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Abstract

Cost-based strategies to derive relational configurations for XML applications
have been recently proposed and shown to provide substantially better configura-
tions than heuristic methods. These strategies make use of schema transformations
to a canonical schema in order to derive various relational configurations.

In this paper, we propose a flexible framework for schema transformations and
show how it can be used to explore the search space of relational configurations at
various granularities. In particular, we use this framework for designing algorithms
to iteratively search the space of configurations. We address several issues which
arise in this context including that of propagating accurate statistics in the iterations
of the search algorithm; and investigating the effect of the query workload on the
quality of the relational configurations that are derived and on the run-time of the
algorithm. We also propose optimizations to speed up the search process without
significant loss in the quality of the relational configurations.

Our experiments indicate that a judicious choice of transformations and search
strategy can lead to relational configurations of substantially higher quality than
those recommended by previous approaches.

1 Introduction

XML has become an extremely popular medium of information exchange. As a result,
efficient storage of XML documents is now an active area of research in the database
community. In particular, the use of relational engines for this purpose has attracted
considerable interest with a view to leveraging their powerful and reliable data man-
agement services.

Cost-based strategies to derive relational configurations for XML applications have
been proposed recently [1, 17] and shown to provide substantially better configurations
than heuristic methods (e.g., [13]). The general methodology used in these strategies is
to define a set of schema transformations that derive different relational configurations.
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The quality of the relational configurations is evaluated by a costing function applied to
a given XML query workload. A greedy heuristic or variants thereof are used to search
through the associated space of relational configurations.

In this paper, we study, for the first time, the impact of schema transformations
and the query workload on search strategies for finding efficient XML-to-relational
mappings. Specifically, we develop a framework for generating XML-to-relational
mappings which incorporates a comprehensive set of schema transformations and is
capable of supporting different mapping schemes such as ordered XML and schema-
less content. Our framework represents an XML Schema through type constructors
and uses this representation to define several schema transformations from the exist-
ing literature. We also propose variations of these transformations that lead to a more
efficient search process, as well as new transformations that derive additional useful
configurations.

In order to study the problem of searching for an efficient relational configuration in
depth, we have implemented this framework on top of the LegoDB prototype [1]. Here,
we describe a series of greedy algorithms that we have experimented with, and show
how the choice of transformations impacts the search space of configurations. The
algorithms differ in the number and type of transformations they utilize. Intuitively,
the size of the search space examined increases as the number/type of transformations
considered in the algorithms increase. Our empirical results demonstrate that, in ad-
dition to deriving better quality configurations, algorithms that search a larger space
of configurations can sometimes converge faster. Further, we propose optimizations
that significantly speed up the search process with very little loss in the quality of the
selected relational configuration.

An important aspect of cost-based XML-to-relational mapping is evaluating the
cost of the input workload for each of the derived configurations. In order to compute
precise cost estimates, it is important that accurate statistics are available as transfor-
mations are applied. Clearly, it is not practical to scan the base data for each rela-
tional configuration derived. As discussed later in this paper, we address this issue by
gathering statistics at the appropriate granularity before the search starts; and deriving
accurate statistics during the search process.

In summary, our contributions are:
• A framework for exploring the space of XML-to-relational mappings.
• More powerful variants of existing transformations and their use in search algorithms.
• A study of the impact of schema transformations and the query workload on search
algorithms in terms of the quality of the final configuration as well as the time taken by
the algorithm to converge.
• Optimizations to speed up these algorithms and to prune the search space.

Organization

Section 2 develops the framework for XML-to-relational mappings. Section 3 out-
lines a methodology for search. Section 4 proposes three different search algorithms
based on the greedy heuristic. Section 5 evaluates the search algorithms and Section 6
discusses several optimizations to reduce the search time. Section 7 discusses related
work and finally, Section 8 summarizes our results.
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<complex type> ::=
<simple type>

|| <complex type> , <complex type>
|| <complex type> | <complex type>
|| <complex type> *
|| <complex type> ?
|| <tagname> [<complex type>]

Figure 1: Using Type Constructors to Represent XML Schema Types
define element IMDB {

type Show*, type Director*, type Actor* }
define type Show {

element SHOW { type Title, type Year, type Aka*, type Review*,
(type Movie | type Tv) }}

define type Director { element DIRECTOR {
type Name, type Directed*}}

define type Directed {
element DIRECTED {type Title, type Year, type Info }}

Figure 2: The (partial) IMDB Schema

2 Framework for Schema Transformations

2.1 Schema Tree

A schema tree is a representation of the XML Schema in terms of its type constructors.
An XML Schema can be regarded as a complex type represented using the type con-
structors for: sequence (“,”), repetition (“∗”), option (“?”), union (“|”), <tagname>
(corresponding to a tag) and <simple type> corresponding to base types (e.g., integer).
Figure 1 gives a simplified grammar for the schema tree1.

To illustrate the representation of a schema tree, consider the partial XML Schema
in Figure 2 representing the data from the IMDB (Internet Movie DataBase) web-
site [7]. Here, T itle, Y ear, Aka and Review are simple types. The schema tree for an
excerpt of this schema is shown in Figure 3 (note that base types are not shown). Nodes
in the tree are annotated with the names of the types present in the original schema –
these annotations are shown italicized next to the tags (shown in boldface) in Figure 3.
Some points are worthy of note. First, there need not be any correspondence between
tag names and annotations (type names). Second, the schema graph is actually repre-
sented as a tree, where although different occurrences of equivalent nodes are captured,
their content is shared (see e.g., the nodes TITLE1 and TITLE2 in Figure 3). Finally,
recursive types can be handled similarly to shared types, i.e., the base occurrence and
the recursive occurrence are differentiated, but both share the same content.

Any subtree in the schema tree can be regarded as a type and the node correspond-
ing to that subtree can be annotated without changing the structure of the tree. We refer
to this annotation as the name of the node and use it synonymously with annotation.
We also use the terms subtree, node and type interchangeably throughout the paper.

1The schema tree is an ordered tree.
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IMDB

,

DIRECTOR(Director)

NAME(Name) *

DIRECTED(Directed)

,

TITLE(Title)
,

YEAR INFO(Year) (Info)

,

,

2

2

SHOW

TITLE

,

,

YEAR(Year)

*

AKA(Aka)

*

(Title)

REVIEW

(Show)

(Review)

1

1

* *

Figure 3: (Partial) Schema Tree for the IMDB Schema

2.2 From Schema Trees to Relational Configurations

Given a schema tree with annotated nodes, a relational configuration is derived as fol-
lows:
• If N is an annotation in the schema tree, then there is a relational table TN correspond-
ing to it. This table contains a key column and a parent id column which points to the
key column of the table corresponding to the closest named ancestor of the current
node if it exists.
• If the subtree of the node annotated by N is a <simple type>, then TN additionally
contains a column corresponding to that type to store its values.
• If N is the annotation of a node, then TN contains as many additional columns as the
number of non-annotated children of N that are of type <simple type>.

Other rules which may help in deriving efficient schemas are as follows. Note that the
mapping can follow any set of rules – not necessarily those presented below.
• Repeated types are stored in a separate table. The alternatives would be to (i) store
each occurrence of the repetition as separate columns in its parent table leading to an
artificial upper bound on the number of repeats, or (ii) store all occurrences of the
repetition in the same column by duplicating the values in the rest of the tuple leading
to wasted space (as well as increased complexity for updates).
• Types which are part of a union are stored in a separate table. This rule avoids nulls
in the parent table.

The relational configuration corresponding to the naming in Figure 3 for the
Director subtree is shown in Figure 4.

It is possible to support a different mapping scheme as well – for example in order
to support ordered XML, one or more additional columns have to be incorporated into
the relational table [14]. By augmenting the type constructors, it is also possible to
support a combination of different mapping schemes. For example, by introducing an
“ANYTYPE” constructor, we can define a rule mapping annotated nodes of that type
to a ternary relation (edge table) [4].
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Table Director [director key]
Table Name [Name key, NAME, parent director id]
Table Directed [Directed key, parent director id]
Table Title [Title key, TITLE, parent directed id]
Table Year [Year key, YEAR, parent directed id]
Table Info [Info key, INFO, parent directed id]

Figure 4: Relational Schema for the (partial) Schema Tree
DIRECTOR(Director)

NAME(Name) *

DIRECTED(Directed)

,

TITLE(Title)
, (T)

YEAR INFO

,

Figure 5: A Subset of Annotations

2.3 Inline and Outline

As described above, any node (type) which is annotated has a relational table associated
with it. We call such types as Outlined. Note that annotating any node in the schema
tree corresponds to outlining the type corresponding to that node.

In contrast, all nodes which are not annotated are Inlined since they are stored
within the table of the closest outlined ancestor if they are simple types. We can inline a
previously outlined type by simply deleting its annotation. Thus, through these naming
operations on the schema tree, we can derive an exponentially large number of possible
relational configurations of the given schema.

Inline and outline may also be used to group elements together. Consider Figure 5
in which introducing the annotation T and removing annotations Y ear and Info re-
sults in the new relational schema shown in Figure 6. This configuration groups Year
and Info together in a single table. Note that the usefulness of this configuration is
decided by the system searching the space of configurations.

2.4 Other Transformations

Before we describe additional transformations and how they derive different relational
configurations, we introduce a compact notation to describe the type constructors, and
using this notation, we define the notion of syntactic equality.
Tag Constructor: E(label, t, a), where label is name of the tag (such as TITLE,
YEAR, etc.), t is its subtree and a its annotation (if any).
Sequence, Union, Option and Repetition Constructors: Each of the constructors are
defined as: C(t1, t2, a), U(t1, t2, a), O(t, a), and R(t, a), respectively, where t1, t2, t
are subtrees and a is the annotation.
Simple Type Constructor: Simple types are represented as S(base, a) where base is
the type of the simple type (e.g., integer) and a is its annotation.

Definition 2.1 (Syntactic Equality) Two types T1 and T2 are syntactically equal – de-
noted by T1

∼= T2 – if the following holds:
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Table Director [Director key]
Table Name [Name key, NAME, parent Director id]
Table Directed [Directed key, parent Director id]
Table Title [Title key, TITLE, parent Directed id]
Table T [T key, YEAR, INFO, parent Directed id]

Figure 6: Relational Schema with Annotation “T”
define type Show { element SHOW {type Title, (type TV|type Movie) }}
define type Director { element DIRECTOR {type Title, type Directed }}
define type Title { element TITLE {string}}

Type split Title →

define type Show { element SHOW {type STitle, (type TV|type Movie) }}
define type Director { element DIRECTOR {type DTitle, type Directed }}
define type STitle { element TITLE {string}}
define type DTitle { element TITLE {string}}

Figure 7: Example of a Shared Type and Type Split

case T1, T2 of
| E(label, t, a), E(label′, t′, a′) →

label = label′ AND a = a′ AND t ∼= t′

| C(t1, t2, a), C(t′1, t
′

2, a
′) →

a = a′ AND t1 ∼= t′1 AND t2 ∼= t′2

| U(t1, t2, a), U(t′1, t
′

2, a
′) →

a = a′ AND t1 ∼= t′1 AND t2 ∼= t′2

| R(t, a), R(t′, a′) →

a = a′ AND t ∼= t′

| O(t, a), O(t′, a′) →

a = a′ AND t ∼= t′

| S(b, a), S(b′, a′) →

a = a′ AND b = b′

2.4.1 Type Split/Merge

The inline and outline operations are analogous to removing and adding annotations to
nodes. We now define two transformations based on the renaming of nodes: Type Split
and Type Merge. We refer to a type as shared when it has distinct annotated parents. In
the example shown in Figure 7, the type Title is shared by the types Show and Directed.
Consequently, the table corresponding to Title would contain a parent id column which
contains key values from both Directed as well as Show – hence the parent id column
is not a foreign key.

Intuitively, the type split operation distinguishes between two occurrences of a type
by renaming the occurrences. By renaming the type Title to STitle and DTitle, a rela-
tional configuration is derived where a separate table is created for each type of title.
Conversely, the type merge operation adds identical annotations to types whose corre-
sponding subtrees are syntactically equal. The annotation Title would occur twice in
the schema tree – once each under Show and Directed.
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(Directed) (Directed)
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TITLE

INFO

YEAR

TITLE

YEAR

DIRECTEDDIRECTED

(Year_Info)
(Title_Year)

Figure 8: Applying Associativity

2.5 Structural Transformations

All the transformations defined so far are limited to modifying the annotations of nodes,
and preserving the structure of the schema tree. We now define operations which
change the structure of the schema tree. Some of these transforms were originally
described in our earlier work [1]. We redefine and extend these transforms in our new
framework.

2.5.1 Commutativity and Associativity

Two basic structure-altering operations that we consider are: commutativity and asso-
ciativity. Associativity is used to group different types into the same relational table.
Consider, for example, the type Directed shown in Figure 8. The first tree in this figure
yields a relational schema in which the Year and Info about Directed are stored in a
single table called Year Info. We can change this grouping by applying associativity as
shown in the second tree and obtain a relational schema in which Title and Year appear
in a single table called Title Year.

Commutativity by itself does not give rise to different relational mappings 2, but
when combined with associativity may generate mappings different from those consid-
ered in the existing literature. For example, in Figure 8, by first commuting year and
info and then applying associativity, we can get a configuration in which Title and Info
are stored in the same relation.

2.5.2 Union Distribution/Factorization

Using the standard distribution law for distributing sequences over unions for regular
expressions, we can separate out components of a union: (a, (b|c)) = (a, b)|(a, c). We
derive useful configurations using a combination of union distribution, outline and type
split as shown below:

define type Show {
element SHOW { type Title, (type TV|type Movie) }}

Distribute Union →

define type Show {
(element SHOW { type Title, type TV }) |
(element SHOW { type Title, type Movie }) }}

Outline →
2Note that commuting the children of a node no longer retains the original order of the XML schema.
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Figure 9: Union Distribution and Factorization

define type Show { type TVShow | type MovieShow}
define type TVShow {

element SHOW { type Title, type TV }}
define type MovieShow {

element SHOW { type Title, type Movie }}

Type split T itle →

define type TVShow {
element SHOW { type TVTitle, type TV }}

define type MovieShow {
element SHOW { type MovieTitle, type Movie }}

The relational configuration corresponding to the above schema has separate ta-
bles for TVShow and MovieShow, as well as for TVTitle and MovieTitle. Moreover,
applying this transformation would enable the inlining of TVTitle into TVShow and
MovieTitle into MovieShow. Thus the information about TV shows and movie shows
is separated out – this is equivalent to horizontally partitioning the Show table, i.e., one
partition is created for TV shows and another for movies. Conversely, the union fac-
torization transform would factorize the union. For the example above, this would be
done by first doing a type merge of TVTitle and MovieTitle and then doing a factoriza-
tion of the union to get back the original schema. In order to determine whether there
is potential for a union distribution we search the schema tree for the pattern shown
in the left-hand side of Figure 9. Similarly, in order to locate a potential union factor-
ization, we search for the pattern shown in the right-hand side of Figure 9. 3 We have
to determine the syntactic equality of two subtrees before declaring the pattern to be
a candidate for union factorization. Note that there are several other conditions under
which union distribution and factorization can be done. Due to lack of space, we do
not enumerate them here.

2.5.3 Repetition Split/Merge

According to the rules in Section 2.2, a repeated type is always stored in a separate
table. However, it is possible to inline some of these values by a transformation which
splits the repetition. For example:

3The problem of finding these patterns on schema trees is an instance of non-linear tree pattern matching
and can be performed in time O(m ∗ n), where m is the number of nodes in the pattern and n the number
of nodes in the target, and has been shown to have a linear expected time behavior [10].
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define type Show {element SHOW {type Title, type Aka*} }

Split Repetition →

define type Show {element SHOW {type Title, type Aka1?, type Aka2*} }

By splitting the repetition Aka*, the new type Aka1 may be inlined into Show. Aka2*
may be split over and over again. 4 In order to prevent an infinite number of splits, the
number of splits must be fixed during the search. Repetition merge is the inverse of
split — it merges the types Aka1 and Aka2 into Aka.

Candidates for repetition split and merge can be identified in the schema tree by
identifying the patterns R(X,−) and splitting it into C(O(X,−), R(X,−),−) and
conversely looking for the latter transform and merging it into the former.

Many other transforms such as simplifying unions [13] (a lossy transform which
enables the inlining of one or more of the components of the union), etc. can be defined
similarly, and the patterns to be matched in order to discover the potential for such a
transform can be enumerated. Next, we outline search algorithms which consider the
transformations discussed in this section, namely, Inline/Outline, Type Split/Merge,
Union Distribution/Factorization and Repetition Split/Merge. In the remaining part of
the paper, we refer to Type Merge, Union Factorization and Repetition Merge as merge
transforms and Type Split, Union Distribution and Repetition Split as split transforms.

3 Evaluating Configurations

As mentioned in the Introduction, it is important that during the search process precise
cost estimates are computed for the query workload under each of the derived configu-
rations — this, in turn, requires accurate statistics. Since it is not practical to scan the
base data for each relational configuration derived, it is crucial that these statistics be
accurately propagated as transformations are applied.

Collection and Propagation of Statistics

For ease of exposition, we describe the collection and propagation of statistics at the
XML Schema level, and later show how to translate these into relational statistics.

An important observation about the transformations defined in Section 2 is that
whereas merge operations preserve the accuracy of statistics, split operations do not.
Intuitively, if two types T1 and T2 are merged into T , precise statistics for T can be
derived by summing/unioning the statistics of T1 and T2. However, when a type T is
split into T1 and T2, in general it is not possible to determine precisely the statistics
for the new types. (Note that in some special cases, e.g., for outline transform, it may
be possible to accurately infer the statistics of the new type from the statistics of the
parent type.)

Consequently, in order to preserve the accuracy of the statistics, before the search
procedure starts, all possible split operations are applied to the user XML schema.

4Note that Aka1 and Aka2 share the same content.
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Statistics are then collected for the fully decomposed schema. Subsequently, during the
search process, only merge operations are considered.

key

T_Year

value parent_id

define stat Year {

  parent histogram Show {
    bucket number {3}
    buckets {
      from 1 to 2 count 4,
      from 2 to 3 count 1,
      from 3 to 5 count 3 }
  }

   value domain {1990 to 2001}

}

  }
      from 1995 to 2001 count 3
      from 1990 to 1995 count 5,
    buckets {
    bucket number {2}
  value histogram {

  cardinality {8} Cardinality of table T_Year
domain of column key  id_domain {30 to 38}

histogram for column parent_id

range of values in column value

histogram for column value

define type Year {xsd:integer}

Figure 10: Statistics Translation

In our prototype implementation, we use StatiX [5] to collect statistics for anno-
tated types. The StatiX system provides concise and accurate summaries which can
be easily translated into relational statistics. The translation procedure is illustrated
through the example in Figure 10.

The derived relational statistics are used as input to a relational optimizer, which in
turn computes cost estimates for the (also appropriately translated) query workload un-
der a given relational configuration. In our implementation, we use the Volcano-based
optimizer described in [11]. Since the accuracy of this optimizer has been verified
by the execution of queries over a commercial RDBMS, given precise statistics at all
stages of transformations, this optimizer is expected to provide cost estimates that are
consistent with those of commercial RDBMS.

Due to space limitations, we do not discuss the translation procedure from XQuery
to SQL. Details about this process can be found in the literature [13, 14, 3].

4 Search Algorithms

In this section we describe three greedy algorithms we have implemented using our
framework. They differ in the choice of transformations that are selected and applied
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at each iteration of the search. In the remainder of the section, we describe these
algorithms in detail.

Algorithm 1 Greedy Algorithm
1: Input: queryWkld, S {Query workload and Initial Schema}
2: prevMinCost ← INF

3: rel schema← convertToRelConfig(S, queryWkld)
4: minCost← COST(rel schema)
5: while minCost < prevMinCost do
6: S′ ← S {Make a copy of the schema}
7: prevMinCost ← minCost

8: transforms← applicableTransforms(S′)
9: for all T in transforms do

10: S′′ ← Apply T to S′ {S′ is preserved without change}
11: rel schema ← convertToRelConfig(S′′, queryWkld)
12: Cost← COST(rel schema)
13: if Cost < minCost then
14: minCost← Cost

15: minTransform← T

16: end if
17: end for
18: S ← Apply minTransform to S {The min. cost transform is applied}
19: end while

First, consider Algorithm 1 that describes a simple greedy algorithm — similar
to the algorithm described in [1]. It takes as input a query workload and the initial
schema (with statistics). At each iteration, the transform which results in the minimum
cost relational configuration is chosen and applied to the schema (lines 5 through 19).
The conversion from the transformed schema to the relational configuration (line 11)
follows the rules set out in Section 2.2. The algorithm terminates when no transform
can be found which reduces the cost.

Though this algorithm is simple, it is also very flexible. This flexibility is achieved
by varying the strategies to select applicable transformations at each iteration (function
applicableT ransforms in line 8). In the experiments described in [1], only inline
and outline were considered as the applicable transformations and the utility of the
other transformations (e.g., union distribution and repetition split) were shown inde-
pendently. Below, we describe variations to the basic greedy algorithms that allow for
a richer set of transformations.

As discussed in Section 3, it is important to perform all splits and then the merges
on the schema to preserve the accuracy of statistics. It is worth pointing out that fixing
this order is also important to avoid re-generating the same relational configuration in
different iterations of the search. In the rest of the paper, we assume that the start-
ing schema for all search algorithms is the fully decomposed schema and only merge
operations are applied during the greedy iterations.

4.1 InlineGreedy

The first algorithm we consider is InlineGreedy, which only allows inline transfor-
mations. Note that InlineGreedy differs from the algorithm experimentally evaluated
in [1], which we term InlineUser, in the choice of starting schema: InlineGreedy starts
with the fully decomposed schema whereas InlineUser starts with the original user
schema.
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4.2 ShallowGreedy: Adding Transforms

The ShallowGreedy algorithm defines the function applicableT ransforms to return
all the applicable merge transforms. Because it follows the transformation dependen-
cies that result from the notion of syntactic equality (see Definition 2.1), it only per-
forms single-level or shallow merges.

The notion of syntactic equality, however, can be too restrictive for effective
exploration of the search space. For example consider the following (partial) IMDB
schema:
define type Show {type Show1 | type Show2}
define type Show1 {element SHOW { type Title1, type Year1, type TV }}
define type Show2 {element SHOW { type Title2, type Year2, type Movie }}

Unless a type merge of Title1 and Title2 and a type merge of Year1 and Year2
take place, we cannot factorize the union of Show1 | Show2. However, in a run of
ShallowGreedy, these two type merges by themselves may not reduce the cost, but
taken in conjunction with the union merge would make a substantial impact. If that
is the case, ShallowGreedy is handicapped by the fact that a union merge will never
be be applied since the two type merges will not be chosen by the algorithm. In order
to overcome this problem, we design a new algorithm called DeepGreedy, which we
describe below.

4.3 DeepGreedy: Deep merges

Before we proceed to describe the DeepGreedy algorithm, we first introduce the no-
tions of Valid Transforms and Logical Equivalence. The set of valid transformations
for a given schema tree S is a subset of all the applicable transformations in S.

Definition 4.1 (Logical Equivalence) Two types T1 and T2 are logically equivalent
under a set V of valid transforms, denoted by T1 ∼V T2, if they can be made syntacti-
cally equal after applying a sequence of valid transforms from V .

The following example illustrates this concept. Let
V = {Inline}; t1 := E(TITLE, S(string,−), T itle1), and
t2 := E(TITLE, S(string,−), T itle2). Note that t1 and t2 are not syntacti-
cally equal since their annotations do not match. However, they are logically
equivalent: by inlining them (i.e., removing the annotations T itle1 and T itle2), they
can be made syntactically equal. Thus, we say that t1 and t2 are logically equivalent
under the set {Inline}.

Now, consider two types Ti and Tj where Ti := E(l, t1, a1) and Tj := E(l, t2, a2)
with t1 and t2 as defined above. Under syntactic equality, Ti and Tj would not be
identified as candidates for type merge. However, if we relax the criteria to logical
equivalence with (say) V = {TypeMerge}, then it is possible to identify the potential
type merge of Ti and Tj . Thus, several transforms which may never be considered by
ShallowGreedy can be identified as candidates, provided the necessary operations can
be fired to enable the transform. That is, if Ti and Tj are identified as a potential type
merge, then to perform this type merge, t1 and t2 are recursively type merged in order
to enable the type merge of Ti and Tj . Extending the above concept, we can enlarge
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the set of valid transforms V to contain all the merge transforms which can be fired
recursively to enable other transforms.

Algorithm DeepGreedy allows the same transforms as ShallowGreedy, except that
potential transforms are identified not by syntactic equality, but by logical equivalence
with the set of valid transforms containing all the merge operations (including inline).
This allows DeepGreedy to perform deep merges. Note that although not covered in
this paper, additional variations of the search algorithms are possible, e.g., by restricting
the set of valid transforms.

5 Performance Evaluation

In this section we present a performance evaluation of the three algorithms proposed
in this paper: InlineGreedy, ShallowGreedy and DeepGreedy. The purpose of this
evaluation is twofold: (1) to analyze the relative performance of the algorithms on
different kinds of query workloads, and (2) to establish the competitiveness of the
proposed algorithms.

5.1 Query Workloads

We evaluated each of the algorithms on several query workloads based on (1) the ef-
ficiency of the derived relational configuration, and (2) the efficiency of the search
algorithm. These are the same metrics used in [1]. Note that the latter is the same as
the number of distinct configurations seen by the algorithm, and also the number of
distinct optimizer invocations since each iteration involves constructing a new config-
uration and evaluating its cost using the optimizer.

From the discussion of the proposed algorithms earlier in the paper, notice that the
behavior of each algorithm on a given query depends upon whether the query benefits
more from merge transformations or split transformations. If the query benefits more
from split, then neither DeepGreedy nor ShallowGreedy is expected to perform better
than InlineGreedy.

As such, we considered the following two kinds of queries: S-Queries which are
expected to derive benefit from split transformations (Type Split, Union Distribution
and Repetition Split), and M-Queries which are expected to derive benefit from merge
operations (Type Merge, Union Factorization and Repetition Merge).

S-Queries typically involve simple lookup. For example:

SQ1: for $i in /IMDB/SHOW
where $i/TV/CHANNEL = 9
return $i/TITLE

SQ2: for $i in /IMDB/DIRECTOR
where $i/DIRECTED/YEAR = 1994
return $i/NAME

The query SQ1 is specific about the Title that it wants. Hence it would benefit from
a type split of Title. Moreover, it also specifies that TV Titles only are to be returned,
not merely Show Titles. Hence a union distribution would be useful to isolate only
TV Titles. Similarly, query SQ2 would benefit from isolating Director Names from
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Actor Names and Directed Year from all other Years. Such splits would help make
the corresponding tables smaller and hence lookup queries such as the above faster.
Note that in the example queries above, both the predicate as well as the return value
benefit from splits. The performance of the proposed algorithms on S-query workloads
is analysed in Section 5.2.

M-queries typically query for subtrees in the schema which are high up in the
schema tree. When a split operation is performed on a type in the schema, it prop-
agates downwards towards the descendants. For example, a union distribution of Show
would result in a type split of Review, which would in turn lead to the type split of
Review’s children. Hence queries which ask subtrees near the top of the schema tree
would benefit from merge transforms. Similarly predicates which are ”high up” in the
tree would also benefit from merges. For example:

MQ1: for $i in /IMDB/SHOW, $j in $i/REVIEW
return $i/TITLE, $i/YEAR, $i/AKA,

$j/GRADE, $k/SOURCE,
$k/COMMENTS

MQ2: for $i in /IMDB/ACTOR, $j in /IMDB/SHOW
where $i/PLAYED/TITLE = $j/TITLE
return $j/TITLE, $j/YEAR, $j/AKA,

$j/REVIEW/SOURCE, $j/REVIEW/GRADE,
$j/REVIEW/COMMENTS, $i/NAME

Query MQ1 asks for full details of a Show without distinguishing between TV
Shows and Movie Shows. Since all attributes of Show which are common for TV
as well as Movie Shows are requested, this query is likely to benefit from a union
factorization and repetition merge. For example, a union factorization would enable
some types like Title and Year to be inlined into the same table (the table corresponding
to Show). Thus the query may benefit from reduced fragmentation. Similarly, query
MQ2 would benefit from a union factorization of Show as well as a repetition merge
of Played (this is because the query does not distinguish between the Titles of the first
Played and the remaining Played). In both the above queries, return values as well as
predicates benefit from merge transformations.

Based on the two classes of queries described above and some of their variations,
we constructed the following six workloads. Note that each workload consists of a set
of queries as well as the associated weights. Unless stated otherwise, all queries in a
workload are assigned equal weights and the weights sum up to 1.
• SW1: contains 5 distinct S-queries, where the return values as well as predicates
benefit from split transforms.
• SW2: contains 5 distinct S-queries, with multiple return values which do not benefit
from split, but predicates which benefit from split.
• SW3: contains 10 queries - a union of SW1 and SW2 above.
• MW1: contains a single query which benefits from merge transforms.
• MW2: contains the same single query as in MW1, but with selective predicates.
• MW3: contains 8 queries which are M-Queries as well as M-Queries with selective
predicates.

The performance of the proposed algorithms on S-query workloads (SW1-3) and M-
query workloads (MW1-3) is studied in Section 5.2 and Section 5.3 respectively.
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There are many queries which cannot be conclusively classified as either an S-query
or an M-query. For example, an interesting variation of S-Queries is when the query
contains return values which do not benefit from split, but has predicates which do. For
M-Queries, adding highly selective predicates, may reduce the utility of merge trans-
forms. For example, adding the highly selective predicate YEAR > 1990 (Year ranges
from 1900 to 2000) to query MQ1 would reduce the number of tuples. Such queries
thus benefit from split transformations as well as merge transformations. However, in
case the two types of transformations conflict, we need to analyze the balance between
the two. But considering arbitrary queries is unlikely to give much insight because the
impact of split transformations vs. merge transformations would be different for differ-
ent queries. Thus, we chose to work instead on a workload containing a mix of S- and
M-queries, where the impact of split transformations vs. the merge transformations is
controlled using a parameter. The performance of the proposed algorithms on one such
workload as a function of the control parameter is studied in Section 5.4. Finally, in
Section 5.5 we demonstrate the competitiveness of the configurations derived using the
proposed algorithms against those derived using certain baselines/prior approaches.

5.2 Performance on S-Query Workloads

Recall that DeepGreedy does “deep” merges, ShallowGreedy does “shallow” merges
and InlineGreedy allows only inline. S-Queries do not fully exploit the potential of
DeepGreedy since they do not benefit from too many merge transformations. So, Deep-
Greedy could possibly be considering transformations which are useless. This would
make it more inefficient in the run time without any major advantages in the cost of the
derived schema. We present results for the 3 workloads: SW1, SW2 and SW3.

Figure 11: Cost of Workloads containing S-Queries

The cost difference, shown in Figure 11 of the derived configuration between Deep-
Greedy and ShallowGreedy was less than 1% for SW1 and ShallowGreedy and Inline-
Greedy gave the same cost for SW1. But the cost difference between DeepGreedy and
ShallowGreedy for SW2 jumped up to around 17% due to the return values benefiting
from merge, and the difference between DeepGreedy and InlineGreedy was around
48%.
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Figure 12: No. of configurations Examined for Workloads Containing S-Queries

The relative number of configurations examined by each of DeepGreedy, Shallow-
Greedy and InlineGreedy are shown in Figure 12. In terms of number of schemas
examined, DeepGreedy examined a much larger set of configurations than Shallow-
Greedy, while ShallowGreedy examined more number of configurations than Inline-
Greedy except in the case of SW2 where the ShallowGreedy was comparable to Deep-
Greedy.

5.3 Performance on M-Query Workloads

Figure 13 shows the relative costs of the 3 algorithms for the 3 workloads, MW1, MW2
and MW3. As expected DeepGreedy performs extremely well compared to Shallow-
Greedy and InlineGreedy since DeepGreedy is capable of performing deep merges
which benefit MW1. Note that the effect of adding selective predicates reduces the
magnitude of difference in the costs between DeepGreedy, ShallowGreedy and Inline-
Greedy.

Figure 13: Cost of Workloads Containing M-Queries

In terms of the number of configurations examined, DeepGreedy performed the best
as compared to ShallowGreedy and InlineGreedy. This would seem counter-intuitive
– we would expect that since DeepGreedy is capable of examining a superset of trans-
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Figure 14: No. of configurations Examined for Workloads Containing M-Queries

formations as compared to ShallowGreedy and InlineGreedy, it would take longer to
converge. However, this did not turn out to be the case since DeepGreedy picked up
the cost saving recursive merges (such as union factorization) fairly early on in the run
of DeepGreedy which reduced the number of lower level merge and inline candidates
in the subsequent iterations. This enabled DeepGreedy to converge faster. By the same
token, we would expect ShallowGreedy to examine less number of configurations than
InlineGreedy, but that was not the case. This is because ShallowGreedy was not able
to perform any major cost saving merges since the “enabling” merges were never cho-
sen individually (note the cost difference between DeepGreedy and ShallowGreedy).
Hence, the same set of merge transforms were being examined in every iteration with-
out any benefit, while InlineGreedy was not burdened with these candidate merges.
But note that even though InlineGreedy converged faster, it was mainly due to the lack
of useful inlines as reflected by the cost difference between InlineGreedy and Shallow-
Greedy.

5.4 Performance on Controlled S-Query and M-Query Mixed
Workloads

The previous discussion highlighted the strengths and weaknesses of each algorithm.
In summary, if the query workload consists of “pure” S-Queries, then InlineGreedy is
the best algorithm to run since it returns a configuration with marginal difference in
cost compared to DeepGreedy and in less time (reflected in the results for SW1), while
if the query workload consists of M-Queries, then DeepGreedy is the best algorithm to
run.

Since InlineGreedy performs well for workloads with mainly S-Queries, it is rea-
sonable to expect that if the query workload is dominated with S-Queries, then In-
lineGreedy would perform well. Similarly, if M-Queries dominate the workload, then
DeepGreedy would perform best. Note that in either case, DeepGreedy would provide
the best results in terms of cost.

We considered several different “mixed” workloads, but present here results for
only one workload named MSW1 containing 11 queries (4 M-Queries and 7 S-
Queries). In order to control the dominance of S-queries vs. M-queries in the
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workload, we use a control parameter k ∈ [0, 1] and give weight k/7 to each of the
7 S-queries and weight (1 − k)/4 to each of the 4 M-queries.

Figure 15: Cost of Workloads Containing both M- and S-Queries

Figure 16: No. of Configurations Examined for Workloads Containing M- and S-
Queries

We ran workload MSW1 with 3 different values of k ={0.1, 0.5, 0.9}. The cost
of the derived configurations for MSW1 are shown in Figure 15. Expectedly, when S-
Queries dominates, InlineGreedy performs quite competitively with DeepGreedy (with
the cost of InlineGreedy being within just 15% of DeepGreedy). But, as the influence
of S-Queries reduce, the difference in costs increases substantially.

The number of configurations examined by all three algorithms are shown in Fig-
ure 16. DeepGreedy examines more configurations than InlineGreedy when S-Queries
dominates, but the gap is almost closed for the other cases.

Note that both ShallowGreedy and InlineGreedy examine more configurations for
k = 0.5 than in the other two cases. This is due to the fact that when S-Queries dominate
(k = 0.1), cost-saving inlines are chosen earlier while when M-queries dominate (k =
0.9), both algorithms soon run out of cost-saving transformations to apply. Hence for
both these cases, the algorithms converge faster.
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5.5 Comparison with Baselines

From the above sections, it is clear that except when the workload is dominated by S-
queries, DeepGreedy should be our algorithm of choice among the algorithms proposed
in this paper. In this section we compare the cost of the relational configuration derived
using DeepGreedy with the following baselines:
• Fully Decomposed, All Outlined (FDAO): Fully decompose the schema and outline
all its types.
• Fully Decomposed, All Inlined (FDAI): Fully decompose the schema and inline as
many types as possible.
• Fully Merged, All Outlined (FMAO): Retain the original schema and outline all its
types.
• Fully Merged, All Inlined (FMAI): Inline as many types as possible in the original
schema.
• InlineUser (IU): This is the same algorithm evaluated in [1].
• Optimal (OPT): A lower bound on the optimal configuration for the workload given
a specific set of transformations. Since DeepGreedy gives configurations of the best
quality among the 3 algorithms evaluated, the algorithm to compute the lower bound
consisted of transforms available to DeepGreedy. We evaluated this lower bound by
considering each query in the workload individually and running an exhaustive search
algorithm on the subset of types relevant to the query. Note that an exhaustive search al-
gorithm is possible only if the number of types involved is very small since the number
of possible relational configurations increases exponentially with the number of types.
The exhaustive search algorithm typically examined several orders of magnitude more
configurations than DeepGreedy.

Note that the first 4 baselines are non cost-based. We present results for two work-
loads, MSW1 and MSW2 (MSW1 contains 4 M- and 7 S-Queries and MSW2 contains
3 M- and 5 S-Queries). The proportion of queries in each workload was 50% each for
S-Queries and M-Queries.

Figure 17: Comparison of DeepGreedy with the Baselines and Inline (User)

The relative cost for each baseline is shown in Figure 17. As expected, none of
the non-cost-based baselines are competitive with DeepGreedy. Moreover, InlineUser
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also compares unfavorably with DeepGreedy. Though InlineUser is good when there
are not many shared types, it is bad if the schema has a few types which are shared or
repeated or part of unions since there will not be too many types left to inline. Note also
that the results of InlineUser confirms the results in [1], since it derives configurations
up to 50% better than the all-inlined configuration on the original user schema. The
figures for the optimal configuration also show that DeepGreedy is within around 15%
of the optimal.

6 Optimizations

There are several different optimizations that can be done to speed up the search algo-
rithms. We propose a few of them here and outline their drawbacks and advantages.

6.1 Grouping Transformations Together

Algorithm 2 GroupGreedy Algorithm
1: Input: queryWkld, S
{Query workload and Initial Schema}

2: prevMinCost ← INF

3: rel schema← convertToRelConfig(S, queryWkld)
4: minCost← COST (rel schema)
5: while minCost < prevMinCost do
6: prevMinCost ← minCost

7: transforms← applicableTransforms(S)
8: sortedTransforms = SORT (transforms)
9: for all T in sortedTransforms do

10: if applicable(T ) then
11: S′ ← Apply T to S

{S is preserved without change}
12: rel schema← convertToRelConfig(S′, queryWkld)
13: Cost← COST (rel schema)
14: if Cost < minCost then
15: minCost ← Cost

16: S ← S′ {Retain the merge}
17: else
18: Goto step 5
19: end if
20: else
21: Goto step 5
22: end if
23: end for
24: end while

Recall that in DeepGreedy, in a given iteration, all applicable transformations are
evaluated and the best transformation is chosen. In the next iteration, all the remaining
applicable transformations are evaluated and the best one chosen. We found that in
the runs of our algorithms, it was often the case that, in a given iteration in which n
transforms were applicable, if transformations T1 to Tn were the best n transformations
in this order (that is, T1 gave the maximum decrease in cost and Tn gave the minimum
decrease), other transformations up to Ti, for some i <= n, were chosen in subsequent
iterations. This being the case, grouping transformations T1 to Ti together has the
potential to save several iterations. Using this observation, we developed a variation of
Algorithm 1, called GroupGreedy (Algorithm 2).
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Figure 18: No. of Configurations Examined by DeepGreedy and GroupGreedy

We tried this optimization for DeepGreedy on several workloads and the results
were very encouraging. The cost of the final configuration of GroupGreedy was within
1% of DeepGreedy and the number of configurations examined by GroupGreedy were
a fraction of those examined by DeepGreedy, as shown in Figure 18.

6.2 Early Termination

One obvious optimization is to stop the algorithm once the decrease in the estimated
cost goes below a small δ. This would save several iterations which are costly to per-
form, but do not give substantial decrease in cost. This optimization would be possible
if the decrease in cost is monotonic. However, during the course of our experiments,
we came across several workloads which did not exhibit this behavior. The progress of
DeepGreedy on such a workload, W, is shown in Figure 19.

Figure 19: Progress of DeepGreedy on Workload W

Clearly, with an unfortunate value of δ, the algorithm would terminate at iteration 7
and miss the big cost decrease at iteration 8. Thus, while this optimization would result
in improved execution times, the derived schema may be suboptimal.

An discussion of why we see such sudden cost decreases is available in the Ap-
pendix.
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6.3 Applying Profitable Transforms

Though it is possible to decompose the schema fully by performing all union distribu-
tions, repetition splits and type splits, many of them may not be useful and so would
simply increase the number of types in the schema. This is especially true for M-
Queries where many of the splits ultimately proved to be useless. Thus it would help
if an apriori analysis of the query workload and the statistics can be used to cut down
on the number of split transforms. This would reduce the number of combinations of
merge transforms during search and result in faster execution times.

As an example of such a heuristic, consider a repetition split in the following
snippet:

define type Show {element SHOW {type Title, type Review*}}

It is beneficial to split Review* into Review1? and Review2* only if a majority of
the shows have only one review and a very few have more than one. Splitting Review in
this way allows the inlining of the first review thus giving rise to potential cost benefits.
However, if it is known that most Shows have at least 10 reviews, then it is unlikely that
inlining just one Review into Show would yield benefits. Nor would splitting Review
help if most Shows had no reviews, but a small number of Shows had lots of reviews.

An interesting direction of future work would be to come up with heuristics based
on the statistics available for the XML Schema to decide whether or not perform a
particular split operation.

6.4 Reducing the Search Space by Query Analysis

In our metric for the lower bound on the optimal, an exhaustive search was performed
on single queries. This was made possible because the number of types relevant to the
query was within reasonable levels. The same principle can be applied for the greedy
algorithms as well. If the queries in the workload are concentrated to one particular
part of the schema, then only those types need to be taken into consideration for the
search. Or if the queries in the workload can be partitioned such that each partition has
a disjoint set of types relevant to it, then the search can be performed separately for
each partition.

7 Related Work

There has been significant interest in the database community to develop efficient stor-
age schemes for XML data. The proposed techniques can be broadly classified into:
generic (e.g., the edge mapping of [4]); data-centric, where the structure of the XML
document is mined to guide the mapping process (e.g., [3, 12, 16]); and schema-centric,
which make use of schema information in the form of DTD or XML Schema in order to
derive an efficient relational storage design for XML documents (see e.g., [13, 14, 15]).

The LegoDB system [1] was the first cost-based approach for automatically gen-
erating XML-to-relational mappings. In addition to the XML document and schema,

22



LegoDB also takes the query workload into account in order to derive a low-cost re-
lational configuration. In this paper, we extend the work presented in [1] in many
significant ways. Most notably, we study in depth the problem of searching for XML-
to-relational mappings in the presence of a comprehensive set of transformations.

More recently, a cost-based approach was also described by Zheng et al [17]. Zheng
et al propose a hill-climbing algorithm and a set of four transformations (similar to in-
line/outline and type split/merge) to move from one state to the other during a run of
the algorithm. They present an evaluation of their algorithm starting from different
states, and show experimentally that their derived configurations have lower cost than
configurations produced by heuristic-based approaches. Although similar in focus, i.e.,
the search problem in cost-based storage design, our work differs from theirs in impor-
tant ways. We use a comprehensive set of transformations (a superset of theirs) that
leverage the structure of the document schema in order to derive useful configurations.
We also develop a series of search strategies, and discuss their performance both in
terms of efficiency and quality of derived configuration.

In [8], Krishnamurthy et al take a first step in formalizing the problem of finding
an optimal XML-to-relational mapping. They show that there is an interplay between
the choice of decomposition and the choice of query translation algorithm, i.e., a given
mapping is not the best for all possible translations; and analyze the interaction between
mapping and translation for a restricted set of XML schemas and XML queries, under
two simple cost metrics. In contrast, our goal in this paper is to develop practical
algorithms for selecting good decompositions. Although in our experiments we use
a fixed query translation strategy and a System-R-style cost model, our system’s cost
estimation and translation are performed by independent modules. Thus, it is possible
to experiment with different cost models and translation strategies. We intend to further
investigate the interactions between these components in our future work.

Support for XML storage is currently provided by all major commercial RDBMSs,
including SQLServer, DB2, and Oracle. For example: Oracle XML DB [9] provides
native XML storage and retrieval; DB2 [6] and SQLServer [2] allow mappings to be
defined by users through proprietary languages. Although different kinds of mappings
are available, these mappings either need to be defined by the user or are fixed. These
systems could benefit from a cost-based approach such as the one described in this
paper.

8 Conclusions

In this paper, we describe a framework for exploring the space of XML-to-relational
mappings. This framework is able perform a comprehensive search on this space by
using previously defined schema transformations, extensions to these transformations,
and new transformations (see Section 2). We designed and implemented three greedy
algorithms and studied how the quality of the final configuration is influenced by the
transformations used and the query workload. We have also proposed several tech-
niques to prune the search space that lead to faster convergence and little or no loss
in the quality of the selected relational configuration. Experimental results show that
our new algorithms provide significantly improved relational schemas as compared to
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those derived by previous approaches in the literature.
There are several interesting directions we intend to pursue in future work. We

would like to explore mappings that allow for mixed-storage strategies. For example, a
mapping that use the generic edge strategy for a part of a schema (e.g., a subset of the
schema which is updated often, or elements with ANYTYPE content), and LegoDB-
style mapping for the subset of the schema that is well-defined and static. We also
intend to investigate the interactions between the choice of mapping and the choice of
query translation algorithm; and how to integrate the functionality of design tools that
perform index selection and view materialization into our system.
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Explanation for sudden cost jumps

To explain this behaviour, consider the following simple join query:

for $i in IMDB/actor
return $i/name, $i/played/title, $i/played/year,

$i/played/character, $i/biography/birthdate,
$i/biography/text

The graph showing the cost decrease in a run of DeepGreedy for a workload con-
sisting only of this query is shown in Figure 20. The magnitude of the cost decrease
is huge at iterations 4 to 5. The relevant transforms are the inline of Played Year and
Played Title at iterations 4 and 5 respectively. To explain the cost jump, consider the
following size of attributes: Title (T) = 30 bytes, Year (Y) = 4 bytes and Character (C)
= 25 bytes, Played (P) = 8 bytes (key + parent key). Note that initially each of these
types is outlined.

Cost at iteration 3 (that is before inline of Y) is: 8 ∗ (4 + 25 + 30) + (33 ∗ 12) +
(45 ∗ 38) = 2578

Then, at iteration 4, the first-order query cost after:

1. Inlining Y is (8 + 4)(30 + 25) + 42 ∗ 37 = 2214
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2. Inlining T is (8 + 30)(25 + 4) + 63 ∗ 42 = 3748

3. Inlining C is (8 + 25)(30 + 4) + 63 ∗ 37 = 3453

Therefore Y is chosen to be inlined. Note that costs for inlining T or C is more than
before any inline.

Then, at iteration 5, the tuple size of P with inlined Y is (8+4) = 12 bytes. Again,
the first order query cost after:

1. Inlining T is (12 + 30)(25) = 1050

2. Inlining C is (12 + 25)(30) = 1110

Therefore T is chosen to be inlined. Note that the cost reduction after the first inline
(that is, Y) is much less than the cost reduction of the second inline (that is, T) and this
matches the observed jump in the cost decrease.

The intuition is that if T was inlined early, while it would certainly reduce the join
cost for itself with P, yet it would seriously increase the cost of the joins of P with Y
and C since P will now have large tuples. However, once Y is inlined, this degradation
has less impact and it becomes a shootout between T and C as per above. That is, for
T’s cost reduction to happen, it needs to get Y out of the way.
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