
PLAN DIAGRAMS: Visualizing Database Query Optimizers

Jayant R. Haritsa1

Abstract The automated optimization of declarative SQL
queries is a classical problem that has been diligently ad-
dressed by the database community over the last few decades.
However, due to its inherent complexities and challenges, this
area has largely remained a “black art”, and the quality of the
query optimizer continues to be a key differentiator between
competing database products, with large research and devel-
opment teams involved in their design and implementation.

Over the past five years, we have provided a fresh perspec-
tive on the behavior of modern query optimizers through the
introduction and development of the “plan diagram” concept.
A plan diagram is avisual representation of the plan choices
made by the optimizer over a parameter space. In this paper,
we provide an overview of plan diagrams, their processing, and
their applications.

Plan diagrams often appear similar to cubist paintings and
provide a variety of interesting insights, including that current
optimizers make extremely fine-grained plan choices; that the
plan optimality regions may have highly intricate patternsand
irregular boundaries, indicating strongly non-linear cost mod-
els; that non-monotonic cost behavior exists where increasing
result cardinalities decrease the estimated cost; and, that the
basic assumptions underlying parametric query optimization
often do not hold in practice.

Our study also shows that complex plan diagrams can usu-
ally be reduced to “anorexic” equivalents, featuring only afew
plans, without materially affecting the query processing qual-
ity. Anorexic reduction has important implications for thede-
sign and use of next-generation query optimizers, and in partic-
ular, can be used to minimize the adverse impact of selectivity
estimation errors, a chronic problem in the field.
Keywords: query optimization, plan diagrams, robust query
processing

1 Introduction

Organizations typically collect vast quantities of data relat-
ing to their operations. For example, the Income Tax depart-
ment in India has accumulated a huge repository of informa-
tion pertaining to taxpayer returns. In order to provide a con-
venient and efficient environment to productively use these
enormous data collections, software packages called “Data
Base Management Systems”(DBMS) have been developed

1Supercomputer Education & Research Centre and Dept. of Computer Sci-
ence & Automation, Indian Institute of Science, Bangalore 560012.

and refined over the past half-century, beginning in the early
1960s. These packages are now extensively used throughout
the world in virtually the entire spectrum of human activityin-
cluding banking, insurance, governance, business, travel, man-
ufacturing, education and health-care. Popular commercial of-
ferings of DBMS software include IBM’s DB2 [DB2], Ora-
cle [ORACLE], Microsoft’s SQL Server [SQLSERVER] and
Sybase ASE [SYBASE], while PostgreSQL [POSTGRES] and
MySQL [MYSQL] are well-known public-domain packages.

A primary reason for the popularity of DBMS is that they
provide a simple but powerful logical model wherein all data
is stored in the form of tables calledrelations, supported
by friendly and powerful interfaces to ask questions, called
queries, on the information stored in these database relations.
Queries are usually expressed in the Structured Query Lan-
guage (SQL) [SQL], the global de facto standard for interfac-
ing with relational database systems. A particularly appealing
feature of the language is that it is “declarative”, meaningthat
the user only stateswhat is wanted without having to specify
theprocedurefor obtaining the information.

STUDENT RollNo StudentName Address Program

COURSE CourseNo CourseName Credits Content

REGISTER RollNo CourseNo

Figure 1: University Database

select StudentName, CourseName
from STUDENT, COURSE, REGISTER
where STUDENT.RollNo = REGISTER.RollNo and

REGISTER.CourseNo = COURSE.CourseNo

Figure 2: Example SQL Query

To make the declarative notion concrete, consider the sam-
ple university database shown in Figure 1. Here, information
is maintained in three relations:STUDENT, COURSEandREG-
ISTER, which tabulate data about students, courses, and the
course registrations of students, respectively. The user’s goal
is to extract the names of the students and the courses for which
they are registered, and a sample SQL query that achieves this
goal is shown in Figure 2, where the desired information is ob-
tained by combining the data across the three tables using the
roll numbers and the course numbers as the connectors. Note
that in this formulation, thesequencein which the tables are
combined, as well as themechanismto be used for each com-
bination is left unspecified, resulting in the declarative tag.



1.1 Query Optimization

Given a generic SQL query that requires combining infor-
mation acrossn relations, there are in principlen! different
permutations of the combination sequence, implying that the
strategy search space is at leastexponentialin the query size.
The automated identification of an efficient procedure or strat-
egy from this search space is the responsibility of an internal
DBMS component called the“query optimizer” . The effi-
ciency of these strategies, called “plans”, is usually costed in
terms of the estimated query response time. Optimization isa
mandatory exercise since the difference between the cost ofthe
best plan and a random choice could be in orders of magnitude,
but is computationally extremely expensive due to the combi-
natorially large search space of plan alternatives, as explained
above. The role of query optimizers has become especially
critical in recent times due to the high degree of query com-
plexity characterizing current decision-support applications, as
exemplified by the industry-standard TPC-H and TPC-DS per-
formance benchmarks [TPCH; TPCDS].

Plans are typically comprised of atree of data processing
operators that are evaluated in a bottom-up paradigm. A sam-
ple plan is shown in Figure 3 for the example query of Figure 2,
where theSTUDENT and REGISTER relations are first com-
bined with aNESTED-LOOP join operator, and this interme-
diate result is then combined with theCOURSErelation using a
HASH-JOIN operator. The bracketed numbers within each op-
erator node indicate the estimated aggregate processing costs
incurred until this stage in the bottom-up query evaluation.

Figure 3: Sample Plan

The design of effective query optimizers that quickly
identify low cost plans has been diligently addressed
by the database research community over the last few
decades [Chaudhuri (1998)]. However, due to its inherent

complexities and challenges, this area has largely remained a
“black art”, and the quality of the query optimizer continues to
be a key differentiator between competing database products,
with large R & D teams involved in their design and imple-
mentation.

Over the past five years, we have been able to provide a
fresh perspective on the behavior of modern query optimizers
through the introduction and development of the“plan dia-
gram” concept. A plan diagram is avisual representation of
the plan choices made by the optimizer over a parameter space,
generated by leveraging the optimizer’s Application Program-
ming Interface (API) functions. In the remainder of this paper,
we provide an overview of plan diagrams, their processing,
and their applications. The complete technical details of the
material covered here are available in a suite of papers [Reddy
and Haritsa (2005); Harish, Darera and Haritsa (2007); Har-
ish, Darera and Haritsa (2008); Dey, Bhaumik, Harish and
Haritsa (2008); Abhirama, Bhaumik, Dey, Shrimal and Har-
itsa (2010); Haritsa (2010)], published in the Very Large Data
Base (VLDB) conference series, a premier international forum
for the dissemination of database research.

2 Plan Diagrams

Modern query optimizers each have their own “secret sauce”
to identify the best (i.e. cheapest) plan for answering declar-
ative SQL queries. However, the de-facto standard under-
lying strategy, pioneered by the System R project at IBM
Research [Selinger, Astrahan, Chamberlin, Lorie and Price
(1979)] is the following: Given a user SQL query, apply
a variety of heuristics to restrict the exponential plan search
space to a manageable size; estimate, with a cost model and
a dynamic-programming-based processing algorithm, the ef-
ficiency of each of these candidate plans; finally, choose the
plan with the lowest estimated cost.

A query optimizer’s execution plan choices, for a given
database and system configuration, are primarily a functionof
the selectivitiesof the base relations in the query. The selec-
tivity of a relation is the estimated fraction of rows of the re-
lation that are relevant to producing the final result. In [Reddy
and Haritsa (2005)], we introduced plan diagrams to denote
color-coded pictorial enumerations of the plan choices of the
optimizer for parametrized SQL query templates over the re-
lational selectivity space. For example, consider QT8, the
parametrized two-dimensional query template shown in Fig-
ure 4, based on Query 8 of the TPC-H benchmark (the query
determines the market share of Brazil within the American
continent for cheap anodized steel parts). The template hasse-
lectivity variations on theSUPPLIERandLINEITEM relations
through thes acctbal :varies andl extendedprice :varies pred-
icates, which apply one-sided range constraints on the sup-
plier’s account balance and the extended price of the lineitem,
respectively.



select o year, sum(case when nation = ’BRAZIL’ then volume else 0 end) / sum(volume)
from

(select YEAR(o orderdate) as o year, l extendedprice * (1 - l discount) as volume,
n2.n name as nation

from part, supplier, lineitem, orders, customer, nation n1, nation n2, region
where p partkey = l partkey and s suppkey = l suppkey and l orderkey = o orderkey and

o custkey = c custkey and c nationkey = n1.n nationkey and n1.n regionkey = r regionkey
and s nationkey = n2.n nationkey and r name = ’AMERICA’ and p type = ’ECONOMY ANODIZED
STEEL’ and s acctbal :varies and l extendedprice :varies

) as all nations
group by o year
order by o year

Figure 4: Example Query Template (QT8)

The associated plan diagram for QT8 is shown in Figure 5(a)
– this picture was produced on a commercial database engine
using the Picasso visualization software tool developed inour
lab [PICASSO]. In this picture, a set of 89 different optimal
plans, P1 through P89, cover the selectivity space. The value
associated with each plan in the legend indicates the percent-
age area covered by that plan in the diagram – P1, for example,
covers about 22% of the space, whereas P89 is chosen in only
0.001% of the space. In a nutshell, plan diagrams visually cap-
ture the geometries of the optimality regions of the parametric
optimal set of plans (POSP) [Hulgeri and Sudarshan (2002)].

It is vividly evident from Figure 5(a) that plan diagrams can
be extremely complex and dense, with a large number of plans
covering the space – several such instances spanning a rep-
resentative set of query templates over a suite of industrial-
strength optimizers, are available at [PICASSO]. In fact, they
often appear similar tocubist paintings, and hence the name
Picasso for our visualization tool.2 We have identified a vari-
ety of intricate tessellated patterns, includingspeckles, stripes,
blinds, mosaicsand bands, in the diagrams. Further, the
boundaries of the plan optimality regions can be highly irregu-
lar, which seem to indicate the presence of strongly non-linear
and discretized cost models. Finally, the diagrams also demon-
strate that the basic assumptions –plan convexity, uniqueness
andhomogeneity– underlying the rich body of research liter-
ature on parametric query optimization (e.g. [Hulgeri and Su-
darshan (2002); Hulgeri and Sudarshan (2003)]), rarely hold
in practice.

While individualqueries have been analyzed in great detail
in the past, our work is among the first to characterize and in-
vestigate the behavior over aparameter spacein an industrial-
strength environment. Therefore, in spite of query optimiza-
tion having been studied for several decades, our discovery
of the above-mentioned complex patterns has proved to be
rather surprising and thought-provoking for the database re-
search community.

Plan diagrams are currently in vogue at various industrial

2Pablo Picasso is considered to be a founding-father of the cubist genre of
painting [CUBIST].

and academic sites for a diverse set of applications includ-
ing analysis of existing optimizer designs; visually carrying
out optimizer regression testing; debugging new query pro-
cessing features; comparing the behavior between different
optimizer versions; investigating the structural differences be-
tween neighboring plans in the space; evaluating the variations
in the plan choices made by competing optimizers; etc. As a
case in point, visual examples ofnon-monotoniccost behavior
in commercial optimizers, potentially indicative of modeling
errors, were highlighted in [Reddy and Haritsa (2005)].

2.1 Anorexic Reduction of Plan Diagrams

In the next phase of our investigation, we showed that dense
plan diagrams could typically be “reduced” to much simpler
pictures featuring significantly fewer plans,without materially
degrading the processing quality of any individual query. For
example in Figure 5(a), if users are willing to tolerate a minor
cost increase, denoted byλ, of at most 10% for any query in
the diagram, relative to its original cost, the picture could be
reduced to Figure 5(b), where only 7 plans remain – that is,
most of the original plans have been “completely swallowed”
by their siblings, leading to a highly reduced plan cardinality.

We presented in [Harish, Darera and Haritsa (2007)] a de-
tailed study of the plan diagram reduction problem from theo-
retical, statistical and empirical perspectives. Our analysis first
showed that finding the optimal (wrt minimizing the number
of plans) reduced plan diagram is NP-Hard through a reduc-
tion from the classical Set Cover problem [Garey and Johnson
(1979)]. This result motivated the design ofCostGreedy, a
greedy heuristic algorithm whose complexity isO(nm), where
n is the number of plans andm is the number of query points
in the diagram(n≪ m). Hence, for a given picture resolution,
CostGreedy’s performance scaleslinearly with the number of
plans in the diagram. Further, from the reduction quality per-
spective, CostGreedy provides a tight performance guarantee
of O(lnm), which cannot be improved upon by any other de-
terministic algorithm.

We also considered a storage-constrained variant of the plan



(a) Plan Diagram (b) Reduced Diagram (λ = 10%)

Figure 5: Sample Plan Diagram and Reduced Plan Diagram (QT8)

diagram reduction problem, wherein at mostk plans can be re-
tained for a query template, and the objective is to find thek
plans that minimize the maximum cost increase of the query
points in the reduced plan diagram. We showed that this vari-
ant retains the hardness of the general problem. On the posi-
tive side, however, we were able to designThresholdGreedy,
a greedy algorithm that delivers a performance guarantee of
0.63 relative to the optimal.

Then, using extremely coarse characterizations of the cost
distributions of the optimal plans, we developed fast but effec-
tive estimators for determining the expected number of plans
retained for a given threshold. These estimators can also
be used to predict the location of the best possible trade-off
(i.e. the “knee”) between the plan cardinality reduction and the
cost-increase threshold.

Lastly, through experimental analysis on the plan diagrams
produced by industrial-strength optimizers with benchmark-
based multi-dimensional query templates, we showed that: (a)
plan reduction can be carried out efficiently, since our atten-
tion is limited to only the set of plans appearing in the original
plan diagram, making it unnecessary to revisit the optimizer’s
combinatorially large search space of plan alternatives; (b) the
CostGreedy algorithm typically gives the optimal reduction or
is within a few plans of the optimal; and (c) the analytical es-
timates of the plan-reduction versus cost-threshold graphare
quite accurate.

Most importantly, our results demonstrated that a cost-
increase threshold ofonly 20 percentis usually amply suffi-
cient to bring down the absolute number of plans in the final
reduced picture towithin or around ten. In short, that complex

plan diagrams can be made “anorexic” while retaining accept-
able query processing performance, even for high dimensional
query templates.

Carrying out anorexic plan reduction on dense plan dia-
grams has a variety of useful implications for improving both
the efficiency of the optimizer and the choice of execution
plan. These applications include, as described in detail in
[Harish, Darera and Haritsa (2007)], quantifying the redun-
dancy in the plan search space, enhancing the usability of para-
metric query optimization techniques [Hulgeri and Sudarshan
(2002), Hulgeri and Sudarshan (2003)], and identifying error-
resistant and least-expected-cost plans [Chu, Halpern andSe-
shadri (1999); Chu, Halpern and Gehrke (2002); Babcock and
Chaudhuri (2005)].

Anorexic reduction’s most important utility, however, as
described in the following subsection, is that it supports the
identification of plans that arerobust to errors in selectiv-
ity estimates, a chronic problem faced by database query
optimizers, arising due to a variety of reasons, including
outdated statistics, attribute-value independence assumptions,
and coarse summaries [Stillger, Lohman, Markl and Kandil
(2001)]. To address this problem, an obvious approach
is to improve the quality of the statistical meta-data, for
which several techniques have been presented in the litera-
ture ranging from improved summary structures [Chaudhuri
and Aboulnaga (1999)] to feedback-based adjustments [Still-
ger, Lohman, Markl and Kandil (2001)] to on-the-fly re-
optimization of queries [Kabra and DeWitt (1998); Markl, Ra-
man, Simmen, Lohman, Pirahesh and Cilimdzic (2004); Babu,
Bizarro and DeWitt (2005)]. However, the complementary



and conceptually different approach considered in our work
is to identify robust plansthat are relatively less sensitive to
such selectivity errors. In a nutshell, to “aim for resistance,
rather than cure”, by identifying plans that provide compara-
tively good performance over large regions of the selectivity
space. Such plan choices are especially important for indus-
trial workloads where global stability is as much a concern as
local optimality [Mackert and Lohman (1986)] .

2.2 Selecting Robust Plans

In [Harish, Darera and Haritsa (2008)], we addressed the
selectivity-error issue from both theoretical and empirical per-
spectives. Through extensive experimentation on a leading
commercial optimizer with a rich suite of multi-dimensional
benchmark-based query templates operating on a variety of
logical and physical database designs, we demonstrated that
plan diagram reduction typically produces plan choices that
substantially curtail the adverse effects of selectivity estima-
tion errors. Therefore, it clearly has potential to improve per-
formance in general, especially for errors that lie within the
swallower’s optimality region, i.e. its “endo-optimal” region.

Consider a query instance whose optimizer-estimated loca-
tion in the selectivity space isqe, and denote the optimizer’s
optimal plan choice atqe by Poe. Due to errors in the selec-
tivity estimates, theactual location of qe could be different
at execution-time – denote this location byqa, and the opti-
mizer’s optimal plan choice atqa by Poa. Assume thatPoe has
been swallowed by a sibling plan during the reduction process
and denote the replacement plan assigned toqe by Pre.

Replacement Benefits. Our first scenario, typical of that
seen in most of our experiments, demonstrates how the re-
placement planPre can provide extremely substantial improve-
mentsthroughout the selectivity space. Specifically, on vanilla
hardware with a popular commercial optimizer, we generated
a plan diagram for a 2D query template based on TPC-H Q5,
with selectivity variations on theCUSTOMER and SUPPLIER

relations, and carried out reduction withλ = 10%. On this di-
agram, consider the estimated locationqe = (0.36,0.05) and a
sample set of actual locationsqa – for instance, along the prin-
cipal diagonal ofS. For this scenario, the costs ofPoe (P45),Pre

(P17) andPoa (the optimal plan at eachqa location) are shown
in Figure 6 – note that the costs are measured on alog scale.

It is clear from Figure 6 that the replacement planPre pro-
videsorders-of-magnitudebenefit with respect toPoe. In fact,
the error-resistance is to the extent that it virtually provides
“immunity” to the error since the performance ofPre is close
to that of thelocally optimal plan Poa throughout the space –
note that is in spite of the endo-optimal region ofPre constitut-
ing only a very small fraction of this space.

To demonstrate that the benefits anticipated from the
compile-time analysis do translate to corresponding improve-
ments atrun-time, we also explicitly evaluated the query re-

0,0 20,20 40,40 60,60 80,80 100,100
10

1

10
2

10
3

10
4

10
5

10
6

E
s
ti
m

a
te

d
 P

la
n
 C

o
s
t

Actual Selectivity Location q
a
(x

a
,y

a
)

P
oe

 (P
45

)

P
re

 (P
17

)

P
oa

Figure 6: Beneficial Impact of Plan Replacement

sponse times at the sameqa locations. We found that huge
savings in processing time were obtained by using the replace-
ment plan instead of the optimizer’s original choice, and that
the replacement’s performance is virtually indistinguishable
from the optimal choices.

Replacement Problems. While performance improvements
are usually the order of the day, we also encountered occa-
sional situations wherein a replacement plan performs much
worse in its exo-optimal region than the original optimizer
choice, that is, wherePre performs worse thanPoe at qa. A
particularly egregious example, arising from thesameplan
diagram described above, is shown in Figure 7 forqe =
(0.03,0.14) – we see here that it is now the replacement plan
Pre (P34), which isorders-of-magnitudeworse thanPoe (P26)
in the presence of selectivity errors. This compile-time assess-
ment was also corroborated by evaluating the corresponding
query response times.

0,0 20,20 40,40 60,60 80,80 100,100
10

1

10
2

10
3

10
4

10
5

E
s
ti
m

a
te

d
 P

la
n
 C

o
s
t

Actual Selectivity Location q
a
(x

a
,y

a
)

P
oe

 (P
26

)

P
re

 (P
34

)

P
oa

Figure 7: Adverse Impact of Plan Replacement



The above example highlights the need to establish an effi-
cient criterion of when a specific swallowing isglobally safe,
that is, within theλ-threshold throughout the space. To achieve
this objective, we designed a generalized mathematical model
of the behavior of plan cost functions over the selectivity
space. The model, although simple, is sufficient to capture
the cost behavior of all plans that have arisen from our query
templates, and is the first such characterization for industrial-
strength optimizers. Specifically, the cost model of a plan in a
2D selectivity space is of the form

cost(x,y) = a1x + a2y+a3xy+
a4xlogx + a5ylogy + a6xylogxy + a7

wherea1,a2,a3,a4,a5,a6,a7 are coefficients, andx,y represent
the selectivity dimensions, respectively. Modeling a specific
plan requires suitably choosing the seven coefficients in the
above equation.

Using this model, we then proved the powerful result that
safety checks on only theperimeterof the selectivity space
are sufficient to decide the safety of reduction over theentire
space. These checks involve the costing of“foreign plans”,
that is, of costing plans in their exo-optimal regions, a fea-
ture that has become available in the current versions of sev-
eral industrial-strength optimizers. Apart from providing re-
duction safety, foreign-plan costing was additionally leveraged
to both (a) enhance the degree of reduction of the plan dia-
gram, and (b) improve the complexity characteristics of the
reduction process, as compared to the earlier CostGreedy al-
gorithm [Harish, Darera and Haritsa (2007)].

Overall, our new approach calledSEER (Selectivity-
Estimate-Error-Resistance), provides an effective and safe
mechanism for identifying robust plans that are resistant,as
compared to the optimizer’s original choices, to errors in the
base relation selectivity estimates. We have also developed
LiteSEER, an optimally-efficient light-weight heuristic ver-
sion of SEER that very cheaply provides a high degree of
safety by restricting its attention to only thecornersof the se-
lectivity space.

A particularly noteworthy aspect of our techniques is that
their performance guarantees apply at the level ofindividual
queries. This is in marked contrast to theaggregatebasis of
prior proposals in the literature, which made them difficultto
use in practice. Further, since we treat the optimizer as a black-
box, our approach is inherently (a) completely non-intrusive,
and (b) capable of handling whatever SQL is supported by the
system. Equally importantly, we do not expect to have any
additional information beyond that provided by the engine’s
API interface.

Viewed in toto, the results presented in [Harish, Darera and
Haritsa (2008)] indicate that a large percentage of optimizer
choices over the parameter space can be improved through ro-
bust replacements.

2.3 Efficient Generation of Plan Diagrams

Plan diagrams have proved to be a powerful metaphor for the
analysis and redesign of modern optimizers, and are gain-
ing currency in diverse industrial and academic institutions.
However, their utility is adversely impacted by the impracti-
cally large computational overheads incurred when standard
brute-force exhaustive approaches are used for producing fine-
grained diagrams on high-dimensional query templates.

For example, a 2D plan diagram with a resolution of 1000
on each selectivity dimension, or a 3D plan diagram with a
resolution of 100 on each dimension, both require invoking
the optimizer amillion times. Even with a conservative esti-
mate of about a half-second per optimization, the total time
required to produce the picture is close to a week! Therefore,
although plan diagrams have turned out to be extremely use-
ful, their high-dimension and/or fine-resolution versionspose
serious computational challenges.

In [Dey, Bhaumik, Harish and Haritsa (2008)], we investi-
gated strategies for efficiently producing closeapproximations
to complex plan diagrams. Our techniques are customized
to the features available in the optimizer’s API, ranging from
the generic optimizers that provide only the optimal plan for
a query, to those that also support costing sub-optimal plans,
and enumerating rank-ordered lists of plans. The techniques
collectively feature both random and grid sampling, as wellas
interpolation techniques based on nearest-neighbor classifiers,
parametric query optimization and plan cost monotonicity.

Extensive experimentation with benchmark-based query
templates on industrial-strength optimizers indicates that our
techniques are capable of delivering 90% accurate diagrams
while incurring less than 15% of the computational overheads
of the exhaustive approach. In fact, for full-featured optimiz-
ers that support the production of the second-best plan in addi-
tion to the cheapest plan, we have been able to devise a strat-
egy calledDiffGen that can be be formally proved to guar-
anteezero error, while incurring only around 10% overheads.
A variant of DiffGen, calledApproxDiffGen , trades error for
further reduction in optimization effort and produces 90% ac-
curate diagrams with less than 5% overheads.

2.4 Run-time Applications

Apart from aiding optimizer design, plan diagrams can also
be used inoperationalsettings. Specifically, since they iden-
tify the optimal set of compile-time plans, they can be used at
run-time to immediately identify the best plan for the current
query without going through the time-consuming optimization
exercise. Further, they can prove useful toadaptiveplan se-
lection techniques (e.g. [Antoshenkov (1993); Babu, Bizarro
and DeWitt (2005); Cole and Graefe (1994); Deshpande, Ives
and Raman (2007); Kabra and DeWitt (1998); Markl, Raman,
Simmen, Lohman, Pirahesh and Cilimdzic (2004)]), which,
based on run-time observations, may dynamically choose to



re-optimize the query and switch plans mid-way through the
processing. In this context, plan diagrams can help to elimi-
nate the re-optimization overheads incurred in determining the
substitute plan choices. The reduced plan diagrams, on the
other hand, help to both minimize the number of invocations
of the re-optimization process, as well as the likelihood ofre-
quiring a plan switch after the re-optimization.

3 Online Robust Plans

The SEER algorithm for identifying robust plans, describedin
the previous section, is anoff-lineapproach in that it uses prior
knowledge of the POSP set of plans in order to make the re-
placements. The scheme operates from outside the optimizer,
treating it as a black box that supplies plan-related informa-
tion through its API, and is usable only on form-based query
templates for which plan diagrams have been previously com-
puted.

In practice, however, we would ideally like to have the ro-
bustness feature to beorganically integrated within the opti-
mizer, rather than generated as a post-facto exercise, and by
virtue of this integration, making it directly applicable to ad-
hoc individual queries. We have achieved this goal in our most
recent work [Abhirama, Bhaumik, Dey, Shrimal and Haritsa
(2010)] through an algorithm calledEXPAND, which judi-
ciously expands the candidate set of sub-plans that are retained
at each node of the plan enumeration lattice during the core
dynamic-programming exercise. That is, instead of merely
forwarding the cheapest sub-plan from each node in the lat-
tice, atrain of sub-plans is sent, with the cheapest being the
“engine”, and stabler alternative choices being the “wagons”.
To ensure that the overheads of maintaining trains instead of
engines are not impractically large, a four-stage pruning pro-
cess that incorporates both cost and robustness aspects is used
to ensure that only wagons that are plausible replacements for
the engine are retained. The final plan selection is made at the
root of the dynamic-programming lattice from amongst the set
of complete plans available at this terminal node, subject to
user-specified cost and stability criteria.

The Expand scheme has been incorporated in the kernel of
the public-domain PostgreSQL database engine, and a vari-
ety of plan selection algorithms that cover a spectrum of de-
sign tradeoffs have been been implemented and evaluated on
benchmark environments. Our results have shown that a sig-
nificant degree of robustness can be obtained with relatively
minor conceptual changes to current optimizers, especially
those supporting a foreign-plan-costing feature. More specif-
ically, while incurring additional time overheads within 100
milliseconds, and memory overheads within 100MB, Expand
often delivers plan choices that eliminate more thantwo-thirds
of the performance gap(betweenPoe andPoa) for a non-trivial
number of error instances. Equally importantly, the replace-
ment is almost never materially worse than the optimizer’s

original choice. In a nutshell, our replacement plans“often
help substantially, but never seriously hurt”the query perfor-
mance.

Overall, the Expand approach results in an intrinsically im-
proved optimizer that directly and efficiently produces high-
quality plan diagrams in an online fashion, rather than as a
post-processing step.

4 Closing Remarks

Database engines pervade all aspects of our lives, and there-
fore, their design and analysis forms a core component of the
computer science discipline. In our lab at IISc, we have ad-
dressed fundamental research challenges in the development of
these engines for a variety of application contexts. Our work
over the past five years on industrial-strength database query
optimization has garnered attention from both the academic
and industrial communities, and the Picasso tool, which pro-
vides a powerful visual metaphor fuelled by high-performance
algorithms, is fast becoming an integral part of the design
workbench in database companies and university labs world-
wide.

From the perspective of system developers and practition-
ers, the concepts and diagrams presented in our work can serve
as potent mechanisms for the analysis, testing and redesign
of their systems. In fact, plan diagrams have been promi-
nently featured in recent papers by leading industry experts in
query optimization [Graefe, Kuno and Wiener (2009); Chaud-
huri (2009)]. Further, the dire need and importance of research
on robust query processing is testified to by the just-concluded
Dagstuhl Seminar 10381 [DAGSTUHL], which was devoted
solely to this topic, and where it was mentioned thatlack of
robustness can contribute as much as a third to the total cost
of ownership for a database system.

Finally, for database instructors and students, plan dia-
grams are an intuitive pedagogical support to help comprehend
and appreciate the complexities and subtleties of industrial-
strength query optimization. The diagrams represent a signif-
icant departure from the toy textbook examples that are typi-
cally covered in a classroom setting.

Overall, the primary message of our work is that it is indeed
feasible toefficiently produce plan diagrams that simultane-
ously possess the highly desirable properties of being online,
anorexic, safe and robust. We expect that this result will have
a significant impact on the design of next-generation database
query optimizers.

Acknowledgements. This work was supported in part by a Swar-
najayanti Fellowship from the Dept. of Science & Technology, Govt.
of India, a research grant from the Dept. of Bio-technology,Govt. of
India, and research grants from a host of multinational IT companies,
including IBM, Google and Microsoft.



References:

Abhirama, M; Bhaumik, S; Dey, A; Shrimal, H; Haritsa,
J. (2010) On the Stability of Plan Costs and the Costs of Plan
Stability,PVLDB Journal, 3(1).
Antoshenkov, G. (1993) Dynamic Query Optimization in
Rdb/VMS,Proc. of 9th IEEE Intl. Conf. on Data Engineering
(ICDE), pp 538-547.
Babcock, B; Chaudhuri, S.(2005) Towards a Robust Query
Optimizer: A Principled and Practical Approach,Proc. of
ACM SIGMOD Conf. on Management of Data, pp 119-130.
Babu, S; Bizarro, P; DeWitt, D. (2005) Proactive Re-
Optimization,Proc. of ACM SIGMOD Conf. on Management
of Data, pp 107-118.
Chaudhuri, S. (1998) An Overview of Query Optimization in
Relational Systems,ACM Symp. on Principles of Database
Systems (PODS), pp 34-43.
Chaudhuri, S. (2009) Query Optimizers: Time to Rethink the
Contract?,Proc. of ACM SIGMOD Conf. on Management of
Data, pp 961-968.
Chaudhuri, S; Aboulnaga, A. (1999) Self-tuning His-
tograms: Building Histograms without Looking at Data,Proc.
of ACM SIGMOD Conf. on Management of Data, pp 181-192.
Chu, F; Halpern, J; Gehrke, J. (2002) Least Expected Cost
Query Optimization: What Can We Expect,Proc. of ACM
Symp. on Principles of Database Systems (PODS), pp 293-
302.
Chu, F; Halpern J; Seshadri, P.(1999) Least Expected Cost
Query Optimization: An Exercise in Utility,Proc. of ACM
Symp. on Principles of Database Systems (PODS), pp 138-
147.
Cole, R; Graefe, G.(1994) Optimization of Dynamic Query
Evaluation Plans,Proc. of ACM SIGMOD Intl. Conf. on Man-
agement of Data, pp 150-160.
CUBIST www.artlex.com.h/ArtLex/c/cubism.html
DAGSTUHL www.dagstuhl.de/no cache/en/program/
calendar/semhp/?semnr=10381
DB2 www.ibm.com/db2
Deshpande, A; Ives, Z; Raman, V.(2007) Adaptive Query
Processing,Foundations and Trends in Databases, Now Pub-
lishers, 1 (1).
Dey, A; Bhaumik, S; Harish, D; Haritsa, J. (2008) Ef-
ficiently Approximating Query Optimizer Plan Diagrams,
PVLDB Journal, 1(2), pp. 1325-1336.
Garey, M; Johnson, D (1979)Computers and Intractability:
A Guide to the Theory of NP-Completeness, W H Freeman &
Co.
Graefe, G; Kuno, H; Wiener, J. (2009) Visualizing the ro-
bustness of query execution,Proc. of 4th Conf. on Innovative
Data Systems Research (CIDR).
Harish, D; Darera, P; Haritsa, J. (2007) On the Production
of Anorexic Plan Diagrams,Proc. of 33th Intl. Conf. on Very
Large Data Bases (VLDB), pp 1081-1093.

Harish D;, Darera, P; Haritsa, J. (2008) Identifying Robust
Plans through Plan Diagram Reduction,PVLDB Journal, 1(1),
pp 1124-1140.
Haritsa, J. (2010) The Picasso Database Query Optimizer Vi-
sualizer,PVLDB Journal, 3(2).
Hulgeri, A; Sudarshan, S. (2002) Parametric Query Op-
timization for Linear and Piecewise Linear Cost Functions,
Proc. of 28th Intl. Conf. on Very Large Data Bases (VLDB),
pp 167-178.
Hulgeri, A; Sudarshan, S. (2003) AniPQO: Almost Non-
intrusive Parametric Query Optimization for Nonlinear Cost
Functions,Proc. of 29th Intl. Conf. on Very Large Data Bases
(VLDB), pp 766-777.
Kabra, N; DeWitt, D. (1998) Efficient Mid-Query Re-
Optimization of Sub-Optimal Query Execution Plans,Proc. of
ACM SIGMOD Intl. Conf. on Management of Data, pp 106-
117.
Mackert, L; Lohman, G. (1986)R∗ Optimizer Validation and
Performance Evaluation for Local Queries,Proc. of ACM SIG-
MOD Intl. Conf. on Management of Data, pp 84-95.
Markl, V; Raman, V; Simmen, D; Lohman, G; Pirahesh,
H; Cilimdzic, M. (2004) Robust Query Processing through
Progressive Optimization,Proc. of ACM SIGMOD Intl. Conf.
on Management of Data, pp 659-670.
MYSQL www.mysql.com
ORACLE www.oracle.com/technology/products/
database/oracle11g/
PICASSO dsl.serc.iisc.ernet.in/projects/
PICASSO/picasso.html
POSTGRES www.postgresql.org
Reddy, N; Haritsa J. (2005) Analyzing Plan Diagrams of
Database Query Optimizers,Proc. of 31st Intl. Conf. on Very
Large Data Bases (VLDB), pp 1228-1240.
Selinger, P; Astrahan, M; Chamberlin, D; Lorie, R; Price,
T. (1979) Access Path Selection in a Relational Database Sys-
tem, Proc. of ACM SIGMOD Intl. Conf. on Management of
Data, pp 23-34.
SQL en.wikipedia.org/wiki/SQL:2008
SQLSERVER www.microsoft.com/sqlserver/2008/
Stillger, M; Lohman, G; Markl, V; Kandil, M. (2001) LEO
– DB2’s LEarning Optimizer,Proc. of 27th Intl. Conf. on Very
Large Data Bases (VLDB), pp 19-28.
SYBASE www.sybase.com/linux/ase
TPCDS www.tpc.org/tpcds
TPCH www.tpc.org/tpch


