PROVIDING DIVERSITY IN K-NEAREST
NEIGHBOR QUERY RESULTS

Anoop Jain  Parag Sarda  Jayant R. Haritsa

Technical Report
TR-2003-04

Database Systems Lab
Supercomputer Education and Research Centre

Indian Institute of Science
Bangalore 560012, India

http://dsl.serc.iisc.ernet.in



Providing Diversity in K-Nearest Neighbor Query
Results

Anoop Jain, Jayant Haritsa, and Parag Sarda

Department of Computer Science & Automation
Indian Institute of Science, Bangalore 560012, INDIA
{anoop, j ayant, parag}@sa.iisc.ernet.in

Abstract. Given a point query Q in multi-dimensional space, K-Nearest Neigh-
bor (KNN) queries return the K closest answers in the database with respect to
Q. In this scenario, it is possible that a majority of the answers may be very sim-
ilar to one or more of the other answers, especially when the data has clusters.
For a variety of applications, such homogeneous result sets may not add value
to the user. In this paper, we consider the problem of providing diversity in the
results of KNN queries, that is, to produce the closest result set such that each
answer is sufficiently different from the rest. We first propose a user-tunable defi-
nition of diversity, and then present an algorithm, called MOTLEY, for producing
a diverse result set as per this definition. Through a detailed experimental eval-
uation on real and synthetic data, we show that MOTLEY can produce diverse
result sets by reading only a small fraction of the tuples in the database. Further,
it imposes no additional overhead on the evaluation of traditional KNN queries,
thereby providing a seamless interface between diversity and distance.

1 Introduction

Over the last few years, there has been considerable interest in the database commu-
nity with regard to supporting K-Nearest Neighbor (KNN) queries. The general model
of a KNN query is that the user gives a point query in multidimensional space and a
distance metric for measuring distances between points in this space. The system is
then expected to find, with regard to this metric, the K closest answers in the database
from the query point. Typical distance metrics include Euclidean distance, Manhattan
distance, etc. An example of a KNN query is shown below.

Example 1. Consider the situation where the Bangalore tourist office maintains the re-
lation RESTAURANT (Name,Speciality,Rating,Expense), where Name is the name
of the restaurant; Speciality indicates the food type (Indian, Chinese, French etc.); Rat-
ing is an integer between 1 to 5 indicating restaurant quality; and, Expense is the typical
expected expense per person. In this scenario, a visitor to Bangalore may wish to submit
the following KNN query (using the SQL-like notation of [5]) to have a choice of three
mid-range restaurants where she can have dinner for a expense of around Rs 1000.

SELECT * FROM RESTAURANT
WHERE Rati ng=3 and Expense=1000
ORDER 3 BY Eucl i dean



| C
4 G| I Co
3| o xBo 2K Query Point
=
§
Diverse
24 co [l g
I Indian
C Chinese
1l F  French
Co Continental
(0] + + + |
600 1000 1400 1800 2200
Expense (Rs)

Fig. 1. Diversity Example

Consider Figure 1, which shows a sample distribution of data points in the RESTAU-
RANT database, and a query point supplied by the user. The KNN query of above
example would return answers shown by circles. In practice, databases often have their
data clumped together in clusters — for example, there could be several Indian restau-
rants which come close to the specified values — in fact, it is even possible that there
are exact duplicates with respect to the Rating,Expense, and Speciality attributes. In
such a situation, returning three very similar answers (e.g., { Tandoor, 3, Indian, 1100},
{Angeethi, 3, Indian, 900}, and {Maharaja’s Palace, 3, Indian, 1200}) may not add
much value to the user. Instead, she might be better served by being told, in addition to
{Tandoor, 3, Indian, 1100} about a Chinese restaurant {The China Town, 2, Chinese,
800} and a French restaurant {Ebony, 4, French, 1200}, which would provide a viable
set of choices to plan her dinner.

To clarify the above, let have a look at Figure 1 again. In this scenario, as mentioned,
answers returned by KNN are very similar (all Indian restaurants). What we need how-
ever is to produce the answers shown by the rectangles, representing a close but more
heterogeneous result set (Indian, Chinese and French restaurants).

Thus the user would like to have not just the closest set of answers, but the closest
diverse set of answers (an oft-repeated quote from Montaigne, the sixteenth century
French writer, is “The most universal quality is diversity” [20]).

1.1 The KNDN Problem

Based on the above motivation, we consider in this paper the problem of providing
diversity in the results of KNN queries, that is, to produce the closest result set such
that each answer is sufficiently diverse from the rest. We hereafter refer to this as the
K-Nearest Diverse Neighbor (KNDN) problem, which to the best of our knowledge has
not been previously investigated in the literature (we explain in Section 2.6 as to why
the KNDN problem cannot be handled by traditional clustering techniques).

An immediate question that arises is how to define diversity. This is obviously a
user-dependent choice. We address the issue by providing a tunable definition that can
be set with a single parameter, MinDiv, by the user. MinDiv values range over [0,1]



and specify the minimum diversity that should exist between any pair of answers in
the result set. (Note that this is similar to the user specifying minsup (minimum sup-
port) and mincon f (minimum confidence) to determine what constitutes an interesting
correlation in association rule mining.) Setting MinDiv to zero results in the traditional
KNN query, whereas higher values give more and more importance to diversity at the
expense of distance. In our framework, a sample query looks like

SELECT * FROM RESTAURANT
WHERE Rati ng=3 and Expense=1000
ORDER 3 BY Euclidean WTH M nDiv=0.1 ON Speciality

where Speciality is the attribute on which diversity is calculated, and the goal is to
produce the closest result set that obeys the diversity constraints specified by the user.

Unfortunately, as we will explain later in the paper, finding the optimal result set for
KNDN queries is an NP-complete problem in general, and is computationally extremely
expensive even for fixed K, making it infeasible in practice. Therefore, we present an
alternative online algorithm, called MOTLEY?, for producing a sufficiently diverse and
close result set. Motley adopts a greedy heuristic and assumes the existence of a mul-
tidimensional index with containment property, such as the R-tree, which is natively
available in today’s commercial database systems [13]. The R-tree index supports a
“distance browsing” mechanism proposed in [12] which allows one to efficiently ac-
cess database points in increasing order of distance from the query point. A pruning
technique is incorporated in Motley to minimize the R-tree processing and the number
of database tuples that are examined.

Through a detailed experimental evaluation on real and synthetic data, we show that
Motley can produce a diverse result set by reading only a small fraction of the tuples in
the database. Further, the quality of its result set is very close to that provided by an off-
line optimal algorithm. Finally, it can also evaluate traditional KNN queries without any
added cost, thereby providing a seamless interface between the orthogonal concepts of
diversity and distance. While the algorithms and experiments presented in this paper
are for databases where the diversity attributes are numeric, we also discuss in detail
how the Motley algorithm can be extended to handle categorical attributes.

1.2 Organization

The remainder of this paper is organized as follows: The basic concepts underlying
our problem formulation are described in Section 2. The Motley algorithm is presented
in Section 3. The performance model and the experimental results are highlighted in
Section 5. Related work on nearest neighbor queries is overviewed in Section 6. Finally,
in Section 7, we summarize the conclusions of our study and outline future avenues to
explore.

1 Motley: A collection containing a variety of things



2 Basic Concepts and Problem Formulation

We assume that the database is composed of N tuples as points over a D-dimensional
space (dy,da,...,dp) with each tuple representing a point in this space?. For ease
of exposition, we assume for now that the domains of all attributes are numeric and
normalized to the range [0,1]. Later, in Section 4.1, we discuss how to handle categorical
attributes.

The user specifies a point query Q over an M-sized subset of these attributes (¢, g2,

..yqm), M < D.We refer to these attributes as “point attributes”. The user also spec-

ifies K, the number of desired answers, and a L-sized subset of attributes on which
she would like to have diversity (vi,ve,...,vr), L < D. We refer to these attributes
as “diversity attributes” and we will also refer to space formed by these attributes as
diversity-space. Note that the choice of the diversity attributes is orthogonal to the
choice of the query’s point attributes. Referring back to example KNDN query de-
scribed in Section 1.1, D = 4, M = 2,L = 1, ¢ = Rating,q2 = FExpense and
v1 = Speciality.

For simplicity, we assume in the following discussion that all dimensions are equiva-
lent in that the user has no special affinity for one dimension or the other — the extension
to the biased case is straightforward.

2.1 Result Diversity

For the KNDN problem, We will start with point diversity and as result can be viewed
as set of points, we will extend it to set diversity. Point diversity is defined with regard
to a pair of points and is evaluated with respect to the diversity attributes mentioned
in the query specification. Specifically, given points P and P,, and V(Q), the set of
diversity attributes in query @, the function DIV (Py, P>, V(Q)) returns true if points
P, and P, are diverse with respect to each other on the specified dimensions. A sample
DIV function is described in the following subsection.

Given that there are N points in the database and that we need to select K points
for the result set, there are N C possible choices. An additional constraint is that we
require all points in the result set to be diverse with respect to each other. That is,
given a result set R with points Ry, Rs, ..., Rk, we require DIV (R;, R;,V(Q)) =
true V 4,5 suchthats # jand 1 < 4,57 < K. We call such a result set to be fully
diverse. As explained later, there may occur situations wherein no fully diverse result
set is feasible, in which case we have to settle for a partially diverse result set.

2.2 Diversity Function

While what exactly constitutes diversity is obviously a user-specific perception, we
describe here a diversity function that, in our opinion, reflects what would be typically
expected in practice. We hasten to add here that the specific choice of diversity function
does not affect the algorithms presented subsequently in the paper.

2 we will use point and tuple interchangeably from now onwards



Our computation of the diversity between two points P; and Ps, is based on the
classical Gower coefficient [8], wherein the difference between two points is defined as
a weighted average of the respective attribute differences. Specifically, we first com-
pute the differences between the values of these two points in diversity attributes,
then sequence these differences in decreasing order of their values and label them as
(01,02,...,0L).

Example 2. Consider a pair of points Py, P>, and a query @ with three diversity at-
tributes. Let the associated differences on the three diversity dimensions be 0.4, 0.3 and
0.5. In this case, we have §; = 0.5, 0> = 0.4, 63 = 0.3.

Now, we calculate divdist, the diversity distance of points P; and P, with respect to

query @ as
L

divdist(Py, P, V(Q)) = Y _(W; x §;) (1)
j=1
where the W;’s are weighting factors for the differences. Since all 6;°s are in the range
[0,1] (recall that the values on all dimensions are normalized to [0,1]), and by virtue of
the W; assignment policy discussed below, diversity distances are also bounded in the
range [0,1].

The assignment of the weights is based on the heuristic that larger weights should
be assigned to the larger differences. That is, in Equation 1, we need to ensure that
W; > W if i < j. The rationale for this assignment is as follows: Consider the case
where point P; has values (0.2, 0.2, 0.3), point P, has values (0.19, 0.19, 0.29) and point
P3 has values (0.2, 0.2, 0.27). Consider the diversity of P; with respect to P, and Ps.
While the aggregate difference is the same in both cases, yet intuitively we can see that
the pair (Py, P>) is more homogeneous as compared to the pair (P, Ps). This is because
P, and Ps differ considerably on the third attribute as compared to the corresponding
differences between P; and Ps. That is, a pair of points that have higher variance in
their attribute differences appear more diverse than those with lower variance.

Now consider the case where Ps has value (0.2, 0.2, 0.28). Here, although the ag-
gregate d; is higher for the pair (P, P), yet again it is pair (P;,P) that appears more
diverse since its difference on the third attribute is larger than any of the individual
differences in pair (Py,P).

Based on the above discussion, the weighting function should have the following
properties: Firstly, all weights should be positive, since differences in any dimension
should never decrease the diversity. Second, the sum of the weights should add up to
1 (i.e., Z -, W; = 1) to ensure that divdist values are normalized to the [0,1] range.
Finally, the welghts should be monotonically decaying (W; > W; if i < j ) to reflect
the preference given to larger differences.

Example 3. A candidate weighting function that obeys the above requirements is the
following:
a1 x (1—a) ,
Wi=——ar— (1=<jisM) @)
where a is a tunable parameter over the range (0,1). Note that this function implements
a geometric decay, with the parameter ‘a’ determining the rate of decay. Values of a



0.2

0.1

"

0.0 +

*

LR

0.1+

L 4
& [ Q
4 < <

*

&
2

<
Qe

A

M

<+—

Lb‘..-< L
Qe
<

o 4

# a=0.1
v a=0.5
+ a=1

<%
&

4 <
4
&

e e A R AL

"
L =
Ay <
g J
o <

3

o < #=
g <
iy <l

+« <
*
+
+

bl o
FEAAg AR

o
=
o
o
o
=

Fig. 2. Points having diversity of 0.1 with respect to (0, 0)

that are close to O result in faster decay, whereas values close to 1 result in slow decay.
When the value of a is nearly 0, almost all weight is given to maximum difference i.e.,
W1 ~ 1, modeling the L, [17] distance metric and when « is nearly 1, all attributes
are given similar weights, modeling a scaled L, [17] distance metric. Figure 2 shows,
for different values of the parameter ‘a’ in Equation 2, the locus of points which have a
diversity of 0.1 with respect to the origin (0,0) in two-dimensional diversity-space.

Directional Diversity In the above discussion, differences in either direction of a di-
versity dimension were considered equivalent — however, there may be cases where the
user may prefer a given direction. For example, when purchasing a product, the user
may prefer diversity with respect to lower prices rather than higher prices. The exten-
sion for this is straight forward.

Minimum Diversity Threshold We assume that the user provides a quantitative notion
of the minimum diversity that she expects in the result set through a threshold parameter
MinDiv that ranges between [0,1]. (As mentioned earlier, this is similar to the setting of
minsup and minconf in association rule mining to determine what constitutes interesting
correlations.) Given this threshold setting, we say that two points are diverse if the
diversity between them is greater than or equal to MinDiv. That is,
DIV (P, P,,V(Q)) = true if divdist(Py, Py, V(Q)) > 3MinDiv
DIV (P, P,,V(Q)) = false otherwise
We can provide a physical interpretation of the MinDiv value: If two points are
deemed to be diverse, then these two points have a difference of at least MinDiv on
atleast one diversity dimension. For example, a MinDiv of 0.1 means that any pair of
points in the result set differ in at least one diversity dimension by at least 10% of the as-
sociated domain size. This physical interpretation can guide the user in determining the

3 We need equality to preserve duplicates in case of MinDiv = 0



appropriate setting of MinDiv. In practice, we expect that users would choose MinDiv
values in the range of 0 to 0.2 as MinDiv of 0.2 means the diversity of 20% of attribute
domain range. As a final point, note that with the above formulation, the DIV function
is symmetric with respect to the point pair { P, P»}. However, it is not transitive in that
even if DIV (P, P, V(Q)) and DIV (P, P5,V(Q)) are both true, it does not imply
that DIV (Py, P53, V(Q)) is true.

2.3 Integrating Diversity and Distance

After applying the diversity constraints, there may be a variety of fully diverse sets that
are feasible. We now bring in the notion of distance from the query point to make a
selection between these sets. That is, we would prefer the fully diverse result set whose
points lie closest to the query point Q. Viewed abstractly, we have a two-level scoring
function: The first level chooses candidate result sets based on diversity constraints and
the second level selects the result set which is spatially closest to the query point.

Let function Spatial Dist(P, Q) calculate the spatial distance of point P from
query point @ (recall that this distance is computed with regard to the point attributes
specified in Q). The choice of SpatialDist function is based on the user specification and
could be any monotonically increasing distance function such as Euclidean, Manhattan,
etc. We combine distances of all points in a set into a single value using an aggregate
function Agg which captures the overall distance of the set from Q. While a variety of
aggregate functions are possible, the choice is constrained by the fact that the aggregate
function should ensure that as the points in the set move farther away from the query,
the distance of the set should also increase correspondingly. Sample aggregate functions
which obey this constraint include the Arithmetic, Geometric, and Harmonic Means.

Finally we use the reciprocal of the aggregate of the distances of the points from the
query point to determine the score of a fully diverse set. Putting all the above together,
given a query @ and a candidate fully diverse result set R, the score of R with respect
to @ is computed as .

_ 3
Seore(R, Q) Agg(Spatial Dist(Q, R1), . .., Spatial Dist(Q, Rk)) @)

2.4 Problem Formulation

In summary, our problem formulation is as follows:

Given a point query Q on a D-dimensional database, a desired result cardinality of
K, and a MinDiv threshold, the goal of the K-Nearest Diverse Neighbor (KNDN) prob-
lem is to find the set of K diverse tuples in the database, whose score, as per Equation 3,
is the maximum, after including the nearest tuple to Q in the result set.

The requirement that the nearest point to the user’s query point should always form
part of the result set is because this point, in a sense, best fits the user’s query. Therefore,
since point R; is fixed the result sets are differentiated based on their remaining K — 1
choices. Further, the nearest point R serves to seed the result set since the diversity
function is meaningful only for a pair of points.

An important point to note here is that when MinDiv is set to zero all points (in-
cluding duplicates) are diverse with respect to each other and hence KNDN problem
reduces to the traditional KNN problem.



2.5 Problem Complexity

Finding the optimal result set for the KNDN problem is computationally hard. We can
establish this by mapping KNDN to the well known independent set problem [9] which
is NP-complete. The mapping is achieved by forming a graph corresponding to the
dataset in the following manner: Each tuple in the dataset forms a node in the graph
and a edge is added between two nodes if the diversity between the associated tuples
is less than MinDiv. Now any independent (node) set (subgraph in which no two nodes
are connected) of size K in this graph represents a fully diverse set of K tuples. But
finding any independent set, let alone the optimal independent set, is itself computa-
tionally hard. The straight forward method which checks for all possible ¥ C'f sets has
O(N) running time complexity, which means that even for fixed K, the method is not
practically feasible due to high computational costs. Tractable solutions to the indepen-
dent set problem have been proposed [9], but they require the graph to be sparse and
all nodes to have a bounded small degree. In our world, this translates to requiring that
all the clusters in diversity-space should be small in size. But, this may not be typically
true for the datasets that we encounter in practice and therefore, these solutions may not
be applicable in our environment.

2.6 Why Not Clustering?

It may appear that an alternative solution to the KNDN problem would be to initially
process the data into clusters using algorithms such as BIRCH [18], replace all clus-
ters by their representatives, and then to apply the traditional KNN approach on this
summary database. There are two problems here: Firstly, since the clusters are pre-
determined, there is no way to dynamically specify the desired diversity, which may
vary from one user to another or may be based on the specific application that is invok-
ing the KNDN search. Secondly, since the query attributes are not known in advance,
we potentially need to do clustering in each subspace of dimensions, which may become
infeasible due to the exponential number of such subspaces. Finally, this approach can-
not provide the traditional KNN results.

Yet another approach to produce a diverse result set could be to run the standard
KNN algorithm, cluster its results, replace the clusters by their representatives, and
then output these representatives as the diverse set. The problem with this approach is
that it can not be determined apriori what should be the original number of required
answers such that there are finally K diverse representatives. If the original number is
set too low, then the search process has to be restarted, whereas if the original number
is set too high, a lot of wasted work ensues.

3 TheMOTLEY Algorithm

We move on, in this section, to present the Motley algorithm, our online solution tech-
nique for the KNDN problem. Since identifying the optimal solution is computationally
expensive as described in the Section 2.5, we chose a greedy strategy in the Motley de-
sign. In our experimental results presented later in Section 5, we will show that the
performance of Motley is extremely close to that of the optimal solution.



3.1 Distance Browsing

We need to develop an online algorithm that accesses database tuples (i.e., points) incre-
mentally. For this, we adopt the “distance browsing” concept proposed in [12], through
which it is possible to efficiently access data points in increasing order of distance from
the query point. It is predicated on having an index structure with containment property,
such as R-Tree[10], R*-Tree[1], LSD-trees[11], etc., built collectively on all dimensions
of the database (more precisely, we need the index to only cover those dimensions on
which point predicates appear in the query workload). This assumption appears prac-
tical since current database systems such as Oracle, natively support R-trees [13]. As
the R-tree index is viable only for low-dimensional data (less than 10 dimensions) [2],
our current version of Motley is applicable only in such environments. In our future
work, we plan to investigate other indices like the X-tree [2] which are intended for
handling high-dimensional data. The other posibility for higher dimensional data could
be to modify distance browsing to return tuples efficiently but in approximate increasing
order of distance as suggested in [12].

To implement distance browsing, a priority queue, pqueue, is maintained which is
initialized with the root node of the R-Tree. The pqueue maintains the objects (R-Tree
nodes and data tuples) in increasing order of distance from query point, that is, the
distance of object from the query point forms the key for that object in the priority
queue.

While the distance between a data point and Q is computed in the standard manner,
the distance between a R-tree node and Q is computed as the minimum distance between
Q and any point in the region enclosed by the MBR (Minimum Bounding Rectangle) of
the R-tree node. The distance of a node from Q is zero if Q is within the MBR of that
node, otherwise it is the distance of the closest point on the MBR periphery. For this, we
first need to compute the distances between the MBR and Q along each query dimension
— if Q is inside the MBR on a specific dimension, the distance is zero, whereas if Q is
outside the MBR on this dimension, it is the distance from Q to either the low end or
the high end of the MBR, whichever is nearer. Once the distances along all dimensions
are available, they are combined (based on the distance metric in operation) to get the
effective distance.

Example 4. Consider an MBR, M, specified by ((1,1,1),(3,3,3)) in a 3-D space. Let
Py(2,2,2)and P»(4,2,0) be two data points in this 3-D space. Then, Spatial Dist(M,
Py) =02+ 02+ 02 = 0and Spatial Dist(M, Py) = \/(4 —3)2+ 02+ (0 — 1)2 =
1.1414.

To return the next nearest neighbor, we pick up the first element of the pqueue. If it
is a tuple, it is immediately returned as next nearest neighbor. However, if the element is
an R-tree node, all the children of that node are inserted in the pqueue. Note that during
this insertion process, the distance of the object from the query point is calculated and
used as the insertion key. The insertion process is repeated until we get a tuple as the
first element of the queue, which is then returned.

The above distance browsing process continues until either the diverse result set
is found, or until all points in the database are exhausted, signaled by the pqueue be-
coming empty. The pseudo code for this NextNearestNeighbor algorithm is provided



10

Algorithm NextNearestNeighbor (pqueue)
BEGIN
while (pgueue is not empty) do
element = get first element of pqueue

if (MBRIsPrunable(element)) then continue  endif
if element is tuple then

return element //next nearest neighbor found
else

for each child ¢ of element do
if (MBRIsPrunable(c)) then continue  endif
insert c into pqueue with key Spatial Dist(Q, c)
done
end-if
done

/lcomplete database scanned, no more tuples left//
return null
END

Fig. 3. Distance browsing algorithm

in Figure 3. The function MBRIsPrunable, used in NextNearestNeighbor algorithm, is
an optimization and discussed in Section 3.3. We assume that the system has sufficient
resources to retain the pqueue in main memory — as shown in our experimental re-
sults later, the memory requirements are modest compared to the capacities of current
database servers.

3.2 Finding Diverse Results

We now move on to describe basic Motley algorithm for finding diverse set. We will
assume for ease of presentation that we are able to find fully diverse result sets in the
database with regard to the @, K and MinDiv specifications. But as mentioned ear-
lier, the details about how to handle partially diverse result sets are discussed later in
Section 4.4. We propose two alternative greedy approaches namely Immediate Greedy
discussed next and Buffered Greedy discussed in Section 3.2.

Immediate Greedy Approach In the Immediate Greedy method, we start accessing
tuples in increasing order of the distance from the query point using the NextNearest-
Neighbor function discussed above. The first tuple is always inserted into the result
set, R, to satisfy the requirement that the closest tuple to the query point must figure
in the result set. Subsequently, each new tuple is added to R if its diversity is greater
than MinDiv with respect to all tuples currently in R; otherwise, the tuple is discarded.
This process continues until R grows to contain K tuples. Note that the result set ob-
tained by this approach has following property: Let B = b4,...,bx be the sequence
formed by any other fully diverse set such that elements are listed in increasing order



11

P3
divdist < 0.1
‘ . divdist > 0.1 .
Q R B R
divdist < 0.1

Py

Fig. 4. Poor Choice by Immediate Greedy (MinDiv =0.1)

of distance from Q. Now if 4 is the smallest index such that b; # R;(R;eR), then
Spatial Dist(b;, Q) > Spatial Dist(R;, Q).

Another approach could be to modify the distance browsing to report the nearest
point outside the region that bounds non-diverse points from leaders. There are two
problems with this approach: Firstly, the nearest point from this region may not be
closest diverse point to the query. Secondly, as new leaders are formed, we will need to
calculate distance of all objects in priority queue from union of the non-diverse region
which could be computationally hard.

PS: above paragraph added. is it Required?

While the Immediate Greedy approach is straight forward and easy to implement, there
are cases where it may make poor choices as shown in Figure 4. Here, Q is the query
point, and P; through P are the closest five database tuples. Let us assume that the
goal is to report 3 diverse tuples with MinDiv of 0.1. Clearly, {P1, Ps;, P,} sat-
isfies the diversity requirement. Also DIV (R, P2,V (Q)) = true. But inclusion of
P, disqualifies the candidatures of B and Py as both DIV (P, P5,V(Q)) = false
and DIV (Py, P4,V (Q)) = false. By inspection, we observe that the overall best
choice could be {P;, Ps;, P,} but Immediate Greedy would give the solution as
{P1, P>, Ps}. Moreover, if point P; is not present in the data set, then this approach
will fail to return a fully diverse set even though such a set { P;, Ps, P} is available.
The pseudo-code of the Immediate greedy approach is shown in Figure 5.

Buffered Greedy Approach To address the above problems, we propose an alternative
namely Buffered Greedy approach. In this approach, unlike Immediate Greedy where
at all times we only retain the diverse points (hereafter called “leaders”) in the result
set, we maintain with each leader a bounded buffered set of “dedicated followers” — a
dedicated follower is a point that is not diverse with respect to a specific leader but is
diverse with respect to all remaining leaders. Our empirical results show that a buffer



12

Algorithm ImmediateGreedy(Query Q, int K)
BEGIN
/linitialise distance browsing
pgueue = new priority queue
initialise pqueue with root node of R*-Tree
letR = ¢

while (there are less than K leaders in R) do
N = NextNearestNeighbor(pqueue)
if (all points in R are diverse from N) then

R =RU{N}
endif
done  //while loop
END

Fig. 5. Algorithm Immediate Greedy

of capacity K points (where K is the desired result size) for each leader, is sufficient
to produce a near-optimal solution. The additional memory requirement for the buffers
is small for typical values of K and D (e.g., for K=10 and D=10, and using 8 bytes to
store each attribute value, we need only 8K bytes of additional storage).

Given this additional set of points, we adopt the heuristic that a current leader point,
L;, is replaced in the result set by its dedicated followers F}, F2,... F/(j > 1) if
(a) these dedicated followers are all mutually diverse, and (b) incorporation of these
followers does not result in the premature disqualification of future leaders.

The first condition is necessary to ensure that the result set contains only diverse
points, while the second is necessary to ensure that we do not produce solutions that
are worse than Immediate Greedy. For example, if in Figure 4, point Ps had happened
to be only a little farther than point P, such that DIV (P, P5, V(Q)) = true, then the
replacement could be the wrong choice since { P1, P», Ps} may turn out to be the best
solution.

In order to implement the second condition, we need to know when it is “safe” to go
ahead with a replacement i.e., we need to know when it is certain that all future leaders
will be diverse from the current set of followers. To achieve this, we take the following
approach: For each point, we consider a hypothetical sphere that contains all points in
the domain space that may have diversity less than MinDiv with respect to it. That is, we
set the radius R of the sphere to be equal to the distance of the farthest non-diverse point
in domain space. Note that this sphere may contain some diverse points as well, but our
objective is to take a conservative approach. Now, the replacement of a leader by a set
of dedicated followers can be done as soon as we have reached a distance greater than
R with respect to the farthest follower from the query point — this is because there is
no possibility of disqualification beyond this point because of the appearance of future
leaders. To make it more clear, lets see following example.

Example 5. In Figure 6, the circles around P; and P, show the areas that contain all
points that are not diverse with respect to P; and P, respectively. Due to distance



13

Fig. 6. Heuristic in Buffered Greedy Approach

browsing technique, when we access the point T;,.., (Figure 6), we know that all future
points will be diverse from P; and P,. At this time, if P; and P; are dedicated followers
of L and mutually diverse, then we can replace L by {P;, P»}.

Integration with Distance Browsing The above mentioned technique is integrated
with the distance browsing approach in the following manner: For each new tuple re-
turned by the NextNearestNeighbor function, we calculate its distance with respect to Q
— let this distance be d,,.,,. If this tuple has diversity greater than MinDiv with respect
to all current leaders, then it also becomes a leader. We then immediately eliminate,
from all remaining leaders, their followers who have become “non-dedicated” due to
the incorporation of the new leader.

Let us consider the alternative situation wherein the new point is not a leader —
in this case, it is sent to the appropriate leader’s buffer if it is a dedicated follower,
otherwise it is discarded.

Now, for each of the original leaders, we select among the dedicated followers in
their buffer, those points whose distance from the query point is less than (dyc., — R).
That is, these are the points whose potential inclusion in the result set will not result
in the disqualification of the new leader. Among this subset of dedicated followers, we
evaluate the largest group of points that are mutually diverse, and replace the leader
with this set of followers if the group size is greater than one. When a leader is re-
placed, the buffers of all current leaders are visited and those followers which have now
become non-dedicated are removed. The followers in the buffer of the replaced leader
are partitioned into the buffers of the leaders of the new result set.

While the above computations and reorganizations may appear complex, in practice
they can be completed very quickly because the number of points that are involved
at any given time is fairly small. The pseudo-code of the complete Motley algorithm
implementing the buffered greedy approach is shown in Figure 7.



14

Algorithm MOTLEY (Query Q, int K)
BEGIN
/linitialise distance browsing
pgueue = new priority queue
initialise pqueue with root node of R*-Tree
letR = ¢

while (there are less than K leaders in R) do
N = NextNearestNeighbor(pgueue)
dnew = SpatialDist(N, Q)
letL={1]|lisleaderin R, DIV (l,N,V(Q)) = false }

if (L = ¢)then
/IN is new leader, remove non-dedicated followers
for each point p in all buffers do
if DIV (p, N,V (Q)) = false then
remove p from buffer
endif
done
R =R U{N}. Make N as leader in R
endif

[ltry to find new leaders from dedicated followers
for each leader [ of R do

select maximum number of mutually diverse elements from S
if there is more than one element selected then
remove [ and make selected followers as leaders
repartition the points in all buffers in R
remove non-dedicated followers
endif
done

//add new point N into appropriate buffer if it is dedicated follower
if (sizeof(L) == 1) then
let [ = element of L
if (buffer of [ has free space) then add N to buffer of /| endif
endif
done  //while loop
END

let S = { s | s is dedicated follower of [, Spatial Dist(s, Q) < (dnew —

R)}

Fig. 7. Algorithm MOTLEY




15

Algorithm MBRIsPrunable(MBR mbr, result set R)
BEGIN
letent =0
for each leader [ of R do
farthest = possibly maximum diverse point of MBR with respect to [
if (DIV (1, farthest,V(Q)) = false) then
//1f no space to add dedicated followers, MBR can be pruned

if (I is saturated) return true;

else
ent + + /Imaintain the count of non-diverse leaders
//1f all points in MBR are non-dedicated, it can be pruned
if (cnt > 1) return true

endif

endif
done

/IAll pruning criteria failed
return false;
END

Fig. 8. Algorithm for pruning

3.3 Pruning Optimization

We now move on to present an optimization through which the processing can be made
more efficient in terms of minimizing the number of database tuples that are read in
arriving at the final result. Note that this optimization does not affect the contents of
the result, but only the effort involved in obtaining this result. The optimization that we
propose is the following: We can prune an MBR (Internal/leaf node of R-Tree) if we
are sure that no point within that MBR can appear in the final result set.

There are two positions at which pruning can be applied, one when the MBR is
inserted into the pgqueue and the other when it is removed from the pqueue. We apply
pruning at both times since pruning depends on the contents of the current result set R.
Note also that applying pruning before entering the MBR into the pqueue reduces the
pqueue size, which can significantly enhance performance.

There are two situations under which an MBR can be pruned: Firstly, we can prune
an MBR if all points within it are guaranteed to be “non-dedicated” with regard to the
current set of leaders. To do this, we compute for each leader, the point of the MBR that
can have maximum diversity with respect to the leader. The maximum diverse point
is always a corner of the MBR such that for all dimensions it has maximum possible
distance from the leader. We calculate the diversity of this maximum diverse point with
respect to each leader and if this diversity is less than MinDiv for more than one leader,
the complete MBR is pruned.

Secondly, we can also prune as follows: We call a leader to be saturated if its as-
sociated buffer is full. For each saturated leader, we find its maximum diversity with
regard to the MBR in the same manner as described above. If this diversity is less than
MinDiv with regard to any of the saturated leaders, then the MBR can be pruned.



16

The pseudo code for determining whether an MBR can be pruned is shown in Fig-
ure 8. As mentioned previously, it is called in the NextNearestNeighbor function (see
Figure 3).

4 Related | ssues

We now present in this section the extensions to basic Motley algorithm.

4.1 Handling Categorical Attributes

In the discussion so far, we had assumed that all attributes are numeric with inherent
ordering among the values. In practice, however, some of the dimensions may be cat-
egorical in nature (e.g., color in an automobile database), without a natural ordering
scheme. We now discuss how to integrate categorical attributes into our solution tech-
nique. There are two issues here: 1) how to calculate differences and thereby diversity
for these attributes; and 2) how to incorporate these categorical attributes in the distance
browsing approach.

Calculating Difference In the prior literature, we are aware of two techniques that
address the problem of clustering in categorical spaces — the first approach is based on
“similarity”[14] and the second is based on “summaries”[7]. While both techniques can
be used in our framework to calculate diversity, we restrict our attention to the former
in this paper.

The similarity approach works as follows: Greater weight is given to “uncommon
feature-value matches” in similarity computations, as shown in the following example.

Example 6. Consider a categorical attribute whose domain has two possible values, a
and b. Let a occur more frequently than b in the dataset. Further, let ¢ and j be tuples in
the database that contain a, and let p and ¢ be tuples that contain . Then the pair p, ¢ is
considered to be more similar than the pair 7, j, i.e., Similar(i, j) < Similar(p,q);in
essence, tuples that match on less frequent values are considered more similar.

Quantitatively, similarity values are normalized to the range [0,1]. The similarity is
zero if two tuples have different values for the categorical attribute. If they have the
same value v, then the similarity is computed as follows:

Sim(v) =1-— Z A1) (4)

leMoreSim(v) TL(TL N 1)

where f; is frequency of occurrence of value [, n is the number of tuples in the database,
and MoreSim(v) is the set of all values in the categorical attribute domain that are more
similar or equally similar as the value v (i.e., they have lesser frequency).

We cannot directly use the Equation 4 in our diversity framework since our goal is
to measure difference, not similarity. At first glance, the obvious choice might seem to
be to set difference(d) = 1— similarity. But this has two problems: Firstly, tuples with
different values in the categorical attribute will have a difference of 1. Secondly, tuples



17

with identical values will have a non-zero difference. Both these contradict our basic
intuition of diversity.

Therefore, we set the definition of difference as follows: If two tuples have the
same attribute value, then their difference is zero. Tuples with different values will have
difference based on the frequencies of their attribute values. The more frequent the
values, the more is the difference. For example, if the categorical attribute has values «,
b and c in decreasing order of frequencies, d(a,c) > d(b, c), since a is more frequent
than b. In general, given points with categorical attribute values v; and v, we can
quantitatively define

d(vi,v2) =1 — Sim(v1) * Sim(ve)  ifvy # v
=0 if V1 = Vg

Integrating with Distance Browsing To integrate categorical attributes with distance
browsing, a prerequisite is a containment index structure that can handle categorical at-
tributes. This can be achieved using recently-proposed indexes such as the M-tree [6] or
the ND-Tree [15], which specifically provide this functionality on categorical attributes.

4.2 Partially Specified Queries

Upto this stage, we had assumed that an R-Tree on exactly the set of point attributes
mentioned in the query is available. But, in general, this need not be the case since
the user query may involve only a subset of attributes on which the R-tree was built.
Queries that include only a subset of all attributes of relation are called partially speci-
fied queries [5]. One option is to to build R-Trees on all possible attribute combinations
but this is infeasible in practice due to the large number of combinations. Therefore, we
instead initially build a R-Tree on all the possible query dimensions and, for partially-
specified queries, take a (logical) projection of the R-tree on the associated sub-space.
A problem with this approach is that when the number of attributes in the partially-
specified query is only a few, the performance of the R-tree projection may deteriorate
due to the increased overlap in MBRs. We quantitatively assess this issue in our exper-
imental study.

4.3 Nearest Neighbor queries

As mentioned earlier, Motley can also be used to execute nearest neighbor queries sim-
ply by setting MinDiv = 0. Further, it does this as efficiently as the direct distance
browsing technique for KNN, without adding any additional overheads. A detailed eval-
uation of distance browsing as compared to other traditional approaches for KNN has
been done in [12] - their results indicate that distance browsing outperforms tradi-
tional KNN. Therefore, Motley can be seamlessly used for both the KNN and KNDN
problems.

Another point to note is that some applications may want their diversity limited only
to the elimination of exact duplicates. This can be easily achieved by setting MinDiv to
a very small but non-zero value.



18

4.4 Handling Insufficient Diversity

In the main paper, we assumed that we could always get at least one result set that would
be fully diverse, that is, with all points diverse from each other. While this would be
true in general, it is still possible that either because of the MinDiv setting, or because
of the nature of the data, not to have any set that is completely diverse. To handle
such a situation, where the result set is only partially diverse, the scoring function is
generalized to

Score(R,Q) =n(R) * (1 +log K) + Entropy(R)—

Agg(Spatial Dist(Q, Ry), ..., Spatial Dist(Q, Rk))
Agg(1,1,...,1)

(5)

where n(R) is the number of mutually diverse elements of set R and the Entropy(R) is
used to measure the effective diversity of the result set and is maximized when the set
is fully diverse. Also for partially diverse set of given number of diverse elements, it is
maximized when non-diverse elements are evenly distributed across diverse elements.
Our choice of entropy as the measure of diversity of a set is because we would like to
have the non-diverse points to be evenly distributed across the partition leaders. Entropy
favors equally distributed sets, whereas other measures such as the Gini index [4] prefer
unbalanced sets.

To compute Entropy(R), we use the following technique: First, we partition R into
disjoint subsets such that all the elements of any partition are not diverse with respect to
the “leader” of their partition. The leader of a partition is the point, among all the points
in the partition, which is nearest to the query point. All leaders are mutually diverse.
Since multiple such partitions are possible, we specifically choose the partitioning that
results in the maximum number of partitions since this partitioning is guaranteed to
maximize the score. Finally, for each partition p;, we compute its relative frequency f;,
and evaluate the entropy as

Entropy = =Y _ f;log fi

In the case where the result set is fully diverse, the above value is maximized and is
equal to log K, since in this case each partition is composed of a single point, and its
relative frequency f; is equal to %

It can be easily shown that equation 5 obeys the desired property:

n(Ry1) < n(Rg) = Score(R1,Q) < Score(Ra, Q).

Let us assume that £ (k < K) diverse points have been found at the end of a com-
plete scan of the database. In order to maximize the entropy score, we would like the
remaining K — k tuples to be distributed as evenly as possible over these k diverse
points. Ideally, the distribution should be such that L%J tuples are in each cluster and
the remaining K mod k appear in the closest K mod k clusters.

To achieve this goal, we assign each diverse point with a number that represents the
number of non-diverse tuples that should be reported in conjunction with that diverse
tuple — in Immediate Greedy, these non-diverse tuples can be obtained by running one
more pass over the dataset using the distance browsing technique. Alternatively, in the



19

Buffered Greedy approach, by retaining a sufficient number of points in each leader’s
buffer, we can eliminate the need for a second pass, and utilize the points from within
each leader’s buffer to fill up the deficit.

5 Experiments

We conducted a variety of experiments to evaluate the quality and efficiency of the
Motley algorithm with regard to producing a diverse set of answers. In this section, we
describe the experimental framework and the results.

We used three datasets in our experiments, representing a combination of real and
synthetic data, similar to those used in [5]. Dataset 1 is a projection of the US Cen-
sus Bureau data [21], containing 32,561 tuples and 4 attributes representing age, wage,
education, and hours of work per week. Dataset 2 is a projection of another real data
set(Forest Cover) [22] containing 581,012 tuples and 4 attributes representing Eleva-
tion, Aspect, Slope, and Distance. Finally, Dataset 3 is synthetically generated data that
follows Zipf [19] distribution. For generating the data, a Zipf parameter of 1.0 is used
for all attributes, resulting in highly skewed data. This dataset contains 50,000 tuples
over six dimensions.

The majority of our experiments involve uniformly distributed point queries across
the whole data space, with the attribute domains in all datasets normalised to the range
[0,1]. We consider both fully-specified point queries, that is, queries over all dimensions
of the data, as well as partially-specified point queries, wherein only a subset of the
dimensions appear in the query. The default value of K, the desired number of answers,
was 10, unless mentioned otherwise, and MinDiv was varied across the [0,1] range. In
practice, we would expect that MinDiv settings would be on the low side, typically not
more than 0.2, and we therefore focus on this range in most of our experiments. The
decay rate (a) of the weights in Equation 2 was set to 0.1 for all experiments.

Our results were obtained on a Pentium-111 800 MHz machine with 128MB of main
memory and running Linux 7.2. The R-tree (specifically, the R* variant [1]) was created
with a fill factor of 0.7 and branching factor 64, using the source code available from
[23]. Ten buffers, each of size 4 KB, were assigned to the R* tree, with random replace-
ment policy (since no node is scanned twice in Motley, the replacement policy is not an
issue). The disk occupancy of the R* tree for the three datasets was 4.1MB, 79MB, and
8.6MB, respectively. For the buffered greedy approach, the number of buffers for each
leader was set equal to K, representing a maximum memory storage requirement which
was of the order of a few kilobytes for all the datasets.

We measured the quality of our solution using the scoring metric of Equation 3, with
a Euclidean distance function for measuring spatial distances, and the harmonic mean
as aggregate function. We also measured the average distances of points in the result set.
The efficiency of our algorithm was evaluated by counting the number of tuples read
from the database. This measure includes the tuples that need to be read for insertion
into the priority queue. Since the in-memory processing is relatively very quick, the
disk activity indicated by the number of tuples read forms a reasonable metric.

We also report the percentage of time required in our approach with respect to the
sequential scan method, which essentially represents an upper bound on performance.



20

< Pointl ¢ Point2 V Point3 ® Point5 X Point 10

2 - 2 2.5

2

15

Distance
-
I
Distance
-
I
9
Distance

0.5 Z =

0.5
4999

I e e ]

O T T T T TI T T ITT1T11T1 L e I A T O TTTTTTTITTIT I T T T T 17771
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
MinDiversity MinDiversity MinDiversity
(@ (b) ©

Fig. 9. Average distance of diverse points (a) Dataset 1 (b) Dataset 2 (c) Dataset 3

In the sequential scan method, we read all tuples(points), sort them based on their dis-
tance from the query point, and then make one pass to determine the diverse result set
using the Buffered Greedy technique.

Finally, the worst-case main-memory usage across all queries for each dataset was
measured, and we found that all dynamic structures including the priority queue could
be accommodated within 10 MB for Datasets 1 and 3, whereas it was around 40 MB
for Dataset 2.

In the remainder of this section, we initially present results for fully-specified queries
and subsequently for partially-specified queries.

5.1 Result-set Characteristics

In Figure 9, the average distances of the diverse points as a function of MinDiv are
shown for all three datasets. For the sake of graph clarity, the distances are shown only
for the 1st, 2nd, 3rd, 5th, and 10th (i.e., last) diverse points — the behavior of the other
points was similar. Note that, the result set R may not be fully-diverse at higher val-
ues of MinDiv. The non-diverse points are excluded while computing the averages in
Figure 9. The reason that the curves terminate early without going across the entire
MinDiv range is because at higher values of MinDiv, there may be no queries possible
for which a particular £*" point can be diverse. These graphs also show the maximum
MinDiv setting for which a fully diverse result set of size 10 can be found.

We see in Figure 9 that the distance of the first point is independent of MinDiv—
this is an artifact of our requirement that the closest point to the query should always
form part of R and is therefore not impacted by the MinDiv setting. Secondly, com-
paring Figures 9(a) and 9(c), whose datasets are 4 and 6-dimensional, respectively, we
observe that the result set on 6-dimensional data becomes partially diverse at higher
values of MinDiv than the 4-dimensional data. This is expected because as the number
of dimensions increases, the distance between individual points tends to increase, and
therefore the diversity also increases.



21

100

B Dataset 1 ¢ Dataset2 ¥ Dataset 3 0.8 7
80
g 06 /
o 60 g
3 a0 g 0.4 1
\ﬁ"""""—w,,, L]
t— ¢ 202
N B B B R — 0.0 \ \ \ \ \ T T ]
0.0 0.1 0.2 0.3 0.4 0.0 0.1 0.2 0.3 0.4
MinDiversity MinDiversity
(a) (b)

Fig. 10. (a)Score of diverse set (b)Average distance of all points

B Worst case [l Average case

Ratio of scores

Dataset 1 Dataset 2 Dataset 3

Fig.11. MOTLEY vs. Optimal

Figure 10(a) shows the scores of the result set R for the three different datasets.
With increase in MinDiv, the score of the result set decreases as expected because of
the increase in the distance of points and hence their harmonic mean value. Figure 10(b)
shows the average distance of the points in R for the three datasets. It shows the cost
to be paid in terms of distance in order to obtain result diversity. Note that the graphs
for Dataset 3 are almost flat. This is because of the high skew along each dimension in
this dataset and the uniformly distributed query workload, which makes the spatially-
nearest neighbors themselves to be diverse for most of the queries. The important point
to note here is that in all the three datasets, for values of MinDiv up to 0.2, the distance
increase is marginal. Since as mentioned earlier we expect that users will typically use
MinDiv values between 0 and 0.2, it means that diversity can be obtained at relatively
little cost in terms of distance.

We now move on to characterizing the quality of the result set provided by Motley,
which is a greedy online algorithm, against an optimal off line brute force algorithm.
This performance perspective is shown in Figure 11 which presents the average and
worst case ratio of the result set scores for all three datasets. As can be seen in figure,



22

O DataSetl ¢ DataSet2 v DataSet3

100 — 100 —
B 3
g 80— - o S 80 =
s &
] B b
o 60 o 60 —
o o
El S
ISt <
g 40 o 40 =
o] o]
S <
£ 20 7 S 20
g = ‘*_y/%f e K - o /k’//_,
y v * v
oOt—T T T T T T 0 — T T T T
0 0.1 0.2 0.3 0.4 0 0.1 0.2 03 0.4
MinDiversity MinDiversity
(@) (b)

Fig.12. (a) Average number of tuples read (b) Average number of Nodes 10

the average case is almost optimal (note that the Y-axis of the graph begins from 0.8),
indicating that Motley typically produces a close-to-optimal solution. Further, even in
the worst-case, the difference is only around ten percent. We further investigated this
issue by evaluating, for the cases where the Motley and optimal were different, the
percentage of points that were common between the Motley result set and the optimal-
set. Our experimental results showed that more than 90 percent of the answers were
common. That is, even in the cases where a sub-optimal choice was made, the errors
were mostly restricted to one or two points, out of the total of ten answers.

5.2 Execution Efficiency

Having established the high-quality of Motley answers, we how move on to evaluating
its execution efficiency. In Figure 12, we show the average fraction of tuples and nodes
read to produce the result set as a function of MinDiv for all three datasets. We see here
that at lower values of MinDiv, the number of tuples and nodes read are small because
we obtain K diverse tuples after processing only a small number of points. At higher
values of MinDiv, the number of MBRs pruned are more and hence tuples and nodes
read are less. For example, with Dataset 2, we always read less than 14% of the total
tuples.

Figure 13 shows the absolute time in milliseconds and the percentage of time with
respect to sequential scan required by Motley for different values of MinDiv for all three
datasets. From the graph, it can be seen that as MinDiv or data size increases Motley
requires a progressively more time to produce the result. This is expected but note that
it also requires smaller percentage of time than sequential scan as data size increases.
Even with Dataset 1, which is a rather modest 32,561 tuples in size, Motley requires
less than 40% of the time taken by sequential scan. When we consider the much larger
Dataset 2, which contains more than half a million tuples, Motley consistently takes
only about 10% of the sequential scan time. Further, note that the numbers reported here
are conservative since the sorting of the dataset required by sequential scan was done
in memory by allocating sufficient resources — in the general case, however, external



23

O DataSetl ¢ DataSet2 v DataSet 3

1500 —

1250 —

1000 —|

750 —

Execution time(ms)

Percentage of Sequential Scan

07 T T T T T T T 1 ‘ : ‘ |
0 0.1 0.2 0.3 0.4 0.2 0.3 0.4
MinDiversity MinDiversity
(a) )

Fig. 13. (a) Execution time (b) Percentage of sequential scan

100 T T H ¥ He Sk ke
—¥— Without pruning
ool —&— with pruning

80

70

60

50

40

Percentage of tuples scanned

30

201

io0r

(o] 0.2 0.4 0.
MinDiversity

Fig. 14. Impact of Pruning

sorting would have to be carried out, and the performance of sequential scan would
become even worse.

An important point to note here is that the performance of the traditional KNN
search, obtained by setting MinDiv = 0, is extremely good, indicating that Motley is
a general algorithm that does not sacrifice performance on traditional KNN search in
order to accommodate diversity goals. To further confirm this, we compared the per-
formance of MOTLEY with respect to the reported performance of the Dyn KNN al-
gorithm[5] for Datasets 1 and 2, with X = 100. While for the small-sized Dataset 1,
the number of tuples read by Dyn and MOTLEY were nearly the same, for the com-
paratively larger Dataset 2, the number of tuples read by Dyn was nearly 2% whereas
MOTLEY reads only 0.5%.

To quantify the impact of pruning, we ran Motley with and without the pruning
optimizations. Figure 14 shows a sample performance on Dataset 2 with K=10 and
default settings. We see here that a substantial improvementis produced by the inclusion
of these pruning optimizations.



24

‘D MinDiversity = 0 [l MinDiversity = 0.1 ] MinDiversity = 0.2
100 100 -

100 4

% 80 80

60 60 — 60 -

40 40 — 40

Percentage of tuple scanned
Percentage of tuples scanned
Percentage of tuples scanned

20 20 204

0 - 0 0
K=1  K=5 K=10 K=5 K=100 K=l K=5  K=10 K=50 K=100 K=1  K=5

() (b) 1

10 K=50 K=100

Fig. 15. Average number of tuples read for different values of K (a) Dataset 1 (b) Dataset 2 (c)
Dataset 3

5.3 Effect of K

This experiment evaluates the effect of K, the number of answers, on the algorithmic
performance. Figure 15 shows the percentage of tuples read as a function of MinDiv for
different values of K ranging from 1 to 100. For K = 1, itis equivalent to the traditional
NN search, irrespective of MinDiv, due to requiring the closest point to form part of
the result set. As the value of K increases, the number of tuples read also increases,
especially for higher values of MinDiv but they are still much less than sequential scan
for Dataset 2 and Dataset 3. Dataset 1 contains only 32561 tuples so the size of the MBR
represented by each R-Tree node is too large for pruning to be effective. Therefore, at
K =50and K = 100, almost the entire database is scanned. However, we can expect
that users will specify lower values of MinDiv for large K settings.

5.4 Partially-specified Point Query

We now move on to evaluating the performance when the point attributes in the query
specify only a subset of the database dimensions. An issue here is whether we should
build an R-tree specifically on the point attributes or should we simply project the global
R-tree built across all dimensions onto the point attributes. Ideally, we would like to
have only a single global R-tree, since building R-trees for all possible combinations of
attributes (27) is prohibitively expensive, as mentioned earlier in Section 3. We measure
the performance impact of these alternative choices here.

Figure 16 shows the ratio of tuples read for a global R-tree as opposed to a cus-
tomized R-tree for all three data sets, as a function of the number of point attribute, for
MinDiv settings of 0.1 and 0.2. We see here that while reduction of one or two dimen-
sions does not unduly increase the number of tuples read, the performance degrades
substantially at lower dimensions — this is because the overlap among MBRs in the
global R-tree becomes high when we project them on lower humber of dimensions.



25

| B MinDiversity = 0.1 (] MinDiversity = 0.2

1000 1000 5 1000

100 1 100 —| 100 —

10 10 —|

14

Ratio of tuple scanned
Ratio of tuples scanned

Ration of tuples scanned

0.1 — 0.1 — 0.1
1Dim 2 Dim 3 Dim 1Dim 2 Dim 3Dim 1Dim 2Dim 3Dim 4Dim 5Dim

Dimensions Dimensions Dimensions

(a) (b) ©

Fig. 16. Ratio of tuples read for partially-specified queries (a)Dataset 1 (b)Dataset 2 (c)Dataset 3

This suggests that if the query workload has a large number of low-dimensional
queries, it may be worthwhile to build a carefully chosen hierarchy of R-trees, some
catering to the low dimensions and others catering to the higher dimensions.

6 Redated Work

To the best of our knowledge, the KNDN problem investigated in this paper has not
appeared elsewhere in the literature. It has its roots in the KNN problem, sometimes
referred to as Top-K, that has been extensively studied in the last decade — we refer the
reader to [5, 12] for recent surveys of this literature. The two major trends in this corpus
is one based on computing nearest K using standard database statistics (e.g., [5]), while
the other is based on spatial indices such as the R-tree (e.g., [12, 16]) — we have used
the latter approach in this paper.

Finally, the Skyline operator [3] implements a different notion of “interesting” tu-
ples in that, given a database of tuples, it finds the dominating tuples among this set. A
tuple T is said to dominate 75 if 77 is superior to 75 in all attributes with respect to
given query point. The skyline operator returns the set of tuples that are not dominated
by any of the other tuples in the database. It is different from our approach in that the
notion of domination is not with respect to a query point, and further it is possible that
the results may be highly clustered spatially, resulting in very low diversity from our
perspective.

7 Conclusions

In this paper, we introduced the problem of finding the K Nearest Diverse Neighbors
(KNDN), where the goal is to find the closest set of answers such that the user will find
each answer sufficiently different from the rest, thereby adding value to the result set.
We provided a quantitative notion of diversity that ensured that two tuples were diverse



26

if they differed in at least one dimension by a sufficient distance, and presented a two-
level scoring function to integrate the orthogonal notions of distance and diversity.

We presented MOTLEY, an online algorithm for addressing the KNDN problem,
based on a greedy approach integrated with a distance browsing technique. A buffered
variation of Motley was introduced to improve the solution quality of the basic greedy
approach, while pruning optimizations were incorporated to improve the runtime effi-
ciency. Our experimental results with a variety of real and synthetic data-sets demon-
strated that Motley can provide high-quality diverse solutions at a low cost in terms of
both result distance and processing time. In fact, Motley’s performance was close to the
optimal in the average case and only off by around ten percent in the worst case.

In our future work, we plan to extend our implementation of Matley to handle cat-
egorical attributes in accordance with the mechanisms discussed in this paper.

References

1. N. Beckmann, H. Kriegel, R. Schneider and B. Seeger, The R*-tree: An efficient and robust
access method for points and rectangles, Proc. of ACM SIGMOD Intl. Conf. on Management
of Data, 1990.

2. S. Berchtold, D. Keim and H. Kriegel, The X-tree: An Index Structure for High-Dimensional
Data, Proc. of 22" Intl. Conf. on Very Large Data Bases, 1996.

3. S. Borzsonyi, D. Kossmann and K. Stocker, The Skyline Operator, Proc. of 17" Intl. Conf.
on Data Engineering, 2001.

4. L. Breiman, J. Friedman, R. Olshen and C. Stone, Classification and Regression Trees ,
Chapman and Hall, 1984.

5. N. Bruno, S. Chaudhuri and L. Gravano, Top-K Selection Queries over Relational
Databases: Mapping Strategies and Performance Evaluation, ACM Trans. on Database Sys-
tems, 27(2), 2002.

6. P. Ciaccia, M. Patella and P. Zezula, M-Tree: An Efficient Access Method for Similarity
Search in Metric Spaces, Proc. of 23" Intl. Conf. on Very Large Data Bases, 1997.

7. V. Ganti, J. Gehrke and R. Ramakrishnan, CACTUS-Clustering Categorical Data using Sum-
maries, Proc. of ACM Knowledge and Data Discovery Conf., 1999.

8. J. Gower, A general coefficient of similarity and some of its properties, Biometrics 27, 1971.

9. M. Grohe, Parameterized Complexity for Database Therorist, (December 2002) , SIGMOD
Record 31(4), (December 2002), Pages: 86-96.

10. A. Guttman, R-trees: A dynamic index structure for spatial searching, Proc. of ACM SIG-
MOD Intl. Conf. on Management of Data, 1984.

11. A. Henrich, The LSD-tree: An Access Structure for Feature Vectors, Proc. of 14" Intl. Conf.
on Data Engineering, 1998.

12. G. Hjaltason and H. Samet, Distance Browsing in Spatial Databases, ACM Trans. on
Database Systems, 24(2), 1999.

13. R. Kothuri, S. Ravada and D. Abugov, Quadtree and R-tree indexes in Oracle Spatial: A
comparison using GIS data, Proc. of ACM SIGMOD Intl. Conf. on Management of Data,
2002.

14. C.Liand G. Biswas, Conceptual Clustering with Numeric and Nominal Mixed Data — A New
Similarity Based System, IEEE Trans. on Knowledge and Data Engineering, 14(4), 2002.

15. G. Qian, Q. Zhu, Q. Xue and S. Pramanik, The ND-Tree: A Dynamic Indexing Technique
for Multidimensional Non-ordered Discrete Data Spaces, Proc. of 29" Intl. Conf. on Very
Large Data Bases, 2003.



16.

17.

18.

19.
20.
21.
22.
23.

27

N. Roussopoulos, S. Kelley and F.Vincent, Nearest Neighbor Queries, Proc. of ACM SIG-
MOD Intl. Conf. on Management of Data, 1995.

D. Wilson and T. Martinez, Improved heterogeneous distance functions, Journal of Artificial
Intelligence Research, 6 (1997) pp. 1-34.

T. Zhang, R. Ramakrishnan and M. Livny, BIRCH: An Efficient Data Clustering Method for
Very Large Databases, Proc. of ACM SIGMOD Intl. Conf. on Management of Data, 1996.
G. Zipf. Human behavior and the principle of least effort. Addison-Wesley, 1949.
www.elibronquotations.com
ftp://ftp.ics.uci.edu/pub/machine-learning-databases/census-income
ftp://ftp.ics.uci.edu/pub/machine-learning-databases/covtype
http://www.cs.ucr.edu/marioh/spatialindex/



