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Abstract

In [10], we proposed a new commit protocol, OPT, specially designed for use in distributed
firm-deadline real-time database systems. OPT allows transactions to “optimistically” borrow
uncommitted prepared data in a controlled manner. This controlled borrowing reduces the
data inaccessibility and the priority inversion that is inherent in real-time commit processing.
Experimental evaluations showed the new OPT protocol to be highly successful, as compared
to the classical distributed commit protocols, in minimizing the number of missed transaction
deadlines.

In this paper, we extend and improve upon this prior work in the following ways: First,
we consider parallel distributed transactions whereas the previous study was restricted to se-
quential transactions. Second, we evaluate the extent to which OPT’s real-time performance
is adversely affected by those cases where its optimism turns out to be misplaced. This is
achieved by comparing OPT’s performance with that of Shadow-OPT, a protocol that augments
OPT with the “shadow transaction” approach of [4] and ensures that the right decision about
access to uncommitted data is always eventually made. In all of our experiments, which consid-
ered a wide range of workloads and system configurations, the difference between OPT and an
idealized “zero-overheads” version of Shadow-OPT never exceeded ten percent. Moreover, the
difference was reduced to less than two percent when OPT was enhanced with a simple “healthy
lenders” heuristic. Third, we compare the performance of OPT to that of an alternative prior-
ity inheritance-based approach to addressing priority inversion during commit processing. Our
results show that the benefits that priority inheritance provides are much smaller than those
obtained with the OPT approach. Lastly, we consider a few optimizations designed to enhance
OPT’s lending capabilities.



1 Introduction

Distributed database systems implement a transaction commit protocol to ensure transaction
atomicity. A variety of protocols have been proposed in the literature including the classi-
cal Two Phase Commit (2PC), its Presumed Abort (PA) and Presumed Commit (PC) variations
which have become industry standards, and the non-blocking Three Phase Commit (3PC). These
protocols require exchange of multiple messages, in multiple phases, between the participating
sites where the distributed transaction executed. In addition, several log records are generated,
some of which have to be “forced”, that is, flushed to disk immediately. Due to these costs,
commit processing can result in a significant increase in transaction execution times [16, 20].
Consequently, the choice of commit protocol is an especially important design decision for dis-
tributed real-time database systems (RTDBS), which are deployed in many telecommunication
and military applications.

In a recent paper [10], using a detailed simulation model of a distributed RTDBS, we profiled
the performance of the above-mentioned commit protocols for real-time applications with firm
deadlines [11], wherein transactions that miss their deadlines are considered to be worthless and
are immediately “killed”, that is, aborted and discarded from the system without being executed
to completion. We also developed and evaluated a new commit protocol called OPT that incor-
porates modifications to the 2PC protocol. The OPT protocol allows executing transactions to
borrow data held by transactions that are in the commit processing stage, unlike the standard
protocols which make this so-called “prepared data” inaccessible. If the lender commits, the
borrowing is successful in that it provides a “head start” to the borrower, whereas if the lender
aborts, the borrower also has to be aborted. The OPT protocol is based on the “optimistic”
premise that lender transactions will typically commit, thereby helping the borrowers and im-
proving overall performance. The ability to borrow helps to reduce the blocking arising out of
prepared data and also to reduce the impact of the priority inversion to which the commit phase
in a distributed RTDBS is inherently susceptible [10]. OPT also incorporates novel features such
as “Active Abort” and “Silent Kill” that are specifically designed to improve its performance in
a real-time environment. A special feature of OPT is that it does not, unlike previous efforts in
the area [19, 21], require transaction atomicity requirements to be weakened.

Our experimental results in [10] showed that, with respect to the metric of the steady-state
percentage of missed deadlines, OPT provided by far the best performance, primarily due to its
optimistic borrowing and active abort policies. In fact, a non-blocking version of OPT, which
prevents transaction blocking in failure situations by using additional messages and log records,
proved to be superior to the standard blocking protocols for most of the workloads considered in
our study. This is especially encouraging given the high desirability of the nonblocking feature
in a real-time environment.

In this paper, we extend and improve upon this prior research in the following ways:

First, only sequential distributed transactions were modeled in our previous study. However,
for real-time database applications, given their time-critical nature, it may be more common to
have parallel distributed execution. Therefore, we have conducted again all the experiments of
the previous study for parallel distributed transaction workloads and report their results here.
In the process our simulation model has been made more realistic — it now includes separate log



and data disks, and the effects of having a buffer pool are modeled.

Second, the OPT protocol is an “indiscriminate” (an optimist would call it “fully-optimistic”)
lender in that data is always lent whenever requested. Although our experiments showed OPT to
perform well under this premise, it was not clear to what extent its real-time performance was ad-
versely affected by those cases where its optimism turned out to be misplaced. We quantitatively
evaluate the “efficiency” of OPT here by comparing its performance to that of Shadow-OPT,
a protocol that combines OPT with the “shadow transaction” approach suggested in [4]. As
explained later, if we ignore the overheads of the shadow mechanism (which may be significant
in practice), Shadow-OPT represents the best on-line performance that could be achieved using
the optimistic approach.

Third, OPT does not take into account the possibility that a commit-phase transaction that
is close to its deadline may be killed due to deadline expiry before the commit processing is over.
Lendings by such transactions are obviously harmful to system performance and therefore should
be avoided. To address this issue, we have designed and evaluated the Healthy-OPT protocol,
which augments the basic OPT protocol with a simple heuristic called “healthy lenders” wherein
a transaction is allowed to lend its data only if its estimated ability to meet its deadline is greater
than a (system-specified) threshold value.

Fourth, OPT addresses the priority inversion problem in the commit phase by allowing high
priority transactions to access the uncommitted prepared data of low priority transactions. A
plausible alternative approach is the well-known priority inheritance (PI) mechanism [17].
In this scheme, a low priority transaction that blocks a high priority transaction inherits the
priority of the high priority transaction. The expectation is that the blocking time of the high
priority transaction will be reduced since the low priority transaction will now execute faster and
release its resources earlier. We evaluate here the performance of a real-time commit protocol
based on the PI approach.

Finally, in order to prevent cascading aborts [3], the OPT protocol was designed such that a
transaction which was currently a borrower at one site was not permitted to simultaneously be
a lender at another site [10]. The implementation chosen to support this requirement, however,
was unduly conservative in that once a transaction became a borrower, it was never allowed
to subsequently become a lender, even after it stopped being a borrower. This means that the
borrowing feature was not utilized to the fullest extent possible. We consider a few techniques
here for removing this unnecessary restriction so as to increase OPT’s lending capabilities.

Organization

The remainder of this paper is organized as follows: The commit protocols evaluated in our
study are described in Section 2, and the real-time aspects of commit processing are discussed
in Section 3. The performance model is described in Section 4, and the results of the simulation
experiments are highlighted in Section 5. Finally, in Section 6, we summarize the conclusions of
the study.



2 Distributed Commit Protocols

A common model of a distributed transaction is that there is one process, called the master,
which is executed at the site where the transaction is submitted, and a set of other processes,
called cohorts, which execute on behalf of the transaction at the various sites that are accessed by
the transaction. Each cohort sends a WORKDONE message to the master after it has completed
its assigned work, and the master initiates the commit protocol after it has received this message
from all its cohorts. A variety of transaction commit protocols have been devised for this model,
most of which are based on the classical two phase commit (2PC) protocol [8]. In this section,
we briefly describe the 2PC protocol and a few popular variations of this protocol — complete
descriptions are available in [15, 16, 18].

2.1 Two Phase Commit Protocol

In this protocol, the master initiates the first phase of the commit protocol by sending PREPARE
(to commit) messages in parallel to all the cohorts. Each cohort that is ready to commit first
force-writes a prepare log record to its local stable storage and then sends a YES vote to the
master. At this stage, the cohort has entered a prepared state wherein it cannot unilaterally
commit or abort the transaction but has to wait for the final decision from the master. On the
other hand, each cohort that decides to abort force-writes an abort log record and sends a NO
vote to the master. Since a NO vote acts like a veto, the cohort is permitted to unilaterally abort
the transaction without waiting for the final decision from the master.

After the master receives the votes from all the cohorts, it initiates the second phase of the
protocol. If all the votes are YES, it moves to a committing state by force-writing a commit log
record and sending COMMIT messages to all the cohorts. Each cohort after receiving a COMMIT
message moves to the committing state, force-writes a commit log record, and sends an ACK
message to the master.

If the master receives even one NO vote, it moves to the aborting state by force-writing an
abort log record and sends ABORT messages to those cohorts that are in the prepared state.
These cohorts, after receiving the ABORT message, move to the aborting state, force-write an
abort log record, and send an ACK message to the master.

Finally, the master, after receiving acknowledgments from all the prepared cohorts, writes an
end log record and then “forgets” the transaction.

2.2 Presumed Abort

A variant of the 2PC protocol, called presumed abort (PA) [15], tries to reduce the message
and logging overheads by requiring all participants to follow — at failure recovery time — an “in
case of doubt, abort” rule. That is, if after coming up from a failure a site queries the master
about the final outcome of a transaction and finds no information available with the master,
the transaction is (correctly) assumed to have been aborted. With this assumption, it is not
necessary for cohorts to (a) send acknowledgments for ABORT messages from the master, and
(b) force-write the abort record to the log. It is also not necessary for the master to force-write

the abort log record or to write an end log record after abort.



In short, the PA protocol behaves identically to 2PC for committing transactions, but has
reduced message and logging overheads for aborted transactions.

2.3 Presumed Commit

A variation of the presumed abort protocol is based on the observation that, in general, the
number of committed transactions is much more than the number of aborted transactions. In
this variation, called presumed commit (PC) [15], the overheads are reduced for committing
transactions, rather than aborted transactions, by requiring all participants to follow — at failure
recovery time — an “in case of doubt, commit” rule. In this scheme, cohorts do not send ac-
knowledgments for the commit global decision, and do not force-write the commit log record. In
addition, the master does not write an end log record. However, the master is required to force-
write a collecting log record before initiating the two-phase protocol. This log record contains
the names of all the cohorts involved in executing that transaction.

The above optimizations of 2PC have been implemented in a number of database products
and PA is, in fact, now part of the ISO-OSI and X/OPEN distributed transaction processing
standards [14, 16].

2.4 Three Phase Commit

A fundamental problem with all of the above protocols is that cohorts may become blocked in
the event of a site failure and remain blocked until the failed site recovers. For example, if the
master fails after initiating the protocol but before conveying the decision to its cohorts, these
cohorts will become blocked waiting for the decision and remain so until the master recovers and
informs them of the final decision. During the blocked period, the cohorts may continue to hold
system resources such as locks on data items, making these unavailable to other transactions,
which in turn become blocked waiting for the resources to be relinquished, that is, “cascading
blocking” results. It is easy to see that, if the duration of the blocked period is significant, it
may result in major disruption of transaction processing activity.

To address the blocking problem, a three phase commit (3PC) protocol was proposed
in [18]. This protocol achieves a non-blocking capability by inserting an extra phase, called the
“precommit phase”, in between the two phases of the 2PC protocol. In the precommit phase,
a preliminary decision is reached regarding the fate of the transaction. The information made
available to the participating sites as a result of this preliminary decision allows a global decision
to be made despite a subsequent failure of the master. Note, however, that the price of gaining
non-blocking functionality is an increase in the communication overheads since there is an extra
round of message exchange between the master and the cohorts. In addition, both the master
and the cohorts have to force-write additional log records in the precommit phase.

3 Real-Time Commit Processing

The commit protocols described above were designed for conventional database systems and do
not take transaction priorities into account. In a real-time environment, this is clearly undesirable



since it may result in priority inversion [17], wherein high priority transactions are made to wait
by low priority transactions. Priority inversion is usually prevented by resolving all conflicts in
favor of transactions with higher priority. Removing priority inversion in the commit protocol,
however, is not fully feasible. This is because, once a cohort reaches the prepared state, it has
to retain all its data locks until it receives the global decision from the master — this retention is
fundamentally necessary to maintain atomicity. Therefore, if a high priority transaction requests
access to a data item that is locked by a “prepared cohort” of lower priority, it is not possible
to forcibly obtain access by preempting the low priority cohort. In this sense, the commit phase
in a distributed RTDBS is inherently susceptible to priority inversion. More importantly, the
priority inversion interval is not bounded since the time duration that a cohort is in the prepared
state can be arbitrarily long (for example, due to network delays).

It is important to note that the prepared data blocking described above is orthogonal to the
decision blocking (because of failures) that was discussed under 3PC. That is, in all the commit
protocols, including 3PC, transactions can be affected by prepared data blocking. Moreover,
such data blocking occurs during normal processing whereas decision blocking occurs only during
failure situations.

In this section, we first present a variety of real-time distributed commit protocols and then
the precise semantics of firm deadlines in a distributed environment.

3.1 The OPT Protocol

The OPT protocol [10] was designed to address the above-mentioned issue of prepared data
blocking. The main feature of OPT (the complete description is available in [9]) is that trans-
actions requesting data items held by other transactions in the prepared state are allowed to
access this data. That is, prepared cohorts lend uncommitted data to concurrently executing
transactions in the “optimistic” belief that this data will eventually be committed.

The mechanics of the interactions between lenders and borrowers are captured in the following
two scenarios:

Lender Receives Decision First: Here, the lending cohort receives its global decision before
the borrowing cohort has completed its execution. If the global decision is to commit, the
lending cohort completes its processing in the normal fashion. On the other hand, if the
global decision is to abort, the lender is aborted in the normal fashion. In addition, the
borrower is also aborted since it has utilized inconsistent data.

Borrower Completes Execution First: Here, the borrowing cohort completes its execution
and receives its PREPARE message before the lending cohort receives its global decision.
The borrower is then “put on the shelf”, that is, it is made to wait and not allowed to enter
the prepared state (and hence, to send a YES vote). The borrower waits until either the
lender receives its global decision or its own deadline expires, whichever occurs earlier. In
the former case, if the lender commits, the borrower is “taken off the shelf” and allowed to
respond to its master’s messages, whereas if the lender aborts, the borrower is also aborted
immediately since it has read inconsistent data. In the latter case, the borrower is killed
in the normal manner.



OPT also features an optimization called “Active Abort” to enhance its real-time performance
which operates as follows: In the basic 2PC protocol, cohorts are passive in that they inform the
master of their status only upon explicit request by the master. However, in a real-time situation,
it may be better for an aborting cohort to immediately inform the master so that the abort of
the transaction at the sibling sites can be done earlier. Therefore, cohorts in OPT inform the
master as soon as they decide to abort locally.

Aborts in OPT do not Cascade

An important point to note here is that the policy of using uncommitted data is generally not
recommended in database systems since this can potentially lead to the well-known problem
of cascading aborts [3] if the transaction whose dirty data has been accessed is later aborted.
However, in our situation, this problem is alleviated due to two reasons: First, the lending
transaction is typically expected to commit because (a) the lending cohort is in prepared state
and cannot be aborted due to local data conflicts, and (b) the sibling cohorts are also expected
to eventually vote to commit since they have survived! all their data conflicts that occurred
prior to the initiation of the commit protocol (Active Abort policy). Second, even if the lender
does eventually abort (e.g. due to deadline expiry), it only results in the abort of the immediate
borrower(s) and does not cascade beyond this point since borrowers cannot simultaneously be
lenders, as explained below. In short, the abort chain is bounded and is of length one.

A transaction cannot simultaneously be a borrower and a lender at different sites. This is
ensured as follows: A borrower that completes its execution before the lender has received its
global decision sends an extra bit, called the “borrower bit”, piggybacked on the WORKDONE
message. The presence of the borrower bit indicates to the master that this cohort is currently
a borrower and the master, while subsequently sending the PREPARE messages to the cohorts,
passes on this information to the other sibling cohorts. These cohorts enter the prepared state
in the normal fashion but do not lend their data to executing transactions.

System Integration

With respect to the implementation of the OPT protocol, the following issues have to be ad-
dressed:

1. The lock manager at each site must be modified to permit borrowing of data held by
prepared cohorts.

2. The lock manager must keep track of the cohorts that have borrowed prepared data so
that, if the lender aborts, the borrowers can also be aborted.

3. Cohorts should be permitted to add a borrower bit to the WORKDONE message if neces-
sary.

The above modifications do not appear difficult to incorporate in current database system
software. Moreover, as shown in [10] and in our experiments here, the performance benefits that

'We assume a locking-based concurrency control mechanism.
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can be derived from these changes suggest that it is worthwhile to make the effort of implementing
them.

3.2 Shadow-OPT

As mentioned in the Introduction, we wished to evaluate the efficiency of OPT with respect to
the extent to which its real-time performance was adversely affected by those cases where its
optimism turned out to be misplaced. This was achieved by comparing its performance with
that of the Shadow-OPT protocol, described below.

The Shadow-OPT protocol combines the OPT protocol with the “shadow transaction” ap-
proach suggested in [4]. In this combined technique, a cohort forks off a replica of the transaction,
called a shadow, whenever it borrows a data page. The original incarnation of the transaction
continues execution while the shadow transaction is blocked at the point of borrowing. If the
lending transaction finally commits, the (original) borrowing cohort continues its ongoing ex-
ecution and the shadow is discarded (since the optimistic borrowing proved to be a correct
decision). Otherwise, if the lender aborts, the borrowing cohort is aborted and the shadow,
which was blocked so far, is activated. Thus the work done by the borrowing transaction prior to
its borrowing is never wasted even if the wrong borrowing choice is made. Therefore, if we ignore
the overheads of the shadow mechanism (which may be significant in practice?), Shadow-OPT
represents the best on-line performance that could be achieved using the optimistic approach.
We model such a zero-overhead Shadow-OPT protocol in our experiments.

For correctness, a shadow cohort can resume execution only if the original cohort had not
exchanged any message with the master after the creation of the shadow. Otherwise, there
can be dependencies among the original cohort and the master of which the shadow cohort is
unaware of, and these dependencies need to be handled before the shadow cohort can resume
the execution. In our experiments, such dependencies can arise only if the original cohort has
sent the WORKDONE message to the master, in which case we discard the shadow cohort.

In addition, for the sake of simplicity, we allow in our experiments at most one shadow (for
each cohort) to exist at any given time. The first shadow is created at the time of the first
borrowing — creation of another shadow is allowed only if the original cohort aborts and the
shadow resumes its execution replacing the original cohort. The experimental results presented
in [4] also considered only a single-shadow environment.

3.3 Healthy-OPT

As mentioned in the Introduction, the OPT protocol does not take into account the possibility
that a transaction entering its commit phase close to its deadline may be killed due to dead-
line expiry before the commit processing is over. Lendings by such transactions are obviously
harmful to system performance since they result in the aborts of all the associated borrowers
and therefore should be avoided. To address this issue, we have designed the Healthy-OPT
protocol, described below.

2For example, it is mentioned in [4] that for a single-shadow per transaction environment, a 15 percent increase
in the number of messages was observed.



The Healthy-OPT protocol augments the basic OPT protocol with a simple heuristic called
“healthy lenders” that ensures only transactions whose deadlines are not very close (i.e., healthy
transactions) are allowed to lend their prepared data. This is implemented in the following
manner: A health factor Hr is associated with each transaction 7" and a transaction is allowed
to lend its data only if its health factor is greater than a (system-specified) minimum value M.
The health factor is computed at the point of time when the master is ready to send the PREPARE
messages and is defined to be the ratio TimeLeft / MinTime, where TimeLeft is the time left until
the transaction’s deadline, and MinTime is the minimum time required for commit processing (a
minimum of two messages and one force-write need to be processed before the master can take
a decision).

The success of the above scheme is directly dependent on the threshold health factor M —
set, too conservatively, it will turn off the borrowing feature to a large extent, thus effectively
reducing Healthy-OPT to standard 2PC; on the other hand, set too aggressively, it will fail to
stop several lenders that will eventually abort, effectively reducing Healthy-OPT to basic OPT.
In our experiments, we consider a range of values for M to determine the best choices.

An important point to note here is that the health factor is not used to decide the fate of
the transaction but merely to decide whether the transaction can lend its data. Thus, erroneous
estimates about the message processing times and log force-write times only affect the extent to
which the optimistic feature of OPT is used, as explained above.

3.4 Shadow-OPT versus Healthy-OPT

At this point, it may be asked as to why there is a need for the Healthy-OPT protocol when
Shadow-OPT with its guarantee of eventually making the right borrowing decision can itself be
implemented as discussed above. The point to note here is that Shadow-OPT, in contrast to
Healthy-OPT, requires significant reworking of the transaction management system to support
the shadow concept. Further, its realization may incur non-negligible overheads in a real system,
for example, for creating shadows and for managing updates to buffers from the multiple versions
of a transaction. This may result in significant differences between its actual performance and
that seen in the artificial zero-overhead model used in our experiments. In addition, Shadow-
OPT has restrictions on its applicability (for example, the dependency constraints discussed in
Section 3.2).

Keeping the above points in mind, Healthy-OPT provides, as will be quantitatively demon-
strated in our experiments, a simple and efficient alternative that performs almost as well as
Shadow-OPT and can at the same time be easily integrated into current systems.

3.5 The FL-OPT Protocol

As mentioned in Section 3.1, a situation may arise in OPT where the borrower cohort finishes
its execution before the lender cohort receives any decision from its master. In such a case, the
borrower cohort sends the “borrower bit” to the master with the WORKDONE message. The
master passes this bit to the sibling cohorts with the PREPARE message. While this mechanism
ensures that the aborts do not cascade, it does not allow the borrower transaction to become a
lender even after the borrowing is over.



To overcome the above problem, we have designed another variant of OPT, called Full-
Lending OPT (FL-OPT), which operates in the following manner: A borrower cohort sends
the WORKDONE message with the borrower bit (just like basic OPT). Later, however, the cohort
sends a BORROW-OVER message to the master if the lender subsequently commits and the bor-
rower cohort has not yet received any PREPARE message from the master. This message to the
master effectively invalidates the borrower bit sent earlier. In our implementation, the master
ignores this (borrow-over) message if it is received after the PREPARE message has been sent,
since informing the cohorts that they can commence lending will require an additional round of
messages, thereby increasing the load on the system resources. Further, if more than one cohort
had sent the borrower bit, each one of thse cohorts needs to send the BORROW-OVER message
in order to invalidate all the borrower bits received by the master, otherwise the transaction will
not be allowed to become a lender.

3.6 The PIC Protocol

As discussed above, OPT addresses the priority inversion problem in the commit phase by allow-
ing transactions to access uncommitted prepared data. A plausible alternative approach is the
well-known priority inheritance (PI) mechanism [17]. In this scheme, a low priority transac-
tion that blocks a high priority transaction inherits the priority of the high priority transaction.
The expectation is that the blocking time of the high priority transaction will be reduced since
the low priority transaction will now execute faster and release its resources earlier.

A positive feature of the PI approach is that it does not run the risk of transaction aborts,
unlike the optimistic approach. Further, a study of PI in the context of (centralized) transaction
concurrency control was made in [12] and the results suggest that priority inheritance is useful
only if it occurs towards the end of the low priority transaction’s lifetime. This seems to fit well
with handling priority inversion during commit processing since this stage occurs at the end of
transaction execution.

We evaluate in our experiments the performance of PIC, a real-time commit protocol based
on the PI approach. In the PIC protocol, when a high priority transaction is blocked due to
the data locked by a low priority cohort in the prepared state, the latter inherits the priority
of the former to expedite its commit processing. To propagate this inherited priority to the
master and the sibling cohorts, the inherited cohort sends a PRIORITY-INHERIT message to the
master. The master, in turn, sends this message to all other cohorts. After the master or a
cohort receives a PRIORITY-INHERIT message, all further processing related to the transaction
at that site (processing of the messages, writing log records, etc.) is carried out at the inherited
priority.3

3.7 Firm Deadline Semantics

In an ideal firm-deadline distributed RTDBS, the master and all the cohorts of a successfully
executed transaction should commit the transaction before the deadline expires. However, in
practical systems, it is impossible to provide such guarantees because of the arbitrary message

3For simplicity, the priority is not reverted to its old value if the high priority waiter is restarted.
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delays and the fact that the system is failure prone [6]. To avoid inconsistencies in such cases,
our definition of firm deadlines is that a transaction is said to be committed if the master has
reached the commit decision (that is, forced the commit log record to the disk) before the expiry
of the deadline, irrespective of whether the cohorts have also received and recorded the commit
decision by the deadline.

Cohorts that receive the commit decision after the expiry of the deadline still commit the
transaction in order to maintain the semantics of transaction atomicity. Note that this is not
inconsistent with the notion of firm deadline since all that happens is that access to data in the
prepared state is prevented even beyond the deadline until the final decision is received and other
transactions which would normally expect the data to be released one way or the other by the
deadline only experience a delay.

4 Simulation Model

To evaluate the performance of the various commit protocols described in the previous sections,
we used a detailed simulator of a distributed RTDBS. The simulator model, which is based on a
loose combination of the distributed database model presented in [5] and the real-time processing
model of [11], is a refinement of the model presented in our previous study [10].

The model consists of a database that is distributed, in a non-replicated manner, over N sites
connected by a network. Each site in the model has six components: a source which generates
transactions; a transaction manager which models the execution behavior of the transaction; a
concurrency control manager which implements the concurrency control algorithm; a resource
manager which models the physical resources; a recovery manager which implements the details
of commit protocols; and a sink which collects statistics on the completed transactions. In
addition, a network manager models the behavior of the communications network.

A summary of the parameters used in the model are given in Table 1. The database is a
collection of DBSize pages that are uniformly distributed across all the NumSites sites. At
each site, transactions arrive in an independent Poisson stream with rate ArrivalRate, and
each transaction has an associated firm deadline. The deadline is assigned using the formula
Dr = Ar + SF x Ry, where Dy, Ar and Ry are the deadline, arrival time and resource time,
respectively, of transaction 7', while SF' is a slack factor. The resource time is the total service
time at the resources that the transaction requires for its execution. The SlackFactor parameter
is a constant that provides control over the tightness/slackness of transaction deadlines.

There are two issues related to the resource time computation: First, since the resource time
is a function of the number of messages and the number of forced-writes, which differ from one
commit protocol to another, we compute the resource time assuming execution in a centralized
system. Second, while the workload generator utilizes information about transaction resource
requirements in assigning deadlines, the RTDBS system itself has no access to such information.

Each transaction in the workload has the “single master — multiple cohort” structure de-
scribed in Section 2. The number of sites at which each transaction executes is specified by
the DistDegree parameter. The master and one cohort reside at the site where the transac-
tion is submitted whereas the remaining DistDegree — 1 cohorts are set up at sites chosen at
random from the remaining NumSites — 1 sites. The TransType parameter specifies whether
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the transaction will execute in a sequential or parallel fashion. The master is started up at the
originating site, forks off a local cohort, and then sends messages to initiate each of its cohorts
at the remote participating sites. At each of the execution sites, the number of pages accessed
by the transaction’s cohort varies uniformly between 0.5 and 1.5 times C'ohortSize. These pages
are chosen randomly from among the database pages located at that site. A page that is read
is updated with probability Update Prob. A transaction that is aborted due to a data conflict is
immediately restarted and makes the same data accesses as its original incarnation.

A read access involves a concurrency control request to obtain access permission, followed
by a disk I/O to read the page, followed by a period of CPU usage for processing the page.
Write requests are handled similarly except for their disk I/O — the writing of the data pages
takes place asynchronously after the transaction has committed. We assume sufficient buffer
space to allow the retention of updates until commit time. In addition, we do not explicitly
model concurrency control cost parameters in our model since we assume that the overheads of
performing concurrency control are small compared to data processing times.

The commit protocol is initiated when the transaction has completed its data processing. If
the transaction’s deadline expires either before this point, or before the master has written the
global decision log record, the transaction is killed (the precise semantics of firm deadlines in a
distributed environment were defined in Section 3.7).

4.1 Priority Assignment

As mentioned earlier, transactions in an RTDBS are typically assigned priorities so as to minimize
the number of missed deadlines. In our model, all cohorts inherit their parent transaction’s
priority. Further, this priority, which is assigned at arrival time, is maintained throughout the
course of the transaction’s existence in the system, including the commit processing stage, if any.
Messages also inherit their sending transaction’s priority.

The only exception to the above priority rule is in the PIC protocol, wherein a low prior-
ity transaction that blocks a high priority transaction inherits the priority of the high priority
transaction, as explained in Section 3.6.

The transaction priority assignment used in all of the experiments described here is the widely-
used Earliest Deadline policy [13], wherein transactions with earlier deadlines have higher priority
than transactions with later deadlines.

4.2 System Model

The physical resources at each site include NumC PUs CPUs, NumDataD1isks data disks and
NumLogDisks log disks. There is a single common queue for the CPUs and the service discipline
is Pre-emptive Resume, with preemptions being based on transaction priorities. Each of the disks
has its own queue and is scheduled according to a Head-Of-Line (HOL) policy, with the request
queue being ordered by transaction priority. The PageC PU and PageDisk parameters capture
the CPU and disk processing times per data page, respectively. The BufHit parameter gives the
probability of finding a requested page already resident in the buffer pool.

The communication network is simply modeled as a switch that routes messages since we
assume a local area network that has high bandwidth. However, the CPU overhead of message
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Table 1: Simulation Model Parameters

NumSites Number of sites in the database
DBSize Number of pages in the database
Arrival Rate Transaction arrival rate / site
SlackFactor Slack Factor in Deadline formula
TransType Trans. Type (Sequential or Parallel)
DistDegree Degree of Distribution

CohortSize Average cohort size (in pages)
UpdateProb Page update probability
NumCPUs Number of processors per site

NumDataDisks | Number of data disks per site
NumLogDisks | Number of log disks per site

PageCPU CPU page processing time
PageDisk Disk page access time
MsgCPU Message send / receive time
BufHit Probability of buffer hit

transfer is taken into account at both the sending and the receiving sites, and these overheads are
captured by the MsgCPU parameter. This means that there are two classes of CPU requests —
local data processing requests and message processing requests. We do not make any distinction,
however, between these different types of requests and only ensure that all requests are served
in priority order.

4.3 Concurrency Control

For concurrency control, we use an extended version of the centralized 2PL High Priority (2PL-
HP) protocol proposed in [1]. The basic 2PL-HP protocol, which is based on the classical strict
two-phase locking protocol (2PL) [7], operates as follows: When a cohort requests a lock on a
data item that is held by one or more higher priority cohorts in a conflicting lock mode, the
requesting cohort waits for the item to be released (the wait queue for a data item is managed
in priority order). On the other hand, if the data item is held by only lower priority cohorts
in a conflicting lock mode, the lower priority cohorts are aborted and the requesting cohort is
granted the desired lock. Note that if priorities are assigned uniquely (as is usually the case in
real-time database systems), 2PL-HP is inherently deadlock-free. Finally, a new reader can join
a group of lock-holding readers only if its priority is higher than that of all the writers waiting
for the lock.

The extensions that we have made to the above basic protocol for our distributed real-time
environment are the following: First, on receipt of the PREPARE message from the master, a
cohort releases all its read locks but retains its update locks until it receives and implements the
global decision from the master. Second, a cohort that is in the prepared state cannot be aborted,
irrespective of its priority. Third, in the OPT-based commit protocols, a low priority cohort may
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be allowed optimistic access to data held by conflicting higher priority prepared cohorts.

4.4 Logging

With regard to logging costs, we explicitly model only forced log writes since they are done
synchronously and suspend transaction operation until their completion. The cost of each forced
log write is the same as the cost of writing a data page to the disk. The overheads of flushing
the transaction execution log records (i.e., WAL) are not modeled since we do not expect them
to affect the relative performance behavior of the commit protocols evaluated in our study.

5 Experiments and Results

Using the distributed firm-deadline RTDBS model described in the previous section, we con-
ducted an extensive set of simulation experiments comparing the performance of the various
commit protocols presented earlier. In particular, our focus is on parallel transaction workloads
— the corresponding results for sequential transactions are available in [9].

The performance metric in all of our experiments is MissPercent, which is the percentage of
input transactions that the system is unable to complete before their deadlines.* MissPercent
values in the range of 0 to 20 percent are taken to represent system performance under “normal”
loads, while values beyond this represent “heavy” load performance.

The simulator was instrumented to generate a host of other statistical information, including
resource utilizations, number of transaction restarts, number of force log writes per transaction,
page conflict probability, borrow ratio (for OPT and its variants), etc. These secondary measures
help to explain the MissPercent behavior of the commit protocols under various workloads and
system conditions.

5.1 Comparative Protocols

To help isolate and understand the performance effects of distribution and atomicity on MissPer-
cent performance, and to serve as a basis of comparison, we have also simulated, just as in [10],
the performance behavior for two additional scenarios, CENT and DPCC, described below:

CENT (Centralized) models a centralized database system that is equivalent (in terms of
database size and physical resources) to the distributed database system is modeled. Messages are
obviously not required here and commit processing only requires force-writing a single decision
log record. Modeling this scenario helps to isolate the overall effect of distribution on MissPercent
performance.

In DPCC (Distributed Processing, Centralized Commit), data processing is executed in the
normal distributed fashion, that is, involving messages. The commit processing, however, is like
that of a centralized system, requiring only the force-writing of the decision log record at the
master. While this system is clearly artificial, modeling it helps to isolate the effect of distributed

4The MissPercent values shown here have relative half-widths about the mean of less than 10% at the 90%
confidence level — each experiment was run until at least 20000 transactions were processed by the system.
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Table 2: Baseline Parameter Settings

NumSites 8 NumCPUs 2
DBSize 2400 pages | NumDataDisks | 3
SlackFactor | 4.0 NumLogDisks | 1
TransType | Parallel PageCPU 5 ms
DistDegree | 3 PageDisk 20 ms
CohortSize | 6 pages MsgCPU 5 ms
UpdateProb | 1.0 BufHit 0.1

commit processing on MissPercent performance (as opposed to CENT which eliminates the entire
effect of distributed processing).

5.2 Experiment 1: Parallel Transactions (RC+DC)

In our first experiment, the performance of the various commit protocols was evaluated for a
parallel transaction workload. The settings of the workload and system parameters for this
experiment are listed in Table 2. These values were chosen to ensure significant levels of both
resource contention (RC) and data contention (DC) in the system, thus helping to bring out
the performance differences between the protocols. With the given settings, each transaction
executes in a parallel fashion at three sites, accessing and updating an average of six pages at
each site.

For this experiment, Figures 1a and 1b show the MissPercent behavior under normal load and
heavy load conditions, respectively. In these graphs, we first observe that there is a noticeable
difference between the performance of the baseline systems (CENT and DPCC) and the perfor-
mance of the classical protocols (2PC, PA, PC, 3PC) throughout the loading range. This demon-
strates that distributed commit processing can have considerably more effect (difference between
DPCC and 2PC) than distributed data processing (difference between CENT and DPCC) on
the MissPercent performance. This highlights the need for designing high-performance commit
protocols.

Moving on to the relative performance of 2PC and 3PC, we observe a noticeable difference
which arises from the additional message and logging overheads involved in 3PC. The performance
of PA and PC, however, is only marginally different from that of 2PC.

Finally, OPT provides a performance that is significantly better than that of 2PC under normal
loads. In Figure 1c¢, OPT’s “success ratio”, that is, the fraction of times that a borrowing was
successful, is shown. This statistic clearly shows that under normal loads, optimism is the right
choice since the success ratio is almost one. Under heavy loads, however, there is a decrease in
the success ratio — the reason for this is that transactions reach their commit phase only close
to their deadlines and in this situation, a lending transaction may often abort due to missing its
deadline. That is, many lenders turn out to be “not healthy” — we address this issue in more
detail in Experiment 4 (Section 5.5).

The observations made above were also seen, to a large extent, for sequential transactions in
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our previous study — for ease of comparison, Figures 2a through 2c¢ present these corresponding
results for the sequential transactions.® There are a few changes, however, with respect to OPT’s
performance:

First, although OPT continues to perform the best under normal loads, its effect on the
MissPercent performance is partially reduced as compared to that for sequential transactions.
This is because the Active Abort policy, which had significant impact in the sequential environ-
ment, is less useful in the parallel environment. The reason for its reduced utility is that due to
cohorts executing in parallel, there are much fewer chances of a cohort aborting after sending
the WORKDONE message, but before receiving the PREPARE message, which is when the active
abort policy mostly comes into play for the parallel case.

Second, the performance of OPT under heavy loads is marginally worse than that of 2PC,
whereas in the sequential case OPT was always better or matched 2PC. This is explained by
comparing OPT’s success ratios in Figures 1c and 2c, which clearly indicate that the heavy-load
degradation in OP'T’s success ratio is much more under parallel workloads than under sequential
workloads. The reason for this is the following: The data contention level is smaller with
parallel execution than with sequential execution since locks are held for shorter times on average.
Therefore in general, cohorts are able to obtain the necessary locks sooner than in the sequential
case and hence those that are aborted due to deadline expiry tend to make further progress than
in the sequential case. This leads to a proportionally larger group of cohorts finishing their work
closer to the deadline and hence becoming unhealthy lenders thereby resulting in a worse success
ratio.

5.3 Experiment 2: Parallel Transactions (pure DC)

The above experiment was repeated under the pure data contention (pure DC) scenario. Here,
the physical resources (processors and disks) were made “infinite”, that is, there is no queuing
for these resources [2]. This scenario helps to isolate the influence of data contention on the
real-time performance of commit protocols.

Figures 3a through 3c show the results for this experiment for parallel transactions while
the corresponding results for sequential transactions are shown in Figures 4a through 4c. The
performance of OPT in these figures is again comparable to that for the corresponding sequential
transaction execution experiment. The reason for this is that under pure DC scenario OPT
reduces the data contention significantly. In this case, the success ratio for OPT is significantly
high (Figure 4c), thus making OPT perform considerably better than the standard commit
protocols.

Similar results were observed for a variety of system and workload configurations that included
higher degree of distribution, fast network interface, reduced update probability, etc. Complete
details are given in [9].
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5.4 Experiment 3: Efficiency of OPT

In our next experiment, we compared the performance of OPT to that of the (zero-overhead)
Shadow-OPT protocol described in Section 3.2. The results of this experiment are depicted
in Figures 5 and 6 under RC+DC and pure DC conditions, respectively. We see from these
figures that the performance of Shadow-OPT is better than that of OPT only by a marginal
amount under RC+DC and by a modest amount in the pure DC environment. In fact, in
all our experiments, maximum improvement for Shadow-OPT over OPT was never more than
ten percent. Moreover, this improvement was restricted to the heavily loaded region and never
occurred in the normal load region. The above results indicate that OPT is highly successful in
its utilization of the optimistic premise.

5.5 Experiment 4: Healthy Lenders

In our next experiment, we evaluated the performance of the Healthy-OPT protocol. The results
for this experiment are shown in Figures 7a through 7c for the RC+DC scenario, and in Figures
8a through 8c for the pure DC scenario. The results for two different values (1.0 & 2.0) of
the health threshold M are shown in these figures (the Healthy-OPT curves are very close to
Shadow-OPT in Figures 5a and 6a and may therefore be difficult to distinguish visually).

From the MissPercent graphs (Figures 7a and 8a), we see that Healthy-OPT (for M = 1) is in

5The sequential results shown here were obtained using the refined system model described in Section 4 and
are therefore quantitatively different from those shown in [10].
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general superior to OPT and especially so under heavy loads in the pure DC environment. The
reason for the improvement is evident in Figures 7b and 8b where the success ratio of Healthy-
OPT (M = 1) is seen to be considerably higher than that of basic OPT. In Experiment 1, we
had observed that OPT’s heavy load performance in the RC4+DC environment was worse than
that of 2PC (see Figure 1a) — notice now that with the Healthy Lenders optimization, OPT’s
performance matches that of 2PC in this region (Figure 7a).

Figures 7c and 8c present the “borrow ratio” (average number of data items borrowed per
transaction). It is clear from these figures that Healthy-OPT (M = 1) is “efficient” in that it re-
stricts borrowing only in the heavy load region but not in the normal load region where optimism
is almost always a good idea. That is, healthy lenders are very rarely tagged as unhealthy.

The last observation deals with the “completeness” and “precision” of borrowing, that is: (1)
“Do we always borrow when the borrowing is going to be successful?”, and (2) “Is what we
borrow always going to be successful?”. OPT is complete by design since it does not miss out
on any successful borrowing opportunities, but because it may also borrow without success, it
is not precise. The experimental results for Healthy-OPT show that it is far more precise in
comparison but sacrifices very little completeness in achieving this goal.

Turning our attention to Healthy-OPT (M = 2), we observe that the performance of Healthy-
OPT for M =1 and for M = 2 are almost identical, indicating that a health threshold of unity
is sufficient to filter out the transactions vulnerable to deadline kill in the commit phase. The
reason for this is that, by virtue of the Farliest Deadline priority policy used in our experiments,
transactions that are close to their deadlines have the highest priority at the physical resources,
and therefore the minimum time required to do the commit processing is actually sufficient for
them to complete this operation.

Finally, we observe that the performance improvement of Healthy-OPT over basic OPT is very
similar to that obtained by Shadow-OPT. In fact, in all our experiments, the performance differ-
ence between Shadow-OPT and Healthy-OPT was never more than two percent. This means that
Healthy-OPT can provide performance gains similar to that of Shadow-OPT without attracting
the tmplementation problems and overheads associated with Shadow-OPT. We have also found
that a health threshold of M =1 provides good performance for a wide range of workloads and
system configurations, that is, this setting is robust . In short, Healthy-OPT provides extremely
efficient use of the optimistic premise in terms of both performance and simplicity.

5.6 Experiment 5: Priority Inheritance

In our next experiment, we evaluated the performance of the PIC protocol described in Sec-
tion 3.6, which incorporates the priority-inheritance approach to addressing the problem of
commit-phase priority inversion. The results of this experiment under RC+DC and pure DC
scenarios are shown in Figures 9 and 10, respectively. We observe from these figures that the
performance of PI is virtually identical to 2PC. The reason for this is the following: PI comes
into play only when a high priority transaction is blocked by a low priority prepared cohort,
which means that this cohort has already sent the YES vote to its master. Since it takes two
message delays for dissemination of the priority inheritance information to the sibling cohorts, PI
expedites at most the processing of only the decision message. Further, even the minor advantage

21



*——3k 2PC + + PI

MissPercent MissPercent
100 100

80+
" "
I 607 i
X X
wn wn
L 40+ R%)
= =

20+

0 L L L L ) L L L L )
(0] 2 4 6 8 10 (0] 2 4 6 8 10
Arrival Rate/Site ——> Arrival Rate/Site ——>
Figure 9: Priority Inheritance (RC+DC) Figure 10: Priority Inheritance (pure DC)

that may be obtained by PI is partially offset by the extra overheads involved in processing the
priority inheritance information messages.

In summary, PI fails to provide any performance benefits over 2PC due to a fundamental
problem of distributed processing — delay in the dissemination of information (in this case,
priority inheritance information) to remote sites (in this case, the sibling cohorts).

5.7 Experiment 6: Enhancing OPT’s Lending

In our next experiment, we evaluated the performance of the FL-OPT protocol, which was
designed to enhance basic OPT’s lending capabilities. The deadline miss performance of FL-
OPT is shown in Figures 11a and 11b for the pure DC scenario under normal and heavy load
conditions, respectively. We observe from these figures that the performance difference between
basic OPT and FL-OPT is negligible for most of the loading range. This is because the situation
when a “borrower bit” is sent with the WORKDONE message does not occur frequently. Only
a marginal difference at light loads is observed where FL-OPT performs slightly better than
basic OPT because it allows more transactions to become lenders (by using the BORROW-OVER
message).

Under RC+DC conditions, the performance of FL-OPT was observed to be virtually identical
to that of basic OPT. The reason for this is that, under RC+DC scenario, the performance gains
due to FL-OPT’s full lending feature are offset to some extent because of the CPU overheads of
extra message processing.

Note that in principle FL-OPT is a sound idea. The reason for it having only a marginal impact
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on the performance here is that the situation when a “borrower bit” is sent with the WORKDONE
message, which is when FL-OPT comes into play, does not occur frequently for the priority
assignments and workload configurations of our experiments. For different priority assignments
that may lead to longer commit phase durations, however, it may have more impact on the
performance. The point to note here is that incorporating FL-OPT does not hurt performance,
and may have the capacity to improve the performance significantly for specific workloads.

5.8 Other Experiments

We conducted several other experiments to explore various regions of the modeling space. These
included workloads with higher degree of transaction distribution, workloads with reduced update
probabilities, systems with high-speed network interfaces, etc. Our general observation was
that the relative performance of the protocols in these other experiments remained qualitatively
similar to that seen in the experiments described here. For a fuller description of these additional
experiments, we refer the reader to [9].

6 Conclusions
In this paper, we have significantly extended and improved on our earlier simulation-based

study [10] of the performance implications of supporting transaction atomicity in a distributed
firm-deadline RTDBS environment. These improvements included enhancements in the model,
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the workloads, the protocols and the paradigms considered for real-time commit processing. The
main conclusions of our current study are the following:

First, the results obtained for parallel distributed transaction workloads were generally similar
to those observed for the sequential-transaction environment in [10]. But, performance improve-
ment due to the basic OPT protocol was not as high for two reasons: (1) Its Active Abort
policy, which contributed significantly to improved performance in the sequential environment,
has reduced effect in the parallel domain. (2) Parallel execution, by virtue of reducing the data
contention, results in an increased number of unhealthy lenders.

Second, the basic OPT protocol was shown to make good use of the optimistic premise —
the difference between OPT and Shadow-OPT, which represents the best on-line usage of the
optimistic approach, never exceeded ten percent and occurred only under significantly overloaded
conditions.

Third, the Healthy-OPT protocol, which augments basic OPT with a simple “healthy lenders”
heuristic was found to provide performance very close to that of Shadow-OPT. It is especially
important to note that Healthy-OPT provides this high level of performance without incurring
the potentially significant implementation overheads and integration difficulties associated with
implementing the Shadow mechanism in a real system.

Fourth, we evaluated the priority inheritance approach to addressing the priority inversion
problem. Our experiments showed that this approach provides virtually no performance benefits,
primarily due to the intrinsic delays involved in disseminating information in a distributed system.
It therefore does not appear to be a viable alternative to OPT for enhancing distributed commit
processing performance.

Finally, we thought that the original OPT protocol was being unduly conservative since it
prevented borrowers from subsequently becoming lenders — even after the borrowing is over. We
addressed this issue by incorporating an additional message in the OPT protocol that informed
the master about the completion of borrowing by a cohort. However, only minor MissPercent
improvements were realized by this optimization.

In summary, we suggest that designers of distributed real-time database systems may find the
Healthy-OPT protocol, in conjunction with the Full-Lending optimization, to be a good choice
for achieving high-performance real-time distributed commit processing.
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