings, there has been
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Figure 1. TRIE (for aaccacaaca)

extensive research on the design of high-performance index
structures for strings.

In this context, a trie [13] which holds all suffixes of the
data string, has become a popular starting point for devel-
oping index structures [6]. An example trie for the string
aaccacaaca is shown in Figure 1. A space-efficient ver-
sion of the trie structure, called the suffix tree [6], can be
created by collapsing every unary node of the trie into its
parent. When special edges called suffix links1 are incorpo-
rated into this structure, it is possible to devise construction
algorithms that have linear (in the size of the data) time and
space complexity, and search algorithms that have linear (in
the size of the query) time complexity. Given these remark-
able performance properties, it is not surprising that suffix
trees have become the defacto standard string index, featur-
ing in popular tools like MUMmer [4], a global alignment
software for genomes. The suffix tree corresponding to the
example string aaccacaaca is shown in Figure 2.

From an abstract view-point, the suffix tree can be
viewed as an intra-path, or “vertical”, compaction of the
original trie since, as mentioned above, unary child nodes

1 A suffix link connects a node representing �� to the node represent-
ing �, where � is a single character and � is an arbitrary string.
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are merged into their parents. In this paper, we present a
new index structure that is based on a novel inter-path,
or “horizontal”, compaction of the trie. Our motiva-
tion stems from the simple observation that there is con-
siderable duplication of patterns across the various paths
in the trie – for example, in Figure 1, the pattern ca-
caaca appears thrice in the trie structure. Eliminating this
repetition holds out the promise of significantly reduc-
ing the number of nodes in the index and thereby reducing
its resource consumption. However, achieving horizon-
tal compaction is a significantly more complex task as
compared to vertical compaction. This is because, un-
like vertical compaction which is a simple structural
merging that is independent of the content of the com-
pacted nodes, horizontal compaction is based on merging
character patterns across paths in the trie, thereby immedi-
ately running into the risk of generating false positives in
the compaction process.

1.1. The SPINE Index

In this paper, we present a carefully designed
horizontally-compacted trie index structure called SPINE
(String Processing INdexing Engine). The SPINE in-
dex for the example string aaccacaaca is shown in Fig-
ure 3. As seen here, SPINE consists of a backbone formed
by a linear chain of nodes representing the underly-
ing data string, with the nodes connected by a rich set of
edges for facilitating fast forward and backward traver-
sals over the backbone during index construction and query
search. All edges of the index are assigned labels dur-
ing the construction process, and these labels are used
to avoid false positives while traversing the index dur-
ing the search process.

At a structural level, SPINE provides all the standard
functionalities provided by suffix trees. Additionally, it has
a variety of other attractive features:

� The entire trie is collapsed into a single linear struc-
ture, representing the logical extreme of horizontal
compaction. Further, the number of nodes is always
equal to the string length. This is in marked contrast
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Figure 3. SPINE Index (for aaccacaaca)

to suffix trees where the number of nodes may go upto
double the length of the string.

� Since there is one edge (vertebra) on the backbone
corresponding to each character in the string, the data
string is not required any more once the index is con-
structed. This property does not hold for most of the
other string indexes, including suffix trees.

� A SPINE index can be constructed in an online man-
ner, not requiring prior knowledge of the entire data
string. Further, a single SPINE index can be used to
index multiple different strings, using techniques sim-
ilar to those employed in Generalized Suffix Trees [6].

� Since index-growth always occurs at the tail of the
structure, the node creation order and the node logi-
cal order are identical in SPINE. The utility of this fea-
ture is that it makes SPINE prefix-partitionable – that
is, given a SPINE index for a string, the index for a
prefix of this string is simply the corresponding initial
fragment of the index.

Note that the prefix-partitioning property is not sup-
ported by suffix trees since a node that is logically high
up in the tree may be created much after nodes from
lower levels in the tree.

� In comparing Figures 2 and 3, it might appear at first
glance that a SPINE index may require more resources
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than a suffix-tree since it has 11 nodes and 26 edges
while the suffix tree has 13 nodes and 16 edges. That
is, the node reduction is offset by an increased num-
ber of edges. However, as discussed later in this paper,
a variety of optimizations can be implemented to mini-
mize the size of the SPINE index such that it is about a
third smaller as compared to the equivalent suffix-tree.

� For finding all the matching substrings between two
strings, the number of suffixes processed by SPINE is
considerably smaller than those processed by suffix-
trees because they process suffixes on an individual ba-
sis, whereas SPINE processes them on a set basis.

� Finally, due to the simple linearity of SPINE’s struc-
ture, it is easy to develop efficient buffering policies, a
mandatory requirement for good disk performance.

From a performance perspective, we demonstrate
through a variety of experiments on real genetic strings,
whose lengths are of the order of several millions of char-
acters, that the horizontal compaction approach of SPINE
results in significant improvements over vertical com-
paction. Overall, SPINE takes less space and time to con-
struct, and has better search performance – that is, it wins
on both construction and usage metrics. An implication
of the lower space requirement is that, for a given mem-
ory budget, SPINE is able to process much longer strings
than those supported by suffix trees. Even more attrac-
tive is that the performance differentials increase in moving
from fully memory-resident indexes to disk-based imple-
mentations.

1.2. Contributions

To summarize, the main contributions of this work are
the following:

1. We investigate horizontal compaction of tries and
demonstrate that indexes that achieve complete hori-
zontal compaction are feasible.

2. We describe the SPINE index structure and present
online algorithms for its construction as well as for
searching the index for query strings. We prove that,
by virtue of the edge labeling strategy, the searches are
guaranteed to not return false positives.

3. We present a variety of optimizations that drastically
reduce the memory requirements of the SPINE index.

4. We profile the performance of SPINE against suffix
trees over a variety of extremely long genetic strings
for both memory-resident and disk-resident scenarios
and show that SPINE offers significant benefits with
regard to both space and time metrics.

1.3. Organization

The remainder of this paper is organized as follows: The
SPINE structure is presented in Section 2, while the con-
struction and search algorithms are described in Section 3
and Section 4, respectively. The specifics of our prototype
implementation are outlined in Section 5. Experimental re-
sults on the performance of this prototype are highlighted
in Section 6. Related work is overviewed in Section 7. Fi-
nally, in Section 8, we summarize the conclusions of our
study and outline future avenues to explore.

2. The SPINE Index Structure

In this section, we first overview the SPINE index struc-
ture and then describe its components in detail.

The central component of SPINE is the “backbone”
of nodes connected by forward (or downstream) directed
edges called “vertebras”, as shown in Figure 3. Each verte-
bra corresponds to a character in the input data string, and
this character is used to provide a character label (CL) for
the vertebra. The vertebras appear in the same order as the
associated characters in the input string.

While the backbone forms one source of forward con-
nectivity between the nodes, there are additional down-
stream edges that connect nodes across the backbone. These
edges are called “ribs” (full lines in Figure 3) and “extribs”
(dotted lines in Figure 3). Similar to vertebras, each rib is
labeled with a character label (CL), corresponding to the
character that it represents in the associated suffix. The set
of forward edges collectively represent all possible suffixes
of the data string, and are used during the search process.

The backward (or upstream) edges, called “links”
(dashed lines in Figure 3) are created and used dur-
ing the SPINE construction process. They provide the
ability to process suffixes on a set basis.

2.1. Avoiding False Positives

As mentioned in the Introduction, the SPINE index rep-
resents the complete horizontal compaction of all the suf-
fixes in the corresponding trie. An implication of merging
of all the matching paths into a single path is that all paths
that were there in the original trie continue to be represented
in SPINE, and therefore there is no possibility of false neg-
atives. However, false positives, that is, invalid substrings,
may arise. For instance, in Figure 3, a path for accaa ap-
pears to exist in the SPINE index even though it is not a
substring of the data string.

To avoid such false positives, we take recourse to a nu-
meric labeling strategy for the edges during the construction
process. Specifically, each rib and extrib is assigned an in-
teger label, called Pathlength Threshold (PT). The extribs
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have an additional integer label called Parent Rib Threshold
(PRT). In order to be able to assign the correct PT values to
the ribs/extribs, each link is assigned an integer label called
Longest Early-Terminating suffix Length (LEL). For exam-
ple, in Figure 3, the rib from Node 3 has a PT of 1, the extrib
from Node 5 to Node 7 has a PRT of 1 and PT of 2, while
the link from Node 8 to Node 2 has an LEL of 2. These la-
bels, which are assigned during the index construction pro-
cess, determine when forward edges can be traversed during
the subsequent search process, as described in Section 4.

2.2. Notation and Terminology

In the remainder of this section, we describe the com-
ponents of SPINE in detail. Our discussion assumes that
the data string which is being indexed is composed of �
characters. For ease of presentation, we use the notation
shown in Table 1. While the table entries are mostly self-
explanatory, the termination concept requires elucidation:
A suffix ��� is said to terminate at node � (� � �) if
there is a valid traversal path from the root node to node
� whose string of character labels match the suffix. A suf-
fix ��� whose termination node is strictly less than � is said
to be an early-terminating suffix, otherwise it is called end-
terminating.

To make the above notation clear, consider Node 5 in
Figure 3, for which �� = aacca, ��� = ca, ������� =
�aacca, acca, cca, ca, a�, 	
����� = �aacca, acca,
cca, ca�, 	������� = �a�.

Notation Meaning
�� Node i
�� String on backbone from root to ��

��� Suffix of �� of length �
������� Set of all suffixes of ��

���������� Set of suffixes of �� of length � k
	
����� Set of suffixes in �������

terminating at ��

	
�������� Set of suffixes of 	
�����
of length � k

	������� Set of suffixes in �������
not terminating at ��

��
�������	� LEL of the link of ��

��
���������� Destination node of link of ��

��������������� Destination node of rib at ��

for character �
���������� ��� PT of rib at �� for character �

Table 1. Notation

2.3. Vertebra Backbone

During construction, the backbone is initially created
with a single node, called the root node, and for each char-
acter in the data string, a new node is added sequentially
using a vertebra edge labeled with the corresponding char-
acter. The node that is currently at the bottom of the back-
bone is referred to as the tail node, �����. Each node has
an integer identifier which is set equal to the length of the
backbone string above that node. With this naming conven-
tion, the root node has identifier �, the first node has identi-
fier � and so on until the tail node of the entire index which
will have identifier � .

2.4. Links

Links are meant to record, at each node, the information
about its early-terminating suffixes, namely, 	�������.
Specifically, only the longest early-terminating suf-
fix (hereafter referred to as LET-suffix) is explicitly
kept track of since, by definition, all shorter suffixes are
also early-terminating suffixes and they would them-
selves have been linked up earlier. For example, in Fig-
ure 3, there is a link from �� to �� to represent a,
the LET-suffix. If a node has no early-terminating suf-
fixes (i.e. 	
����� � �������), then its link points to
the root node, ��, which can be interpreted as represent-
ing the null suffix. �� in Figure 3 is an example of this sce-
nario. Finally, as a special case, the root node has no link
edge since it is the starting node.

Link Labels The LEL label of a link is the length of the
LET suffix which it represents. Intuitively, if we have a link
from �� to �� with a LEL ’�’, then it means ��� � ��� .
More formally, ������� can be defined as follows:

������� � 	
����� � 	������� and
	������� � ����������

where � � ��
�������	� and � � ��
����������.

2.5. Ribs

When the SPINE index that has been built for �� is ex-
tended by one more character from the data string, we need
to extend all the suffixes of �� by this additional charac-
ter, �����. For the end-terminating suffixes, the newly added
node on the backbone, �����, automatically records this ex-
tension through its vertebra edge. For the early-terminating
suffixes, however, the extension must be explicitly recorded
and this is achieved through the addition of rib edges.
Specifically, the link chain from �� is traversed and if a
rib/vertebra does not already exist for ����� at any node, say
�� , in the link chain, a new rib is created from that node to
�����.
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The traversal of the link chain terminates if either the
root node is reached, or a node having an outgoing edge
labeled with ����� is reached. The first stopping condition
is obvious since no further traversal is possible, while the
other condition reflects the fact that the suffix in question
has already been previously extended. And there is no need
to explicitly handle the remaining smaller suffixes as they
would also have been extended automatically.

Rib Labels When a new rib is created at�� , its CL is set to
����� and its Pathlength Threshold (PT) is set to the length
of the longest suffix of �� terminating at that node, which
is given by the LEL of the last traversed suffix link. Intu-
itively, the rib PT represents the length of the longest pre-
fix that can be traversed from the root before the rib is tra-
versed. This is because the rib was created to extend the suf-
fix of that length.

2.6. ExtRibs

As mentioned above, we stop the link-chain traversal for
rib addition if we find that the current node already has a
matching rib (i.e. with CL = �����). However, the follow-
ing situation may now arise: The PT of the pre-existing rib
may be less than the LEL of the link used to reach this node,
which means that this rib is not valid to represent the exten-
sion of the associated early-terminating suffix. To address
this issue, the solution that immediately comes to mind is to
update the rib’s PT to be equal to the LEL value. However,
this is not correct since it may permit illegal paths resulting
in false positives. We therefore take an alternative approach
of extending the rib itself through edges called extribs (ex-
tension ribs). For example, in Figure 3, the extrib (dotted
line) from �� to �� is an extension of the “parent” rib con-
necting �� to ��.

At a given node, there may be multiple extribs, each cor-
responding to a different parent rib that terminates at this
node. From an implementation perspective, this is problem-
atic since it makes the node size to be variable. Therefore,
we take the alternative approach of maintaining the extribs
in a chained fashion. That is, the first extrib in the chain is
located at the destination node of the rib which failed the
pathlength threshold test, and the second extrib is located at
the destination node of the first extrib, and so on. This en-
sures that at any node there is at most only one extrib. So,
whenever we need to create an extrib, instead of creating
it from the destination of the parent rib, we traverse to the
node at the end of the extrib chain, and then create a new ex-
trib from this node to the tail node. All the extribs created
for a rib are its children.

ExtRib Labels Each extrib has an associated Pathlength
Threshold (PT), which is the length of the longest suffix
that it is extending, as well as a PRT, which is the PT value

of the parent rib. The reason for including the PRT value is
to be able to uniquely identify the extrib. Note that a charac-
ter label is not required for an extrib as it is implicitly repre-
sented by the CL of the incoming rib or extrib at its source
node. And hence, a complete extrib chain represents a sin-
gle character. In Figure 3, an example chain is the extrib
from �� to ��, and then from �� to ���.

2.7. Prefix-Partitioning

It is easy to see from the above discussion that SPINE is
prefix-partitionable, i.e. given a SPINE index for a string,
the index for a prefix of the string is simply the correspond-
ing initial fragment of the index.

3. SPINE Construction Algorithm

In the previous section, we presented an overview of the
SPINE index structure. We now move on to presenting an
online algorithm for constructing this structure. The pseudo
code for the main algorithm is given in Figure 4 (subrou-
tines are described in [12]).

We start off with the SPINE index initially consisting of
just the root node and then, for each new character in the
string, a node is appended to the tail of the index. The ver-
tebra connector to the newly-added node is labeled with the
new character, and the associated links and ribs are created
as required.

As mentioned earlier, every node, excepting the root, has
a link associated with it. When the first character is ap-
pended, a link is created from the new node to the root node.
For all subsequent nodes, the following process is followed:
The link edge of the immediate predecessor of ����� is tra-
versed upstream. Let the destination node of this link be
�����. At �����, it is checked whether a vertebra/rib al-
ready exists for �����. If it is not present, a new rib is con-
structed from ����� to �����. Then, the link at ����� is tra-
versed upwards and the same process is repeated with the
new �����.

The above process stops with the creation of a new link,
which happens when one of the following cases occur dur-
ing the upward traversal of the link chain:

A vertebra is found with CL = �����: In this case, a link is
created from ����� to the destination node of the ver-
tebra. The LEL of the link is set one greater than the
LEL of the last link traversed.

A rib is found with CL = �����: In this case, if the thresh-
old test does not fail, then a link is created from �����

to the node referenced by the rib, and the LEL of the
link is set one greater than the LEL of the last link tra-
versed.

Otherwise, the extrib chain is traversed to find a
child extrib with PT� LEL of the link. If found, then a
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link is created from ����� to the destination of that ex-
trib. The PT of the link is set one greater than the PT of
the last link traversed. Otherwise, a new extrib is cre-
ated from the end of the extrib chain to ����� and a
link is also created from ����� to the destination node
of the last traversed extrib with PRT equal to the PT
of the rib which failed the validity test. The link is as-
signed a LEL which is one more than the PT of the last
rib or sibling extrib that has been traversed.

A rib is created from the root node: Here, a link with
LEL set to 0 is created from ����� to the root node.

APPEND �� � ���� character
01. ����� = �� � ���� character
02. Append ���� to the SPINE using a vertebra
03. ����� = ����

04. ����� = ����������	


05. edgeFound = FALSE
06. WHILE (NOT edgeFound)
07. IF (����� �� ���� )
08. l = Most recently traversed link
09. Check for a ����� vertebra/rib at �����

10. IF (a matching edge � is found)
11. IF (� is vertebra)
12. AddLink(������ ����	
� ����� �)
13. ELSE IF (� is a rib)
14. IF (���� � ���� )
15. HandleExtribs(����� ���� )
16. ELSE
17. AddLink(������ ����	
� ��� � �)
18. edgeFound = TRUE
19. ELSE
20. AddRib(������ ������ ������ ����)
21. ����� = ��������������	


22. END-IF
23. ELSE // link chain ends
24. AddLink (�����,��		�,0)
25. edgeFound = TRUE
26. END-IF
27. END-WHILE

Figure 4. SPINE Construction Algorithm

3.1. Construction Example

To help clarify the above discussion, we now describe
how the SPINE index is created for the same input string
used in Figure 3, i.e. aaccacaaca.

In the beginning, a root node is created with identifier 0.
Subsequently, whenever a new node is added to the back-
bone, we start traversing the link chain beginning from the
parent node of the newly added node. An example sce-

nario for each of the conditions in the construction algo-
rithm given in Figure 4 is discussed below.

CASE 1: Vertebra Exists (Line 11)
This case occurs when a vertebra for ����� exists at
�����. For example, consider appending��. Here, we
traverse the link of �� to reach �� and find a verte-
bra for a. Hence we create a link from �� to �� and
assign it a LEL of 1 (= LEL of last traversed link + 1).

CASE 2: Rib With Required PT Exists (Line 16)
This case occurs when there already exists a
rib/vertebra for ����� with sufficient PT. Consider ap-
pending ��. In this case, we find that a rib for c
with sufficient PT exists at ��. Hence a link is cre-
ated from �� to �� (the destination of the rib) with a
LEL of 1 (= LEL of last link traversed + 1).

CASE 3: Rib Creation (Line 19)
This case occurs when there exists no rib/vertebra for
�����. Consider appending ��. Traverse the link of ��

to reach ��. Since there exists no rib/vertebra for c,
create a rib from �� to �� and assign it a LEL of 1.
Now traverse the link of �� to reach ��. Again, since
no rib or vertebra exists for c, a rib is created for char-
acter c from �� to �� with PT equal to 0. Since the
root node has no link, we end the process by creating
a link from �� to �� with LEL = 0.

CASE 4: ExtRib Creation (Line 15)
This case occurs when there exists a rib whose PT is
less than the desired value. Consider appending ��.
Traverse the link of �� to reach ��. At ��, there ex-
ists a rib for character a but with PT of � which is
less than the LEL of the last traversed link(� �). And
we see that there is no extrib from �� (the destination
node of the rib). So, an extrib is created from�� to ��

and its PT and PRT are set to 2 (LEL of the last tra-
versed link) and 1 (PT of the parent rib), respectively.
Then, a link is created from �� to �� (the last tra-
versed rib/extrib with the same PRT as the newly cre-
ated extrib) with a LEL of 2 (= PT of last traversed
rib/extrib with same PRT + 1).

4. Searching with SPINE

In this section, we discuss how a SPINE index can be
used for efficient searching. We begin by defining valid
search paths, then present an example search process, and
conclude with a comparison of searches in suffix-trees.

Valid Paths A search path in a SPINE index is a valid path
if and only if (a) the path originates at the root node, and
(b) all the ribs/extribs in the traversed path satisfy the Path-
length Threshold (PT) constraints. A formal proof that the
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valid paths in the SPINE index correspond exactly to the set
of substrings that occur in the data string is given in [12].

To make the above clear, a rib/extrib can be traversed
only if the length of the path traversed so far (i.e. from the
root node till that point) is less than or equal to the PT of
the rib/extrib. For example, the accaa path will not be per-
mitted in Figure 3 because when we traverse the path from
the root for acca, after we reach Node 5, the rib for a vi-
olates the constraint since its PT of 2 is less than the cur-
rent pathlength of 4. Thus, accaa is not a valid substring of
the given data string.

Search Example For illustrative purposes, we will assume
a complex matching operation wherein the goal is to find,
given a data string S1 on which a SPINE index has been
built, and a query string S2, all maximal matching sub-
strings, including repetitions, between S1 and S2, whose
lengths are above a threshold value. A practical applica-
tion of this matching operation is in establishing local align-
ments across genetic strings.

For example, given the following strings S1 and S2, and
a threshold value of 6, the output should contain the sub-
strings shown in boldface.

S1 acaccgacgatacgagattacgagacgagaatacaacag
S2 catagagagacgattacgagaaaacgggaaagacgatcc

For the above operation, the SPINE matching would
proceed as follows: To start off, the entire query string is
searched for in the SPINE index of the data string. As soon
as the first mismatch is found, the length matched till now
is reported. Now, we check if the mismatched character fol-
lows any of the shorter suffixes in the matched part of the
query string, and the process is repeated again. The shorter
suffixes are reached by traversing the link chain upwards.

The procedure for finding a match is as follows: We start
from the root node and traverse the forward edges (verte-
bras, ribs and extribs) according to the characters in the
query string. A vertebra edge can be traversed at any time.
Before traversing a rib, however, a check is made as to
whether the length traversed thus far is � PT of the rib. If
this test fails, then this rib’s extrib chain is followed until ei-
ther the extrib chain ends, or we find the child extrib whose
PT is greater than or equal to the current pathlength and hav-
ing a PRT which is equal to PT of the rib which failed the
test.

The intuition behind our searching scheme is simple:
Each valid path starting from the root to a node corresponds
to some suffix of the string on the backbone till that node.
And while more than one suffix might terminate at a node,
each such suffix would be of a different length. So, at a
given node if it is valid to traverse a rib after a pattern �

(suffix till that node) of length �, then it has to be valid af-
ter a pattern � whose length is less than � and which ends at
the same node, because � would be a suffix of �.

The above matching process finds the first occurrence of
a match in the data string. But our goal is to find all occur-
rences of the match. This is achieved using a simple tech-
nique that exploits the link property that a link with LEL v
from node �� to node �� indicates that a string of length
v above �� is the same as the string of length v above ��.
Specifically, after we find the first occurrence of the match,
the node indexing the first occurrence is stored in a target
node buffer. Then, all the nodes downstream are scanned
successively to check if their links point to the node in the
target node buffer, i.e. the node indexing the first occur-
rence and have an LEL greater than length of pattern be-
ing searched. If so, then that node is also stored in the target
node buffer. Again, downstream scanning is started from
this node and the process is repeated until the end of the
backbone is reached. Searching in the target node buffer is
performed in binary fashion to improve the performance.

To clarify the above, consider Figure 3 with a query
string ac. Here, after locating the first occurrence, the tar-
get node buffer will contain��. Moving downstream, at ��

we find a link with LEL = 2 (length of string ac) pointing
to ��. And so, �� is also added to the target node buffer.
On moving further downstream, at��, a link with appropri-
ate LEL is found pointing to a node in the target node buffer
(��), and therefore it is also added to the buffer. In this man-
ner, the target node buffer finally gives the end nodes of all
occurrences of the pattern in the string. As a last step, their
starting positions can be trivially determined by merely sub-
tracting the query pattern length from each of the node iden-
tifiers in the target node buffer.

While we could, in principle, search for all occurrences
of a matching pattern immediately after it is found, this
would be wasteful since it would require a traversal of the
backbone for each matching pattern. Instead, we defer this
step until the first occurrences of all matches are found, and
then, in one single final sequential scan of the backbone,
the repeated occurrences of all matching patterns are con-
currently found.

The detailed pseudocode to find the first occurrence of
the query string in the data string is described in [12].

4.1. Comparison with Suffix-Trees

Similar to SPINE’s use of links, suffix-trees use suffix
links to assist in finding the suffixes of the matched sub-
strings. But, the number of suffixes checked by suffix-tree
search algorithms is far more than those checked by SPINE.
The reason for this is as follows: In suffix trees, a suffix link
points from a node indexing string aw to the node indexing
w, where ’a’ is a character and w is a string [6]. In the case
of a mismatch, after checking for aw, we retrieve the node
indexing the suffix w and check if the mismatched charac-
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ter follows w. This process iterates till a complete match is
found or there are no more suffixes remaining to be checked.

In SPINE, however, each node �� in a link chain repre-
sents a set of suffixes, namely �������. Therefore, only
one check is sufficient for all the suffixes in that set, reduc-
ing the computational effort.

To make the above analysis clear, consider the index
structures shown in Figures 2 and 3. Here, assuming that
while matching accaa a mismatch is found in the suffix-
tree after matching acca, then the next suffix to be checked
will be cca (length 3) i.e. the one indexed by the destina-
tion node of the suffix link. On the other hand, in SPINE,
the link from Node 5 directly points to Node 1 which rep-
resents the suffixes of length 1 or less. This means that the
(unnecessary) checks for suffixes of length 3 and length 2
are not made. Therefore, for long strings, only a very small
number of suffixes are actually checked in the SPINE in-
dex.

5. Implementation Details

We have developed a prototype version of SPINE, and
in this section, we discuss its implementation details. While
SPINE is general in its applicability, for ease of presenta-
tion, we will assume in the following discussion that it is
DNA genomic strings, which are over an alphabet of size
four, that are being indexed; proteomes, which are over an
alphabet of size twenty, are discussed at the end of the sec-
tion.

Our implementation strategies are based on our expe-
rience with a variety of DNA genomes, each of which is
several million characters in length. In particular, we will
present results for the following representative genomes:

ECO : E.coli earthworm genome of length 3.5 million
characters;

CEL : C.Elegans bacterial genome of length 15.5 million
characters;

HC21 : Human chromosome 21 genome of length 28.5
million characters;

HC19 : Human chromosome 19 genome of length 57.5
million characters.

The information associated with each node of the SPINE
index and the associated space requirements are shown in
Table 2, corresponding to storing one vertebra, one link, a
maximum of three ribs (for DNA alphabet), and one extrib
at the node. As can be seen from the table, with a straight-
forward implementation, the worst-case space required by
each node is huge (48.25 bytes). However, the SPINE in-
dex exhibits a variety of both structural and empirically-
observed features using which the actual space required can
be drastically reduced – in fact, as we will show next, it can

Field Space Count Total
Name (Bytes) (Bytes)

CharacterLabel 0.25 1 0.25
VertebraDest 4 1 4

Link Dest 4 1 4
Link LEL 4 1 4
Rib Dest 4 3 12
Rib PT 4 3 12

ExtRib Dest 4 1 4
ExtRib PT 4 1 4

ExtRib PRT 4 1 4

Table 2. Index Node Content

be brought down to less than 12 bytes when all these fea-
tures are taken into account.

5.1. Node Size Optimizations

In this section, we present the optimizations which re-
duce the space requirements of SPINE index.

Implicit Vertebra Edge Since, as mentioned earlier,
SPINE grows sequentially at the tail of the backbone, the
physical order and the logical order of the nodes are identi-
cal. We can take advantage of this feature to not explicitly
represent the vertebra edge destination since the neighbor-
ing nodes are physically contiguous, i.e. the Vertebra Dest
field can be eliminated.

Small Numeric Label Values Table 3 gives the maximum
value observed for the various numeric labels (PT, LEL,
PRT) when the SPINE index was constructed on the rep-
resentative biological genomes mentioned above. As can be
observed here, the label values never exceed 25000 even for
very long genomes like the human chromosomes. There-
fore, only two bytes, rather than four, need to be allocated
for the length fields.

Genome Max Value
ECO 1785
CEL 8187

HC21 21844
HC19 12371

Table 3. Maximum Label Values

However, to ensure that the index works robustly, we
have a mechanism in place to handle even those rare cases
where the numeric values may exceed 65536 (the maximum
value that can be represented in two bytes). We allocate sep-
arate entries for these cases in an overflow table. The node
space normally used for storing the label value is now used
to index into the overflow table, and a one bit flag is used
in the main node structure to indicate whether the space is
storing a value or a pointer.

Sparse Rib Distribution While all nodes have upstream
edges (links), the same is not true with respect to down-
stream edges (ribs and extribs). In fact, we have found that
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only around 30 to 35 percent of the nodes actually have any
downstream edges emanating from them – Table 4 shows
the distribution of their number for the various genomes.
Specifically, the columns labeled 1 through 4 represent the
percentage of nodes having that many forward edges ema-
nating from them, with the maximum corresponding to hav-
ing the full complement of downstream edges (3 ribs and 1
extrib).

Genome Number of Ribs Total
1 2 3 4

ECO 15% 9% 6% 4% 33%
CEL 15% 8% 6% 4% 33%

HC21 14% 8% 6% 4% 32%
HC19 13% 7% 5% 3% 28%

Table 4. Rib Distribution across Nodes

The reason for this distributional behavior is that after
some length of the data string has been processed, the re-
maining part mostly contains repetitions of previously oc-
curred patterns, and therefore fresh downstream edges are
rarely created. Based on this observation, we do not allo-
cate space for downstream edges at every node, since con-
siderable space would be wasted. Instead, we store informa-
tion about the links and the downstream edges separately in
a Link Table (LT) and a Rib/Extrib Table (RT), respectively.
One entry for each character in the string is allocated space
statically in the LT, while space for downstream edges is al-
located dynamically in the RT for only those nodes from
which a rib/extrib emanates. Therefore, the total number of
entries in the RT is less than 35 percent of that in the LT.

Further, from Table 4 it is clear that the number of nodes
with a given rib fanout decreases with the fanout value. For
example, only about 4% of the nodes have the full comple-
ment of downstream edges. Therefore, to avoid the space
wasted for the edges which are not present, we use multiple
RTs. Specifically, there is one RT for each possible fanout,
resulting in four RTs in total: RT1, RT2, RT3, and RT4.

While this optimization results in considerable space
savings, it might appear at first glance that the construc-
tion time of SPINE would degrade due to the movement of
nodes across the RTs, which would occur whenever a node
acquires an additional downstream edge. However, we have
experimentally observed that this impact is negligible.

Final Node Layout Based on the above discussion, the op-
timized implementation of the SPINE index consists of a
Link Table (LT) and four RibTables (RTs), whose entries
are shown in Figure 5. The LT contains one entry for each
node (character) in the string. It stores its LEL as one of its
columns while the other column represents either the desti-
nation node of that link (the LD field) or a pointer to an entry
in one of the RTs (the PTR field). In particular, the LT stores
the link destinations only for the nodes that don’t have any

ribs/extrib. For the remaining nodes, they are stored in the
RT entries only.

Each node features in at most one RT table. A RT en-
try for a node stores the destination node of the link from
that node and also the destination nodes (the RD fields) and
the threshold values (the PT fields) of all the ribs/extrib em-
anating from the node. And, lastly, the PRT field denotes
the PRT value of the extrib.

LD

LD

LD

LD

LD / PTR

RT1

RT2

RT3

RT4

LT LEL

PT

PT

PT

PT PT

PT

PT

PT

PT PT

PRT

PRT

PRT

PRT

RD

RD

RD

RD RD

RD

RD

RD

RD RD

Figure 5. Optimized SPINE Implementation

By implementing all the above optimizations, the net ef-
fect is that the average node size in SPINE is less than 12
bytes, that is, the index takes upto 12 bytes per indexed char-
acter. The advantage of smaller node sizes is reflected not
only in space occupancy but also in improved construction
and searching times, as is quantitatively demonstrated in the
following section.

5.2. SPINE Implementation for Proteins

The above implementation focused on DNA strings
which have an alphabet size of 4. When we consider pro-
teins strings, where the alphabet size increases to 20, we ob-
served that the numeric label values are even smaller than
those found with DNA strings. Our experiments were con-
ducted with the E.Coli Residue (1.5 M), Yeast Residue
(3.1 M) and Drosophila Residue (7.5 M) proteomes. Mov-
ing on to the rib distribution, we observed that here too
there is a steep decay in the percentages of nodes hav-
ing multiple ribs. And again, the total number of nodes
with any rib/extrib is less than 30%. Therefore, the over-
all behavioral characteristics of proteomes are similar to
that of genomes with the only practical difference be-
ing that each character label requires 5 bits to code as
opposed to the 2 bits used for DNA.

6. Experimental Analysis

We conducted a detailed evaluation of the performance
of the SPINE index prototype, and these results are pre-
sented in this section. Our experiments were conducted with
the same set of genomes mentioned earlier in this paper
(i.e. E.Coli, C.Elegans, HumanChromosome 21, and Hu-
manChromosome 19). For comparison purposes, we also
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evaluated the performance of the suffix tree, hereafter re-
ferred to as ST – the code base was taken from the MUM-
mer software [4] to reflect an industrial-strength implemen-
tation.

Our experiments were conducted on a Pentium IV 2.4
GHz machine with 1 GB RAM, 40GB IDE disk and run-
ning Linux 7.3 operating system. The performance metrics
in our experiments were the following:

Index Construction Time: This is the overall time taken
to build the complete index for a string.

Index Search Times: This refers to the time taken to per-
form the complex matching operation discussed in
section 4, wherein we need to output all maximal
matching substrings, including repetitions, between
the source strings.

In the following discussion, we first consider an environ-
ment wherein both the data string and the index structure
are completely memory-resident, and then move on to pre-
senting results for disk-resident indexes.

6.1. In-Memory Environment

The performance of ST and SPINE with regard to in-
dex construction times are shown in Figure 6. Firstly, note
that the indexes take less than two seconds construction time
per Mbp, which means that with sufficient resources, a com-
plete in-memory index construction of the human genome
(approximately 3Gbp in length) can be done in under two
hours. Second, SPINE takes only marginally lesser time
to construct than ST, especially for longer strings. This is
not surprising since all operations are done in memory and
therefore the structural differences do not really play a role
in determining the construction time. But, these features do
show up with regard to the maximum string length that can
be successfully handled for a given budget. This is evident
in Figure 6, where no results are shown for ST with regard
to the HC19 string as it ran out of memory due to its larger
space requirements. In contrast, SPINE was able to com-
plete the index build successfully – in general, SPINE can
handle approximately 30 percent more string length than
the maximum that can be supported by ST.

Moving on to the search times, Table 5 gives the times
required to find all the exactly matching substrings (includ-
ing all multiple occurrences) for SPINE and ST for various
genome pairs. We observe here that SPINE takes around 30
percent lesser time than ST. This is entirely due to its ef-
ficiency in handling a much smaller number of suffixes, as
described earlier in section 4.1, and quantitatively shown in
Table 6.

We hasten to add here that while the results we show here
are for complete genomes in order to demonstrate scalabil-
ity, the same performance differences held even when the
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Data Seq Query Seq ST SPINE
ECO CEL 20 16
CEL HC21 45 31

HC21 CEL 26 17
HC21 HC19 83 54
HC19 HC21 – 30

Table 5. Substring Matching Times (secs)

Data Seq Query Seq ST SPINE
CEL ECO 3515 2119

HC21 ECO 3514 2163
HC21 CEL 15077 8701

Table 6. Number of Nodes Checked (In 1000s)

query strings were much smaller (for example, of length
1K).

6.2. Performance on Disk

We now move on to assessing the performance of SPINE
and ST on disk. Note that while SPINE can be expected to
have a basic advantage due to its smaller node size, the more
important issue here is the locality of the accesses made by
the index structures.

To study their behavior, we constructed generic SPINE
and ST indexes on disk without any extra disk-specific op-
timization. Further, the indexes were constructed using syn-
chronous I/O (O SYNC option) for writes to minimize the
modulation of the locality behavior by other system factors.
The graph in Figure 7 shows the time taken to construct the
indexes for the various genomes on disk. We see here that
SPINE takes almost half the time as required by ST to con-
struct the index on disk. Note that this cannot be attributed
solely to the smaller-sized nodes since that would have at
best reduced the time by a factor of about 30%. The addi-
tional 20% improvement arises due to the better locality ex-
hibited by SPINE.

We investigated the issue of locality further and an inter-
esting feature that we observed in the SPINE index is that
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most of the links point to the upper nodes in the backbone,
and that the number of links pointing to a node keeps mono-
tonically decreasing as we descend the backbone. This is
shown quantitatively in Figure 8, which shows the distribu-
tion of the link destinations for different data strings. This
indicates that while constructing the SPINE, the upstream
nodes would be accessed more often than the downstream
ones.
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The above observation suggests a simple buffering strat-
egy for SPINE, when sufficient memory is not available:
“Retain as much as possible of the top part of the Link Ta-
ble in memory”.

Moving on to the index search times, we observed that
the time required to obtain all the exactly matching sub-
strings also improved by a factor of two with SPINE as com-
pared to ST. This is explicitly shown in the speedup num-
bers of Table 7 for the various genome combinations (the
absolute times are large due to our synchronous disk write
artifact).

Due to space limitations, we do not present performance
results for protein strings here, but our experiments with
these strings showed that the SPINE construction times for
proteins also scaled linearly with the string lengths, and that

Data Seq Query Seq MUMmer SPINE Speedup
CEL ECO 0.98 0.47 52.1%
HC21 ECO 0.97 0.48 49.8%
HC21 CEL 4.30 2.02 52.8%
HC19 HC21 7.92 3.87 51.1%

Table 7. Substring Matching (On Disk, in hours)

the search times are independent of the data string length.
Overall, SPINE works as well with protein strings as it does
with DNA strings.

7. Related Work

A rich body of literature exists with regard to vertically
compacted trie indexes such as suffix trees. The primary fo-
cus of this research has been on optimizing the space occu-
pied by the tree nodes – for example, an implementation that
requires 12.5 bytes per indexed character for DNA strings
was proposed in [9]. The point to note, however, is that these
optimizations only increase the maximum length of the data
string that can be hosted in memory but do not improve the
construction and search times of the basic suffix tree.

In fact, some of these optimizations adversely impact the
performance or the functionality of the tree. For example, an
extremely space-efficient implementation, called Lazy Suf-
fix Trees [5], has been recently proposed, taking only 8.5
bytes per indexed character. However, it has constraints on
its functionality, including not being online, and not being
able to perform approximate and substring matching effi-
ciently due to the absence of suffix links. Similarly, suf-
fix arrays [11] reduce the space requirement to just 6 bytes
per indexed character but increase the time complexity from
linear to supra-linear. In summary, we can expect that the
timing benefits of SPINE with regard to ST, which were
demonstrated in this paper, will carry over to ST’s differ-
ent implementation flavors.

In contrast to vertical compaction, there is almost no
prior work available with regard to horizontal trie com-
paction. The only exception that we are aware of in this re-
gard is DAWGS - Direct Acyclic Word Graphs [2], which
require around 34 bytes per character for DNA strings [9].
A compacted version of DAWGS, called CDAWGs [10]
was proposed, but that too requires more than 22 bytes per
indexed character [9]. Unlike SPINE, they are unable to
achieve complete horizontal compaction due to their tech-
nique for eliminating false positives. Further, they lack po-
sition information of the matching pattern in the data string
because their nodes do not correspond to the character po-
sitions in the string.

Recently, in order to make suffix-tree construction on
disk efficient, a partition-based technique was proposed in
[7]. This algorithm is predicated on dispensing completely
with the suffix links that are essential for retaining the lin-
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ear time construction complexity – as a result, the algorithm
in [7] has quadratic complexity.

An elegant two-level search technique called MRS-index
was recently proposed in [8], wherein a preprocessing phase
using a very small approximate index is used to first filter
out those regions of the data string that potentially contain
matching entries, and then a seed-based approach is used on
the filtered regions. While MRS gives only approximate an-
swers, both SPINE and ST provide exact answers. Further,
the performance improvement through complete indexes is
typically substantially more, albeit at the cost of increased
resource consumption [12].

8. Conclusions

In this paper, we have proposed the SPINE index data
structure, which achieves a complete horizontal compaction
of the basic trie structure used for indexing long strings, and
ensures that the number of nodes in the index is equal to
the number of characters in the underlying data string. To
the best of our knowledge, this is the first string index with
these properties, and is in marked contrast to suffix-trees,
the defacto standard string indexing structure. A rich set of
forward and backward edges are employed in SPINE to en-
sure that all suffixes of the data string are captured in the
index structure. Further, the false positives that inevitably
resulted from the trie compaction were eliminated through
a simple but powerful numeric labeling strategy that con-
strains when the index edges can be traversed. Finally, the
SPINE index is prefix-partitionable, a property not shared
by suffix-trees.

We provided detailed algorithms for both online con-
struction of the SPINE index as well as for performing com-
plex searching operations on the resulting indexes. A fea-
ture of the search algorithm is that it considerably reduces
the number of suffixes that have to be examined during the
alignment process. While a simplistic implementation of
SPINE would have resulted in huge node sizes, we iden-
tified and incorporated a variety of structural optimizations
that finally resulted in SPINE taking less than 12 bytes per
indexed character, comparing favorably with the 17 bytes
taken by standard suffix tree implementations.

A performance evaluation of SPINE against ST (Suf-
fixTree) over a variety of very long genetic strings,
including human chromosomes, showed that signifi-
cant speedups were obtained for the searching opera-
tions, for both memory-resident and disk-resident sce-
narios. It was also observed that along with 30 percent
lesser index size, SPINE exhibits much higher node lo-
cality than ST, resulting in a more efficient disk-based
implementation. Finally, it was shown that a very sim-
ple buffering strategy was sufficient for SPINE to be able
to take advantage of the locality observed in our experi-

ments. In summary, SPINE appears to be a viable alterna-
tive to suffix-trees for string indexing.
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