
� � � � ����� � 	
� ����
 ��� � � ��� � 	 � � 	 � ���

��� � � � ��� � ��	 � ��� � �

���! #"%$#&'�(")"%*+�!,-�.*/� 021.354+*76�498#8:�.* ;<�%=>�!?@8A0CB-DE�F G4H8G$G�

I�JLKNMPOPQRK7SUTWV�JLXZY\[^]
I_Va`<b�cdc\ef`.c\g

h�i�jkimlPifnporqtsAn<juo7v n�wxifl
q(y(zCo7{}|�~dv z�y�juo7{����Ey2|�i�j���~d� iU��� ��o�npo�iU{}|N� �_o7��j�{}o

���E����i�� ���An@j���jky�juo�~���q�|7��o7�2|�o
�_iU�A�\iU��~�{<or�U�����2���2 E���E����i

¡£¢�¢(¤¦¥�§�§2¨ª©�«_¬­©2®A¯±°²¬�³�³(©�°´¬^®2¯�µ�®t¢
¬�³fµ

A Horizontally-Compacted Trie Index for Strings

Naresh Neelapala Romil Mittal Jayant R. Haritsa
Department of Computer Science and Automation

Indian Institute of Science, Bangalore 560012, INDIA
{naresh,romil,haritsa}@dsl.serc.iisc.ernet.in

Abstract

The indexing technique commonly used for long strings,
such as genomes, is the suffix tree, which is based on a verti-
cal (intra-path) compaction of the underlying trie structure.
In this paper, we investigate an alternative approach to in-
dex building, based on horizontal (inter-path) compaction
of the trie. In particular, we present SPINE, a carefully en-
gineered horizontally-compacted trie index. SPINE consists
of a backbone formed by a linear chain of nodes represent-
ing the underlying string, with the nodes connected by a
rich set of edges for facilitating fast forward and backward
traversals over the backbone during index construction and
query search. A special feature of SPINE is that it collapses
the trie into a linear structure, representing the logical ex-
treme of horizontal compaction.

We describe algorithms for SPINE construction and for
searching this index to find the occurrences of query pat-
terns. Our experimental results on a variety of real ge-
nomic and proteomic strings show that SPINE requires sig-
nificantly less space than standard implementations of suffix
trees. Further, SPINE takes lesser time for both construc-
tion and search as compared to suffix trees, especially when
the index is disk-resident. Finally, the linearity of its struc-
ture makes it more amenable for integration with database
engines.

1. Introduction

A wide variety of applications require searching for ex-
act or approximate matches over long text strings [1]. For
example, performing global alignment between a pair of
genomes that each run to millions or billions of nucleotides
is a common task undertaken by biologists, the core op-
eration of which is searching for maximal unique matches
across the genomic strings [5]. Since brute-force searching
techniques do not scale to such long strings, there has been
extensive research on the design of high-performance index
structures for strings.

a c

a

c

c

a

c

a

a

c

a

c

a

a

c

a

c

c
a

c

a

a

c

a

a

c

a

a

c

a

a

c

a

c

a

a

a

a

c

a

Figure 1. TRIE (for aaccacaaca)

In this context, a trie [13] which holds all suffixes of the
data string, has become a popular starting point for develop-
ing index structures [1]. An example trie for the string aac-
cacaaca is shown in Figure 1. A space-efficient version
of the trie structure, called the suffix tree, can be created by
collapsing every unary node of the trie into its parent. When
special edges called suffix links1 are incorporated into this
structure, it is possible to devise construction algorithms
that have linear (in the size of the data) time and space com-
plexity, and search algorithms that have linear (in the size of
the query) time complexity. Given these remarkable perfor-
mance properties, it is not surprising that suffix trees have
become the defacto standard string index, featuring in tools
like MUMmer [5], a global alignment software for genomes
developed by Celera Genomics and TIGR (The Institute for
Genomics Research). The suffix tree corresponding to the
example string aaccacaaca is shown in Figure 2.

From an abstract view-point, the suffix tree can be
viewed as an intra-path, or “vertical”, compaction of the

1A suffix link connects a node representing αS to the node representing
S, where α is a single character and S is an arbitrary string.

1

aca

a

a c

ac

a aaca

c

cacaaca
cacaaca

cacaaca

caaca

Suffix
Links

Figure 2. Suffix Tree (for aaccacaaca)

original trie since, as mentioned above, unary child nodes
are merged into their parents. In this paper, we present a
new index structure that is based on a novel inter-path, or
“horizontal”, compaction of the trie. Our motivation stems
from the simple observation that there is considerable du-
plication of patterns across the various paths in the trie –
for example, in Figure 1, the pattern cacaaca appears thrice
in the trie structure. Eliminating this repetition holds out
the promise of significantly reducing the number of nodes
in the index and thereby reducing its resource consumption.
However, achieving horizontal compaction is a significantly
more complex task as compared to vertical compaction.
This is because, unlike vertical compaction which is a sim-
ple structural merging that is independent of the content of
the compacted nodes, horizontal compaction is based on
merging character patterns across paths in the trie, thereby
immediately running into the risk of generating false posi-
tives in the compaction process.

1.1. The SPINE Index

In this paper, we present a carefully designed
horizontally-compacted trie index structure called SPINE
(String Processing INdexing Engine). The SPINE index for
the example string aaccacaaca is shown in Figure 3. As
seen here, SPINE consists of a backbone formed by a lin-
ear chain of nodes representing the underlying data string,
with the nodes connected by a rich set of edges for facilitat-
ing fast forward and backward traversals over the backbone
during index construction and query search. All edges of
the index are assigned labels during the construction pro-
cess, and these labels are used to avoid false positives while
traversing the index during the search process.

At a structural level, SPINE provides all the standard
functionalities provided by suffix trees. Further, it has a
variety of other attractive features:

• The entire trie is collapsed into a single linear struc-
ture, representing the logical extreme of horizontal
compaction. Further, the number of nodes is always
equal to the string length. This is in marked contrast

CL
Vertebra

a

c

a

c

a

a

c

a

c

1

a

0

2

3

4

5

6

7

8

9

10

c(0)

a(1)

c(1)

1(3)

1(2)

a(2)

(0)
(0)

(1)

(1)

(2)

(2)

(3)

(1)
(2)

(3)

Link

Rib

Extension Rib

(LEL)

CL(PT)

PRT(PT)

Figure 3. SPINE Index (for aaccacaaca)

to suffix trees where the number of nodes may go upto
double the length of the string.

• Since there is one edge (vertebra) on the backbone
corresponding to each character in the string, the data
string is not required any more once the index is con-
structed. This property does not hold for most of the
other string indexes, including suffix trees.

• A SPINE index can be constructed in an online man-
ner, not requiring prior knowledge of the entire data
string. Further, a single SPINE index can be used to
index multiple different strings, using techniques sim-
ilar to those employed in Generalized Suffix Trees [1].

• Since index-growth always occurs at the tail of the
structure, the node creation order and the node logical
order are identical in SPINE. The utility of this fea-
ture is that it makes SPINE prefix-partitionable – that
is, given a SPINE index for a string, the index for a
prefix of this string is simply the corresponding initial
fragment of the index.

Note that the prefix-partitioning property is not sup-
ported by suffix trees since a node that is logically high
up in the tree may be created much after nodes from
lower levels in the tree.

2

• In comparing Figures 2 and 3, it might appear at first
glance that a SPINE index may require more resources
than a suffix-tree since it has 11 nodes and 26 edges
while the suffix tree has 13 nodes and 16 edges. That
is, the node reduction is offset by an increased number
of edges. However, as discussed later in this paper, a
variety of optimizations can be implemented to mini-
mize the size of the SPINE index such that it is about a
third smaller as compared to the equivalent suffix-tree.

• For finding all the matching substrings between two
sequences, the number of suffixes processed by SPINE
is considerably smaller than those processed by suffix-
trees because they process suffixes on an individual ba-
sis, whereas SPINE processes them on a set basis.

• Finally, due to the simple linearity of SPINE’s struc-
ture, it is easy to develop efficient buffering policies, a
mandatory requirement for good disk performance.

From a performance perspective, we demonstrate
through a variety of experiments on real genetic strings,
whose lengths are of the order of several millions of charac-
ters, that the horizontal compaction approach of SPINE re-
sults in significant improvements over vertical compaction.
Overall, SPINE takes less space and time to construct, and
has better search performance – that is, it wins on both
construction and usage metrics. An implication of the
lower space requirement is that, for a given memory bud-
get, SPINE is able to process much longer strings than
those supported by suffix trees. Even more attractive is that
the performance differentials increase in moving from fully
memory-resident indexes to disk-based implementations.

1.2. Contributions

To summarize, the main contributions of this work are
the following:

1. We investigate horizontal compaction of tries and
demonstrate that indexes that achieve complete hori-
zontal compaction are feasible.

2. We describe the SPINE index structure and present
online algorithms for its construction as well as for
searching the index for query strings. We prove that,
by virtue of the edge labeling strategy, the searches are
guaranteed to not return false positives.

3. We present a variety of optimizations that drastically
reduce the memory requirements of the SPINE index.

4. We profile the performance of SPINE against suffix
trees over a variety of extremely long genetic strings
for both memory-resident and disk-resident scenarios
and show that SPINE offers significant benefits with
regard to both space and time metrics.

1.3. Organization

The remainder of this paper is organized as follows: The
SPINE structure is presented in Section 2, while the con-
struction and search algorithms are described in Section 3
and Section 4, respectively. The specifics of our prototype
implementation are outlined in Section 5. Experimental re-
sults on the performance of this prototype are highlighted
in Section 6. Related work is overviewed in Section 7. Fi-
nally, in Section 8, we summarize the conclusions of our
study and outline future avenues to explore.

2. The SPINE Index Structure

In this section, we first overview the SPINE index struc-
ture and then describe its components in detail.

The central component of SPINE is the “backbone”
of nodes connected by forward (or downstream) directed
edges called “vertebras”, as shown in Figure 3. Each verte-
bra corresponds to a character in the input data string, and
this character is used to provide a character label (CL) for
the vertebra. The vertebras appear in the same order as the
associated characters in the input string.

While the backbone forms one source of forward con-
nectivity between the nodes, there are additional down-
stream edges that connect nodes across the backbone. These
edges are called “ribs” (full lines in Figure 3) and “extribs”
(dotted lines in Figure 3). Similar to vertebras, each rib is
labeled with a character label (CL), corresponding to the
character that it represents in the associated suffix. The set
of forward edges collectively represent all possible suffixes
of the data string, and are used during the search process.

The backward (or upstream) edges, called “links”
(dashed lines in Figure 3) are created and used during the
SPINE construction process. They provide the ability to
process suffixes on a set basis.

2.1. Avoiding False Positives

As mentioned in the Introduction, the SPINE index rep-
resents the complete horizontal compaction of all the suf-
fixes in the corresponding trie. An implication of merging
of all the matching paths into a single path is that all paths
that were there in the original trie continue to be represented
in SPINE, and therefore there is no possibility of false neg-
atives. However, false positives, that is, invalid substrings,
may arise. For instance, in Figure 3, a path for accaa ap-
pears to exist in the SPINE index even though it is not a
substring of the data string.

To avoid such false positives, we take recourse to a nu-
meric labeling strategy for the edges during the construction
process. Specifically, each rib and extrib is assigned an in-
teger label, called Pathlength Threshold (PT). The extribs

3

have an additional integer label called Parent Rib Threshold
(PRT). In order to be able to assign the correct PT values to
the ribs/extribs, each link is assigned an integer label called
Longest Early-Terminating suffix Length (LEL). For exam-
ple, in Figure 3, the rib from Node 3 has a PT of 1, the extrib
from Node 5 to Node 7 has a PRT of 1 and PT of 2, while
the link from Node 8 to Node 2 has an LEL of 2.

These labels, which are assigned during the index con-
struction process as explained later, determine when for-
ward edges can be traversed during the subsequent search
process. Specifically, a rib/extrib can be traversed only if
the length of the path traversed so far (i.e. from the root
node till that point) is less than or equal to the PT of the
rib/extrib. So, for example, the accaa path will not be per-
mitted in Figure 3. This is because when we traverse the
path from the root for acca we reach Node 5 without vio-
lating any rib traversal constraints. Now at Node 5, the rib
for a violates the constraint because it has a PT of 2, which
is less than the current pathlength of 4. Thus, accaa is not
a valid substring of the given data string.

Overall, a search path in a SPINE index is a valid path
if and only if all the ribs/extribs in the traversed path satisfy
the PT constraints.

2.2. Notation and Terminology

In the remainder of this section, we describe the com-
ponents of SPINE in detail. Our discussion assumes that
the data string which is being indexed is composed of M

characters. For ease of presentation, we use the notation
shown in Table 1. While the table entries are mostly self-
explanatory, the termination concept requires elucidation:
A suffix sij is said to terminate at node p (p ≤ i) if there is
a valid traversal path from the root node to node p whose
string of character labels match the suffix. A suffix sij

whose termination node is strictly less than i is said to
be an early-terminating suffix, otherwise it is called end-
terminating.

To make the above notation clear, consider Node 5 in
Figure 3, for which S5 = aacca, s52 = ca, AllSuf5 =
{aacca, acca, cca, ca, a}, EndSuf5 = { aacca, acca,
cca, ca}, EarlySuf5 = { a}.

2.3. Vertebra Backbone

During construction, the backbone is initially created
with a single node, called the root node, and for each char-
acter in the data string, a new node is added sequentially
using a vertebra edge labeled with the corresponding char-
acter. The node that is currently at the bottom of the back-
bone is referred to as the tail node, Ntail. Each node has an
integer identifier which is set equal to the length of the back-
bone string above that node. With this naming convention,

the root node has identifier 0, the first node has identifier 1
and so on until the tail node of the entire index which will
have identifier M .

2.4. Links

Links are meant to record, at each node, the information
about its early-terminating suffixes, namely, EarlySufi.
Specifically, only the longest early-terminating suffix (here-
after referred to as LET-suffix) is explicitly kept track of
since, by definition, all shorter suffixes are also early-
terminating suffixes and they would themselves have been
linked up earlier. For example, in Figure 3, there is a link
from N5 to N1 to represent a, the LET-suffix. If a node has
no early-terminating suffixes (i.e. EndSufi = AllSufi),
then its link points to the root node, N0, which can be inter-
preted as representing the null suffix. N3 in Figure 3 is an
example of this scenario. Finally, as a special case, the root
node has no link edge since it is the starting node.

2.4.1. Link Labels

The LEL label of a link is the length of the LET suffix which
it represents. Intuitively, if we have a link from Ni to Nj

with a LEL ’k’, then it means sik = sjk . More formally,
AllSufi can be defined as follows:

AllSufi = EndSufi ∪ EarlySufi and

EarlySufi = AllSufj(k)

where k = Link(Ni).LEL and j = Link(Ni).Dest.

Notation Meaning
Ni Node i
Si String on backbone from root to Ni

sij Suffix of Si of length j

AllSufi Set of all suffixes of Si

AllSufi(k) Set of suffixes of Si of length ≤ k
EndSufi Set of suffixes in AllSufi

terminating at Ni

EndSufi(k) Set of suffixes of EndSufi

of length ≤ k
EarlySufi Set of suffixes in AllSufi

not terminating at Ni

Link(Ni).LEL LEL of the link of Ni

Link(Ni).Dest Destination node of link of Ni

Rib(Ni).Dest(c) Destination node of rib at Ni

for character c

Rib(Ni).PT (c) PT of rib at Ni for character c

Table 1. Notation

4

2.5. Ribs

When the SPINE index that has been built for Si is
extended by one more character from the data string, we
need to extend all the suffixes of Si by this additional char-
acter, ctail. For the end-terminating suffixes, the newly
added node on the backbone, Ntail, automatically records
this extension through its vertebra edge. For the early-
terminating suffixes, however, the extension must be explic-
itly recorded and this is achieved through the addition of rib
edges. Specifically, the link chain from Ni is traversed and
if a rib/vertebra does not already exist for ctail at any node,
say Nj , in the link chain, a new rib is created from that node
to Ntail.

The traversal of the link chain terminates if either the
root node is reached, or a node having an outgoing edge
labeled with ctail is reached. The first stopping condition
is obvious since no further traversal is possible, while the
other condition reflects the fact that the suffix in question
has already been previously extended. And there is no need
to explicitly handle the remaining smaller suffixes as they
would also have been extended automatically.

2.5.1. Rib Labels

When a new rib is created at Nj , its CL is set to ctail and its
Pathlength Threshold (PT) is set to the length of the longest
suffix of Si terminating at that node, which is given by the
LEL of the last traversed suffix link. Intuitively, the rib PT
represents the length of the longest prefix that can be tra-
versed from the root before the rib is traversed. This is be-
cause the rib was created to extend the suffix of that length.
This means that, as mentioned earlier, a rib at Nj can be tra-
versed during the SPINE search process only if the length
of the current traversal path is ≤ PT of this rib.

2.6. ExtRibs

As mentioned above, we stop the link-chain traversal for
rib addition if we find that the current node already has a
matching rib (i.e. with CL = ctail). However, the following
situation may now arise: The PT of the pre-existing rib may
be less than the LEL of the link used to reach this node,
which means that this rib is not valid to represent the exten-
sion of the associated early-terminating suffix. To address
this issue, the solution that immediately comes to mind is to
update the rib’s PT to be equal to the LEL value. However,
this is not correct since it may permit illegal paths resulting
in false positives. We therefore take an alternative approach
of extending the rib itself through edges called extribs (ex-
tension ribs). For example, in Figure 3, the extrib (dotted
line) from N5 to N7 is an extension of the “parent” rib con-
necting N3 to N5.

At a given node, there may be multiple extribs, each cor-
responding to a different parent rib that terminates at this
node. From an implementation perspective, this is problem-
atic since it makes the node size to be variable. Therefore,
we take the alternative approach of maintaining the extribs
in a chained fashion. That is, the first extrib in the chain is
located at the destination node of the rib which failed the
pathlength threshold test, and the second extrib is located
at the destination node of the first extrib, and so on. This
ensures that at any node there is at most only one extrib. So,
whenever we need to create an extrib, instead of creating
it from the destination of the parent rib, we traverse to the
node at the end of the extrib chain, and then create a new ex-
trib from this node to the tail node. All the extribs created
for a rib are its children.

2.6.1. ExtRib Labels

Each extrib has an associated Pathlength Threshold (PT),
which is the length of the longest suffix that it is extending,
as well as a PRT, which is the PT value of the parent rib. The
reason for including the PRT value is to be able to uniquely
identify the extrib. Note that a character label is not required
for an extrib as it is implicitly represented by the CL of
the incoming rib or extrib at its source node. And hence,
a complete extrib chain represents a single character. In
Figure 3, an example chain is the extrib from N5 to N7, and
then from N7 to N10.

2.7. Proof of Correctness

We have given an informal description of the SPINE in-
dex structure above. A formal proof that the valid paths in
the SPINE index correspond exactly to the set of substrings
that occur in the data string is given in Appendix A.

Another point to note is that it is easy to see from the
above discussion that SPINE is prefix-partitionable, i.e.
given a SPINE index for a sequence the index for a prefix
of the sequence is simply the corresponding initial fragment
of the index.

3. SPINE Construction Algorithm

In the previous section, we presented an overview of the
SPINE index structure. We now move on to presenting an
online algorithm for constructing this structure. The pseudo
code for the main algorithm is given in Figure 3 (subrou-
tines are described in Appendix B).

We start off with the SPINE index initially consisting of
just the root node and then, for each new character in the
string, a node is appended to the tail of the index. The ver-
tebra connector to the newly-added node is labeled with the

5

new character, and the associated links and ribs are created
as required.

As mentioned earlier, every node, excepting the root, has
a link associated with it. When the first character is ap-
pended, a link is created from the new node to the root
node. For all subsequent nodes, the following process is
followed: The link edge of the immediate predecessor of
Ntail is traversed upstream. Let the destination node of this
link be Ncurr. At Ncurr, it is checked whether a verte-
bra/rib already exists for ctail. If it is not present, a new rib
is constructed from Ncurr to Ntail. Then, the link at Ncurr

is traversed upwards and the same process is repeated with
the new Ncurr.

The above process stops with the creation of a new link,
which happens when one of the following cases occur dur-
ing the upward traversal of the link chain:

A vertebra is found with CL = ctail: In this case, a link is
created from Ntail to the destination node of the ver-
tebra. The LEL of the link is set one greater than the
LEL of the last link traversed.

A rib is found with CL = ctail: In this case, if the thresh-
old test does not fail, then a link is created from Ntail

to the node referenced by the rib, and the LEL of the
link is set one greater than the LEL of the last link tra-
versed.

Otherwise, the extrib chain is traversed to find a child
extrib with PT ≥ LEL of the link. If found, then a link
is created from Ntail to the destination of that extrib.
The PT of the link is set one greater than the PT of the
last link traversed. Otherwise, a new extrib is created
from the end of the extrib chain to Ntail and a link is
also created from Ntail to the destination node of the
last traversed extrib with PRT equal to the PT of the
rib which failed the validity test. The link is assigned
a LEL which is one more than the PT of the last rib or
sibling extrib that has been traversed.

A rib is created from the root node: Here, a link with
LEL set to 0 is created from Ntail to the root node.

3.1. Construction Example

To help clarify the above discussion, we now describe
how the SPINE index is created for the same input string
used in Figure 3, i.e. aaccacaaca.

In the beginning, a root node is created with identifier 0.
Subsequently, whenever a new node is added to the back-
bone, we start traversing the link chain beginning from the
parent node of the newly added node. An example sce-
nario for each of the conditions in the construction algo-
rithm given in Figure 4 is discussed below.

APPEND (n + 1)th character
01. ctail = (n + 1)th character
02. Append Nn+1 to the SPINE using a vertebra
03. Ntail = Nn+1

04. Ncurr = Link(n).Dest

05. edgeFound = FALSE
06. WHILE (NOT edgeFound)
07. IF (Ncurr 6= NULL)
08. l = Most recently traversed link
09. Check for a ctail vertebra/rib at Ncurr

10. IF (a matching edge e is found)
11. IF (e is vertebra)
12. AddLink(Ntail, e.Dest, l.LEL + 1)
13. ELSE IF (e is a rib)
14. IF (l.LEL > e.PT)
15. HandleExtribs(l.LEL, e.PT)
16. ELSE
17. AddLink(Ntail, e.Dest, l.PT + 1)
18. edgeFound = TRUE
19. ELSE
20. AddRib(Ncurr, Ntail, ctail, l.LEL)
21. Ncurr = Link(Ncurr).Dest

22. END-IF
23. ELSE // link chain ends
24. AddLink (Ntail,Nroot,0)
25. edgeFound = TRUE
26. END-IF
27. END-WHILE

Figure 4. SPINE Construction Algorithm

CASE 1: Vertebra Exists (Line 11)
This case occurs when a vertebra for ctail exists at
Ncurr. For example, consider appending N2. Here,
we traverse the link of N1 to reach N0 and find a ver-
tebra for a. Hence we create a link from N2 to N1 and
assign it a LEL of 1 (= LEL of last traversed link + 1).

CASE 2: Rib With Required PT Exists (Line 16)
This case occurs when there already exists a
rib/vertebra for ctail with sufficient PT. Consider ap-
pending N4. In this case, we find that a rib for c with
sufficient PT exists at N0. Hence a link is created from
N4 to N3 (the destination of the rib) with a LEL of 1
(= LEL of last link traversed + 1).

CASE 3: Rib Creation (Line 19)
This case occurs when there exists no rib/vertebra for
ctail. Consider appending N3. Traverse the link of N2

to reach N1. Since there exists no rib/vertebra for c,
create a rib from N1 to N3 and assign it a LEL of 1.
Now traverse the link of N1 to reach N0. Again, since
no rib or vertebra exists for c, a rib is created for char-
acter c from N0 to N3 with PT equal to 0. Since the

6

root node has no link, we end the process by creating
a link from N3 to N0 with LEL = 0.

CASE 4: ExtRib Creation (Line 15)
This case occurs when there exists a rib whose PT is
less than the desired value. Consider appending N7.
Traverse the link of N6 to reach N3. At N3, there exists
a rib for character a but with PT of 1 which is less than
the LEL of the last traversed link(= 2). And we see
that there is no extrib from N5 (the destination node of
the rib). So, an extrib is created from N5 to N7 and its
PT and PRT are set to 2 (LEL of the last traversed link)
and 1 (PT of the parent rib), respectively. Then, a link
is created from N7 to N5 (the last traversed rib/extrib
with the same PRT as the newly created extrib) with a
LEL of 2 (= PT of last traversed rib/extrib with same
PRT + 1).

4. Searching with SPINE

In this section, we discuss how a SPINE index can be
used for efficient searching. For illustrative purposes, we
will assume a complex matching operation wherein the goal
is to find, given a data string S1 on which a SPINE index
has been built, and a query string S2, all maximal match-
ing substrings, including repetitions, between S1 and S2,
whose lengths are above a threshold value. A practical ap-
plication of this matching operation is in establishing local
alignments across genetic strings.

For example, given the following strings S1 and S2, and
a threshold value of 6

S1 acaccgacgatacgagattacgagacgagaatacaacag
S2 catagagagacgattacgagaaaacgggaaagacgatcc

the output should contain the substrings shown in boldface.
For the above operation, the SPINE matching would pro-

ceed as follows: To start off, the entire query string is
searched for in the SPINE index of the data string. As soon
as the first mismatch is found, the length matched till now
is reported. Now, we check if the mismatched character fol-
lows any of the shorter suffixes in the matched part of the
query string, and the process is repeated again. The shorter
suffixes are reached by traversing the link chain upwards.

The procedure for finding a match is as follows: We start
from the root node and traverse the forward edges (verte-
bras, ribs and extribs) according to the characters in the
query string. A vertebra edge can be traversed at any time.
Before traversing a rib, however, a check is made as to
whether the length traversed thus far is ≤ PT of the rib.
If this test fails, then this rib’s extrib chain is followed un-
til either the extrib chain ends, or we find the child extrib
whose PT is greater than or equal to the current pathlength

and having a PRT which is equal to PT of the rib which
failed the test.

The intuition behind our searching scheme is simple:
Each valid path starting from the root to a node corresponds
to some suffix of the string on the backbone till that node.
And while more than one suffix might terminate at a node,
each such suffix would be of a different length. So, at a
given node if it is valid to traverse a rib after a pattern p

(suffix till that node) of length k, then it has to be valid after
a pattern q whose length is less than k and which ends at the
same node, because q would be a suffix of p.

The above matching process finds the first occurrence of
a match in the data string. But our goal is to find all occur-
rences of the match. This is achieved using a simple tech-
nique that exploits the link property that a link with LEL v
from node Na to node Nb indicates that a string of length
v above Na is the same as the string of length v above Nb.
Specifically, after we find the first occurrence of the match,
the node indexing the first occurrence is stored in a target
node buffer. Then, all the nodes downstream are scanned
successively to check if their links point to the node in the
target node buffer, i.e. the node indexing the first occur-
rence and have an LEL greater than length of pattern being
searched. If so, then that node is also stored in the target
node buffer. Again, downstream scanning is started from
this node and the process is repeated until the end of the
backbone is reached. Searching in the target node buffer is
performed in binary fashion to improve the performance.

To clarify the above, consider Figure 3 with a query
string ac. Here, after locating the first occurrence, the tar-
get node buffer will contain N3. Moving downstream, at
N6 we find a link with LEL = 2 (length of string ac) point-
ing to N3. And so, N6 is also added to the target node
buffer. On moving further downstream, at N9, a link with
appropriate LEL is found pointing to a node in the target
node buffer (N3), and therefore it is also added to the buffer.
In this manner, the target node buffer finally gives the end
nodes of all occurrences of the pattern in the string. As a
last step, their starting positions can be trivially determined
by merely subtracting the query pattern length from each of
the node identifiers in the target node buffer.

While we could, in principle, search for all occurrences
of a matching pattern immediately after it is found, this
would be wasteful since it would require a traversal of the
backbone for each matching pattern. Instead, we defer this
step until the first occurrences of all matches are found, and
then, in one single final sequential scan of the backbone,
the repeated occurrences of all matching patterns are con-
currently found.

The detailed pseudocode to find the first occurrence of
the query sequence in the data sequence is described in Ap-
pendix C.

7

4.1. Comparison with Suffix-Trees

Similar to SPINE’s use of links, suffix-trees use suffix
links to assist in finding the suffixes of the matched sub-
strings. But, the number of suffixes checked by suffix-tree
search algorithms is far more than those checked by SPINE.
The reason for this is as follows: In suffix trees, a suffix link
points from a node indexing string aw to the node indexing
w, where ’a’ is a character and w is a string [1]. In the case
of a mismatch, after checking for aw, we retrieve the node
indexing the suffix w and check if the mismatched charac-
ter follows w. This process iterates till a complete match is
found or there are no more suffixes remaining to be checked.

In SPINE, however, each node Ni in a link chain repre-
sents a set of suffixes, namely EndSufi. Therefore, only
one check is sufficient for all the suffixes in that set, reduc-
ing the computational effort.

To make the above analysis clear, consider the index
structures shown in Figures 2 and 3. Here, assuming that
while matching accaa a mismatch is found in the suffix-
tree after matching acca, then the next suffix to be checked
will be cca (length 3) i.e. the one indexed by the destina-
tion node of the suffix link. On the other hand, in SPINE,
the link from Node 5 directly points to Node 1 which rep-
resents the suffixes of length 1 or less. This means that the
(unnecessary) checks for suffixes of length 3 and length 2
are not made. Therefore, for large strings, a very small num-
ber of suffixes are actually checked in the SPINE index.

5. Implementation Details

We have developed a prototype version of SPINE, and in
this section, we discuss its implementation details. While
SPINE is general in its applicability, for ease of presenta-
tion, we will assume in the following discussion that it is
DNA genomic strings, which are over an alphabet of size
four, that are being indexed; proteomes, which are over an
alphabet of size twenty, are discussed at the end of the sec-
tion.

Our implementation strategies are based on our expe-
rience with a variety of DNA genomes, each of which is
several million characters in length. In particular, we will
present results for the following representative genomes:

ECO : E.coli earthworm genome of length 3.5 million
characters;

CEL : C.Elegans bacterial genome of length 15.5 million
characters;

HC21 : Human chromosome 21 genome of length 28.5
million characters;

HC19 : Human chromosome 19 genome of length 57.5
million characters.

Field Space Count Total
Name (Bytes) (Bytes)

CharacterLabel 0.25 1 0.25
VertebraDest 4 1 4

Link Dest 4 1 4
Link LEL 4 1 4
Rib Dest 4 3 12
Rib PT 4 3 12

ExtRib Dest 4 1 4
ExtRib PT 4 1 4

ExtRib PRT 4 1 4

Table 2. Index Node Content

The information associated with each node of the SPINE
index and the associated space requirements are shown in
Table 2, corresponding to storing one vertebra, one link, a
maximum of three ribs (for DNA alphabet), and one extrib
at the node. As can be seen from the table, with a straight-
forward implementation, the worst-case space required by
each node is huge (48.25 bytes). However, the SPINE in-
dex exhibits a variety of both structural and empirically-
observed features using which the actual space required can
be drastically reduced – in fact, as we will show next, it
can be brought down to less than 12 bytes when all these
features are taken into account.

5.1. Node Size Optimizations

In this section, we present the optimizations which re-
duce the space requirements of SPINE index.

5.1.1. Implicit Vertebra Edge

Since, as mentioned earlier, SPINE grows sequentially at
the tail of the backbone, the physical order and the logi-
cal order of the nodes are identical. We can take advantage
of this feature to not explicitly represent the vertebra edge
destination since the neighboring nodes are physically con-
tiguous, i.e. the Vertebra Dest field can be eliminated.

5.1.2. Small Numeric Label Values

Table 3 gives the maximum value observed for the various
numeric labels (PT, LEL, PRT) when the SPINE index was
constructed on the representative biological genomes men-
tioned above. As can be observed here, the label values
never exceed 25000 even for very large genomes like the hu-
man chromosomes. Therefore, only two bytes, rather than
four, need to be allocated for the length fields.

However, to ensure that the index works robustly, we
have a mechanism in place to handle even those rare cases
where the numeric values may exceed 65536 (the maximum
value that can be represented in two bytes). We allocate sep-
arate entries for these cases in an overflow table. The node
space normally used for storing the label value is now used

8

Genome Max Value
ECO 1785
CEL 8187

HC21 21844
HC19 12371

Table 3. Maximum Label Values

to index into the overflow table, and a one bit flag is used
in the main node structure to indicate whether the space is
storing a value or a pointer.

5.1.3. Sparse Rib Distribution

While all nodes have upstream edges (links), the same is not
true with respect to downstream edges (ribs and extribs). In
fact, we have found that only around 30 to 35 percent of
the nodes actually have any downstream edges emanating
from them – Table 4 shows the distribution of their num-
ber for the various genomes. Specifically, the columns la-
beled 1 through 4 represent the percentage of nodes having
that many forward edges emanating from them, with the
maximum corresponding to having the full complement of
downstream edges (3 ribs and 1 extrib).

Genome Number of Ribs Total
1 2 3 4

ECO 15% 9% 6% 4% 33%
CEL 15% 8% 6% 4% 33%

HC21 14% 8% 6% 4% 32%
HC19 13% 7% 5% 3% 28%

Table 4. Rib Distribution across Nodes

The reason for this distributional behavior is that after
some length of the data string has been processed, the re-
maining part mostly contains repetitions of previously oc-
curred patterns, and therefore fresh downstream edges are
rarely created. Based on this observation, we do not allocate
space for downstream edges at every node, since consider-
able space would be wasted. Instead, we store information
about the links and the downstream edges separately in a
Link Table (LT) and a Rib/Extrib Table (RT), respectively.
One entry for each character in the string is allocated space
statically in the LT, while space for downstream edges is
allocated dynamically in the RT for only those nodes from
which a rib/extrib emanates. Therefore, the total number of
entries in the RT is less than 35 percent of that in the LT.

Further, from Table 4 it is clear that the number of nodes
with a given rib fanout decreases with the fanout value. For
example, only about 4% of the nodes have the full comple-
ment of downstream edges. Therefore, to avoid the space
wasted for the edges which are not present, we use multiple
RTs. Specifically, there is one RT for each possible fanout,
resulting in four RTs in total: RT1, RT2, RT3, and RT4.

While this optimization results in considerable space
savings, it might appear at first glance that the construc-
tion time of SPINE would degrade due to the movement of
nodes across the RTs, which would occur whenever a node
acquires an additional downstream edge. However, we have
experimentally observed that this impact is negligible.

5.1.4. Final Node Layout

Based on the above discussion, the optimized implementa-
tion of the SPINE index consists of a Link Table (LT) and
four RibTables (RTs), whose entries are shown in Figure 5.
The LT contains one entry for each node (character) in the
string. It stores its LEL as one of its columns while the
other column represents either the destination node of that
link (the LD field) or a pointer to an entry in one of the RTs
(the PTR field). In particular, the LT stores the link destina-
tions only for the nodes that don’t have any ribs/extrib. For
the remaining nodes, they are stored in the RT entries only.

Each node features in at most one RT table. A RT entry
for a node stores the destination node of the link from that
node and also the destination nodes (the RD fields) and the
threshold values (the PT fields) of all the ribs/extrib ema-
nating from the node. And, lastly, the PRT field denotes the
PRT value of the extrib.

LD

LD

LD

LD

LD / PTR

RT1

RT2

RT3

RT4

LT LEL

PT

PT

PT

PT PT

PT

PT

PT

PT PT

PRT

PRT

PRT

PRT

RD

RD

RD

RD RD

RD

RD

RD

RD RD

Figure 5. Optimized SPINE Implementation

By implementing all the above optimizations, the net ef-
fect is that the average node size in SPINE is less than 12
bytes, that is, the index takes upto 12 bytes per indexed char-
acter. The advantage of smaller node sizes is reflected not
only in space occupancy but also in improved construction
and searching times, as is quantitatively demonstrated in the
following section.

5.2. SPINE Implementation for Proteins

The above implementation focused on DNA strings
which have an alphabet size of 4. When we consider pro-
teins strings, where the alphabet size increases to 20, we ob-
served that the numeric label values are even smaller than
those found with DNA sequences. Our experiments were
conducted with the E.Coli Residue (1.5 M), Yeast Residue
(3.1 M) and Drosophila Residue (7.5 M) proteomes. Mov-
ing on to the rib distribution, we observed that here too there

9

is a steep decay in the percentages of nodes having multi-
ple ribs. And again, the total number of nodes with any
rib/extrib is less than 30%. Therefore, the overall behavioral
characteristics of proteomes are similar to that of genomes
with the only practical difference being that each character
label requires 5 bits to code as opposed to the 2 bits used for
DNA.

6. Experimental Analysis

We conducted a detailed evaluation of the performance
of the SPINE index prototype, and these results are pre-
sented in this section. Our experiments were conducted
with the same set of genomes mentioned earlier in this paper
(i.e. E.Coli, C.Elegans, HumanChromosome 21, and Hu-
manChromosome 19). For comparison purposes, we also
evaluated the performance of the suffix tree, hereafter re-
ferred to as ST – the code base was taken from the MUM-
mer software to reflect an industrial-strength implementa-
tion.

Our experiments were conducted on a Pentium IV 2.4
GHz machine with 1 GB RAM, 40GB IDE disk and running
Linux 7.3 operating system. The performance metrics in
our experiments were the following:

Index Construction Time: This is the overall time taken
to build the complete index for a string.

Index Search Times: This refers to the time taken to per-
form the complex matching operation discussed in
Section 4, wherein we need to output all maximal
matching substrings, including repetitions, between
the source strings.

In the following discussion, we first consider an environ-
ment wherein both the data string and the index structure
are completely memory-resident, and then move on to pre-
senting results for disk-resident indexes.

6.1. In-Memory Environment

The performance of ST and SPINE with regard to index
construction times are shown in Figure 6. Firstly, note that
the indexes take less than two seconds construction time per
Mbp, which means that with sufficient resources, a com-
plete in-memory index construction of the human genome
(approximately 3Gbp in length) can be done in under two
hours. Second, SPINE takes only marginally lesser time
to construct than ST, especially for longer strings. This is
not surprising since all operations are done in memory and
therefore the structural differences do not really play a role
in determining the construction time. But, these features do
show up with regard to the maximum string length that can
be successfully handled for a given budget. This is evident

in Figure 6, where no results are shown for ST with regard
to the HC19 string as it ran out of memory due to its larger
space requirements. In contrast, SPINE was able to com-
plete the index build successfully – in general, SPINE can
handle approximately 30 percent more string length than
the maximum that can be supported by ST.

C
on

st
ru

ct
io

n
T

im
es

 (
se

cs
)

CEL HC19HC21ECO

Sequences

ST

SPINE

 0

 20

 40

 60

 80

 100

Figure 6. Index Construction Times (In Memory)

Moving on to the search times, Table 5 gives the times
required to find all the exactly matching substrings (includ-
ing all multiple occurrences) for SPINE and ST for various
genome pairs. We observe here that SPINE takes around 30
percent lesser time than ST. This is entirely due to its ef-
ficiency in handling a much smaller number of suffixes, as
described earlier in Section 4.1, and quantitatively shown in
Table 6.

Data Seq Query Seq ST SPINE
ECO CEL 20 16
CEL HC21 45 31

HC21 CEL 26 17
HC21 HC19 83 54
HC19 HC21 – 30

Table 5. Substring Matching Times (secs)

Data Seq Query Seq ST SPINE
CEL ECO 3515 2119

HC21 ECO 3514 2163
HC21 CEL 15077 8701

Table 6. Number of Nodes Checked (In 1000s)

We hasten to add here that while the results we show here
are for complete genomes in order to demonstrate scalabil-
ity, the same performance differences held even when the
query strings were much smaller (for example, of length
1K).

10

6.2. Performance on Disk

We now move on to assessing the performance of SPINE
and ST on disk. Note that while SPINE can be expected to
have a basic advantage due to its smaller node size, the more
important issue here is the locality of the accesses made by
the index structures.

To study their behavior, we constructed SPINE and ST
indexes on disk without doing any extra disk specific op-
timization. The graph in Figure 7 shows the time taken
to construct the indexes for the various genomes on disk.
We see here that SPINE takes almost half the time as re-
quired by ST to construct the index on disk. Note that this
cannot be attributed solely only to the smaller-sized nodes
since that would have at best reduced the time by a factor of
about 30%. The additional 20% improvement arises due to
the better locality exhibited by SPINE.

C
o
n
st

ru
ct

io
n
 T

im
es

 (
h
rs

)

Sequences
HC21CELECO

ST

SPINE

 0

 5

 10

 15

 20

 25

Figure 7. Index Construction Times (On Disk)

We investigated the issue of locality further and an inter-
esting feature that we observed in the SPINE index is that
most of the links point to the upper nodes in the backbone,
and that the number of links pointing to a node keeps mono-
tonically decreasing as we descend the backbone. This is
shown quantitatively in Figure 8, which shows the distribu-
tion of the link destinations for different data strings. This
indicates that while constructing the SPINE, the upstream
nodes would be accessed more than the downstream ones.

Hence this suggests a simple buffering strategy for
SPINE when sufficient memory is not available: “Retain as
much as possible of the top part of the Link Table in mem-
ory”.

Moving on to the index search times, we observed that
the time required to obtain all the exactly matching sub-
strings also improved by a factor of two with SPINE as
compared to ST. This is explicitly shown in the speedup
numbers of Table 7 for the various genome combinations.

Due to space limitations, we do not present performance
results for protein strings here, but our experiments with
these strings showed that the SPINE construction times for
proteins also scaled linearly with the string lengths, and that

0

5

10

15

20

25

30

35

40

45

50

5 10 15 20 25 30

P
e
rc

e
n
ta

g
e
 N

u
m

b
e
r

o
f
L
in

ks

Destination Node Numbers (MBs)

ECO
CEL

HC21

Figure 8. Link Distribution over the Backbone

Data Seq Query Seq Speedup
ECO CEL 52.1%
ECO HC21 49.8%
CEL HC21 49.2%
HC21 CEL 52.8%
HC21 HC19 51.1%

Table 7. Substring Matching (On Disk)

the search times are independent of the data string length.
Overall, SPINE works as well with protein strings as it does
with DNA strings.

7. Related Work

A rich body of literature exists with regard to vertically
compacted trie indexes such as suffix trees. The primary
focus of this research has been on optimizing the space oc-
cupied by the tree nodes – however, these optimizations typ-
ically adversely impact either the performance or the func-
tionality. For example, Kurtz [2] proposed an implementa-
tion that requires 12.5 bytes per indexed character for DNA
sequences. However, suffix trees built using this technique
take more time for construction and searching times are also
impacted due to the comparatively larger number of edge
traversals.

An even more space-efficient implementation, called
Lazy Suffix Trees [3], has been recently proposed, taking
only 8.5 bytes per indexed character. However, it has con-
straints on its functionality, including not being online, and
not being able to perform approximate and subsequence
matching efficiently due to the absence of suffix links. Fi-
nally, suffix arrays [9] reduce the space requirement to just 6
bytes per indexed character but increase the time complex-
ity.

In contrast to vertical compaction, there is almost no
prior work available with regard to horizontal trie com-
paction. The only exception that we are aware of in this
regard is DAWGS [7], which require around 34 bytes per

11

character for DNA sequences [2]. A compacted version of
DAWGS, called CDAWGs [8] was proposed, but that too
requires more than 22 bytes per indexed character [2].

More importantly, they are unable to achieve complete
horizontal compaction due to their technique for eliminat-
ing false positives. Further, they lack position information
of the matching pattern in the data sequence because their
nodes do not correspond to the character positions in the
sequence.

Recently, in order to make suffix-tree construction on
disk efficient, a partition-based technique was proposed in
[10]. However, this algorithm is predicated on dispensing
completely with the suffix links that are essential for retain-
ing the linear time construction complexity – as a result,
the algorithm in [10] has quadratic complexity. Further, the
removal of the links makes approximate matching and sub-
string matching rather inefficient. Finally, this is not an on-
line algorithm – that is, if a new character is added to the
sequence, the entire index has to be rebuilt.

An elegant two-level search technique called MAP was
recently proposed in [12], wherein a preprocessing phase
using a very small approximate index is used to first filter
out those regions of the data string that potentially contain
matching entries, and then a seed-based approach is used on
the filtered regions. MAP was reported to be between one
to two orders of magnitude faster than BLAST, the popular
genomic alignment tool [12]. Both MAP and BLAST give
approximate answers, whereas SPINE and ST provide exact
answers. Further, the performance improvement through
indexes is usually substantially more albeit at the cost of
increased resource consumption.

8. Conclusions

In this paper, we have proposed the SPINE index data
structure, which achieves a complete horizontal compaction
of the basic trie structure used for indexing long strings, and
ensures that the number of nodes in the index is equal to
the number of characters in the underlying data string. To
the best of our knowledge, this is the first string index with
these properties, and is in marked contrast to suffix-trees,
the defacto standard string indexing structure. A rich set of
forward and backward edges are employed in SPINE to en-
sure that all suffixes of the data string are captured in the
index structure. Further, the false positives that inevitably
resulted from the trie compaction were eliminated through
a simple but powerful numeric labeling strategy that con-
strains when the index edges can be traversed. Finally, the
SPINE index is prefix-partitionable, a property not shared
by suffix-trees.

We provided detailed algorithms for both online con-
struction of the SPINE index as well as for performing com-
plex searching operations on the resulting indexes. A fea-

ture of the search algorithm is that it considerably reduces
the number of suffixes that have to be examined during the
alignment process. While a simplistic implementation of
SPINE would have resulted in huge node sizes, we identi-
fied and incorporated a variety of structural optimizations
that finally resulted in SPINE taking less than 12 bytes per
indexed character, comparing favorably with the 17 bytes
taken by standard suffix tree implementations.

A performance evaluation of SPINE against ST (Suffix-
Tree) over a variety of very long genetic strings, includ-
ing human chromosomes, showed that significant speedups
were obtained for the searching operations, for both
memory-resident and disk-resident scenarios. It was also
observed that along with 30 percent lesser index size,
SPINE exhibits much higher node locality than ST, result-
ing in a more efficient disk-based implementation. Finally,
it was shown that a very simple buffering strategy was suffi-
cient for SPINE to be able to take advantage of the locality
observed in our experiments. In summary, SPINE appears
to be a viable alternative to suffix-trees for string indexing.

References

[1] D. Gusfield, “Algorithms on Strings, Trees, and Sequences”,
Cambridge University Press, 1997.

[2] S. Kurtz, “Reducing the space requirements of suffix trees”,
Software Practice and Experience, 29:1149-1171, 1999.

[3] R. Giegerich, S. Kurtz and Jens Stoye, “Efficient Implemen-
tation of Lazy Suffix Trees”, Proc. of 3rd Workshop On Al-
gorithm Engineering, London, UK, July 1999.

[4] M. Crochmore and R. Verin, “Direct Construction of Com-
pact Acyclic Word Graphs”, Proc. of Symp. on Combinato-
rial Pattern Matching, 1997.

[5] A. Delcher et al., “Alignment of whole genomes”, Nucleic
Acids Research, 27:2369-2376, 1999.

[6] S. Altschul and W. Gish, “Basic Local Alignment Search
Tool”, J. Mol. Biol., 215, 403-410, 1990.

[7] A. Blumer et al., “The Smallest Automaton Recognizinng
the Subwords of a Text”, Theoretical Computer Science,
40:31-55, 1985.

[8] S. Inenaga et al., “On-Line Construction of Compact Di-
rected Acyclic Word Graphs”, Proc. of Symp. on Combina-
torial Pattern Matching, 2001.

[9] U. Manber and G. Myers, “Suffix arrays : a new method for
on-line string searches”, SIAM J. Comput., 22(5), 1993.

[10] E. Hunt, M. Atkinson and R. Irving, “A Database Index to
Large Biological Sequences”, Proc. of the 27th VLDB Con-
ference, 2001.

[11] T. Kahveci and A. Singh, “An Efficient Index Structure
for String Databases”, Proc. of the 27th VLDB Conference,
2001.

[12] T. Kahveci and A. Singh, “MAP: Searching Large Genome
Databases”, Pacific Symp. on Biocomputing, 2003.

[13] http://www.nist.gov/dads/HTML/trie.html

[14] http://www.tigr.org/software/mummer

12

APPENDIX

A. Proof of SPINE Correctness

We present here the formal proof demonstrating that the
SPINE index does not result in any false positives. The no-
tation defined in Table 1 is used in the proof:
Lemma 1: An incoming rib or extrib into node Ni is added
only when Ni is appended to the backbone and at no other
time.

Proof: When appending node Ni, we extend the suffixes
of Si−1 to get the suffixes of Si. Some of these suffixes, as
explained in Section 2, are extended by using ribs/extension
ribs during the construction process. And according to
the construction algorithm, we create a rib from node Nj

(j < i) to Ni if we have to extend some suffix sjk (which is
identical to s(i−1)k) to obtain si(k+1). In other words, ribs
are created to accomodate the suffixes that are newly cre-
ated due to the addition of the new character at the end of
the string. For example, s(i−1)k is a suffix of both Sj and
Si−1 but si(k+1) occurs only in Si. So, the incoming ribs of
node Ni are created only when that node is being appended
to the vertebra and at no other time; each one of these ribs
correspond to different suffixes of Si.

The above proof holds true for extribs as well because
the destination of an extrib is always the node that is being
appended.
Theorem 1: The addition of ribs and extension ribs do not
create false positives in SPINE.

Proof: We use an inductive technique for this proof. As-
sume that there are no false positives in SPINE until Si and
that we are now extending this index with a character c. Ap-
pending a character to the SPINE index involves extending
the previously existent suffixes by the newly added charac-
ter and these suffixes are retrieved by traversing up the link
chain. This is equivalent to extending all the suffixes of Si

by c.
Now we have to prove that no additional paths other than

those corresponding to the new suffixes of Si+1 are created
on SPINE when node Ni+1 is appended to the backbone.
Note firstly that all the suffixes of Si in EndSufi are auto-
matically extended by the newly added vertebra. By Lemma
1, we know that all the paths to any node Ni are created
when Ni is appended to the backbone and they represent
suffixes of Si and therefore we are extending only the valid
suffixes and none other. Hence the addition of the vertebra
does not create any false positives.

Next we consider the additional paths created by addi-
tion of ribs and extribs. For extending the other suffixes
of Si which belong to EarlySufi, we traverse the link

chain starting from Ni as explained in Section 2. Sup-
pose from Ni, we traverse the link and reach Nj (i.e.
j = Link(Ni).Dest), and Link(Ni).LEL is l. By defi-
nition of a link we have AllSufi(l) ≡ AllSufj(l). Now at
Nj ,

Case 1: No Rib or Vertebra exists for c

Since there exists no rib or vertebra for c at Nj , none
of the suffixes in EndSufj have been extended by c.
Further, note that only the suffixes in EndSufj(l) and
not all the suffixes in EndSufj , need to be extended
by c.

According to the construction algorithm, a new rib
is created at Nj for c and given a PT of l. This
PT indicates that the rib is valid only for suffixes in
EndSufj(l). Thus the PT of the rib ensures that only
the required suffixes in EndSufj are extended and
that any valid path ending in a rib at Ni+1 represents
some suffix of Si+1.

From Lemma 1, we have that ribs coming into a node
are created only when that node is being appended to
the vertebra and at no other time. And from the above
discussion we have seen that any valid path ending in
a rib at a node represents some suffix of the string on
the backbone above that node. Therefore, ribs do not
create any false postives.

Case 2: Extension Rib creation
Let dest = Rib(Nj).Dest(c) and pt =
Rib(Nj).PT (c). This case occurs when pt < l,
which indicates that this rib is valid for EndSufj(pt)
but not sjl. Hence we create an extension rib from
Ndest to Ni+1 and it is given a PT of l. This PT
ensures that only the required suffixes are extended as
explained in Case 1.

Now there can be multiple ribs ending at Ndest and
we need to identify to which one of them the newly
created extension rib corresponds. We add additional
information PRT to the extension which is nothing but
the PT of the rib which failed the test. This works be-
cause all the ribs ending at a node are guaranteed to
have different PT values because all of them are ex-
tending different suffixes of the same string. Thus the
extension ribs do not create any false positives.

So, we have seen that, given a SPINE for Si, addition of
ribs or extribs to obtain the SPINE index for Si+1 does not
create any false positives.

13

B. Subroutines for SPINE construction algo-
rithm

The details of the subroutines mentioned in Figure 3 are
given below in Figure 9.

AddLink(Source, Dest, Label)
01. Create a link l from Source to Dest

02. l.LEL = Label

AddRib(Source, Dest, CharacterLabel,

PathLengthThreshold)
01. Create a rib r from Source to Dest

02. r.CL = CharacterLabel

03. r.PT = PathLengthThreshold

HandleExtribs(lLEL, rPT)
01. Search for an extrib e such that
02. (e.PT >= l.LEL) & (e.PRT = r.PT)
03. IF (there exists such an e)
04. AddLink(Ntail, e.Dest, s.LEL + 1)
05. ELSE
06. Create extrib e from extrib chain end to Ntail

07. e.PT = l.LEL

08. e.PRT = r.PT

09. Let lrib = last traversed rib or extrib
10. AddLink(Ntail, lrib.Dest, lrib.PT + 1)

Figure 9. Subroutines

C. Exact Match Algorithms

Figure 10 gives the pseudocode to find the first occur-
rence of the longest prefix of a given query sequence in the
data sequence. To find all the substring matches, this algo-
rithm is used as explained earlier in Section 4.

MAX MATCH
01. travLen = 0; // Length traversed till now
02. curr = 0; // Current Node Number
03. mismatchFound = FALSE;
04. WHILE ((NOT end of query) and

(NOT mismatchFound))
05. ch = queryseq.nextchar();
06. IF ch is seqchar of Ncurr

07. travLen + +;
08. curr + +;
09. ELSEIF there exists a rib R for ch at Ncurr

10. IF R.PT >= travLen

11. travLen + +;
12. curr = R.Dest;
13. ELSE
14. PRT = R.PT;
15. temp = R.Dest;
16. extribFound = FALSE;
17. WHILE ((NOT extribFound) and

(extrib exists at Ntemp))
18. IF extrib.PRT = PRT
19. IF extrib.PT >= travLen

20. extribFound = TRUE;
21. travLen + +;
22. curr = extrib.Dest;
23. ELSE
24. temp = extrib.Dest;
25. END-IF
26. END-IF
27. END-WHILE
28. IF (NOT extribFound)
29. mismatchFound = TRUE;
30. END-IF
31. END-IF
32. ELSEIF
33. mismatchFound = TRUE;
34. END-IF
35. END-WHILE
36. matchStartPosition = curr − travLen + 1;

//matchStartPosition gives the starting position
//of the longest matching prefix

Figure 10. Longest Prefix Match

14

