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Abstract The automated optimization of declarative SQ&nd refined over the past half-century, beginning in theyearl
queries is a classical problem that has been diligently 4860s. These packages are now extensively used throughout
dressed by the database community over the last few decathesworld in virtually the entire spectrum of human activity
However, due to its inherent complexities and challendgs, ttluding banking, insurance, governance, business, tnansei-
area has largely remained a “black art”, and the quality ef thfacturing, education and health-care. Popular commiertzia
qguery optimizer continues to be a key differentiator betweterings of DBMS software include IBM’s DB2 [DB2], Ora-
competing database products, with large research and-deslel[ORACLE], Microsoft's SQL Server [SQLSERVER] and
opment teams involved in their design and implementation.Sybase ASE [SYBASE], while PostgreSQL [POSTGRES] and
Over the past five years, we have provided a fresh perspdgSQL [MYSQL] are well-known public-domain packages.
tive on the behavior of modern query optimizers through theA primary reason for the popularity of DBMS is that they
introduction and development of the “plan diagram” conceptovide a simple but powerful logical model wherein all data
A plan diagram is avisual representation of the plan choicets stored in the form of tables calle@lations supported
made by the optimizer over a parameter space. In this papgrfriendly and powerful interfaces to ask questions, chlle
we provide an overview of plan diagrams, their processind, @ueries on the information stored in these database relations.
their applications. Queries are usually expressed in the Structured Query Lan-
Plan diagrams often appear similar to cubist paintings agitage (SQL) [SQL], the global de facto standard for interfac
provide a variety of interesting insights, including thatrent ing with relational database systems. A particularly appga
optimizers make extremely fine-grained plan choices; that feature of the language is that it is “declarative”, meartiveg
plan optimality regions may have highly intricate patteansl the user only stateshatis wanted without having to specify
irregular boundaries, indicating strongly non-lineartansd- the procedurefor obtaining the information.
els; that non-monotonic cost behavior exists where inangas
result cardinalities decrease the estimated cost; antltttha STUPENT [ RolTNo | StudentNane | Address [ Program |
basic assumptions underlying parametric query optinopati couRsE [ CourseNo | CourseName | Credits | Content |
often do not hold in practice.
Our study also shows that complex plan diagrams can usGc C'STER [ Rol N0 [ CourseNo |

ally be reduced to “anorexic” equivalents, featuring onfew Figure 1: University Database
plans, without materially affecting the query processingle
ity. Anorexic reduction has important implications for the- sel ect StudentNane, Cour seName

sign and use of next-generation query optimizers, and itigpar|  from STUDENT, COURSE, REG STER

ular, can be used to minimize the adverse impact of selgctiyi where STUDENT. Rol | No = REG STER. Rol | No and
estimation errors, a chronic problem in the field. REG STER. Cour seNo = COURSE. Cour seNo
Keywords: query optimization, plan diagrams, robust query
processing

Figure 2: Example SQL Query

To make the declarative notion concrete, consider the sam-
ple university database shown in Figure 1. Here, infornmatio
is maintained in three relationSTUDENT, COURSEandREG-

o . - ISTER, which tabulate data about students, courses, and the

Organizations typically collect vast quantities of datéate ) . .

. : . c?urse registrations of students, respectively. The sigerl

ing to their operations. For example, the Income Tax depart: .

. . . ) IS to extract the names of the students and the courses fohwhi

ment in India has accumulated a huge repository of mformﬁ\- : . .
they are registered, and a sample SQL query that achiewes thi

tion pertaining to taxpayer returns. In order to provide a-co ; s L o
. . . . oal is shown in Figure 2, where the desired information is ob
venient and efficient environment to productively use these - .
ned by combining the data across the three tables using th

enormous data collections, software packages called “Dg['ﬁl
Base Management System@BMS) have been develope oll'numbers and the course numbers as the connectors. Note
9 y P€Ghat in this formulation, theequenceén which the tables are

1Supercomputer Education & Research Centre and Dept. of Gem§$ci- C(.)mt.)ine_d: as well as FhﬂeChamS_mo .be used for ea:Ch com-
ence & Automation, Indian Institute of Science, BangaldBe®L2. bination is left unspecified, resulting in the declaratizg.t

1 Introduction




1.1 Query Optimization complexities and challenges, this area has largely rerdaine
“black art”, and the quality of the query optimizer contiisue

YBe a key differentiator between competing database preduct
ith large R & D teams involved in their design and imple-

Given a generic SQL query that requires combining inf
mation across relations, there are in principle! different
permutations of the combination sequence, implying that ﬁentation
strategy search space is at leagponentiain the query size. '

The automated identification of an efficient procedure @tstr, Over the pa.st five years, we have been able to pr'ow.de a
. : o . fresh perspective on the behavior of modern query optiraizer
egy from this search space is the responsibility of an itater

DBMS component called theguery optimizer’ . The effi- ﬂwrough the introduction and development of tipdan dia-

ciency of these strategies, called “plans”, is usually edsn gram” concept. A plan diagram is\dsual representation of

terms of the estimated query response time. Optimizatian fge plan choices made by the optimizer over a parameter space

mandatory exercise since the difference between the ctst O]ggnerated by leveraging t_he optimizers Apphcatlon ng
ing Interface (API) functions. In the remainder of this pap

best plan and a random choice could be in orders of magnlturae, : . . . .
. . . e 'provide an overview of plan diagrams, their processing,
but is computationally extremely expensive due to the cempi : o . :
: . . and their applications. The complete technical detailshef t
natorially large search space of plan alternatives, asaéed

above. The role of query optimizers has become especigﬁate”al covered here are available in a suite of papersdired

critical in recent times due to the high degree of query co%rl\{j Havitsa (2005); Harish, Darera and Haritsa (2007); Har-

plexity characterizing current decision-support appiass, as ish, Darera and Haritsa (2008); Dey, Bhaumik, Harish and

o . Haritsa (2008); Abhirama, Bhaumik, Dey, Shrimal and Har-
exemplified by the industry-standard TPC-H and TPC-DS per- i . . .
formance benchmarks [TPCH: TPCDS]. ﬁsa (2010); Haritsa (2010)], published in the Very LargadDa

. . . _Base (VLDB) conference series, a premier internationairfor
Plans are typically comprised ofteee of data processing

operators that are evaluated in a bottom-up paradigm. A sz]:\%-the dissemination of database research.

ple plan is shown in Figure 3 for the example query of Figure 2,

where thesSTUDENT and REGISTERrelations are first com- .

bined with aNESTED-LOOP join operator, and this interme-2 Plan Dlagrams

diate result is then combined with tc@URsErelation using a o )

HASH-JOIN operator. The bracketed numbers within each d§odern query optimizers each have their own “secret sauce”
erator node indicate the estimated aggregate processitg ¢8 identify the best (i.e. cheapest) plan for answeringatecl

incurred until this stage in the bottom-up query evaluation ative SQL queries. However, the de-facto standard under-
lying strategy, pioneered by the System R project at IBM

Research [Selinger, Astrahan, Chamberlin, Lorie and Price
RETURN (201689) (1979)] is the following: Given a user SQL query, apply
a variety of heuristics to restrict the exponential plan eba
space to a manageable size; estimate, with a cost model and
a dynamic-programming-based processing algorithm, the ef
ficiency of each of these candidate plans; finally, choose the
plan with the lowest estimated cost.

A query optimizer’'s execution plan choices, for a given
database and system configuration, are primarily a function
the selectivitiesof the base relations in the query. The selec-
tivity of a relation is the estimated fraction of rows of thee r
lation that are relevant to producing the final result. Indeye
and Haritsa (2005)], we introduced plan diagrams to denote
color-coded pictorial enumerations of the plan choicesef t
optimizer for parametrized SQL query templates over the re-
lational selectivity space. For example, consider QT8, the
parametrized two-dimensional query template shown in Fig-
ure 4, based on Query 8 of the TPC-H benchmark (the query
determines the market share of Brazil within the American

Figure 3: Sample Plan continent for cheap anodized steel parts). The templatedias
lectivity variations on thesupPLIERaNdLINEITEM relations

The design of effective query optimizers that quickiyrough thes_acctbal :varies andl_ extendedprice :varies pred-
identify low cost plans has been diligently addresseshtes, which apply one-sided range constraints on the sup-
by the database research community over the last feler's account balance and the extended price of the éngit
decades [Chaudhuri (1998)]. However, due to its inhereaspectively.

HASH-JOIN (201689)

NESTED-LOOPS
JOIN (26571)

TABLE-SCAN (175025)

TABLE-SCAN 512

COURSE INDEX-SCAN 50

STUDENT REGISTER




sel ect o_year, sun(case when nation = 'BRAZIL' then volume else 0 end) / sun{vol une)
from

(select YEAR(o_orderdate) as o_year, | _extendedprice * (1 - |_discount) as vol ung,
n2.n_name as nation
frompart, supplier, lineitem orders, customer, nation nl, nation n2, region

where p_partkey = | _partkey and s_suppkey = | _suppkey and | _orderkey = o_orderkey and
o_custkey = c_custkey and c_nationkey = nl.n_nationkey and nl.n_regi onkey = r_regi onkey
and s_nationkey = n2.n_nationkey and r_name = *AMERI CA' and p_type = ' ECONOW ANODI ZED
STEEL' and s_acctbal :varies and | _extendedprice :varies
) as all_nations
group by o_year
order by o_year

Figure 4: Example Query Template (QT8)

The associated plan diagram for QT8 is shown in Figure 5éad academic sites for a diverse set of applications includ-
— this picture was produced on a commercial database engrigeanalysis of existing optimizer designs; visually camgy
using the Picasso visualization software tool developeslin out optimizer regression testing; debugging new query pro-
lab [PICASSO]. In this picture, a set of 89 different optimalessing features; comparing the behavior between differen
plans, P1 through P89, cover the selectivity space. Theevalptimizer versions; investigating the structural diffeces be-
associated with each plan in the legend indicates the percemeen neighboring plans in the space; evaluating the vanisit
age area covered by that plan in the diagram — P1, for examipléhe plan choices made by competing optimizers; etc. As a
covers about 22% of the space, whereas P89 is chosen in oage in point, visual examplesdn-monotonicost behavior
0.001% of the space. In a nutshell, plan diagrams visuafly cen commercial optimizers, potentially indicative of moitejl
ture the geometries of the optimality regions of the paraimetrrors, were highlighted in [Reddy and Haritsa (2005)].
optimal set of plans (POSP) [Hulgeri and Sudarshan (2002)].

Itis vividly evident from Figure 5(a) that plan diagrams ¢ . . .
be extremely complex and dense, with a large number of plagng' Anorexic Reduction of Plan Diagrams

covering the space — several such instances spanning a |fege next phase of our investigation, we showed that dense
resentative set of query templates over a suite of indthstrba}an diagrams could typically be “reduced” to much simpler
strength optimizers, are available at [PICASSO]. In faweyt pictures featuring significantly fewer plangithout materially
often appear similar taubist paintingsand hence the Name&jegrading the processing quality of any individual quefgr
Picasso for our visualization todlWe have identified a Vari'example in Figure 5(a), if users are willing to tolerate aonin
ety of intricate tessellated patterns, includsmecklesstripes ¢qst increase, denoted By of at most 10% for any query in
blinds mosaicsand bands in the diagrams. Further, thene diagram, relative to its original cost, the picture cobé
boundaries of the plan optimality regions can be highlygtre equced to Figure 5(b), where only 7 plans remain — that is,
lar, which seem to indicate the presence of strongly no@alinmost of the original plans have been “completely swallowed”
and discretized cost models. Finally, the diagrams alsa)tmenby their siblings, leading to a highly reduced plan cardtyal
strate that the pasic assumptionplgn convexityuniquene'ss We presented in [Harish, Darera and Haritsa (2007)] a de-
andhomogeneity- underlying the rich body of research litefgsjleq study of the plan diagram reduction problem from theo
ature on parametric query optimization (e.g. [Hulgeri anel Setica), statistical and empirical perspectives. Ourysiaffirst
darshan (2002); Hulgeri and Sudarshan (2003))), rareld hghoyed that finding the optimal (wrt minimizing the number
In practice. _ _ of plans) reduced plan diagram is NP-Hard through a reduc-
_ While individual queries have been analyzed in great detglp, from the classical Set Cover problem [Garey and Johnson
in the past, our work is among the first to characterize andd@979)]_ This result motivated the design @bstGreedy, a
vestigate the behavior oveiparameter space an industrial- greedy heuristic algorithm whose complexityd$nm), where
strength environment. Therefore, in spite of query optamiz, is the number of plans amd is the number of query points
tion having been studied for several decades, our discovgnfe diagran{n < m). Hence, for a given picture resolution,
of the above-mentioned complex patterns has proved tod%%tGreedy’s performance scaleearly with the number of
rather surprising and thought-provoking for the datab&se |ans in the diagram. Further, from the reduction quality pe
search community. _ o spective, CostGreedy provides a tight performance gueeant
Plan diagrams are currently in vogue at various mdustr@lo(mm)' which cannot be improved upon by any other de-

2pablo Picasso is considered to be a founding-father of thistogenre of terministic algorlthm. . )
painting [CUBIST]. We also considered a storage-constrained variant of time pla
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Figure 5: Sample Plan Diagram and Reduced Plan Diagram (QT8)

diagram reduction problem, wherein at mhgtians can be re-plan diagrams can be made “anorexic” while retaining accept
tained for a query template, and the objective is to findiheble query processing performance, even for high dimeakion
plans that minimize the maximum cost increase of the queuery templates.

pOiI’ltS in the reduced plan diagram. We showed that this VariCarrying out anorexic p|an reduction on dense p|an dia-
ant retains the hardness of the general problem. On the pggims has a variety of useful implications for improvingtbot
tive side, however, we were able to desiresholdGreedy, the efficiency of the optimizer and the choice of execution
a greedy algorithm that delivers a performance guarantegygh. These applications include, as described in detail in
0.63 relative to the optimal. [Harish, Darera and Haritsa (2007)], quantifying the redun

Then, using extremely coarse characterizations of the afstcy in the plan search space, enhancing the usabilityraf pa
distributions of the optimal plans, we developed fast bigieef metric query optimization techniques [Hulgeri and Sudarmsh
tive estimators for determining the expected number ofplga002), Hulgeri and Sudarshan (2003)], and identifyingerr
retained for a given threshold. These estimators can aissistant and least-expected-cost plans [Chu, HalperiSand
be used to predict the location of the best possible traflegbfadri (1999); Chu, Halpern and Gehrke (2002); Babcock and
(i.e. the “knee”) between the plan cardinality reductiod #re  Chaudhuri (2005)].

cost-increase threshold. Anorexic reduction’s most important utility, however, as
Lastly, through experimental analysis on the plan diagragsscribed in the following subsection, is that it suppanes t
produced by industrial-strength optimizers with benchmaidentification of plans that areobust to errors in selectiv-
based multi-dimensional query templates, we showed thatiify estimates, a chronic problem faced by database query
plan reduction can be carried out efficiently, since oumatteptimizers, arising due to a variety of reasons, including
tion is limited to only the set of plans appearing in the ov@i outdated statistics, attribute-value independence gstioms,
plan diagram, making it unnecessary to revisit the optinézeand coarse summaries [Stillger, Lohman, Markl and Kandil
combinatorially large search space of plan alternativeythe (2001)]. To address this problem, an obvious approach
CostGreedy algorithm typically gives the optimal redusti s to improve the quality of the statistical meta-data, for
is within a few plans of the optimal; and (c) the analytical eghich several techniques have been presented in the litera-
timates of the plan-reduction versus cost-threshold geaph ture ranging from improved summary structures [Chaudhuri
quite accurate. and Aboulnaga (1999)] to feedback-based adjustment$-[Stil
Most importantly, our results demonstrated that a coger, Lohman, Markl and Kandil (2001)] to on-the-fly re-
increase threshold adnly 20 percenis usually amply suffi- optimization of queries [Kabra and DeWitt (1998); Markl,-Ra
cient to bring down the absolute number of plans in the fimahn, Simmen, Lohman, Pirahesh and Cilimdzic (2004); Babu,
reduced picture tavithin or around ten In short, that complex Bizarro and DeWitt (2005)]. However, the complementary



and conceptually different approach considered in our w¢ 10
is to identify robust plansthat are relatively less sensitive tt
such selectivity errors. In a nutshell, to “aim for resistan
rather than cure”, by identifying plans that provide congpal
tively good performance over large regions of the seldgtiv
space. Such plan choices are especially important for inc
trial workloads where global stability is as much a concern
local optimality [Mackert and Lohman (1986)] .

Estimated Plan Cost

2.2 Selecting Robust Plans

In [Harish, Darera and Haritsa (2008)], we addressed

selectivity-error issue from both theoretical and empirjger- 10" ‘ ‘ ‘ ‘ ‘

spectives. Through extensive experimentation on a leac 00 2020 4040 60,60 80,80 100,100

commercial optimizer with a rich suite of multi-dimensidn: Actual Selectivity Location q,(xy,)

benchmark-based query templates operating on a variety of ~ Figure 6: Beneficial Impact of Plan Replacement

logical and physical database designs, we demonstratéd tha

plan diagram reduction typically produces plan choicesttha

substantially curtail the adverse effects of selectivitiirea- Sponse times at the sangg locations. We found that huge

tion errors Therefore, it clearly has potential to improve pesavings in processing time were obtained by using the replac

formance in general, especially for errors that lie wittie t ment plan instead of the optimizer’s original choice, anat th

swallower’s optimality region, i.e. its “endo-optimal’gien.  the replacement’s performance is virtually indistingaiste
Consider a query instance whose optimizer-estimated loigam the optimal choices.

tion in the selectivity space ige, and denote the optimizer's

optimal plan choice afle by Poe. Due to errors in the selec-

tivity estimates, theactual location of ge could be different Replacement Problems. While performance improvements

at execution-time — denote this location by, and the opti- are usually the order of the day, we also encountered occa-

mizer’s optimal plan choice ajf, by Pya. Assume thaP,e has sional situations wherein a replacement plan performs much

been swallowed by a sibling plan during the reduction prec&rse in its exo-optimal region than the original optimizer

and denote the replacement plan assigneg twy Pee. choice, that is, wher®. performs worse thaRoe at da. A

particularly egregious example, arising from te@meplan

! : ; : diagram described above, is shown in Figure 7 dgr=

Replacement Benefits. Our first scenario, typical of that(p 03,0.14) — we see here that it is now the replacement plan

seen in most of our experiments, demonstrates how the b34) which isord ; tud harb.. (P26
placement plaf,e can provide extremely substantial improvéa-re( ), which isorders-of-magnitud@vorse tharPoe (P26)

mentsthroughout the selectivity spacspecifically, on vanilla " the presence of selectivity errors. This compile-timesss-
hardware with a popular commercial optimizer, we genera{gsm was also cprroborated by evaluating the corresponding
a plan diagram for a 2D query template based on TPC-H (Sg,ery response times.

with selectivity variations on theusTOMER and SUPPLIER
relations, and carried out reduction with= 10%. On this di- 10
agram, consider the estimated locatipn= (0.36,0.05) and a
sample set of actual locatiogg — for instance, along the prin-

~

cipal diagonal o8. For this scenario, the costsief. (P45),Pe 10 P, (Py)

(P17) andP,4 (the optimal plan at eaaty, location) are shown P (P.)

in Figure 6 — note that the costs are measured log acale Pre .
It is clear from Figure 6 that the replacement pRy pro- ’ 4 oa

videsorders-of-magnitudeenefit with respect t8ye. In fact,
the error-resistance is to the extent that it virtually fdes
“immunity” to the error since the performance 8 is close
to that of thelocally optimal plan B, throughout the space -
note that is in spite of the endo-optimal regiorPaf constitut-
ing only a very small fraction of this space. 10 : : : : ‘
i - 0,0 2020 40,40 60,60 80,80 100,100
To demonstrate that the benefits anticipated from 1 o .
S . L Actual Selectivity Location q_(x_,y.)
compile-time analysis do translate to corresponding im@ro ] a‘a
ments atrun-time we also explicitly evaluated the query re- Figure 7: Adverse Impact of Plan Replacement

Estimated Plan Cost
>

a



The above example highlights the need to establish an &fi3 Efficient Generation of Plan Diagrams
cient criterion of when a specific swallowinggdobally safe )
that is, within the\-threshold throughout the space. To achiefd@n diagrams have proved to be a powerful metaphor for the
this objective, we designed a generalized mathematicabin@'@lysis and redesign of modern optimizers, and are gain-
of the behavior of plan cost functions over the selectivitjd currency in diverse industrial and academic institsio
space. The model, although simple, is sufficient to captit@Wever, their ut|I|ty_|s adversely |mp_acted by the impract
the cost behavior of all plans that have arisen from our qu&g/lY large computational overheads incurred when stahdar
templates, and is the first such characterization for initust Prute-force exhaustive approaches are used for producieg fi
strength optimizers. Specifically, the cost model of a ptea i 9@ined diagrams on high-dimensional query templates.
2D selectivity space is of the form For example, a 2D plan diagram with a resolution of 1000
on each selectivity dimension, or a 3D plan diagram with a
resolution of 100 on each dimension, both require invoking
the optimizer amillion times. Even with a conservative esti-
mate of about a half-second per optimization, the total time
required to produce the picture is close to a week! Therefore

whereay, 8, 83, 84, 8, 8, 87 are coefficients, andy represent 5y, ,gh plan diagrams have turned out to be extremely use-
the selectivity dimensions, respectively. Modeling a $IEC | heir high-dimension and/or fine-resolution versigrse
plan requires suitably choosing the seven coefficients én Q?erious computational challenges

above equation. In [Dey, Bhaumik, Harish and Haritsa (2008)], we investi-
Using this model, we then proved the powerful result thgdted strategies for efficiently producing cl@smproximations
safety checks on only thperimeterof the selectivity spaceto complex plan diagrams. Our techniques are customized
are sufficient to decide the safety of reduction overehére o the features available in the optimizer's API, rangingir
space. These checks involve the costingfofeign plans”, the generic optimizers that provide only the optimal plan fo
that is, of costing plans in their exo-optimal regions, a-feg query, to those that also support costing sub-optimalsplan
ture that has become available in the current versions of sgyg enumerating rank-ordered lists of plans. The techsique
eral industrial-strength optimizers. Apart from providire- collectively feature both random and grid sampling, as asl|
duction safety, foreign-plan costing was additionallylesged interpolation techniques based on nearest-neighboiifitass
to both (a) enhance the degree of reduction of the plan dgrametric query optimization and plan cost monotonicity.
gram, and (b) improve the complexity characteristics of thegytensive experimentation with benchmark-based query
reduction process, as compared to the earlier CostGreedyghpates on industrial-strength optimizers indicates tur
gorithm [Harish, Darera and Haritsa (2007)). techniques are capable of delivering 90% accurate diagrams
Overall, our new approach calleBEER (Selectivity- while incurring less than 15% of the computational overtsead
Estimate-Error-Resistance), provides an effective arfé saf the exhaustive approach. In fact, for full-featured oy
mechanism for identifying robust plans that are resistast,ers that support the production of the second-best plandir ad
compared to the optimizer’s original choices, to errorshia ttion to the cheapest plan, we have been able to devise a strat-
base relation selectivity estimates. We have also devdlopgy calledDiffGen that can be be formally proved to guar-
LiteSEER, an optimally-efficient light-weight heuristierv anteezero error, while incurring only around 10% overheads.
sion of SEER that very cheaply provides a high degree foVariant of DiffGen, calledApproxDiffGen, trades error for
safety by restricting its attention to only tkernersof the se- further reduction in optimization effort and produces 908 a
lectivity space. curate diagrams with less than 5% overheads.

A particularly noteworthy aspect of our techniques is that
their performance guarantees apply at the levehdividual
queries This is in marked contrast to treggregatebasis of

prior proposals in the literature, which made them diffi¢alt Apart from aiding optimizer design, plan diagrams can also
use in practice. Further, since we treat the optimizer aaekbl pe ysed iroperationalsettings. Specifically, since they iden-
box, our approach is inherently (a) completely non-intressi tify the optimal set of compile-time plans, they can be used a
and (b) capable of handling whatever SQL is supported by fy@-time to immediately identify the best plan for the cutre
system. Equally importantly, we do not expect to have agyery without going through the time-consuming optimiaati
addiFionaI information beyond that provided by the engingyercise. Further, they can prove usefubtiaptiveplan se-
APl interface. lection techniques (e.g. [Antoshenkov (1993); Babu, Bizar
Viewed in toto, the results presented in [Harish, Darera aamad DeWitt (2005); Cole and Graefe (1994); Deshpande, Ives
Haritsa (2008)] indicate that a large percentage of opgmiand Raman (2007); Kabra and DeWitt (1998); Markl, Raman,
choices over the parameter space can be improved througlsmmmen, Lohman, Pirahesh and Cilimdzic (2004)]), which,
bust replacements. based on run-time observations, may dynamically choose to

costx,y) = aiXx + apy+agxy+
asxlogx + asylogy + asxylogxy + a7

2.4 Run-time Applications



re-optimize the query and switch plans mid-way through thgginal choice. In a nutshell, our replacement plaofen
processing. In this context, plan diagrams can help to elithelp substantially, but never seriously huttie query perfor-
nate the re-optimization overheads incurred in deterrgitiie mance.

substitute plan choices. The reduced plan diagrams, on th@verall, the Expand approach results in an intrinsically im
other hand, help to both minimize the number of invocatiopsoved optimizer that directly and efficiently produceshig

of the re-optimization process, as well as the likelihoodesf quality plan diagrams in an online fashion, rather than as a
quiring a plan switch after the re-optimization. post-processing step.

3 Online Robust Plans 4 Closing Remarks

. . . . Database engines pervade all aspects of our lives, and there
The SEER algorithm for identifying robust plans, descnbedfore, their design and analysis forms a core component of the

the previous section, is aff-line approach in that it uses prlorcomputer science discipline. In our lab at 1ISc, we have ad-

knowledge of the POSP set of plans in order to make thetﬁ?éssed fundamental research challenges in the developmen

placements. The scheme operates from outside the optim% 3 . . o
S . ) se engines for a variety of application contexts. Outkwor
treating it as a black box that supplies plan-related inor 9 y PP

Mhver the past five years on industrial-strength databaseyque

tion through its API, and is usable only on form-based QU ¥timization has garnered attention from both the academic

templates for which plan diagrams have been previously cq d industrial communities, and the Picasso tool, which pro
puted. ' '

ice h Id ideally lik h h vides a powerful visual metaphor fuelled by high-perforeen

In practice, however, we would ideally like to have the royq o ithms, is fast becoming an integral part of the design
bustness feature to lrganically integrated within the OPt-\yorkbench in database companies and university labs world-
mizer, rather than generated as a post-facto exercise,yan%%e
virtug O_f f[his integrgtion, making it Qirectly "?‘Pp”cap"“’ ad- " £rom the perspective of system developers and practition-
hoc individual queries. We have .achleved th',s goalin ourtr'ng§s7 the concepts and diagrams presented in our work cas serv
recent work [Abhirama, Bhaumik, Dey, Shrimal and Haritsg ) ent mechanisms for the analysis, testing and redesign
(2010)] through an algorithm calleBXPAND, which judi- ¢ their systems. In fact, plan diagrams have been promi-
ciously expands the candidate set of_sub—plgns tha_t a“aedtanently featured in recent papers by leading industry espert
at each node of the plan enumeration lattice during the cgig,y optimization [Graefe, Kuno and Wiener (2009); Chaud-
dynamic-programming exercise. That is, instead of mergly; 5009)]. Further, the dire need and importance of nesea
f_orwardm_g the cheapest_sub-plan _from each node in _the “robust query processing is testified to by the just-catexdu
tice, atrain of sub-plans is sent, with the cheapest being tRe <1h Seminar 10381 [DAGSTUHL], which was devoted
“engine’, and stabler alternative cho!ces_ b_emg the “W&gonsolely to this topic, and where it was mentioned tleark of
To ensure that the overheads of maintaining trains instéaq @, ,stness can contribute as much as a third to the total cost
engines are not impractically large, a four-stage prunimg p ownership for a database system
cess that incorporates both cost and robustness aspestslis UFinally, for database instructors and students, plan dia-

to ensure that only wagons th‘?‘t are plausible_ rep_lacen ent ?ams are an intuitive pedagogical support to help comprethe
the engine are ret_amed. The fl_nal pla_n selection is madeat Hd appreciate the complexities and subtleties of indlstri
r?ot of thle dynlam|c-prq|gra|mm|ng_latt|ce frorr amongst the %?rength query optimization. The diagrams represent afsign
of complete plans aval ab e at this termina node, subjfecttyn; departure from the toy textbook examples that are typi
user-specified cost and stability criteria. cally covered in a classroom setting.

The Expand scheme has been incorporated in the kernel @by erq|, the primary message of our work is that it is indeed
the public-domain PostgreSQL database engine, and a @Hgiple toefficiently produce plan diagrams that simultane-
er of plan selection algorlthms. that cover a spectrum of %'SW possess the highly desirable properties of beingienli
sign tradeoffs have been been implemented and evaluated Qfexic, safe and robuste expect that this result will have

benchmark environments. Our results have shown that a §igignificant impact on the design of next-generation dagba
nificant degree of robustness can be obtained with relatlv%hery optimizers.
I

minor conceptual changes to current optimizers, espgcia

those supporting a foreign-plan-costing feature. Moreipe

ically, while incurring additional time overheads withi®@ Acknowledgements. This work was supported in part by a Swar-
milliseconds, and memory overheads within 100MB, Expangjayanti Fellowship from the Dept. of Science & Technolaggvt.
often delivers plan choices that eliminate more ttvaorthirds of India, a research grant from the Dept. of Bio-technold@ggyt. of
of the performance gafbetweerP,e andP,z) for a non-trivial India, and research grants from a host of multinational Imanies,
number of error instances. Equally importantly, the repladncluding IBM, Google and Microsoft.

ment is almost never materially worse than the optimizer’'s
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