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Abstract

One-phase commit protocols substantially reduce the overheads of transaction commit processing, making

them attractive for incorporation in distributed real-time databases. A major obstacle, however, is that these pro-

tocols significantly increase the occurrence of priority inversions. This arises from the cohorts of each distributed

transaction being in a prepared state for extended periods of time, during which their data locks cannot be pre-

empted.

We present here a new one-phase real-time commit protocol, called PEP, that addresses the above-mentioned

problem by applying the technique of controlled borrowing of prepared data, which we had previously proposed

and successfully utilized for multi-phase commit protocols. Simulation-based evaluation of PEP for real-time ap-

plications with firm deadlines demonstrates that, for a variety of environments, it substantially reduces the number

of killed transactions as compared to its multi-phase counterparts. In fact, PEP often provides better performance

than even an equivalent centralized system.

1 Introduction

Many time-critical applications, including emerging e-commerce and e-information services as well as intelligent

telecom systems, access data that is located on multiple sites. To help achieve their real-time objectives, these ap-

plications require efficient support for consistently and atomically performing updates across their data repositories

[16]. Distributed data-based systems typically implement a transaction commit protocol such as the classical Two

Phase Commit (2PC) [4] to ensure the atomicity of multi-site updates. Commit protocols require exchange of multi-

ple messages, in multiple phases, between the participating sites where a distributed transaction executes. In addition,

several log records are generated, some of which have to be “forced”, that is, flushed to disk immediately. Due to

these costs, commit processing can result in a significant increase in transaction execution times [11]. Developing

high-performance transaction commit protocols is therefore an important problem in the design of distributed real-

time database systems (DRTDBS).

We took a first step towards addressing the above issue in a recent paper [6], wherein we investigated the real-time

performance of a variety of commit protocols, including the classical Two-Phase Commit (2PC) [4] and Three-Phase
�
Part of this work was done during a sabbatical at Lucent Bell Labs, 600 Mountain Avenue, Murray Hill, NJ 07974, USA.�
Also affiliated with Dept. of Computer Science, Univ. of Massachusetts, Amherst, MA 01003, USA.
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Commit (3PC) [13]. We also proposed a new 2PC-based commit protocol called PROMPT and showed that, for firm-

deadline [5] applications, it was far more successful than the classical protocols in minimizing the number of “killed”

(permanently aborted due to missing their deadlines) transactions.

Our earlier studies focussed exclusively on two and three-phase commit protocols. In these protocols, commit

processing begins only after all the data processing associated with a transaction has been completed. We move on,

in this paper, to investigating the real-time characteristics of one-phase commit (1PC) protocols. There is no explicit

“voting phase” to decide on the outcome (commit or abort) of the transaction in these protocols since cohorts enter

the “prepared state” at the time of sending the work completion message itself – that is, the commit processing and

data processing activities are effectively overlapped. Examples of such protocols include Early Prepare (EP) [14],

Unsolicited Vote (UV) [15] and IYV [2]. By eliminating an entire phase and thereby reducing commit processing

overheads and durations, 1PC protocols seem potentially capable of completing more transactions before their dead-

lines. In this paper, we evaluate the real-time performance of the Early Prepare (EP) 1PC protocol.

A fundamental problem with real-time commit processing is that cohorts that are in the prepared state cannot be

pre-empted, even if a higher priority transaction requires their data, resulting in priority inversion. In 1PC protocols,

the insidious effects of priority inversion are exacerbated because of the overlap between data processing and commit

processing, which means that a cohort can enter the prepared state long before the transaction has completed its full

data processing. There is hence the possibility that the advantages gained from eliminating a protocol phase may be

negated by the ill-effects of increased priority inversion.

To address the above problem, we incorporate the technique of controlled borrowing of prepared data [6], devel-

oped originally for PROMPT, in the Early Prepare framework. The resulting protocol, called PEP (for PROMPT-EP),

thus has features designed to reduce the negative effects of both (a) multiple rounds of communication and logging

overheads, and (b) priority inversion due to the data of prepared cohorts being inaccessible until the associated trans-

action commits or aborts.

1.1 Experimental Results

Using a detailed simulator of a DRTDBS, we evaluate the performance of the EP and PEP 1PC protocols over a

variety of real-time transaction workloads and system configurations. We compare their performance with that of

PROMPT, the state-of-the-art in real-time commit processing. Our evaluation suite also includes a baseline system

called CENT, which models a fully centralized database, and therefore has no communication or logging overheads

at all – modeling this scenario helps to isolate the performance impact of distribution. To the best of our knowledge,

the results presented here represent the first work on one-phase real-time commit processing.

Our experimental results indicate the following (with respect to the transaction kill percentage metric):

1. EP has a “split-personality” behavior – it typically outperforms PROMPT for parallel distributed transactions,

but tends to do worse for sequential distributed transactions.

2. PEP always performs the best of all the protocols for parallel distributed transactions. For sequential distributed

transactions, it significantly improves on the performance of EP and, except in a few atypical scenarios, beats

PROMPT also.

3. Very interestingly, there are workloads where PEP does better than even CENT, the centralized system, which

we may have expected to essentially define a “lower bound” on achievable performance! As explained in detail
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later, this counter-intuitive behavior stems from PEP’s efficient implementation of the one-phase approach,

which operates synergistically with the concurrency control mechanism.

1.2 Organization

The remainder of this paper is organized as follows: Background material on the 2PC and PROMPT protocols is

provided in section 2. Our new PEP protocol is presented in section 3. Details of the simulation model are provided

in section 4 while performance results are highlighted in section 5. Finally, in section 6, we summarize the conclusions

of our study and identify future research avenues.

2 Background: The PROMPT Protocol

In this section, we provide background material about the PROMPT (Permits Reading Of Modified Prepared-data

for Timeliness) real-time commit protocol, which we developed in our previous research [6]. For ease of exposition,

the following notation is used in the sequel – “SMALL CAPS FONT” for messages, “typewriter font” for log

records, and “sans serif font” for transaction states.

We assume, in the following discussion, the subtransaction model of a distributed transaction wherein a master

process executes at the user-site and a set of cohort processes execute on behalf of the master at the remote execution

sites. The master assigns work to each cohort via a STARTWORK message and a cohort sends a WORKDONE message

to the master after it has completed its assigned work.

The classical 2PC protocol [4] fails, with respect to meeting (firm) real-time objectives, on two related counts:

First, by making prepared data inaccessible, it increases transaction blocking times and therefore has an adverse im-

pact on the number of killed transactions. Second, since it does not take transaction priorities into account, priority

inversion may result and cause the affected high-priority transactions to miss their deadlines.

The above problems are alleviated in PROMPT, which is structurally similar to 2PC, by allowing controlled ac-

cess to prepared data. That is, prepared cohorts lend their uncommitted data to concurrently executing transactions

so that these transactions can continue their local data processing. Later, if the global decision for the transaction

associated with the lending cohort is to commit, the lending cohort commits in the normal fashion; further, if the bor-

rowing cohort has already completed its local data processing, a WORKDONE message is sent to its master. On the

other hand, if the global decision is to abort, the lender is aborted in the normal fashion. In addition, the borrower is

also aborted since it has utilized dirty data.

In short, the PROMPT protocol allows transactions to access uncommitted data held by prepared transactions in

the “optimistic” belief that this data will eventually be committed. To further improve its real-time performance, a

variety of additional optimizations are also included in the PROMPT protocol. The most important of these is Active

Abort: In the basic 2PC protocol, cohorts are “passive” in that they inform the master of their status only upon explicit

request by the master. This is acceptable in conventional distributed DBMS since, after a cohort has completed its data

phase, there is no possibility of the cohort subsequently being aborted due to serializability considerations (assuming

a locking-based concurrency control mechanism). In a DRTDBS, however, a cohort which is not yet in its commit

phase can be aborted due to conflicts with higher priority transactions. Therefore, it may be better for an aborting

cohort to immediately inform the master so that the abort of the transaction at the sibling sites can be done earlier.

Early restarts are beneficial in two ways: First, they provide more time for the restarted transaction to complete before
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its deadline. Second, they minimize the wastage of both logical and physical system resources. Accordingly, cohorts

in PROMPT follow an “active abort” policy – they inform the master as soon as they decide to abort locally.

3 The PEP Real-Time Commit Protocol

We now move on to presenting our new PEP (Prompt–Early Prepare) one-phase real-time commit protocol. PEP rep-

resents an integration of the 1PC approach of the EP protocol and the prepared data lending philosophy of PROMPT.

The main performance-related features of PEP are the following: First, from its 1PC basis, it incurs decreased log-

ging and message overheads. Second, from PROMPT it inherits the ability for the controlled lending of prepared

data. Third, it has two additional features that occur without any explicit steps being taken on the part of PEP’s com-

mit process, that is, these are inherent in PEP’s design. One is the occurrence of “active aborts”, described earlier in

section 2, and the other is the interesting and beneficial feature whereby the longer a transaction executes, the lower

is its probability of being aborted due to data conflicts. These features are explained in detail below.

3.1 One-phase Commit Process

PEP adopts the one-phase commit approach of the Early Prepare protocol [14], wherein the first phase of traditional

two-phase commit processing is overlapped with the data processing phase. To achieve this, cohorts in PEP force a

prepare log record to the local disk and enter the prepared state at the time of sending the WORKDONE message

itself. This means that the voting phase becomes redundant since the master implicitly knows, when it receives a

WORKDONE message, that the associated cohort is prepared to commit. Hence, only the decision phase is required

in this protocol.

An additional optimization to further reduce the overheads is to use the Presumed Commit (PC) [10] mechanism

wherein all participants follow – at failure recovery time – an “in case of doubt, commit” rule. With this scheme,

cohorts do not send ACKs for a commit decision sent from the master, and also do not force-write the commit log

record. In addition, the master does not write an end log record. To make recovery possible with this mechanism,

the master force-writes a membership log record at transaction initiation time, which lists the identifiers of all the

cohorts involved in executing that transaction.

With the above features, PEP’s commit processing overheads are substantially reduced with respect to PROMPT,

as summarized in Tables 1 and 2 for both commit and abort outcomes. Note that PEP reduces the communication

overhead with respect to PROMPT by at least 2 messages per cohort, irrespective of the outcome. With regard to

logging, although the master in PEP has an additional forced-write compared to PROMPT, each cohort has to do one

less, so overall PEP will have fewer forced-writes. Further, even the additional forced-write at the master can be

eliminated by using more sophisticated forms of PC, such as New PC [9] – for simplicity, we only consider classical

PC here.

3.2 Lending of Prepared Data

The above-mentioned decrease in resource overheads of PEP does not come for free, however, in the real-time en-

vironment: It can significantly increase the impact of priority inversion due to its extension of the duration of the

prepared state of the individual cohorts. While in PROMPT (and all other two-phase protocols), the prepared state

for a cohort begins only after the global transaction has completed its data processing, in PEP (as in EP) it begins
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Table 1: Message Overheads Comparison

Outcome Master � Cohort Cohort � Master Reduction

PEP PROMPT PEP PROMPT per cohort

Commit 1 2 0 2 3

Abort 1 2 1 2 2

Table 2: Logging Overheads Comparison

MASTER

Outcome Total Log Records ForcedWrites

PEP PROMPT PEP PROMPT

Commit 2 2 2 1

Abort 2 2 1 1

COHORT

Outcome Total Log Records ForcedWrites

PEP PROMPT PEP PROMPT

Commit 2 2 1 2

Abort 2 2 2 2

as soon as a cohort has finished its local data processing. Further, whether a distributed transaction is sequential or

parallel now becomes an issue – in a sequential transaction cohorts execute one after another, whereas in a paral-

lel transaction the cohorts execute concurrently. With PEP, the average duration of the prepared state for cohorts of

sequential transactions is significantly higher as compared to that in (equivalent) parallel transactions. This is be-

cause, in the sequential case, each cohort remains in the prepared state during the entire data processing of all the

cohorts that are executed after it, whereas in the parallel case, each cohort remains in this state only during the interval

between its own completion and that of its slowest sibling cohort.

The heightened inversion possibilities may result in increased blocking times for high-priority transactions, re-

sulting in missing their deadlines and adversely impacting the system performance. To address this issue, we can

utilize the same lending technique described for PROMPT in the previous section, whereby prepared cohorts lend

their uncommitted data to concurrently executing transactions so that these transactions can continue their local data

processing. In fact, the lending possibilities are much greater in PEP than in PROMPT precisely because many more

conflicts have to be resolved by lending, rather than by the conflict resolution mechanism (e.g. priority abort [1]) in

operation.

However, these increased lending possibilities lead to the following two problems:

Harmful Lendings: Unlike PROMPT where the chances of a lender subsequently aborting are small (since the lend-

ing is for a relatively short duration and the transaction has already fully completed its data processing), these

chances are potentially greater in PEP because

1. lending durations are a function of the overall length of the transaction in the case of sequential distributed
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transactions, and a function of the length of the slowest cohort in the the case of parallel distributed trans-

actions, and

2. the remaining unfinished data processing of the parent transaction may result in aborts arising out of data

conflict resolution.

This means that there may be more lendings that are harmful to system performance since they result in the

aborts of all the associated borrowers and therefore should be avoided.

Deadlocks: While deadlocks between borrowers and lenders could never occur in the PROMPT framework (again

due to the lending becoming operational only after a transaction has fully completed its data processing), dead-

locks are an issue with PEP since transactions may continue to access new data items even after having lent

some of their previously accessed data.

We have developed specialized schemes for addressing the above problems, described at the end of this section. It

is important to note, however, that the performance results presented in this paper are based on a “bare-bones” (i.e.,

conservative) implementation of PEP that does not incorporate these special schemes. So, nothing is done to reduce

harmful lendings while deadlocks are resolved by the simple expedient of allowing them to continue until one of the

transactions in the cycle is killed due to deadline expiry. We expect PEP’s performance to improve further with our

new schemes – in our current work, we are exploring these choices.

3.3 Inherent Active Aborts by Cohorts

In PROMPT, the cohorts have to be explicitly designed to follow the “active abort” policy, i.e., inform the master

as soon as they decide to abort locally. In contrast, a very attractive feature of PEP is that this policy is inherent in

its design, arising out of its EP foundation: When a cohort is aborted due to a conflict with higher priority transac-

tions, it immediately informs its master that it is aborting. So, while a cohort can be locally aborted during its data

processing, it cannot abort after sending its WORKDONE message. This means that a cohort can respond to a mas-

ter’s STARTWORK message with either a WORKDONE message or an ABORT message, but it is never the case that an

ABORT message can follow the sending of the WORKDONE message.

3.4 Inherent Progress-based Priority Increase

Normally, under a priority-based conflict resolution policy, when a higher priority transaction needs a data item locked

in a conflicting mode by a lower priority transaction, it can cause the abort of the lower priority transaction. An

interesting effect of PEP’s basis in EP is that the longer a transaction executes the lesser are its chances of being

aborted, independent of its actual priority. This is because a cohort cannot be aborted as a result of the data items

accessed by any of its prior cohorts (in the sequential case) and by any of its previously completed cohorts (in the

parallel case), since all these cohorts are already in the prepared state. In short, for transactions in PEP, the “past is

safe, only the present and future are uncertain”.

The positive fallout of the above feature is that PEP derives – for free – the following well-established recom-

mendation in the RTDBS literature [1, 7]: Transactions that have already completed a significant portion of their

work should be given preferential treatment since their restart at this late stage would waste a lot of already invested

resources. For example, in [7], priority restart is used as the conflict resolution mechanism in the early stages of a

transaction’s execution, wherease priority inheritance is used in the later stages. The transition point is based on the
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number of locks acquired by the transaction. In contrast to this essentially boolean decision, with PEP there is a

more gradual and continuous increase in preference with progress (arising out of the increasing number of cohorts

that become non-preemptable), which is desirable.

Viewed differently, essentially what PEP does is to effectively “tune” the priority basis of the conflict resolution

protocol. For example, if 2PL-High Priority [1] is in use (as in our simulation study), PEP starts with 2PL-High

Priority, but implicitly moves it closer and closer towards pure (unprioritized) 2PL as the transaction makes more

and more progress. Further, this feature comes fully integrated with the commit protocol.

3.5 Protocol Mechanics

We now describe the mechanics of the PEP protocol. The basic steps of PEP’s execution are the following:

� At transaction initiation, the master forces a membership log record, containing the names of all the cohorts

involved in executing that transaction. For parallel transactions, the master then sends a STARTWORK request

to each cohort, whereas for sequential transactions the master sends this request in turn to each cohort in the

sequence.

� Each cohort executes its work request and, if successfully completed, forces a prepare log record and sends

a WORKDONE message to its master. At this stage, the cohort has entered a prepared state wherein it cannot

unilaterally commit or abort the transaction but has to wait for the final decision from the master.

On the other hand, if the cohort has not been successful in the execution of its work, and therefore decides to

abort, it force-writes an abort log record, sends an ABORT message to the master and aborts the transaction

locally.

� If the master receives WORKDONE messages from all the cohorts, it forces a commit log record, sends a COM-

MIT message to each cohort, and then forgets about the transaction.

However, if the master receives an ABORT message from even one cohort, it sends ABORT messages to those

cohorts that are in the prepared state. After it has received ACKs from the cohorts that were sent the decision,

the master writes an end log record and terminates the protocol.

� On receiving a COMMIT message from the master, each cohort moves to the committing state, writes acommit

log record, and forgets about the transaction. On the other hand, if the cohort receives an ABORT message, it

moves to the aborting state, force-writes an abort log record, and then sends an ACK message to the master.

3.6 Prepared Data Lending Mechanism

As mentioned before, PEP allows prepared cohorts to lend their uncommitted data to concurrently executing trans-

actions (without of course, releasing the update locks). In this context, three situations may arise, only one of which

will occur for each lending:

� Lender Receives Decision First: Here, the lending cohort (i.e. the prepared cohort) receives its commit/abort

decision from its master before the borrowing cohort has completed its local execution.

– If the decision is to commit, the lending cohort completes its processing in the normal fashion.
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– If the decision is to abort, then the lender is aborted in the normal fashion; in addition, the borrower is

also aborted since it has utilized dirty data.

� Borrower Completes Execution First: Here, the borrowing cohort completes its execution before the lending

cohort has received its global decision. The borrower is now put “put on the shelf”, that is, it is made to wait

and not allowed to send a WORKDONE message to its master. This means that the borrower is not allowed to

initiate the processing that could eventually lead to its reaching the prepared state. By this design, the serious

problem of cascading aborts [3] is avoided in PEP. Instead, it has to wait until either the lender receives its

global decision or its own deadline expires, whichever occurs earlier:

– In the former case, if the lender commits, then the borrower is “taken off the shelf” and allowed to send

its WORKDONE message. However, if the lender aborts, then the borrower is also aborted immediately

since it has utilized inconsistent data.

– In the latter case (deadline of a borrower expires while waiting on the shelf), the borrower is killed in the

normal manner.

� Borrower Aborts During Data Processing Before Lender Receives Decision: Here, the borrowing cohort aborts

in the course of its data processing (due to either a local problem, deadline expiry or receipt of an ABORT mes-

sage from its master
�

) before the lending cohort has received its global decision. In this situation, the bor-

rower’s updates are undone and the lending is nullified.

In summary, PEP’s lending facilities allow transactions to access uncommitted data held by lower priority prepared

transactions in the “optimistic” belief that this data will eventually be committed.

3.7 Comparison with PROMPT

A pictorial representation of the differences between PEP and PROMPT with respect to their commit processing

and lending policies is shown in Figures 1a and 1b for sequential and parallel distributed transaction execution, re-

spectively. The intervals during which lending is possible are also marked in the figures (the symbol P signifies the

cohort’s entering the prepared phase). As is evident from these figures, the lending possibilities and lending periods

are much more for PEP as compared to PROMPT. Further, the commit processing overhead is significantly smaller

for PEP.

3.8 Schemes for handling Lending-related Problems

As mentioned earlier in this section, the increased lending possibilities in PEPE lead to the problems of Harmful

Lending and Deadlocks. We now present schemes to address these problems.

3.8.1 Addressing the Harmful Lending problem

Ideally, we would like to ensure that lendings occur only if the lender’s probability of subsequently committing is

above a threshold. This probability is difficult to estimate in an RTDBS, given the problems of estimating real-time
�

Assuming a locking-based conflict resolution protocol, a borrowing cohort can receive an ABORT message from the master, to effect an

abort that has arisen from serializability reasons, only in the case of parallel distributed transactions.
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Figure 1: Comparison of the PEP and PROMPT protocols

transaction execution times in RTDBS – this is doubly so in the case of a distributed RTDBS where complete infor-

mation about the entire system is not available. However, a simple approach that may give a crude estimate is to

monitor the current kill percentage of the system and use this percentage to toss a (biased) coin to decide whether or

not to permit the lending. This solution is attractive in that it is easy to implement and requires very little and easily

available information. However, it has the obvious drawback that it does not take the characteristics of the specific

lender into account. So, an alternative approach to factor these characteristics is shown in the following formula for

sequential distributed transactions (the formula for parallel transactions is given afterwards):

At time T, a cohort C belonging to sequential distributed transaction X can lend only if

���������	��

������������������������� �"!$#�%�#'&'(*),+�-/.10
&324!�56 #'(87:9;!$#'%<#=&�(*> � ? 0'7:@A9CB4DE0:F 6? 0'7:@A9CB4DE0:FHGH&�&�B4I:7:9 6 B4-J0LKNM ���PO��RQS�T�<UEQSV���O

where
��

���W�L�����������������

is the system’s kill percentage at time
�

, X V�QHVY����Z\[^]\_����S� X � is the position that cohort

X occupies in the sequence of cohorts associated with the parent transaction (for example, the first cohort to exe-

cute would have a X V�QHVE�E��Z`[H]\_���� of 1, and so on),
�aVE�'bc� X V�QSVE����U is the total number of cohorts associated with

the transaction, d ��bcOe�W
f�g� and h �E��
ficbj���k

]\� are the deadline and arrival time, respectively, of transaction l , and

M ���PO��RQS�T�<UEQSV���O is a design parameter set between 0 and 100.

The above formula is based on the intuition that, on average,

1. the greater the percentage of transactions that meet their deadlines, the greater the probability that this trans-

action will also complete before its deadline.

2. it is riskier for early cohorts to lend, compared to later cohorts (as we will see shortly, the probability of a trans-

action encountering a conflict, and hence getting delayed due to blocking, decreases as a transaction progresses

with its execution. This implies that as more of a transaction’s cohorts complete, its chances of finishing within

its deadline increases).

3. the farther the relative deadline of a transaction, the greater are the chances that it will complete before its

deadline.
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Of course, ideally, a transaction’s computational, resource, and data requirements, if available, can be taken into ac-

count. In practice however, these are unlikely to be known accurately. Furthermore, the overheads of monitoring and

using such precise information may negate the benefits of fine-grained decision making.

For parallel distributed transactions, since all cohorts execute concurrently, the lending decision formula can be

reduced to

At time T, a cohort C belonging to parallel distributed transaction X can lend if

��������� �`
=�W������������������� ��� � ? 0'7:@A9CB;D�0:F 6? 0'7:@A9CB;D�0:FHGH&�&�B4I:7:9 6 B4-J0 KNM ���PO��RQS���YUYQHV��WO

The appropriate setting of the M ���POT�RQ �T�<UEQSV���O parameter in the above formulas is an optimization issue: set too

conservatively (high values), it will turn off the borrowing feature to a large extent, thus effectively reducing PEP

to standard EP; on the other hand, set too aggressively (small values), it will fail to stop several lenders that will

eventually abort.

3.8.2 Addressing the Deadlock problem

Here, we have several choices:

1. Permitting lending only from a low priority lender to a high priority borrower, thus ensuring no cycles.
�

2. Using a timeout mechanism, but determining the appropriate choice of timeout value is non-trivial.

3. Using one of the several deadlock detection algorithms available in the literature for traditional DDBMS. The

only difference would be in the choice of victim in breaking the deadlock – in traditional DDBMS, the youngest

transaction or the transaction with the fewest number of locks is usually chosen, but in a DRTDBS, we would

choose the lowest priority transaction as the victim.

4. A final possibility, feasible in the firm real-time domain, is to simply allow the deadlock to continue until ei-

ther (a) one of the transactions in the cycle is aborted due to data conflict with an external (outside the cycle)

transaction, or (b) the transaction with the closest deadline in the cycle is killed due to deadline expiry.

4 Simulation Model

To evaluate the performance of the commit protocols, we used the simulation model of our previous commit pro-

cessing study [6], which consists of a (nonreplicated) database that is distributed over a set of sites connected by a

network. A summary of the model parameters and their default settings are given in Table 3. In the remainder of this

section, we highlight the main features of this model – the complete details are in [6].

Database and Workload Model. The database is modeled as a collection of d ��� 
��e� pages that are uniformly

distributed across all the
Z`[H] � 
f���<U

sites. At each site, transactions arrive in an independent Poisson stream with

rate h ���E

ijbc��� bj��� , and each transaction has an associated firm deadline. The deadline is assigned using the formula,

d 6
	 h 6�� ��
 ��� 6 , where d 6 , h 6 and
� 6 are the deadline, arrival time and resource time, respectively, of trans-

action
�

, while
��


is a slack factor. The resource time is the total service time at the resources that the transaction
�
We assume that transaction priorities are unique and fixed during their sojourn in the system, and that cohorts inherit the priorities of their

parent transaction.
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Table 3: Simulation Model Parameters

Parameter Parameter Default

Name Meaning Value���������
	
No. of pages in the database 2400�
���
������	��
No. of sites in the database 8����� ��������� �
��	
Transactions/second per site 0 - 10�!����"$#&%'��"(��) �
Slack Factor in Deadline 4.0* � �,+-�.*�/�01	
Execution Pattern Parallel�2���$���3	$4 � 	�	
Degree of Distribution 35 )768) � �9�����
	
Average cohort size 6 pages:;0�<
�
��	>= � )7?
Page update probability 0.5�
��� 5 =@:'�
No. of processors per site 2�
���A���
�����2����#B�
No. of data disks per site 3�
���ACD)>4&�2����#B�
No. of log disks per site 1='�E4&	 5 =@:
CPU page processing time 5 ms='�E4&	��2����#
Disk page access time 20 msFG�H4 5 =@:
Message send / receive time 5 ms�I�KJML
���
Probability of a buffer hit 0.1

requires for its execution. The
� �Wbc��N 
 bc� ��VE�

parameter is a constant that provides control over the tightness/slackness

of transaction deadlines.

All transactions have the “single master, multiple cohort” structure described in section 2. The number of sites

at which each transaction executes is specified by the d 
=U<� d ��Oe�T�Y� parameter. The master and one cohort reside at

the site where the transaction is submitted whereas the remaining d 
=U�� d ��Oe�T�<�L� �
cohorts are set up at different

sites chosen at random from the remaining
Z\[^] � 
f���<U � �

sites. At each of the execution sites, the number of pages

accessed by the transaction’s cohort varies uniformly between
�MPRQ

and
��PRQ

times X V�QHVY��� � 
��e� . These pages are chosen

uniformly (without replacement) from among the database pages located at that site. A page that is read is updated

with probability SUT Oebj���<� ��V�_ . A transaction that is aborted due to a data conflict is restarted immediately and makes

the same data accesses as its original incarnation.

System Model. The physical resources at each site consist of
Z\[^] X � S U processors,

Z`[H] d be��b d 
=U
N U data

disks, and
Z`[H] M V,O d 
'U,N U log disks. There is a single common queue for the CPUs and the service discipline is Pre-

emptive Resume, with preemptions being based on transaction priorities. Each of the disks has its own queue and is

scheduled according to a Head-Of-Line (HOL) policy, with the request queue being ordered by transaction priority.

The
��b8Oc� X � S and

��b8Oc� d 
=U
N parameters capture the CPU and disk processing times per data page, respectively.

The
� [�V�W\

�

parameter gives the probability of finding a requested page already resident in the buffer pool.

The communication network is simply modeled as a switch that routes messages as a local area network that has

high bandwidth is assumed. However, the CPU overheads of message transfer, given by the X U�O X � S parameter,

are taken into account at both the sending and the receiving sites.

Priority Assignment. Transactions are assigned priorities using the Earliest Deadline First (EDF) policy, and

cohorts inherit their parent transaction’s priority. Further, this priority which is assigned at arrival time, is maintained

throughout the course of the transaction’s existence in the system.
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Concurrency Control. For transaction concurrency control, an extended version of the classical centralized 2PL

High Priority (2PL-HP) protocol [1] is used. The extensions made for operating in our DRTDBS environment are the

following: First, when a cohort enters the prepared state, it releases all its read locks but retains the update locks until

it receives and implements the global decision from the master. This release does not cause consistency violations

with the subtransaction model of transaction execution (which we assume) because it is guaranteed that a cohort will

not try to access local data again after it has sent the WORKDONE message. Therefore the problem of unrepeatable

reads does not occur in this environment. Second, a cohort that is in the prepared state cannot be aborted, irrespective

of its priority. Third, in the PROMPT and PEP commit protocols, cohorts in the data-processing phase are allowed

optimistic access to data held by conflicting prepared cohorts.

Logging. With regard to logging costs, only forced log writes are explicitly modeled since they are done syn-

chronously and suspend transaction operation until their completion. The cost of each forced log write is the same

as the cost of writing a data page to the disk. The overheads of flushing the transaction execution log records (i.e,

WAL) are not modeled, however, as they are not expected to affect the relative performance behavior of the commit

protocols.

Transaction Execution Model. At arrival time, a transaction is assigned the set of sites where it has to execute,

the data pages that it has to access at each of these sites, and its deadline. The parameter
�k��be�gU���� T � specifies whether

the transaction will execute in a sequential or parallel fashion. The master is then started up at the originating site,

which in turn forks off a local cohort and sends messages to initiate each of its cohorts at the remote participating

sites. Each cohort makes a series of read and update accesses. A read access involves a concurrency control request

to obtain access permission, followed by a disk I/O to read the page, followed by a period of CPU usage for processing

the page. Update requests are handled similarly except for their disk I/O – the writing of the data pages takes place

asynchronously after the transaction has committed. We also assume sufficient buffer space to allow the retention of

data updates until commit time.

The commit protocol is initiated when the transaction has completed its data processing. If the transaction’s dead-

line expires either before this point, or before the master has written the global decision log record, the transaction is

killed (the precise semantics of firm deadlines in a distributed environment are defined in [6]).

Performance Metric. The performance metric of our experiments is KillPercent, which is the steady-state per-

centage of input transactions that are killed, i.e., the percentage of input transactions that the system is unable to

complete before their deadlines.
�

Baseline Protocol. To help isolate and understand the effects of data distribution on KillPercent performance, we

have also simulated the performance behavior for CENT (Centralized), a centralized database system that is equiva-

lent (in terms of overall database size and number of physical resources) to the distributed database system. Messages

are obviously not required here and commit processing only requires writing a single decision log record (force-write

if the decision is to commit).

5 Experiments and Results

Using the firm-deadline DRTDBS model described in the previous section, we have conducted an extensive set of

simulation experiments comparing the real-time performance of the PEP, EP, PROMPT and CENT protocols. In this
�
The KillPercent values shown here have relative half-widths about the mean of less than 10% at the 90% confidence level – each experi-

ment was run until at least 20000 transactions were processed by the system.

12



section, we present the results of a representative set of these experiments. We examine both sequential and parallel

execution of subtransactions, a wide range of transaction arrival rates, environments with bounded and unbounded

physical resources, distributed systems with different communication delays, and finally, different transaction distri-

bution scenarios. For ease of exposition, we first present results for parallel distributed transactions, and then move

on to sequential distributed transactions.

5.1 Parallel Transactions

5.1.1 Experiment 1: Resource and Data Contention

Our first experiment was conducted using the default settings for all model parameters (Table 3), resulting in signifi-

cant levels of both resource contention (RC) and data contention (DC). Here, each transaction executes in a parallel

fashion at three sites, accessing an average of six pages at each site. An accessed page is updated with a probability of

0.5. Each site has two CPUs, three data disks and one log disk. For this environment, Figure 2a shows the KillPercent

behavior as a function of the transaction arrival rate.
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Figure 2: Baseline Parallel Cohorts

Here, we first observe that the EP protocol, although it has no real-time specific features and suffers from sig-

nificant priority inversion, actually does slightly better than the carefully designed real-time PROMPT throughout

the loading range! This highlights the substantial impact that just the elimination of one phase and the consequent

reduction of overheads can have on real-time commit performance.

Moving on to PEP, we find that by virtue of its lending feature, it largely addresses the priority inversion lim-

itation of EP, while retaining its positive overhead reduction feature, and therefore performs significantly better

than PROMPT. For example, at an arrival rate of 2.0 transactions per second, PEP has a kill percentage of 2 while
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PROMPT has close to 5. In fact, PEP’s performance is so good that it actually comes close to CENT, the central-

ized system, for most of the loading range. This testifies to PEP’s efficient integration of the 1PC and prepared data

lending policies.

5.1.2 Experiment 2: Pure Data Contention

In our next experiment, we isolated the influence of data contention (DC) on the performance of the commit protocols.

Studying this scenario is important because while resource contention can usually be addressed by purchasing more

and/or faster resources, there do not exist any equally simple mechanisms to reduce data contention. In this sense, data

contention is a more “fundamental” determinant of database system performance. Further, while abundant resources

may not be typical in conventional database systems, they may be more common in real-time environments since

many real-time systems are sized to handle transient heavy loading.

For this experiment, the physical resources (CPUs and disks) were made “infinite”, that is, there is no queuing for

these resources. The other parameter values are the same as those used in Experiment 1. The KillPercent performance

results for this system are presented in Figure 2b (note that the Y-axis extends only from 0 to 10 percent). In this

graph, we see that, similar to the previous experiment, EP performs similar to or marginally better than PROMPT

throughout the loading range. PEP’s performance gain is even more striking than before. For example, at an arrival

rate of 5 transactions per second, PEP misses about 2.5 percent of transaction deadlines whereas PROMPT misses

10 percent.

The increased improvement in PEP’s performance can be attributed to the fact that because of the abundant re-

sources available, transaction restarts do not have a performance impact in terms of resource wastage. Therefore,

there are only negligible negative effects due to more lenders aborting in PEP as compared to PROMPT.

5.1.3 Experiment 3: Fast Network Interface

In the previous experiments, the cost model for sending and receiving messages assumed a system with a relatively

slow network interface ( X U�O X T [ 	 QE]\U
). We conducted another experiment wherein the network interface was

faster by a factor of five, that is, where X U7O X T [ 	 ��]\U
. The results of this experiment are shown in Figure 3a for

the RC+DC environment and in Figure 3b for the Pure DC environment.

In Figure 3a, we see that the qualitative performance of the protocols is similar to that seen in the previous exper-

iments, but all the protocols came quantitatively closer to each other. We observe similar results in Figure 3b, except

that Pure DC environment, the results were similar except that we see, for the first time, PROMPT outperforming EP.

The above results are only to be expected since the effect of the reduction in overheads that EP brought to bear

is reduced due to the improved communication infrastructure, and therefore PROMPT’s real-time features prevail.

However, PEP whose goal is to combine the benefits of both EP and PROMPT continues to provide the best per-

formance. and at low loads is even marginally better than CENT (the explanation for this perhaps counter-intuitive

behavior is given in Experiment 5, where this effect is more pronounced).

5.1.4 Experiment 4: Highly Distributed Transactions

In the experiments described so far, each transaction executed on three sites. To investigate the impact of hav-

ing a higher degree of distribution, we performed experiments wherein each transaction executed on six sites. The

X V�QHVY��� � 
��e� in this experiment was reduced from 6 pages to 3 pages in order to keep the average transaction length
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Figure 3: Fast Network Interface

equal to that of the previous experiments. In addition, a higher value of
� ��bc��N 
 bj�3��VE� 	�� was used to cater to the

increase in response times caused by the increased distribution. The results for this experiment are shown in Figure

3a for the RC+DC environment, and in Figure 3b for the Pure DC environment.

In Figure 4a, we see a considerable gap between and EP as compared to that of PROMPT. For example, at an

arrival rate of 3 transactions per second, PROMPT misses over 30 percent of transaction deadlines, where PEP brings

this down by an order of magnitude, to less than 3 percent (EP has a kill percentage of about 5 percent).

The reason for this dramatic change is that increased distribution results in a substantial relative increase in com-

mit processing overheads for PROMPT, whereas it has comparatively less effect on PEP and EP due to their one-phase

commit. This is quantitatively shown in Table 4, which compares the overheads of the protocols for committing trans-

actions with d 
=U<� d ��Oe�T�Y� 	�� and d 
=U<� d ��Oe�T�Y� 	�� , respectively (the numbers have been computed as per our

simulation model where one cohort is local to the master site, thereby involving no messages). In particular, in the

earlier experiments, PROMPT was using 3 extra forced-writes and 6 more messages than PEP per committed trans-

action, whereas in the current experiment, it uses 6 extra forced-writes and 15 more messages than PEP to achieve

the same goal.

Table 4: Protocol Overheads

Protocol DistDegree = 3 DistDegree = 6

ForcedWrites Messages ForcedWrites Messages

PROMPT 7 8 13 20

PEP, EP 5 2 8 5

15



0

5

10

15

20

25

30

35

40

45

50

0 1 2 3 4 5

K
ill

 P
er

ce
nt

Arrival Rate/Site

"pep"
"prompt"

"ep"
"cent"

(a) RC + DC

0

2

4

6

8

10

0 1 2 3 4 5

K
ill

 P
er

ce
nt

Arrival Rate/Site

"pep"
"prompt"

"ep"
"cent"

(b) Pure DC

Figure 4: Highly Distributed Transactions

5.2 Sequential Transactions

Having established the good performance of PEP in the parallel distributed transaction environment, we now turn our

attention to sequential distributed transactions. For this, all of the experiments described above for parallel transac-

tions were re-run with sequential cohort execution, and their results are discussed below.

5.2.1 Experiment 5: Resource and Data Contention

In Figure 5a, which presents the results for the baseline environment, we see that the results are generally similar

to those of the equivalent parallel scenario (Experiment 1), with EP performing similar to PROMPT and PEP being

much better than both of them. A major difference, however, is that we now see PEP clearly outperforming CENT!

For example, at an arrival rate of 2.5 transactions per second, PEP misses less than 3 percent of the deadlines while

CENT misses over 6 percent.

At first sight, the above result may appear to be strange, given that CENT has virtually no commit processing

overheads at all. The explanation for the observed counter-intuitive behavior lies in the interaction between PEP and

the 2PL-HP concurrency control protocol. As mentioned in section 3, PEP essentially transforms the classical 2PL-

HP protocol into an adaptive algorithm that is 2PL-HP at the beginning of the transaction execution but progressively

becomes closer to pure 2PL as more and more cohorts of the transaction complete their data processing. This desirable

effect comes into play much more in the sequential domain because the data processing of the individual cohorts occur

in sequence whereas in the parallel domain, they are overlapped (as shown in Figure 1).

The CENT protocol, on the other hand, has to live with 2PL-HP for the entire duration of each transaction, and

therefore does not derive the benefit that PEP receives due to its adaptive influence on 2PL-HP. This interesting result
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Figure 5: Baseline Sequential Cohorts

highlights the power of the 1PC approach, which goes far beyond merely the obvious reduction of commit processing

overheads.

5.2.2 Experiment 6: Pure Data Contention

In Figure 5b, which refers to the baseline Pure DC see that the performance is similar to that of Experiment 2, but

with the following important difference: We now have PROMPT performing noticeably better than EP throughout

the loading range. The reason for this behavior is that in the sequential environment, the negative effects of EP’s

extended priority inversion periods have more impact since the durations of these inversion periods are significantly

longer as compared to the parallel environment. PEP, however, continues to provide the best performance by virtue

of its lending policy negating these drawbacks of the 1PC approach.

5.2.3 Experiment 7: Fast Network Interface

The results for fast network interfaces are shown in Figures 6a and 6b for the RC+DC and Pure DC environments,

respectively. We see in these figures that the performance behavior is similar to that of the previous two experiments

except that a bigger gap opens up in the Pure DC case between EP and PROMPT. This is because the reduction

in overheads of EP has lesser impact due to the improved communication infrastructure enjoyed by all protocols.

Further, PROMPT also comes closer to PEP in performance, but is still visibly worse over the entire loading range.
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Figure 6: Fast Network Interface
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Figure 7: Highly Distributed Transactions
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5.2.4 Experiment 8: Highly Distributed Transactions

The results for higher degree of distribution are shown in Figures 7a and 7b for the RC+DC and Pure DC environ-

ments, respectively. We see in these figures, for the first time, PEP doing worse than PROMPT, although still signif-

icantly better than EP. In Figure 7a, PEP is marginally worse than PROMPT, whereas in Figure 7b, it is substantially

worse.

The reason for the above behavior is the following: The higher degree of distribution makes the priority inver-

sion periods much longer, as testified to by the significant gap between the performance of EP and PROMPT in both

the figures. Here, 2PL-HP moves much quicker towards becoming unprioritized 2PL since each transaction is now

composed of a long sequence of short cohorts. This was confirmed from the restart statistics output by our simula-

tor – EP had virtually no restarts at all in this environment, whereas in PROMPT the restart ratio is much higher. In

the Pure DC case, it results in the EP system effectively running in a non-real-time mode, that is, without prioritized

concurrency control. While PEP significantly reduces this problem due to its lending mechanism, the improvement

is not sufficient to completely obliterate the gap between EP and PROMPT.

While the above results do highlight a limitation of EP and PEP, in practice, however, it may not be a serious

handicap. This is because transactions are usually distributed to a limited degree, often involving only two sites [11].

5.3 Further Improvements in PEP’s performance

The results presented above highlighted PEP’s ability to substantially improve on the real-time performance of

PROMPT, currently the state-of-the-art in real-time commit processing. What is even better is that these results are

“conservative” in that they were obtained with the “bare-bones” and therefore somewhat inefficient implementation

of PEP, as mentioned earlier in section 4. with regard to the lending policy, the deadlock resolution mechanism, as

well as the Presumed Commit implementation. In our current work, we are evaluating the performance impact of

more sophisticated approaches for addressing these issues and it is our expectation that with the appropriate choices

the performance of PEP will improve even further with respect to PROMPT than that seen here.

6 Conclusions

Table 5: Summary of Experimental Results

Execution Network Contention Distribution PEP EP PROMPT

Parallel Slow – – Good OK Bad

Parallel Fast RC+DC – Good OK Bad

Parallel Fast DC – Good Bad OK

Sequential – RC+DC Low Good OK Bad

Sequential – DC Low Good Bad OK

Sequential – – High OK Bad Good

Motivated by the need to reduce commit processing overheads, namely overheads due to communication and forced

disk writes, we investigated here the use of 1PC protocols for distributed real-time databases. In 1PC, the voting
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phase of the multi-phase commit protocols is eliminated by having the cohorts of each distributed transaction enter

the prepared state as soon as they send the work completion message to their master. But, in 1PC protocols, cohorts

are in the prepared phase for an extended period of time, during which their data locks cannot be pre-empted. We

addressed this issue by adapting the technique of controlled borrowing of prepared data, which we had previously

proposed and successfully utilized for multi-phase commit protocols. The resulting PEP protocol obtains many of

the advantages of one-phase operation and controlled sharing, as exemplified by the EP and PROMPT protocols,

respectively.

Table 5 summarizes the relative performance of the protocols, synthesized from our simulation experiments. Here

the comparison is relative with “Good” and “Bad” being two ends of the performance spectrum, and “OK” lying in

between. If the entry for a particular system characteristic is marked by a “–” it denotes that the relative performance

of the protocol is not affected by that characteristic. What is appealing about the table is that PEP is good in all but

one situation: when the cohorts execute sequentially and are spread across a large number of sites. But as mentioned

earlier, this situation occurs only rarely in practice. Hence, it appears safe to say that PEP is preferable in a majority

of situations that occur in time-critical database applications.

Further, the above performance was derived using a very conservative implementation of PEP. In our current

work, we are investigating the improvements that can be obtained from more sophisticated choices for the lending

policy, the deadlock resolution mechanism and the Presumed Commit implementation.
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