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Abstract

Current approaches for estimating the cardinality of XML queries are applicable to a
static scenario wherein the underlying XML data does not change subsequent to the col-
lection of statistics on the repository. However, in practice, many XML-based applications
are dynamic and involve frequent updates to the data. In this paper, we investigate effi-
cient strategies for incrementally maintaining statistical summaries as and when updates
are applied to the data. Specifically, we propose algorithms that handle both the addition
of new documents as well as random insertions in the existing document trees. We also
show, through a detailed performance evaluation, that our incremental techniques are sig-
nificantly faster than the naive recomputation approach; and that estimation accuracy can
be maintained even with a fixed memory budget.

1 Introduction

The database community has invested substantial research in recent years on developing systems
for the efficient storage and querying of XML data. A component that is essential to the success
of such systems is the result estimator, which estimates the cardinalities of the results of user
queries [9]. These cardinalities serve as inputs in many aspects of XML data management
systems: from cost-based storage design and query optimization, to providing users with early
feedback about the expected outcome of their queries and the associated computational effort.

Several techniques for estimating XML query cardinalities have appeared in the recent litera-
ture, including [1, 5, 13, 14, 20, 21, 26]. These proposals differ in many aspects, from the summary
data structures used to the class of supported queries. An especially important distinction is
in terms of the meta-data associated with the documents – while most of the proposals focus
on schemaless semistructured data, the StatiX system [9] leverages the schema information to
improve the quality of the statistics as well as reduce the storage overheads.

Statistics Maintenance. A common lacuna of the above-mentioned proposals is that they
primarily address statistics production, but not the equally important issue of statistics mainte-

nance. This is a critical shortcoming since many XML applications are dynamic and frequently
update the underlying XML data. In the absence of statistics maintenance, the cardinality es-
timates could go completely haywire due to the lack of correspondence between the original
statistics and the current database contents. Further, while updates to XML documents may
be typically expected to be “appends”, as in the case of a data warehouse, it is also possible to
have applications that insert, modify, or delete at random locations within the existing docu-
ment. For example, an XML workflow application that keeps track of customer purchase orders
may dynamically update book-keeping information about the status of the order as it navigates
through the order-processing cycle.

Periodically recomputing the statistics from scratch on the updated documents is an obvious
choice to cater to the XML update problem. But since recomputation requires the whole doc-

ument to be parsed, it can be prohibitively expensive [17] if recomputations occur frequently,
especially for large documents. This is especially problematic for statistics collection techniques
that make multiple passes over the data (e.g., [20]). Further, if recomputations are not adequately
timed, stale statistical summaries may lead to unacceptable estimation errors. We argue the case



here that it is preferable to incrementally update the XML statistics and to use recomputation
only as a comparatively infrequent backup mechanism.

Technical Challenges. In this paper, we present new techniques to incrementally update XML
statistical summaries in parallel with the receipt of document updates. We assume that a de-
tailed accurate summary of the data, created at the document loading time, is initially made
available, and then, as and when updates are received, this summary is also correspondingly
updated. Specifically, given an initial document D and its summary S, and a stream of updates
U = U1, U2, . . . , Um comprising of inserts, deletes or modifications, the goal is to efficiently and
incrementally create summaries, S1, S2, . . . , Sm, such that the accuracy of these summaries are
comparable to those obtained with a recomputed-from-scratch summary S1

R, S2
R, . . . , Sm

R . More-
over, this should be achieved within a fixed memory budget (that is, the incremental approach
has the same resource constraints as recomputation).

Incremental maintenance of data statistics per se is not a new issue to the database community,
having been previously addressed in the context of relational database systems (see e.g., [11]).
However, what is novel in the XML context is that statistics about both structure and value have
to be maintained. That is, while in an RDBMS, there is no difference, as far as the statistics go,
between the insertion of a tuple in the middle of a relation or the appending of the same tuple
at the end, the location of the update is always an issue in XML. Secondly, the size of the update

in an RDBMS can only be either a single tuple or a set of tuples. But, in an XML environment,
the update could be an arbitrarily complex XML fragment, or sets of fragments. For example,
the update could require inserting sub-trees at various locations in the original document. Thus,
maintaining accurate statistics for XML databases poses a fresh set of problems as compared to
those tackled in prior systems.

The IMAX Technique. Our solution to the XML statistics maintenance problem is an algo-
rithm called IMAX (Incremental MAintenance of XML statistics), which we present in detail in
the remainder of this paper. IMAX is built around the recently-proposed StatiX framework [9],
which not only produces concise and accurate summaries for XML documents, but also has sev-
eral features that make it attractive in a dynamic scenario. For example, StatiX captures order
information among the elements in a document through the document schema and its numbering
scheme (see Section 2 for details). This information makes it possible to estimate the location of
updates — a key step in IMAX. In addition, its use of histograms to uniformly capture structural
and value skew simplifies adjusting summaries to fixed memory budgets, and also permits the
re-use of well-known techniques for incremental histogram maintenance.

An important extension that we make to the StatiX framework is the use of two-dimensional

value histograms (instead of the originally proposed 1D histograms) to capture the correspon-
dence between the node ids and their values. Not only does the use of 2D histograms improve
cardinality estimation in StatiX, but is also a key factor in the effectiveness of IMAX. An empiri-
cal evaluation of IMAX (with both 1D as well as 2D histograms) over a variety of XML documents
and update streams demonstrates that IMAX provides, at a marginal run-time cost, accuracy
comparable to the brute-force recomputation approach, even with a fixed memory budget.



2 Overview of StatiX

In this section, we provide background material on the StatiX framework. StatiX uses the doc-

ument schema to specify which statistics to gather – specifically, statistics are gathered for the
types defined in a given schema. This has several benefits, notably: a standard validating parser
(e.g., Xerces [27]) can be used to gather the statistics as the document is parsed, amortizing the
cost of statistics collection; and the granularity of statistics can be easily tuned for a given appli-
cation by adding type definitions for relevant elements and by applying schema transformations
(see [9] for details).

<?xml version="1.0" encoding="utf-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<xsd:element name="IMDB" type="Imdb"/>
<xsd:complexType name="Imdb">

<xsd:sequence>
<xsd:element name="SHOW" type="Show"

minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>

</xsd:complexType>
<xsd:complexType name="Show">

<xsd:sequence>
<xsd:element name="TITLE" type="xsd:string"/>
<xsd:element name="YEAR" type="Year"/>
<xsd:choice>

<xsd:element name="MOVIE">
<xsd:complexType>

<xsd:sequence>
<xsd:element name="BOXOFFICE" type="xsd:string"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
<xsd:element name="TV" type="Tv"/>

</xsd:choice>
<xsd:element name="AKA" type="xsd:string"

minOccurs="0" maxOccurs="unbounded"/>
<xsd:element name="REVIEW" type="Review"

minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>

</xsd:complexType>
<xsd:simpleType name="Year">

<xsd:restriction base="xsd:integer">
<xsd:minInclusive value="1900"/>
<xsd:maxInclusive value="2000"/>

</xsd:restriction>
</xsd:simpleType>
<xsd:complexType name="Tv">

<xsd:sequence>
<xsd:element name="SEASONS" type="xsd:string"/>

</xsd:sequence>
</xsd:complexType>
<xsd:complexType name="Review">

<xsd:sequence>
<xsd:element name="RATING" type="xsd:string"/>
<xsd:element name="COMMENT" type="xsd:string"/>

</xsd:sequence>
</xsd:complexType>
</xsd:schema>

DEFINE STAT Show {
CARDINALITY { 5 }
ID_DOMAIN { 1 TO 6 } }

DEFINE STAT Review {
CARDINALITY { 16 }
ID_DOMAIN { 1 TO 17 }
PARENT HISTOGRAM Show {

BUCKET NUMBER { 2 }
BUCKETS {

FROM 1 TO 4 COUNT 10,
FROM 4 TO 6 COUNT 6 } } }

DEFINE STAT Tv {
CARDINALITY { 2 }
ID_DOMAIN { 1 TO 6 }
PARENT HISTOGRAM Show {

BUCKET NUMBER { 1 }
BUCKETS {

FROM 1 TO 6 COUNT 2 } } }

DEFINE STAT Year {
VALUE_DOMAIN { 1990 TO 2001 }
NUM_DISTINCT {5}
BUCKET NUMBER { 2 }
BUCKETS {

FROM 1990 TO 1994 COUNT 3,
FROM 1994 TO 2001 COUNT 2 } }

%

(a) (b)

Figure 1: IMDB schema and the corresponding StatiX summary

The successful validation of an XML document against a given schema results in the assign-
ment of types (defined in the schema) to the nodes in the document [23]. StatiX leverages this
information to build the statistical summaries. Intuitively, as the document is validated, StatiX



keeps track of the number of occurrences of each type, and how the instances of a given type are
distributed over the instances of its parent type(s).

Statistics gathering proceeds as follows. Each type defined in the schema is associated with
a unique type id. As a document is parsed and occurrences of a given type are encountered, a
new sequential node id is assigned to each occurrence. The concatenation of type id and node id
uniquely identifies a given node in the document tree. Note that the order of occurrence of the
type in the document determines the order in which node ids are assigned. For each type defined
in the schema, StatiX has an associated parent set. Since validation is performed in a top-down
fashion, and a parent is always processed before its children, for each type instance encountered,
the id of the parent node is incrementally added to the parent set of the corresponding child
type. This information is later summarized in a structural histogram, which supports cardinality
estimation for each edge in the XML Schema type graph.

Assigning contiguous ids to a given type is critical to building accurate and concise
histograms—the use of non-contiguous ids may result in large gaps within buckets as well as
betweeen buckets. Since equi-depth histograms result in significantly smaller estimation errors
as compared to equi-width histograms [19], we have implemented the former in StatiX. Besides
structural information, StatiX also captures value distributions at the leaf-node level using value

histograms. While structural histograms are unique to the XML context, value histograms are
commonly used in traditional relational storage systems.

An example of an XML schema and a possible StatiX summary corresponding to this schema
is shown in Figure 1. The schema describes a database which contains information about shows.
A show can be either a movie or a TV show; has a title and year of release; and may contain zero
or more reviews, and zero or more alternative titles (i.e., AKA). The summary contains statistical
information about all types defined in the schema. For each complex type, it records the type
cardinality, i.e., the number of occurrences of that type in the document; its id range; and its
parent histogram. For example, the type Review has cardinality 16; ids ranging from 1 to 163;
and a parent histogram corresponding to Show, which indicates that there are 10 instances of
REVIEW under SHOWs with ids from 1 to 3 and 6 instances under SHOWs with ids from 4 to 5. Simple
types, that correspond to elements with atomic content, are associated with value histograms.
For example, the type Year has a value histogram indicating that there are 3 occurrences of Year

with values between 1990 and 1993, and 2 occurrences with values between 1994 and 2000.

Estimating Query Cardinality in StatiX. StatiX estimates the cardinality of XML queries
using histogram multiplication. Since path queries are expressed in terms of element (tag) names,
and StatiX collects statistics for types, the tags in the query are first mapped to the corresponding
types; and then the structural and value histograms corresponding to the tags in the path are
multiplied. If a structural histogram is not available for a given tag, uniform-distribution is
assumed for that tag. Note that value-based joins across different paths are also supported. As
an example, consider the following query asking for all Reviews of Shows made before 1992, on
data corresponding to the schema in Figure 1:

Query 1: //SHOW[YEAR < "1992"]/REVIEW

Here, the mapping of element names to types is straightforward, and in order to compute the

3In StatiX summaries, intervals are left-closed and right-open.



CardY ear = σ<1992 (Year) 1.5
KeyShow = distribute CardY ear into id range of Show [1-6: 1.5)
CardReview = freq (parentHist(Review) 1 KeyShow) ≈ 5

Table 1: Cardinality Computation in StatiX

query cardinality, we perform the computations outlined in Table 1. From the third row, we
conclude that the cardinality of the query (that is, the number of Reviews) is approximately 5.

Tuning the Accuracy of StatiX Summaries. The accuracy of the StatiX summaries can
be tuned by: (i) increasing/decreasing the number of buckets in the histograms; and/or by (ii)
adjusting the granularity of the statistics collection. The latter option is feasible due to the
type-based statistics gathering of StatiX. Although the types defined in an XML Schema do not
appear in the document, they can be used during validation as annotations to document nodes.
Thus, by modifying the type-structure of an XML Schema without altering the tag-structure,
it is possible to generate many equivalent schemas that validate the same set of documents [3].
Armed with these transformations, we can gather different granularity statistics (coarser or finer)
as required by a given application.

3 Issues in Updating StatiX Summaries

The previous section highlighted the main components of a StatiX summary, namely, (i) the
schema, and (ii) structural and value histograms. We now discuss the steps required to incre-
mentally update StatiX summaries.

Given an update query, it is important to know both how many updates will be applied
and also where they will be applied. The importance of knowing the location of the insertions
stems from the fact that structural histograms capture the relative distribution of children with
respect to their parents. Hence, if the correct ids of the inserted components can be computed,
the appropriate buckets of the histogram can be updated. In the case of XML updates there
is always an implicit location component to the update. For example, consider the following
insertion (using the syntax of [12]):

update

insert <REVIEW>

<RATING>Top drawer stuff!</RATING>

</REVIEW>

into //SHOW[TITLE="The sixth sense"]

Here, the path expression: //SHOW[TITLE="The sixth sense"] describes the particular Show at
which the update applies. Inherently, there is an ordinal associated with this SHOW, which is
critical in updating the summary. Moreover, the ordinal of SHOW determines the ordinal of the
other elements in the update fragment. For example, for the above update query, in the parent
histogram of Review, the count of the bucket which contains the Show id of “The sixth sense”
needs to be incremented; and based on where the review is added, the parent histogram of Rating

also needs to be updated. Note that if titles are unique, there is a single location in the document
which is updated with the given REVIEW fragment. However, an update can also be applied to a



set of locations. For example, the following query inserts a new AGE sub-element into all movies
and TV shows made prior to 1930:

update

insert <AGE> Golden Oldie ! </AGE>

into //SHOW[YEAR < "1930"]

Location and cardinality estimation. It is possible to rely on the actual update operation
to determine the number and location of updates—the database can provide this information to
the estimator module. Recall, however, that the accuracy of estimation and the conciseness of
summaries achieved by StatiX are largely due to contiguous node ids which both capture the order
among elements and are effectively summarized by histograms. While such a numbering scheme
is effective for StatiX, it may not be suitable for the backend database—using a contiguous node
id scheme at the backend could lead to unacceptable update performance, since it may require
a large number of elements to be renumbered [6, 22, 25]. Therefore, instead of relying on a
translation mechanism between the contiguous node id scheme required by StatiX and the many
possible id schemes at the backend, we make update maintenance self-sufficient by estimating
both the cardinality and location of the updates.

Updates to structure and value histograms. Another important difference to note in the
case of updating StatiX summaries is the nature of the histograms being updated. Previously
proposed techniques for histogram maintenance (e.g., [11]) were designed for value histograms,
not structural histograms. There are important differences between a structural histogram and
a value histogram. First, there is no sanctity to the values in a structural histogram—structural
histograms are based on node ids, but the specific value of the node id is not relevant as long as
the histogram correctly captures the parent-child distribution. For example, it does not make a
difference whether a sequence of Shows is numbered from 1 to 10 or from 100 to 110, as long as
the parent histograms of its children use the same values. Second, the term “insertion” in the
case of value histograms and structural histograms take on different meanings. In the case of
insertion into a value histogram, the count of the corresponding value is updated. However, in the
case of structural histograms, a “new” value is inserted and the subsequent values renumbered.
For example, if a new SHOW is inserted between SHOW 2 and SHOW 3, the id of the new SHOW is
set to 3, and the ids of the subsequent shows are incremented. Thus, the domain of the values

in a structural histogram continuously changes, and this change in ordinals affects the bucket
boundaries of all the parent histograms for the children of type Show.

4 The IMAX Algorithm

In this section we introduce our techniques for maintaining statistics in an XML document in
the presence of insertions and deletions of tree fragments. We restrict our attention to the class
of updates where the location of the update is determined through branching path expressions
in the query. The general format of such a branching path expression is /t1[b1]/t2[b2]/.../tn[bn],
where ti is the tag and bi is a path expression which may contain value and structural predicates.
In the sequel, we use Ti to denote the type corresponding to the tag ti.



A high-level description of IMAX is provided in Algorithm 1. It consists of three main steps:
location estimation; id estimation; and summary update. These steps are described in detail in
the remainder of this section.

Algorithm 1 IMAX Algorithm
1: Input: Summary S, Update U = (c, u)

{S is the initial summary; U is divided into condition c, and u, the update fragment}
2: Estimate the location of update using c and S
3: Estimate the ids of update fragment u using S
4: Update S

4.1 Estimating the Location of the Update

Given the branching path predicate for the update location, IMAX needs to estimate the cardi-
nality of these updates, as well as the ids of the nodes where the update takes place. Estimating
the location of the update is closely tied to the cardinality estimation. Initially, each type can
be thought of as having a trivial one-bucket key histogram whose end points are the range of ids
of the type, and whose frequency is the cardinality of the type. As we explain below, we utilize
this key histogram and the parent histogram associated with each type to perform cardinality
and location estimates. A high-level description of the procedure is shown in Algorithm 2.

Algorithm 2 Location and Cardinality Estimation for the Update
1: Input: c, H

{c is the path expression identifying the location}
{H is the set of histograms (value and structure) for all types corresponding to the elements in c}

2: let c = /t1[b1]/t2[b2]/t3[b3]/.../tn[bn]
{ti is the tag (correspondingly, its type is Ti)}

3: for all i ∈ 1 to n do

4: Bi = result distribution of bi

5: Ji = Bi 1 keyHist(Ti)
6: keyHist(Ti) = key distribution of Ti based on Ji

7: parentHist(Ti) = compute distribution based on keyHist(Ti)
8: end for

9: for all i ∈ 1 to n − 1 do

10: Ji = keyHist(Ti) 1 parentHist(Ti+1)
11: keyHist(Ti+1) = distribute freq(Ji) into keyHist(Ti+1)
12: end for

{Cardinality of the update}
13: card = frequency (Jn)

{We now compute the location ids}
14: locations = randomly choose card ids from the buckets of keyHist(Tn) in proportion to their

frequency



Algorithm 3 Estimating Ids
1: Input: parentHistchild, idparent

2: Output: idchild

{The parent histogram of the child element and the id of the parent are the inputs}
3: idchild = 0
4: Bk ∈ parentHistchild such that idparent ∈ Bk

5: for all i ∈ 1 to k − 1 do

6: idchild + = frequency of Bi

7: end for

8: idchild + = bfreq(Bk)/range(Bk)∗ (idparent − lowerbound(Bk))c

This procedure operates in three stages: (i) compute the key distribution and parent-key
distribution for each of the tis in the presence of predicates individually (lines 3 through 8); (ii)
use these individual distributions to compute the overall key distribution of the complete query
(lines 9 through 12); and finally (iii) estimate the cardinality and the location of the updates
(lines 13,14).

There are three basic operations – histogram multiplication (lines 5 and 10), finding the key
distribution (line 6), and finding the parent key distribution (line 7). Histogram multiplication
is a well-known operation to find the join estimate given two histograms. Below, we describe the
other two operations in more detail.

Key distribution. Note that when two histograms are multiplied, one of the histograms is the
key histogram having values which occur exactly once. However, the join distribution gives the
total number of tuples in the result – that is, the values in the key histogram may occur multiple
times in the result. From this join histogram, we need to determine which distribution of keys
occurs in the join (line 6). The fact that keys are unique can be used to compute this distribution
as follows: (i) initially, construct a key distribution histogram K by dividing the key histogram
into the same number of buckets as the join histogram and in which the frequency of each bucket
is the same as its range, (ii) for corresponding buckets ji in the join histogram and ki in the key
distribution histogram, if frequency of ji is less than the frequency of ki, change the frequency
of ki to that of ji. The resulting histogram is the statistically determined distribution of keys in
the join. This histogram is used to compute the parent key distribution described next.

Parent key distribution. An important observation in the case of structural histograms is
that the node ids (keys) and parent ids have a strong correspondence with each other – that is,
if nodeid1 > nodeid2, then parentid(nodeid1) >= parentid(nodeid2). The parent histogram is a
summarization of this correspondence, as illustrated in Figure 2.

As another example, consider the case where the parent histogram of Review (with respect
to Show) is [1-4: 10; 4-6: 6]. The multi-bucket key histogram of Review would then be
[1-11: 10; 11-17: 6]. Conversely, suppose Review has now been “filtered” through a value
predicate (say, Reviews with Rating > 6) leading to the following key histogram for Review: [1-11:

5; 11-17: 3]. The corresponding distribution in the parent histogram of Review is now: [1-4:

5; 4-6: 3]. The new parent histogram is then used to compute the cardinality and join
distribution of the result (lines 9 to 12).

Choosing the ids. By performing the steps in Algorithm 2, we get the key distribution of the
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Figure 2: Node and Parent ids have a Correspondence

result of the query (that is, tn, shown in line 2). Computing the actual location ids is now a
matter of choosing the ids from this key histogram. The ids are chosen from the buckets of the
key histogram in proportion to their counts. For example, suppose the final key distribution of
Review is: [1-11: 5; 11-17: 3]. We randomly choose 5 Review ids from 1 to 11 and 3 ids
from 11 to 17—these choices comprise the statistically determined Review ids where the updates
take place.

4.2 Estimating the Ids of the Update Fragment

Once the location of the update is determined, we next need to estimate the ids of the elements
in the update fragment. In the case of insertions, the update fragment is explicitly given in the
query. The number of elements being inserted is known, while the ids of these elements have to
be estimated. But, in the case of deletions, only the root of the subtree to be deleted is given,
so the number as well as the ids of the deleted elements in the subtree need to be estimated.

In order to estimate the ids of the update fragment, we use the parent histogram which
summarizes the correspondence between parent and child ids (Figure 2).

Estimating ids for insertions. Algorithm 3 describes how the parent histogram is used to
estimate the id of a child fragment. The algorithm outputs a single child id. If there are multiple
children in the update with the same tag, then a set of contiguous ids are assigned beginning
from the estimated id of the first child (as determined by Algorithm 3).

Estimating ids for deletions. In the case of deletions, only the root node of the subtree to be
deleted is given. The elements in this subtree have to be first determined from the schema. Since
the id of the root node of the deletion is known, Algorithm 3 can be used to estimate the id of
the child. In addition, the frequency of the child can be estimated from Bk (line 4 in Algorithm
3) through dividing the frequency of Bk by the range of Bk.



4.3 Updating the Summary

The relevant parent histograms in the summary need to be updated by either inserting new
ids or deleting them. This includes not only the parent histograms of the types in the update
fragment, but also the children of these types which may not be present in the update fragment.
However, a large number of insertions or deletions to the histogram may make it inaccurate. For
example, if new documents are appended continuously, then clearly, only the last bucket of a
histogram is updated each time with new ids. Therefore, while the last bucket keeps accumulating
counts eventually making it inaccurate, the remaining buckets retain their original counts. One
strategy to approximately maintain the equi-depth histogram is to periodically redistribute the
bucket counts by splitting a bucket once its count reaches a threshold occupancy T into two new
buckets and then simultaneously merging a pair of buckets whose combined count is less than T
[11]. If more than one such pair exists, then the pair whose combined frequency is the least is
chosen. If such a pair of split-merge operations cannot be performed, then either the histogram
is recomputed from the base data, or, only the split is performed and the number of buckets is
increased. We utilize the former approach since our aim is to work within the originally allocated
memory budget.

Algorithm 4 highlights the main steps in inserting a new value into a parent histogram. The
input to the algorithm is the pair (id, f). Note that the id in this case is the id of the parent,
while the histogram being updated is the parent histogram of the child. The pair (id, f) indicates
the number of times, f , the given child occurs under the given parent with id id. Steps 4 to 8
perform a shift operation to indicate the insertion of a new id – this is equivalent to renumbering
the previous ordinals of the elements due to the insertion of a new one. Steps 9 to 16 determine
whether only a reorganization will suffice or whether a complete recomputation of the inaccurate
histogram needs to be computed from the base data.

For deletions, instead of ids being “inserted”, the ids need to be deleted. Similar issues also
arise for deletions – that is, a single bucket may have a very small count compared to the others,
affecting its equi-depthness. The strategies outlined for insertions can be easily modified to
handle deletions as well.

4.4 Improved Location Estimation

A potential limitation in the current location estimation process (Section 4.1), is the use of single
dimensional histograms for values. The problem stems from the fact that no correspondence

between the occurrence of a value and the id of the node at which it occurs is stored as in the
case of structural histograms. Consequently, we have to make the independence assumption
when computing the distribution of the nodes containing particular values – that is, distribute
the estimated cardinality into the parent histogram in proportion to the bucket counts.

In order to overcome this limitation, we propose the use of 2D histograms to explicitly cap-
ture the correspondence between values and the corresponding node ids. Note that since 2D
histograms require more space, the budget for value histograms must be increased to improve
the accuracy. However, as we show in Section 5, the advantages of using 2D histograms are
substantial. Moreover, the use of these histograms benefits StatiX as well: since it removes the
independence assumption, higher accuracy can be obtained for queries that involve value-based



Algorithm 4 Insertion of a new id into a parent histogram

1: Input: Histogram : H, Update : (id, f), Threshold : T
{H is the histogram to be updated}
{(id, f) is the update consisting of new (id, frequency) pair}
{T is threshold occupancy at which a bucket is split}

2: Bk ∈ H such that id ∈ Bk

{Update the frequency of the bucket}
3: Bk.frequency + = f

{Update bucket’s upper limit to reflect insertion of new id}
4: Bk.hi = Bk.hi + 1

{n is the number of buckets in H}
{Update the boundaries of remaining buckets}

5: for all i ∈ k + 1 to n do

6: Bi.lo = Bi.lo + 1
7: Bi.hi = Bi.hi + 1
8: end for

9: if Bk.frequency >= T then

10: found = find Bi, Bi+1 in H such that Bi.frequency + Bi+1.frequency < T
11: if found then

12: REORGANIZE H merging Bi, Bi+1 and splitting Bk

13: else

14: RECOMPUTE H from base data
15: end if

16: end if

predicates.
We use the algorithm proposed in [15] to build equi-depth 2D histograms – choosing one axis

at a time to build the histogram. We choose the key dimension as the first dimension – the key
dimension is contiguous and hence will lead to histogram buckets which are well packed in that
dimension. A split-merge strategy with a threshold T is used to maintain the 2D histograms
as well. Splits are restricted to occur only along the values axis and merge pairs are chosen
along the same axis – that is, whenever new buckets are created by splitting or merging, their
boundaries along the key axis always match. Figure 3 (a) shows a 2D histogram with the key
axis being chosen first during construction. Two buckets in the figure are selected for merging
(darkened rectangles) – both buckets have the same boundaries on the key axis. Figure 3(b)
shows the histogram after the buckets have been merged.

5 Experimental Evaluation

We have carried out a detailed evaluation of the IMAX approach on synthetically generated
IMDB data and also on a subset of DBLP data available from [7]. All experiments were performed
on a Compaq ES45 dual-processor machine with 1.25 GHz and 16 GB memory. For ease of
presentation, we classify the types of insertions into: (i) Append only, and (ii) Random insertions.

Memory Budget. The memory budget for the summary depends on the number of types in
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the schema and the number of buckets allocated for structural histograms and value histograms.
All experiments in this section were performed with a minimum of 5 buckets for each structural
histogram and 100 buckets for each value histogram – translating to about 5KB of memory, and
a maximum of 30 structural histogram buckets and 500 value histogram buckets – translating to
about 23 KB of memory.

Threshold Factor. The reorganization threshold of histogram Hi is set as Ti = t ∗ fi where fi

is the equi-depth bucket frequency of histogram Hi, and t is a user-specified threshold factor. In
our experiments, the threshold factor was set to 2.5.

Metrics. Our primary performance metric is to compare how close the IMAX incrementally-
generated summary is with respect to the computed-from-scratch StatiX summary. For each
affected histogram, this is quantitatively captured by µmse defined as follows:

µmse(IMAX) =
�

N

i=1(EstStatiX−EstIMAX)2

totalCardinality

where i = 1 to N covers the total range of values in the histogram, EstStatiX is the estimate of
value i from the histogram computed by StatiX, and EstIMAX is the estimate computed from
IMAX. The totalCardinality refers to the overall occupancy of the histogram.

To quantitatively establish that there is indeed a significant difference between the updated
document and the original document, we also compute µmse between the currently computed-
from-scratch summary and the original summary (i.e., before any updates were received), as
shown below:

µmse(ORIGINAL) =
�

N

i=1(EstStatiX−EstORIGINAL)2

totalCardinality

While the above metrics measure the accuracy of IMAX in the face of significant updates,
our next metric aims to measure its efficiency. This is done by tracking the number of
recomputations-from-scratch incurred by IMAX during its maintenance process. This metric,



called RECOMP , is defined as the number of recomputations divided by the total number of
insertions into the histograms, that is, RECOMP = r

I
where r is the number of recomputations

and I is the total number of histogram insertions. RECOMP can be calculated on a per-type
basis or over all types in the insertions.

In addition, we also present the cardinality estimation accuracy for both IMAX and StatiX by
computing the relative error for a query workload. We tabulate the average time per update for
IMAX and the recompute-from-scratch StatiX and discuss these results in Section 5.3.

5.1 Append-Only Updates

Append-only updates occur in warehouse scenarios, where new documents are continuously being
added. The main complexity in append-only updates is in the reorganization of the histograms
since appends occur at the root of the document. We performed experiments for both DBLP
and IMDB. For DBLP, several ARTICLEs were appended to the existing document, while in the
case of IMDB, new Shows were appended.

Results. The µmse values for two types: Review and Aka are shown in Figure 4 for the IMDB
database. Note that the histograms correspond to the parent histograms of these types4. In this
graph, the number associated with each algorithm in the legend (10 in Review(10,IMAX)) refers
to the number of structural histogram buckets. Note that the number of value histogram buckets
is not an issue here, since the location condition does not involve a value predicate.
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Figure 4: IMDB: µmse values for types Review and Aka with t = 2.5

The first point to note in Figure 4 is that the µmse values (which are shown on a log-scale) for
IMAX are very low, especially when compared with the µmse values for the original histogram—
in fact, there is close to two orders of magnitude difference in their quality. This clearly indicates
that (a) there is a substantial change between the original document and the updated document,
and (b) IMAX is able to track these changes rather well.

4We use the phrase “histogram of type x” to mean the parent histogram of that type in the rest of the section.
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Figure 5: DBLP: µmse values for types Author and Url with t = 2.5

Next, the efficiency aspect is captured in the RECOMP numbers shown in Table 2, which show
that only a very small fraction of recomputations are required to support the IMAX incremental
maintenance strategy.

Type No. of Insertions RECOMP, t = 2.5

Show 5000 0
Review 170123 0.008%
Aka 9798 0.12%
Tv 2461 0.28%
Movie 2539 0.27%
Year 5000 0.02%
TOTAL 189921 0.01%

Table 2: IMDB: RECOMP with Appends

Similar results for the DBLP dataset are shown in Figure 5 and Table 3 for the µmse and
RECOMP metrics, respectively. Note that in Table 3, only a subset of types updated have
been enumerated, while the last line totals up all updated types.

5.2 Random Insertions

Turning our attention to random insertions, the most important component here is the location
estimation. If a single update query results in updates in multiple locations, then the cardinality
estimation also comes into play. We divided insertions into two categories: (i) Unique insertions,
where a single update query results in insertion at a unique location in the document, and (ii)
Multiple insertions, where a single update query results in insertions at multiple locations in the
document.

For IMDB, we generated an Actor database consisting of information about actors. Each ACTOR



Type No. of Insertions RECOMP, t = 2.5

ARTICLE 10000 0
AUTHOR 16174 0.04%
URL 9989 0.08%
TOTAL 109359 0.06%

Table 3: DBLP: RECOMP with Appends

subtree consists of a NAME sub-element, and multiple PLAYED sub-elements. Each PLAYED element
may contain multiple EPISODE sub-elements. We chose updates which reflected the addition of
new information regarding the actor’s acting history where new shows in which he/she had acted
in were inserted into the database. The insertions were of the form:

update insert

<PLAYED>

<EPISODE>...</>

<EPISODE>...</>

....

</>

where /ACTOR[NAME="x"]

The number of Actors in the database was 1000 – that is 1000 unique values for the value predicate
involving Name. Note that this query has multiple levels of insertions where the estimated id of
Actor (from Algorithm 2) is used not only to update the parent histogram of Played, but also to
estimate the id of Played (from Algorithm 3). This id in turn is used to determine the ids of the
multiple Episodes.

For the DBLP dataset, we chose a set of journal articles from 134 different journals. Each
journal had articles published in that journal in a separate subtree. The insertions we chose
reflects the addition of new articles into a database segregated on the basis of journal names.
Each ARTICLE had multiple AUTHOR elements along with several other relevant information such
as URL, PUBLISHER, YEAR, etc.

Additional Measures. Apart from the µmse and RECOMP metrics defined earlier, we utilize
two additional supporting measures here to help explain the results:

Location Estimation Accuracy: This metric measures the effectiveness of the location esti-
mation technique. It compares the estimated location against the actual location. The
location estimation is deemed to be correct if both the estimated as well as the actual
location both fall into the same histogram bucket. The location estimation accuracy is

defined to be: LEA =
Lcorrect

Ltotal

where Lcorrect is the number of correctly estimated locations

and Ltotal is the total number of locations.

µcount: µcount considers each histogram bucket and computes the deviation of the frequency of
the bucket from the actual frequency normalized to the average bucket count. This metric
helps in highlighting where the incorrect location estimations are being distributed.

The metric [11] is defined as:



µcount = β

N

√

1
β

∑β

i=1(fBi
− Bi.count)2

where N denotes the number of values, β denotes the number of buckets, fBi
denotes the

actual count of bucket Bi and Bi.count denotes the current count of bucket Bi.

Results. The location estimation accuracy for the IMDB and the DBLP datasets under ran-
dom insertions are shown in Figures 6 and 7, respectively, as a function of the number of value
histogram buckets. Each graph shows the location estimation accuracy in two cases: (i) when
the structural histogram contains only 5 buckets and, (ii) when it contains contains 30 buckets.
Further, both the 1D and 2D versions of IMAX are presented in the graphs and we see that
using 2D histograms clearly gives superior estimation accuracy as compared to using 1D his-
tograms. Note that in order to compare only the location estimations, 2D histograms were used
for cardinality estimation in both cases. The equivalent cardinality estimation for the 1D case
would contain only the square root of the number of buckets in the value histogram. This is the
tradeoff between the space utilized and the accuracy.
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Figure 6: IMDB: LEA for Random Insertions with 1D and 2D Value Histograms

The µmse metric for the type Played is shown in Figure 8 for both the original summary, as well
as with the 1D and 2D versions of IMAX. Note that, again, there is over two orders of magnitude

difference in accuracy between the original summary and both versions of IMAX.
An interesting observation in Figure 8 is that the 2D version of IMAX provides only marginal

accuracy gains over the 1D version. This is in spite of the fact that the 2D version is far superior
in terms of location estimation as compared to the 1D version as shown in Figure 6. The reason
is that the insertions are approximately uniformly distributed over the whole document. So,
what may not be the correctly estimated location for one insert may very well turn out to be
the correct location for some other insert, effectively canceling out the effect of several wrong
estimations. This is clear from Figure 9 which plots the µcount metric for Played. The µcount

values of both the 1D and 2D cases are close together here.
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Figure 7: DBLP: LEA for Random Insertions with 1D and 2D Value Histograms

However, if we consider insertions where the locations of the insertions are skewed, the benefits
of using 2D histograms become immediately apparent. Such insertions are possible when, say,
more recently added actors need to be updated more frequently than others. Figure 10 shows the
µcount for such skewed insertions, and we observe nearly an order of magnitude difference in the
µcount values of the 1D and 2D versions. This demonstrates the benefits of using 2D histograms.
The µmse metric for the 2D version showed significant improvement over the 1D version as shown
in Figure 11. Similar behaviour was observed in the DBLP data as well.

Moving on to the efficiency aspect of IMAX under random insertions, the number of recom-
putations for both DBLP and IMDB, with and without skewed insertions, are shown in Tables
4 and 5, respectively. (The tables provide the specific measures for only a subset of the types,
but the totals in the last line are across all types.)
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Figure 11: IMDB: µmse values for type Played for Skewed Insertions

Clearly, the number of recomputations required is a very small fraction of the total number of
insertions made in the document. Note that the number of recomputations can be further reduced
by increasing the reorganization threshold—trading off on the accuracy of the histograms.

Type No. of RECOMP, t = 2.5 No. of RECOMP, t = 2.5

Insertions (Random) Insertions (Skewed)
(Random) (Skewed)

Played 10000 0.03% 2000 0.05%
Episode 104569 0.006% 20937 0.02%
TOTAL 124569 0.01% 24937 0.02%

Table 4: IMDB: RECOMP with Random and Skewed Insertions

Type No. of RECOMP, t = 2.5 No. of RECOMP, t = 2.5

Insertions (Random) Insertions (Skewed)
(Random) (Skewed)

ARTICLE 8000 0.02% 2000 0.05%
AUTHOR 14624 0.1% 3843 0.28%
TOTAL 88414 0.14% 22606 0.36%

Table 5: DBLP: RECOMP with Random and Skewed Insertions

Multiple Insertions. We consider here single update queries which spawn multiple insertions.
For example, adding a comment “Arnold Rocks” for all films starring Arnold Schwarzenegger,
or adding information templates for all shows satisfying certain criteria. We experimented with
multiple-insertion updates on the article database of DBLP. The update involved adding a LINK

for a given author denoting his/her URL. Such an update would require multiple insertions of
the tag link depending on the number of articles authored by the author since the tag should



be added to each such occurrence. The DBLP document contained a total of 1165 authors, each
with at least 10 articles spread over more than 17000 articles. We performed insertions of the
following form:

update insert <link> .. </> into

/dblp/article[author="x"]
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Figure 12: DBLP: µmse values for type LINK for Randomly Distributed Multiple Insertions
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Figure 13: DBLP: µmse values for type LINK for Skewed Multiple Insertions

As with the unique insertions, two sets of insertions were performed: a set of skewed insertions
with around 20% of authors; and another set of insertions involving all authors. We present
the µmse metric for both cases in Figures 12 and 13, respectively. The utility of 2D histograms



is limited in the case of uniformly distributed insertions, but provides considerable advantage
when the insertions are skewed. No recomputations were required in the case of skewed insertions,
while a single recomputation was performed when 2D histograms were used in the case of random
insertions.

5.3 Estimation Accuracy and Timing

The previous sub-sections dealt with the histogram accuracy (for a subset of histograms) and the
number of recomputations required for various datasets. The results indicated that IMAX is very
accurate when it comes to tracking the updates with a very small number of recomputations.
In order to get a “global” picture of the accuracy and efficiency of IMAX, we briefly present
numbers on the estimation accuracy and timing.

Append (IMDB) Insert (IMDB) Multiple Inserts (DBLP)
IMAX 97 77 190
StatiX 8167 1437 5403

Table 6: Average Time per Update (in ms)

Figure 14: Relative Error for IMDB and DBLP Datasets

Table 6 tabulates the average time per update for the different datasets. We see here that
IMAX is at least an order of magnitude faster than the recompute-from-scratch StatiX even
when the occasional recomputations required are taken into account.

We then generated a query workload of around 300 queries with both branching path expres-
sions without value predicates (around 15% of the workload) as well as path expressions with
at least one and a maximum of two value predicates for each of the datasets. For each query
workload, we computed the relative error in estimation using the IMAX summary as well as the
recomputed-from-scratch StatiX summary. These results are shown in Figure 14, and indicate
that the quality of the IMAX summary is almost as good as that of the StatiX summary.



6 Related Work
The problem of updating XML documents has only recently started to attract attention. Pro-
posals for update languages have appeared in the literature [12, 22] as well as in implementations
of XQuery engines (e.g., Galax [10]). Further, the problem of incrementally validating updated
documents has been studied in [2, 4, 18]. There has also been work on efficient labeling techniques
for XML document nodes which are subjected to updates [6, 25].

Several approaches have been proposed in the literature for summarizing XML documents
and estimating query cardinality [1, 5, 9, 13, 20, 21, 26]. They differ in many aspects, notably:
whether or not they use schema information; and which queries they support. Whereas [1, 5, 13,
20, 21, 26] deal with schemaless data, [9] uses schema information to both improve the quality
as well as reduce the size of summaries. There is a wide variation in the classes of supported
queries, e.g., [1] only handles (non-branching) path expressions in the document tree; [5] handles
twig queries; and [9] supports a significant subset of XQuery. Common to all these proposals is
the lack of support for efficiently (and incrementally) updating the statistical summaries.

In [24], a new data structure – the “bloom histogram” – is proposed to maintain simple path

expressions in the presence of updates. Our work differs from [24] in two ways: i) we use
the schema in order to build and maintain the summary, and ii) our summary can handle the
estimation of branching path expressions, whereas [24] is limited to simple path expresssions.

Incremental maintenance of statistics has been addressed in the context of relational database
systems (for example, [8, 16, 11], etc.). The novelty in the XML context is that statistics must
be maintained for both structure and values.

7 Conclusions
We introduced IMAX, a system which extends the schema-based statistics framework of the
StatiX approach to incrementally handle updates to XML repositories. The novel challenges in
the design of IMAX included developing techniques for accurately estimating both the locations
and the sizes of updates, as well as for the maintenance of structural histograms. To accurately
estimate the location of updates, we extended the StatiX model with 2D histograms that capture
the correspondence between the value of an element and its id. Although these histograms require
more space, they are only needed to capture value-key correlations, i.e., they replace the 1D value
histograms used previously in StatiX.

Our experiments to evaluate the utility of IMAX covered a variety of updates and datasets, and
indicate that the accuracy of estimation from the updated statistics is very close to that obtained
from the expensive brute-force option of re-computing the statistics from scratch. Further, these
benefits can be obtained quite efficiently, requiring infrequent recomputations of the summaries
from the base data.

In closing, IMAX makes sustained and efficient query processing feasible even in real-world
XML environments whose contents are dynamically changing, which may become the norm in
the coming years.
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