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Abstract. Suffix-trees are popular indexing structures for various sequence pro-
cessing problems in biological data management. We investigate here the pos-
sibility of enhancing the search efficiency of disk-resident suffix-trees through
customized layouts of tree-nodes to disk-pages. Specifically, we propose a new
layout strategy, called Stellar, that provides significantly improved search perfor-
mance on a representative set of real genomic sequences. Further, Stellar supports
both the standard root-to-leaf lookup queries as well as sophisticated sequence-
search algorithms that exploit the suffix-links of suffix-trees. Our results are
encouraging with regard to the ultimate objective of seamlessly integrating se-
quence processing in database engines.

1 Introduction

The suffix-tree is a highly popular mechanism for indexing exponentially growing bi-
ological sequence repositories [12,13]. Its appeal lies in its linear (in the size of the
sequence) time and space complexity of construction, and its linear (in the size of
the query) search complexity. A unique aspect of suffix-trees is that, unlike traditional
database indexes whose size is typically a fraction of the database contents, their size
is usually much larger than the underlying sequence data. In fact, standard implemen-
tations of suffix-trees require in excess of an order of magnitude more space than the
indexed data! As a case in point, the entire 3 Gbp of Human Genome is fully rep-
resentable in about 1 GB memory (with each DNA symbol represented with 2-bits),
whereas the corresponding most space-economical suffix-tree occupies close to 25 GB.
That is, it is often straightforward to host the sequence data in main memory, but the
suffix-tree itself needs to be disk-resident.

This piquant size situation is rendered even worse due to suffix-trees not being disk-
friendly, as a consequence of the random traversals across tree-nodes induced by the
standard construction and search algorithms. Accordingly, there has been significant
recent research activity to address this problem and design high-performance disk-
resident suffix-trees [5,15,18,19]. However, these efforts have mainly focused on the
construction aspect, that is, on how to build the tree efficiently on disk.1 In this pa-
per, we take the next logical step of exploring the search aspect, and investigating the

1 Search performance is reported in [14,18], but not analyzed in detail.
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associated efficiency concerns. Specifically, our focus is on whether it is possible to
optimize the layout of the suffix-tree with regard to the assignment of tree-nodes to
disk-pages, such that the search efficiency is improved. While layout strategies have
been well-studied for a variety of data-structures [1,3,10,11,17,20], we are not aware of
any work focusing on suffix-trees. Further, carrying out this study for suffix-trees poses
new problems arising out of the following:

– The patterns of search traversals over suffix-trees are much more complex than
those found in traditional index structures, since both tree-edges and special lateral
connectors called suffix-links are involved.

– The presence of suffix-links turns suffix-trees into cyclic structures.
– Suffix-trees are not inherently balanced, unlike typical disk-resident index struc-

tures (e.g. B+-trees).

Our experiments with a variety of real genomic sequences against representative
query workloads demonstrate that the currently available layout choices are extreme –
they either optimize “vertical” traversal through the tree-edges, or optimize “horizontal”
traversal through the suffix-links. But, sequence search algorithms typically need to
traverse both edges and links – for example, to find all maximal matching substrings
between the database sequence and a query, tree-edges are used to walk down the tree
matching the query sequence along the way, and the subsequent matches are found by
following the suffix-links [7,9].

Given the above motivation for designing a holistic algorithm that optimizes the
layout for both kinds of traversals, we present in this paper Stellar (Suffix-Tree Edge
and Link Locality AmplifieR), an algorithm that attempts to achieve this goal. Stellar
is a linear-time, top-down strategy that utilizes the structural relationships between the
suffix-links and the tree-edges under associated subtrees, to achieve high locality for
both suffix-links and tree-edges. We quantify its effectiveness with a detailed perfor-
mance study on a variety of real genomic sequences.

In summary, the contributions of this paper are as follows:

1. Demonstrating that standard layouts of suffix-trees optimize only either edge traver-
sals or link traversals, resulting in slow searches of genomic sequences;

2. Presenting Stellar, a new suffix-tree layout that optimizes both kinds of traversals,
thereby providing significantly improved search performance.

2 Sequence Search Using Suffix-Trees

A suffix-tree of a string is a compacted trie over all the suffixes of the string.
For example, consider the suffix-tree constructed over a DNA fragment, S =
“GTTAATTACTGAAT$” shown in Figure 1 (the internal nodes of the tree are filled
in dark and the leaf nodes are lightly shaded). The solid edges between nodes represent
tree-edges, while the directed dashed lines indicate suffix-links. The links play an im-
portant role in linear time construction of suffix-trees [16,22], and also in many search
algorithms over suffix-trees [7,8,21]. Table 1 summarizes the terminology associated
with suffix-trees used in the rest of the paper.
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Fig. 1. Suffix-tree for the DNA fragment GTTAATTACTGAAT$

Table 1. Notation

S Sequence of length n
Σ Finite alphabet of symbols
$ Delimiter symbol such that $/∈ Σ
S[i] Symbol at position i in S, drawn from Σ
S[i . . . j] Substring of S starting at position i and length (j − i + 1)
Si Suffix of the sequence S starting at position i
sl(v) Suffix-link starting from the internal node v

Suffix-trees are useful in a large number of sequence search tasks [12], such as
exact matching of pattern strings, identification of prefix-suffix pairs over a collection of
sequences, common sub-string locations, and so on. A particularly critical use of suffix-
trees is in pre-processing a large genomics data repository and subsequently utilizing the
index to efficiently answer similarity searches. In these searches, the suffix-tree index
is used to quickly locate all common substrings between the database and the given
query string. These matching substrings are then used to generate local alignments, the
regions of similarity between the sequences, through the use of various domain-specific
heuristics.

In this paper, we use the maximal common-substring search, proposed in [7], as a
representative search task over disk-resident suffix-trees. This task is defined as follows:

Definition 1 (Maximal Common-substring Search). Given a database sequence S,
and a query sequence Q, locate Q[i . . . i+ j] and S[k . . . k+ j], such that, 1 ≤ i ≤ |Q|,
1 ≤ k ≤ |S|, Q[i . . . i+j] = S[k . . . k+j] and Q[i+j+1] �= S[k+j+1]. In practice,
it is desired that only matches that satisfy a user-defined minimum threshold length, λ,
are reported (that is, j ≥ λ). �

3 Suffix-Tree Layout

Suffix-trees, unlike popular index structures such as B-Trees [4], are not inherently
balanced – their structure depends entirely on the combinatorial characteristics of the
indexed sequence. Consider, for example, the suffix-tree shown in Figure 1 – here, leaf-
node 8 is an immediate child of the root, whereas leaf-node 1 is at depth 3. In the
worst-case, the tree can degenerate into a linear chain of internal nodes.
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The fan-out of each internal node of a suffix-tree is upper-bounded by the size of
the alphabet of the indexed sequence. Therefore, the common strategy of customizing
the fanout to suit the disk-page size cannot be adopted here. This means that multiple
nodes of a suffix-tree will be stored on a page, with nodes connected both within as well
as across pages – it therefore becomes critical to choose the nodes that will be placed
in the same disk-page in order to minimize the disk I/O cost incurred during search.

Earlier research on the layouts of disk-resident indexes [10] has considered the
problem of packing trees in order to minimize the total disk accesses given a access
distribution on the leaf nodes – that is, average path-length minimization, following the
terminology of [10]. It has been shown that a heuristic-based linear-time algorithm,
henceforth called SBFS, that does recursive localized breadth-first layout of the tree,
not only outperforms classic tree-layout methods such as Breadth-first and Depth-first
strategies, but also results in an I/O-cost that is within a small factor of an optimal
quadratic-time layout algorithm.

The basic idea behind the SBFS packing strategy is to recursively perform many
local breadth-first traversals, beginning from the root of the tree, packing nodes in visit-
order into disk pages. Once enough nodes have been visited to fill a page, or there are
no more nodes to be visited, the nodes visited so far are assigned to a page. Each of the
remaining nodes in the BFS queue then becomes the root of a separate SBFS traversal.
The recursion terminates when all nodes have been visited.

3.1 Issues in Suffix-Tree Layout

The general problem of optimal graph layout is known to be NP-complete [11]. Even
from a heuristic viewpoint, the storage layout of disk-resident suffix-trees introduces a
variety of novel issues:

Structural Complexity: Suffix-trees exhibit greater inherent structural complexity than
typical tree index structures due to the presence of cyclic substructures. Specifically,
the collection of tree-edges as well as the collection of suffix-links in a suffix-tree form
two separate tree structures, albeit with a common root. Also note that in the tree struc-
ture induced by the collection of suffix-links, the traversal direction between nodes are
reversed from the natural “parent-to-leaf” direction. That is, there exists a directed path
starting at any internal node to the root of the suffix-tree, via a chain of suffix-links.
And, from the root node, any of the internal nodes are reachable through a chain of
tree-edges, thus completing a cyclic path.

Complex Traversal Patterns: In typical index structures, the queries are mostly lookup
searches involving root-to-leaf traversals. But search algorithms over suffix-trees ex-
hibit complex traversal patterns, involving simultaneous use of tree-edges and suffix-
links. Thus, the layout strategy has to take into account the two “orthogonal” traversal
paths during search.

Due to these complexities, previously proposed layout strategies that are designed
to work with either tree or DAG structures are not directly applicable in the context
of suffix-trees. Nevertheless, to serve as a comparative yardstick, we investigate the
efficacy of the SBFS strategy outlined above for laying out a suffix-tree on disk, by
ignoring the suffix-links during the layout process.
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3.2 Comparing the Quality of Layouts

The overall metric we use to evaluate the quality of layouts obtained using different
storage strategies is to execute a representative set of queries over the suffix-trees laid
out using these strategies and measure the number of disk accesses incurred. To gain
more insight into the observed behavior, we also additionally measure the percentage
of tree-edges and suffix-links whose source and target are both present in the same disk
page – that is, the structural localities of the suffix tree layouts, discussed next.

Table 2 presents the structural locality results for suffix-trees built on a representa-
tive 25 Mbp long sequence drawn from Human Chromosome 2, hereafter referred to as
HC2/25, with disk pagesize set to 4KB. The storage layouts evaluated here are: (1) CO
(Creation Order), which corresponds to ordering the nodes as they are created during the
construction (Ukkonen’s construction algorithm [22] was used here); (2) SBFS layout
discussed earlier; and (3) our new Stellar layout, described in detail in the next section.

Table 2. Structural Edge and Link Localities

Dataset Storage Suffix-Links Tree Edges

Human Chromosome 2
CO 41.8% 0.2%
SBFS 0.1% 77.5%
Stellar 40.0% 62.6%

From the results, we first see that the CO-layout provides practically no tree-edge lo-
cality – only 0.2% of tree-edges are intra-page, while suffix-link locality is comparatively
high – 42%. The SBFS-layout, on the other hand, represents the opposite extreme in struc-
tural locality,with75-80%oftree-edgesbeingintra-page,butless than0.1%ofsuffix-links
being local! Overall, these results indicate, as also confirmed by our other experiments,
that the CO and SBFS layouts represent (negative) extremes in suffix-tree layout. The
reasons for this behavior are explained in the extended version of this paper [6].

Finally, note that the structural localities for the Stellar layout in Table 2 indicate
that its suffix-link locality (40.0%) is close to that of CO, while its tree-edge locality
(62.6%) is comparable to that of SBFS – clearly simultaneously optimizing the locality
of both connectors.

4 Design of Stellar

The design of Stellar is based upon the relationship between nodes connected through a
suffix-link and the tree-edges under them. This relationship can be derived easily from
well-known structural properties of suffix-trees [12]. Specifically, the property we use
is as follows:

Property 1. If v2 = sl(v1), then all the suffix-links originating from the nodes under
v1 point only to nodes under v2.

In other words, if two nodes are related through a suffix-link, then all the nodes under
the source of this suffix-link have their suffix-link targets only in the subtree of the
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Stellar (r,B)
Input
r : Root of the subtree to be traversed
B : Capacity of the disk-page in terms of no. of nodes
Output
An ordering of the suffix-tree under r

queue ←− r; {push root into the BFS queue}
nodecount← 0; {initialize the counter}
while queue not ∅ do

r′ ←− queue; {remove head of the queue}
if r′ not visited then

mark r′ as visited and increment nodecount;
for all c such that c is a child of r′ do

s← sl(c);{s is the suffix-link of c}
if c not visited AND nodecount < B then

mark c as visited and increment nodecount;
queue ←− c;
if s not visited AND nodecount < B then

mark s as visited and increment nodecount;
queue ←− s;

if nodecount ≥ B then
while queue not ∅ do

m←− queue;
Stellar(m,B);

Fig. 2. Stellar Algorithm

target. This property gives us a way to reconcile between the tree-edge and suffix-link
localities in the suffix-tree.

The pseudocode of the Stellar algorithm, utilizing the above structural relationship,
is presented in Figure 2. The algorithm starts the suffix-tree traversal at the root of
the suffix-tree, and recursively traverses the subtree below. When a node is visited, the
suffix-link target of the node is visited next, if not already visited through the tree-edges.
Thus an internal node and its suffix-link target are treated as a “buddy” pair, and are
scheduled for recursive traversal in sequence. This results in the subtree under a node
and the subtree under the corresponding suffix-link target to be recursively processed
in succession – resulting in a large fraction of suffix-links that span these two subtrees
to be intra-page, in addition to the tree-edges of each subtree. When enough nodes have
been visited to fill a page, each node in the queue is scheduled for a separate recursive
Stellar traversal, until all the nodes have been processed.

It is easy to observe that Stellar’s complexity is linear in the size of the suffix-tree
being processed – a node is visited only once during the top-down traversal of the tree.
Additionally, it does not impose inordinate space overheads, as the only transient data
structures required during the layout process are a queue of node ids, and a bit flag for
each node of the tree indicating whether it has been visited or not. In our experiments
we found that the queue never needs to hold ids of more than 100 nodes, even over
DNA sequences exceeding 25Mbp.

4.1 Level-Wise Locality Variation

In addition to the overall locality of tree-edges and suffix-links obtained by the layout
schemes, it is also critical to consider the distribution of such locality improvements in
the suffix-tree.
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Fig. 3. Depth-based Structural Localities

Figures 3(a) and (b) illustrate the locality distributions of tree-edges and suffix-links
for the suffix-tree over the HC2/25 sequence under the three layout schemes. These
values represent the number of intra-page tree-edges (resp. suffix-links) at every level
in the suffix-tree as a fraction of all the tree-edges (resp. suffix-links) going out from
that level. For example, there are a total of 2,417,879 outgoing edges from level 10, of
which approximately 40% become intra-page under a Stellar layout.

As these graphs indicate, the tree-edge and suffix-link locality of all three layouts
are comparable at the top portion of the suffix tree. However, as the depth of the suffix-
tree increases, the suffix-link locality of CO layout outperforms SBFS significantly,
while at the same time SBFS shows significantly better tree-edge locality over CO. On
the other hand, the Stellar algorithm shows a steady locality comparable to the best
within the tree-edge or suffix-link locality metric. In the middle portion of the suffix-
tree, due to the large number of tree nodes, the locality fraction (of both suffix-links as
well as tree-edges) is lower than in the top and bottom parts of the tree under all the
layouts.

While the above graphs were obtained with a pagesize of 4 KB, our experi-
ments with larger page sizes such as 16 KB, also showed similar trends – details
in [6].
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5 Experimental Framework and Results

We now present the disk I/O results for evaluating the Maximal Common-substring
Search query described in Section 2 for suffix-trees built over the HC2/25 sequence.
Results over other datasets, including Protein sequence data, are available in [6].

Our suffix-tree implementation is based on an efficient array-based tree node rep-
resentation suggested in [5], with 22.5 bytes per symbol. The disk page-size is set to
4KB – a typical value in most systems. A buffer pool of 8MB, which forms approxi-
mately 5% of the total index size, was used and managed using TOP-Q [5], a buffering
policy designed for use with disk-resident suffix-trees.

5.1 Query Workload

The cost of the search process is considerably affected by the following query workload
characteristics:

Query Length: The length of the query directly determines the total number of iter-
ations required for locating all the maximal substrings. Further, the increased query
length may result in a larger number of matches, increasing the cost of reporting
results.

Value of λ: The user-specified threshold, λ, serves as the lower-bound on the length of
the match before all instances of the match are reported. The typical operational range
of this parameter in a variety of DNA sequence retrieval software is between 9 and 50.
Specifically, BLAST [2] uses a default value of 11 while MUMmer [9] sets it to 50.

We generated our query workload based on a collection of sequences from Ex-
pressed Sequence Tag (EST) database of GenBank. The EST-database contains 856,008
sequences with average sequence length of 357.6 basepairs. Using this base collection,
we generated 3 length-restricted query collections, with lengths 50, 100, and 200, by
randomly sampling fixed-length subsequences from each entry of the EST-database.
In order to remove any remaining bias in the ordering of EST fragments, we sampled
10,000 sequences from each length-restricted query set to form three query collections,
hEST50, hEST100 and hEST200, used in our evaluation.

5.2 Utility of Disk Layout

The relative performance of maximal substring search over disk-resident suffix-tree
laid out using Stellar, normalized to that with the CO layout, is shown in Figure 4. As
these results indicate, the Stellar layout results in substantially reduced search costs as
compared to CO. For example, at λ = 11, Stellar requires only 30–45% of the disk I/Os
incurred by CO. Although this performance differential reduces with increasing value
of λ, Stellar never incurs more than 75% of CO’s disk accesses.

When λ values are in the lower end of operational spectrum, e.g. set to 9, the overall
I/O cost of search is dominated by the overhead due to producing a large result set.
As a result, the Stellar layout, with its larger fraction of intra-page tree-edges, clearly
outperforms the CO layout which provides very little tree-edge locality.
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Fig. 4. Stellar Vs. CO Fig. 5. Stellar Vs. SBFS

5.3 Relative Performance of Stellar and SBFS

We now turn our attention towards comparing the disk costs of Stellar and SBFS. In or-
der to provide a normalized measure of performance, we measure their relative perfor-
mance gains over that of the baseline CO layout. These statistics are shown in Figure 5,
as a function of λ, and demonstrate that Stellar provides steadily increasing I/O gains
with increasing values of λ. For example, at λ = 11, the performance gain of Stellar
over SBFS is close to 20%, which increases to more than 50% at λ = 16.

In addition to these results, we also performed experiments to show that the suffix-
link based searching over Stellar layouts require less than 50% disk I/O as compared to
that required for searching without suffix-links over SBFS layouts. Details of these ex-
periments are available in [6]. Note that the search performance of disk-resident suffix-
trees constructed by the techniques of [15,18,19] is lower-bounded by the performance
of the SBFS layout. As a consequence, Stellar-organized suffix-trees outperform the
storage organizations produced by all these prior techniques.

6 Conclusions

Developing suffix-trees as a disk-resident sequence index structure has been an active
research area in recent times, and many techniques have been proposed to significantly
improve the construction time. However, there has been virtually no research on eval-
uating and optimizing the search performance of these disk-resident suffix-trees, the
topic addressed in this paper.

Specifically, we have evaluated the impact of the suffix-tree’s disk layout on the I/O
performance of common genomic search tasks, and shown through detailed empirical
evidence that existing index layouts, such as Creation-Order (CO) and SBFS, are not
effective. They provide locality for only one of the two traversal paths, tree-edges and
suffix-links, used during suffix-tree searches, and practically zero locality for the other
path.

To address this unsatisfactory state of affairs, we presented a layout strategy called
Stellar that optimizes the locality of both tree-edges and suffix-links in the suffix-tree.
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The layouts produced by Stellar show close to 40% suffix-link locality, and 60% tree-
edge locality, providing an all-round performance that is comparable to the individual
best performances.

Using real genomic DNA sequences drawn from the GenBank repository, and
query-sets from the Human-EST collection, we showed that Stellar typically incurs
only about 30-40% of the disk I/O incurred by a suffix-tree stored in creation order.
Even in extreme cases, more than 25% disk costs are saved by Stellar. Furthermore, it
provides close to 2-fold improvement over the SBFS layout in terms of disk I/O saved.
The relative performance of Stellar significantly improves with increasing values of
λ (the minimum match length), thus highlighting the applicability of Stellar in full-
genome alignment software such as MUMmer, where values of λ are typically in the
range 20–50.
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