
� � � �����	�
���
 �	�����
�
������������� ������� � ��� �!�"�$#%�!�

�
�����'&�� (�����"���)#*�����,+ ���*�������

-/.10�243*57685:9 ;�5
<:5=9>0?243�5:6A@CB4DFEAGH5:6JI KL5FIM5=9MNPO?.1QR5:6TSUNWVT5

XZY\[^]�_�`a[cb�d*efY\gihCjlk
X�enmLo!pqpsr\m=pAt

uwvyxHv�z�v${}|�~��P{Lx�|c� {f�%v$z
~A�A�"|c�����q� � ��x�|c����������vyx4���q� v��R� ��|�{}|�v����^� ��|c��x4��|

�F���R��v�� �F�P{Mx4��xH�sx�|���� ~��c��|c����|
¡�v��P¢Cv�£����L|�¤�¥!¦!¦�§�¨�©��F���R��v

ª?« «A¬®­4¯ ¯�°�±R²�³´±�µP¶¸·¹³�º ºA± ·»³lµ�¶�¼Zµ�«½³�º$¼

On Pushing Multilingual Query Operators
inside Relational Engines

A. Kumaran Pavan K. Chowdary Jayant R. Haritsa

Database Systems Laboratory, SERC/CSA
Indian Institute of Science, Bangalore 560012, INDIA

Abstract

To effectively support today’s global economy,
database systems need to store and manipu-
late text data in multiple languages simultane-
ously. Current database systems do support the
storage and management of multilingual data,
but are not capable of querying them across
different natural languages. To address this
lacuna, we have recently proposed two new
cross-lingual functionalities, LexEQUAL[26] and
SemEQUAL[27], which support phoneme-based
matching of names, and ontology-based matching
of concepts, respectively.

In this paper, we investigate the implementa-
tion of these multilingual functionalities as first-
class operators on relational engines, using Post-
greSQL open-source database system. We first
propose a new multilingual datatype, operators
with their cost models and Mural, a multilingual
query algebra. To verify the efficacy of our ap-
proach, these components have all been success-
fully implemented in the PostgreSQL. Further, to
speed up multilingual processing, a metric index
has been incorporated using the GiST feature of
PostgreSQL. An outside-the-server implementa-
tion using existing features of the database system
has also been done, to establish a baseline perfor-
mance measure. Our experiments over representa-
tive multilingual datasets demonstrate orders-of-
magnitude performance gains for the core imple-
mentation, in addition to being able to leverage
on the well-developed relational query optimizer.
To the best of our knowledge, our prototype sys-
tem is the first practical attempt towards the ul-
timate goal of realizing natural-language-neutral
database engines.

1 Introduction

The internet – the primary digital arena for information,
interaction, entertainment and commerce, is expanding

rapidly1, in addition to turning multilingual steadily2. It is
imperative that the key applications of the Internet, such as
e-Commerce and e-Governance portals, must work across
multiple natural languages, seamlessly. A critical require-
ment to achieve this goal is that the underlying data source
– relational database management systems – should man-
age multilingual data effectively, efficiently and seamlessly.
Current database systems do support the storage and man-
agement of multilingual data, but are not capable of query-
ing across different natural languages. To address this
lacuna, we have recently proposed two new multilingual
functionalities – LexEQUAL [26] and SemEQUAL [27]
– which support phoneme-based matching of names, and
ontology-based matching of concepts, respectively.

While the above focussed primarily on the outside-the-
server implementation of the multilingual functionalities,
in this paper, we investigate their core implementation, as
first-class operators on relational engines. To push the op-
erators into the core engine, we propose a new multilingual
datatype – Uniform (UNIcode FORMat), a set of multi-
lingual operators similar to LexEQUAL and SemEQUAL
and a query algebra – MURAL (MUltilingual Relational
ALgebra) that defines uniform query semantics and offers
an intuitive framework for declaratively expressing com-
plex queries. Further, the algebra and the operator cost
models, selectivity estimates and composition rules, are
critical input for relational query optimizer, for the selec-
tion of efficient query execution plans.

To verify the efficacy of our approach, all the above
components have been successfully implemented in the
PostgreSQL [7] open-source relational database engine. In
addition, to speed up the query processing, a metric in-
dex has been incorporated using the GiST feature of Post-
greSQL. An outside-the-server implementation using ex-
isting features of the database system has also been done, to
establish a baseline performance for comparison with core
implementation. Our experiments on representative mul-
tilingual datasets demonstrate orders-of-magnitude perfor-
mance gains for the core implementation over the outside-

1Internet user population is growing at a rate of  to % yearly[4].
2Two-thirds of the current Internet users are non-native English speak-

ers [1] and it is predicted that the majority of web-published data will be
multilingual by 2010 [10].

Figure 1: Sample Books.com Catalog

the-sever approach. To the best of our knowledge, our pro-
totype implementation on PostgreSQL system is the first
practical attempt towards the ultimate goal of realizing
natural-language-neutral database engines.

1.1 A Motivating Example

Consider a hypothetical e-Commerce application –
Books.com that sells books across the globe, with a sample
product catalog in multiple languages as shown in Figure 1.
The product catalog shown may be considered as a logical
view assembled from data sourced off several databases
(each aligned with the local language needs), but search-
able in a unified manner for multilingual users.

1.1.1 Multilingual Homophonic Matching

In this environment, suppose a user wants to search for the
works of an author in all (or a specified set of) languages.
The SQL:1999 compliant query requiring specification of
the authors name in several languages is undesirable, due
to the requirement of expertise and lexical resources in sev-
eral languages. We propose a simple homophonic opera-
tor3 – designated as Ψ in Figure 2 – that takes input name
in one language (English, in the example shown), but
returns all phonemically close names in the user-specified
set of languages (English, Hindi and Tamil, in the
example shown). We refer matching on multilexical text
strings, based on their phonemic equivalence as Homo-
phonic matching.

SELECT Author,Title,Language FROM Books
WHERE Author Ψ-Operator ‘Nehru’
IN { English, Hindi, Tamil }

Figure 2: A Homophonic Query and Result Set

1.1.2 Multilingual Homosemic Matching

Consider the query to retrieve all History books in a
set of languages of users choice. A SQL:1999 compli-

3Along the lines of LexEQUAL functionality proposed in [26].

ant query, having the selection condition as Category =
"History"would return only those books that have Cat-
egory as History, in English. A multilingual user may
be served better if all the History books in all the languages
(or in a set of languages specified by her) are returned. A
simple homosemic operator4 – designated as Φ in Figure 3
– and the corresponding result set may be desirable.

SELECTAuthor,Title,Category FROM Books

WHERE Category Φ-Operator ‘History’

IN {English, French, Tamil }

Figure 3: A Homosemic Query and Result Set

Note that in addition to all books with Category having
a value equivalent to History, the categories that are sub-
sumed by History5 are also retrieved. We refer match-
ing text strings based on their meanings, irrespective of the
languages, as Homosemic Matching.

1.2 Contribution of this Paper

In this paper, our contributions are as follows:
• Formal definition and analysis of the multilingual

functionality proposed earlier in [26, 27].

• Proposal of operator cost models and selectivities
and Mural query algebra, for a core implementation of the
multilingual functionality in the relational systems.

• Core implementation of the MURAL query algebra
and demonstration of improvement in performance to the
tune of  to  orders of magnitude.

4Along the lines of SemEQUAL functionality proposed in [27].
5Historiography (the study of of history writing and written his-

tories) and Autobiography are considered as specialized branches of
History itself. The third record has as category the value Charitram
in Tamil, meaning History.

1.3 Organization of The Paper

The remainder of this paper is organized as follows: Sec-
tion 2 defines and analyses the new multilingual functional-
ity. Section 3 proposes Mural algebra, along with operator
cost models necessary for a core implementation. Section
4 outlines a core implementation of the functionalities and
Section 5 presents the performance of this implementation.
Section 6 outlines how the functionalities may be added to
current systems using existing features. Finally, Section 7
concludes the paper, highlighting related research.

2 Multilingual Functionalities
In this section, we define the phonetic and semantic match-
ing functionalities to match multilingual text attributes, for-
malizing the functionality given in [26, 27].

2.1 Homophonic Functionality Definition

Let Li be a natural language with an alphabet Σi. Let si in
language Li be a string composed of characters from Σi,
and let SI be set of all such si. Let S = ∪ISI , for a
given set of languages. We also assume that the phoneme
strings are encoded in the International Phonetic Associa-
tion (IPA) [6] alphabet, namely, ΣIPA. Every natural lan-
guage string can be transformed to a phonetic string in the
IPA alphabet (in line with the phonetic conventions of the
language). A transformation, TI , between a given language
string si and a corresponding phonemic string pi, is repre-
sented by TI : SI → SIPA. The union of such transfor-
mation functions T (= ∪iTI) in a set of desired languages,
represented by T : S → SIPA, is assumed to be given as
an input to the query processing engine.
Definition .: Two strings si ∈ SI and sj ∈ SJ are pho-
netically equal, iff their phonemic representations pi and
pj are the same.
Example .: Given that the strings {“Nero”, “Nehru” in

English, “ ����� ” in Tamil and “ ” in Hindi} have cor-
responding phonemic representations {“nerou”, “næhru”,
“næru” and “næhru”} respectively, only the English
“Nehru” and the Hindi “ ” are phonetically same. �

However, since the phoneme set used by different lan-
guages are seldom equal, it is almost impossible to match
two multilingual strings phonetically. Hence in the pho-
netic domain, we define phonemic closeness, a weaker no-
tion of equality as follows:
Definition .: Two strings si and sj are phonetically close
if and only if {editdistance(pi,pj)≤ t}, where t is a error
tolerance for match.

The error tolerance parameter t is a fraction of the input
string lengths and usually defined as a symmetric function
of the two input strings. Further, this parameter must be
calibrated based on the characteristics of the data domain
and may be set based on the requirements of application or
the user. The homophonic matching Ψ operator, based on
Definition ., is defined as follows:
Definition .: {siΨtsj} ⇐⇒ {editdistance(pi,pj) ≤ t}.
�

2.1.1 Ψ Operator Algorithm

Figure 4 outlines the implementation of the Ψ operator,
assuming the necessary linguistic resources are available.
The operator accepts two multilingual text strings and
a match threshold value as input. The strings are first
transformed to their equivalent phonemic strings using the
transform function, and if the edit distance between the
phonemic strings is less than the threshold value, a true is
returned, false otherwise. The editdistance function [19]
computes the standard Levenshtien edit distance between
them. The error threshold is specified as a user-set fraction
of the length of the smaller of the two input strings.

Ψ (Sl, Sr , e)
Input: Multilingual Strings Sl, Sr ; Threshold e

Output: true, false
1. Tl ← T l(Sl); Tr ← T r(Sr);
2. Smaller← (| Tl | ≤ | Tr | ? |Tl| : |Tr|);
3. if editdistance(Tl , Tr) ≤ (e ∗ Smaller) then

return true else return false;

Figure 4: The Ψ Operator Algorithm

2.1.2 Ψ Operator Properties

The Ψ operator defined as above is functionally analogous
to database equality operator, but in the phonetic domain.
The following are the properties of this operator.
Property .: The Ψ operator is commutative.
Property .: The Ψ operator commutes with projection,
provided the attributes used in Ψ is preserved by the pro-
jection operator.
Property .: The Ψ operator commutes with selection,
sort and join operators.
Property .: The Ψ operator commutes with aggregate
operators, provided the aggregation preserves the phonetic
attribute.

The first property follows immediately based on the def-
inition, and assuming normal semantics for threshold mea-
sure. The second through fourth properties follow, since
the values in the result set are not altered by the operator.

2.2 Homosemic Functionality Definition

The definitions in this section assume only that the values
of an attribute are from a specified domain, D6, with a set
of distinct semantic values. Within each domain D, the se-
mantic values are assumed to be arranged in a taxonomic
hierarchy, H that defines is-a relationships among the
atomic semantic values of the domain. Such network may
be a collection of directed acyclic graphs. Given an atom x
and a domain D, the transitive closure of x in D is unique,
and is denoted by TD(x). Similarly, the transitive closure
of a set X(= {xi|xi ∈ D}) is denoted by TH(X), and is
defined as ∪iTD(xi), where xi ∈ X . Assuming the above
notation, we provide the following definitions for semantic
matching:

6The domains may correspond to different areas of discourse: Astron-
omy, Bio-Informatics, Linguistics, etc.

Definition .: Given a taxonomy H in domain D and two
nodes x and y in D, we define x is-a y, iff x ∈ TH(y).
Definition .: GivenH in domainD and two sets of nodes
X and Y in D, we define X is-a Y , iff X ⊆ TH(Y).

Since linguistic domain ontologies have low resolution
power (that is, words with multiple meanings), we provide
a weaker version of the semantic equality, as follows:
Definition .: Given a taxonomic hierarchy H in domain
D and two sets of nodes X and Y in a domain D, we say
X is-possibly-a Y , iff X ∩ TH(Y) 6= φ.

Definition . is used for defining homosemic operator
in the following section.

2.2.1 WordNet-based Taxonomic Hierarchies

WordNet [11] is a standard linguistic resource for English,
that provides mappings between words and their meanings
(called synsets). WordNet defines, among other things, the
classification relationships between its synsets arranged in
a taxonomical hierarchy. Complete WordNet is available
for English and efforts are underway to develop WordNets
in different languages, paralleling the English WordNet.
Inter-linking of synsets between WordNets of different lan-
guages is available for some languages currently [3], and
is planned for others [5]. Figure 5 shows a simplified hier-
archy in English and German (in solid lines) and the inter-
linking of noun forms between English and German using
ILI links (in dotted lines).

Maschine

Maus

Vogel SaugetierMammal Machine

MouseHuman Aircraft

Bird

Fauna Artifact Kunstprodukt

Menschlich Flugzeug

English Noun Hierarchy German Noun Hierarchy

Bird

(1)

(2)Man Woman Männlicher Weiblicher

Tier

Figure 5: Sample Interlinked WordNet Hierarchy

Let WI be the WordNet of language Li. Let SI =
∪isi. By definition, WI contains semantic primitives si, of
Li. The noun taxonomic hierarchy defines a set of DAGs,
HI between the elements of SI . A WordNet defines a
mapping MI , between a wordform (wi) and its meanings
(MI(wi)), as MI :wi → Sw, where Sw is a set of si,
si ∈ SI . Consider the union of all semantic primitives of a
set of languages, SML (= ∪iSI) and the union of interrela-
tionships between them H (= ∪iHI). Clearly, H is a set of
DAGs, among the elements of SML. Augmenting H with
the ILI links, a taxonomic network, HML, is created. This
HML is used for homosemic definition, as follows:
Definition .: Given the multilingual taxonomic hierar-
chy HML, {wiΦHML

wj} is true, if {SI is-possibly-a SJ}

under HML, where SI = MI(wi) and SJ = MJ (wj).
Note that this definition . guarantees not to produce

false-dismissals, though it may introduce false-positives by
matching on unintended word-senses.
Example .: Both the predicates (Bird ΦHML

Fauna)
and (Bird ΦHML

Artifact) evaluate to true, as the set of
synsets of Bird namely, {Bird1, Bird2} has a non-empty
intersection with the closure of Fauna and Artifact. �
Example .: Consider the predicate (BirdEnglish ΦHML

KunstproduktGerman): The answer is evaluated as, Is
{Bird1,Bird2} ∩ {Kunstprodukt, Maschine, Flugzeug,
Bird} 6= φ, which evaluates to true. �

2.2.2 The Φ Operator Algorithm

The skeleton of the Φ algorithm to match a pair of multi-
lingual strings is outlined in Figure 6.

Φ (SData, SQuery)
Input: Multilingual Strings SData, SQuery

Output: true or false
1. SQuery ←MQuery(SQuery); SData ←MData(SData);
2. T CQ ← TransitiveClosure(SQuery ,H);
3. if SData ∩ T CQ return true else return false;

Figure 6: The Φ Operator Algorithm

The Φ function takes two multilingual strings SData and
SQuery as input. It returns true, if LHS string maps to a
semantic atom, that is some member of transitive closure
of the RHS operand in the taxonomic network HML.

2.2.3 The Φ Operator Properties

The following are the properties of the Φ operator.
Property .: The Φ operator is not commutative.
Property .: The Φ operator commutes with projection,
provided the attributes used in Φ is preserved by the pro-
jection operator.
Property .: The Φ operator commutes with selection,
sort or join operators.
Property .: The Φ operator commutes with aggregate
operators, provided the aggregation preserves the semantic
attribute.
Property .: The definition implies that A Φ B is true, iff
A is a descendant of B, in H. Or, equivalently, A Φ B is
true, iff B is an ancestor of A, in H.
Property . follows directly from the asymmetry of the Φ
operator. The properties . through . follow from the
algebra of the standard relational operators. Property .
follows directly from graph theory (as H is a set of DAGs)
that guarantees the existence of a path from x to y, if the
node y occurs in the closure of x in H.

Property . reduces the plan search space by restricting
flipping of operands of the Φ operator due to its asymmetry.
The properties . through . provide means for enumer-
ating different execution plans for queries using Φ operator.
Property . suggests an alternative method for implement-
ing Φ operator, which may be exploited depending on the
structural characteristics of the hierarchy.

3 MURAL: Multilingual Relational Algebra
In this section we propose a domain-specific query alge-
bra to match multilingual text data across languages. We
first propose a new datatype Uniform and three new opera-
tors – Ξ, Ψ and Φ – that may be applied only on Uniform
datatype, to extend the normal comparison semantics of the
database systems.

3.1 Data Types

All the basic types of relational systems are preserved in
Mural algebra, except Text datatype which is replaced by
Uniform (UNIcode FORMat) datatype, specifically to hold
the text strings.

3.1.1 Multilingual Text (Uniform) Datatype

The multilingual text data type is a 2-tuple, where the first
is the text string in a standardized encoding (referred to as
Text), and the second is an identifier for the language of
the string7 (referred to as LangID). The explicit identifier
is necessary, as several languages share a script and a string
may have different pronunciations or meanings, depending
on its language8.
Example .: While <“Sample String”, English>, <
“Une Corde Témoin”, French> and <“ ���������
	���
� ”,
Tamil> are of proposed Uniform datatype, their first com-
ponents form normal Unicode strings. �

3.1.2 Decomposing and Composing Uniform Datatype

It is apparent that with Uniform datatype as above, stan-
dard database operations need to be redefined to work on
the new datatype. We first introduce two simple operators
on Uniform datatype – Composing Operator (denoted as,
�) that can compose a Uniform datatype out of a given
Unicode string and a language identifier and an inverse op-
erator – Decomposing Operator (denoted as, ≺) that de-
composes a Uniform data to a Unicode String and a lan-
guage identifier. These two operators – � and ≺ – may be
implemented in a fairly straight forward manner, at little
cost.

3.2 Uniform Matching (Ξ) Operator

A simple Homostr operator (Ξ) is defined as follows:
Ξ : Set< U1 >×Set< U2 >→Set<U1, U2,boolean>

This operator compares two Uniform datatypes; the result
is the Cartesian product of the sets, with each tuple of the
output tagged with a true or false. The match is tagged
with a true if both the components of the 2-tuples match,
or tagged with a false, otherwise.
Example .: (<“Jean”, English> Ξ <“Jean”,
English>) is true, and (<“Gift”, English> Ξ <“Gift”,
German>) is false. �

7The text string is assumed to be in a single language, hence a unique
language identifier is possible. Further, a unique value of Unknown is
allowed, as a catch-all.

8Automatic language detection is possible with a large corpora, but not
with attribute level datum.

3.2.1 Normal Text Operators on Uniform

All simple text comparison operations (specifically, =, 6=
, <, >) applied to Uniform datatype, operate on the Text
component of the decomposed Uniform. Specifically, the
expression a R b, where R is one of the normal text op-
erators applied on a pair of Uniform datatypes a and b is
equivalent to ((ΠaT ext

(≺ (a))) R (ΠbT ext
(≺ (b)))).

Example .: The predicate (<“Gift”, English> =
<“Gift”, German>) evaluates to true. �

It should be noted that while the =, 6=, <, > operations
are legal with Uniform strings, the results are meaning-
less when the strings are from different scripts; the equal-
ity always evaluates to false (as it should) and the sort-
ing results depend on where the scripts corresponding to
the languages, occur in the Unicode placement, which
is largely arbitrary. However, we preserve such opera-
tional semantics, to be compatible with well-known Text
datatype, which has similar behaviour.

3.3 Homophonic (Ψ) Operator

The homophonic Ψ operator is defined as follows:
Ψ : Set< U1 >×Set< U2 >→Set< U1, U2, dist >

The input is two sets of Uniform strings, and the output
is the Cartesian product of the two sets, with each result
tuple tagged with the edit-distance between their phone-
mic representations. This operation preserves both the in-
put strings, which are available for subsequent operations.
Removal of either of the input attributes is by projection
operation, which is left to the user. The materialization of
the phoneme strings is left unspecified, as it does not affect
the functionality of the operator.
Example .: To select all Authors from table Authors (A)
that are phonetically close to Nehru (threshold distance of
2), the query expression is as follows:

ΠA.Author(σdist<2 (ΨAuthor(A, {“Nehru”}))) �
Example .: To phonetically join two tables, Authors (A)
and Books (B) (threshold distance of 2) and retrieve all
phonetically close pairs of names, the query expression is
as follows:

ΠA.Author,B.Author(σdist<2(ΨAuthor(A, B))) �

3.4 Homosemic (Φ) Operator

The homosemic operator (Φ) is defined as follows:
Φ : Set< U1 >×Set< U2 >→Set< U1, U2, match >

The input is two sets of Uniform strings, and the output
is the Cartesian product of the two sets, with each result
tuple tagged with match, which is set to a boolean value,
if u1i

∈ TH(u2j
), where u1i

∈ U1 and u2j
∈ U2. This

operation preserves both the input strings, which are avail-
able for subsequent operations. Removal of either of the
input attributes is by projection operation, which is left to
the user.
Example .: The query to retrieve all Books (B) that are
categorized under History, may be retrieved as follows:

ΠB.BookID(σmatch 6=φ(ΦCategory(B, {“History”})))
�

3.5 Composition of Operators

In this subsection, we provide an overview of the compo-
sition of the new operators, namely, Ξ, Ψ and Φ, with each
other and with the traditional relational algebra operators,
namely ×,− and ∪ and the aggregation operator ∆, based
on Properties . through .. The highlights of the com-
position rules are given in Table 1.

Oper Commutes Associates Distributes Over
Ξ Yes Yes ×,∪,−, Ψ, Φ, ∆
Ψ Yes Yes ×,∪,−, Ξ, Φ, ∆
Φ No Yes ×,∪, Ξ, ∆

Table 1: Interaction between Uniform Operators

Such composition rules are essential for the optimizer,
to enumerate alternate query execution plans for a given
query, by rearranging the operators. Each enumerated plan
is costed, based on the cost models and selectivities (dis-
cussed in subsequent sections) of the operators, and the best
plan in terms of overall cost or time for the first tuple (de-
pending on the user setting) is chosen for execution.

3.6 Relational Completeness of MURAL

A formal system is said to be Relationally Complete if it is
atleast as powerful as relational calculus (or equivalently,
relational algebra). A test of relational completeness is that
whether all queries expressible in relational algebra may be
expressed in the proposed system. In this section we show
that MURAL is relationally complete.
Lemma .: There exists a mapping scheme ΩSch be-
tween a MURAL schema and a standard relational schema.
Proof: MURAL has all the datatypes of standard relational
algebra, but for Text datatype, which is replaced by the
Uniform datatype. Hence, for all schema objects, other
than Text, ΩSch is identity. ΩSch between Uniform and
text datatypes are defined as follows: Given an n-tuple re-
lation Rm (= {r1, r2, ...rn}) in MURAL specification and
that ri is of Uniform datatype, Rm can be mapped onto an
equivalent relation Rr in standard relational algebra, where
Rr is, ((Rm − ri) ∪ (≺ (ri))) (namely, {r1, r2, ...ri−1,
riT ext

, riLangID
, ..., rn}). The resulting Rl is a relation

composed of (n + 1)-tuple of base datatypes. Similarly,
an n-tuple relation Sr composed of base datatypes, may be
converted into (n − 1)-tuple relation Sm in MURAL alge-
bra, by composing Uniform datatype from two appropriate
base datatypes (from si Text datatype and sj that stores a
language identifier) as, ((Sr−si−sj)∪(� (si, sj))). Thus,
a relation in normal relational algebra may be transformed
with no loss of information into a relation in MURAL, and
vice-versa. �
Theorem . (Relational Completeness Theorem):
There is a mapping scheme Ω that maps a relational alge-
bra database D to a MURAL database Ω(D) such that, for
every query Q on D, there is a corresponding expression Q̂

such that Q̂(Ω(D)) = Ω(Q(D)).

Proof: Note that for proving relational completeness,
we need only to show only a mapping for all possi-
ble queries from standard database to the transformed
database. Lemma . defines and ensures that a mapping
exists between a MURAL schema and a schema in stan-
dard algebra. For normal datatype attributes and normal
relational algebra operators, Ω is identity, trivially. We do
not need to consider the new operators Ξ, Ψ, Φ that can be
applied only on Uniform datatype, hence there is no need
for defining Ω for this part. However, we need to show a Ω
for normal Text manipulating operators applied on D has
an equivalence in Ω(D). Suppose Q is an expression (in
conjunctive normal form) in standard relational algebra (=
q1 ∧ q2 ∧ ... ∧ qn). Each qi is a disjunction of the form
qi1 ∨ qi2 ∨ ... ∨ qidi

, where qij is a predicate of the form
(a R b), where R is one of the standard operators on an
standard attributes a and b. As discussed in Section 3.2.1,
any such operation, depending on whether the text part or
the ID part was used in Q, may be mapped to an expression
Q̂ as, ((ΠauniT ext

(≺ (auni))) R (Πbunitext
(≺ (buni))))

or ((ΠauniID
(≺ (auni))) R (ΠbuniID

(≺ (buni)))),
where auni is � (auniT ext

, auniID
) and buni is �

(buniText
, buniID

). Thus, the MURAL algebra is relation-
ally complete. �

A practically significant outcome of the above result is
that the existing systems, which are relationally complete,
may be extended relatively easily to handle multilingual
data. Only new multilingual datatype and operator func-
tionalities need to be added.

3.7 Cost Models for Operators

In this section we discuss the MURAL operator cost mod-
els. There are two variations possible for each of the op-
erators: scan type, which is of the form <Attr> Oper
<Const>, and join type, which is of the form <Attr>
Oper <Attr>. For the cost models, the notation defined
in Table 2 are used and the costs of operations (in big-O
notation) are given in Table 3.

Symbol Represents
LHS (L) and RHS (R) Operands
RL, RR No. of Records in L, R
UL, UR No. of Unique Values of L, R
lL, lR Avg. length of Records in L, R

PL, PR No. of Pages in L, R
EL, ER No. of Pages for Exact Index in L, R
AL, AR No. of Pages for Approximate Index in L, R
IL, IR No. of keys per Index page

k Ψ Error Tolerance (as a fraction in (, ])
σ Ψ Size of the Alphabet (= |Σ|)

RH No. of Records storing H (=|HML|)
PH No. of Pages storing H
EH No. of Pages storing Index of H
f, h Average fan-out and height of H

Table 2: Symbols used in Analysis

O Remarks Algorithm Disk
Complexity I/O

scan Operations
Ξ No Index RLlL PL

Ξ Index logELILlL logEL

Ψ No Index RLlLk/
√

σ PL

Ψ Approx. Idx RLlLk2/
√

σ AL

Φ No Index RL+RH(h+1) PH(h+1)
Φ Index on H UL+logEH(h+1) logEH(h+1)

join Operations
Ξ No Index RLRRlL 3(PL + PR)
Ξ Index ULlogERIRlR EL + ER

Ψ No Index ULURlLk/
√

σ 3(PL + PR)
Ψ Approx. Idx RLRRlLk2/

√
σ AL + AR

Φ No Index RL + RR + 3(PL+PR)+PH

URRH(h+1)
Φ Index on H RL + RR + 3(PL+PR)+EH

URlogEH(h+1)

Table 3: Cost Models for Operators

For all the join predicates, we assume only one invo-
cation of Ψ or Φ operator is made for duplicate values.
All edit-distance computations are assumed to be imple-
mented using diagonal transition [28] algorithm instead of
the standard dynamic-programming algorithm, by virtue of
its better complexity. For Ψ operation costs with indexes,
the indexes are assumed to be created on the materialized
phonemes strings.

3.8 Estimations of Operator Output

This section outlines heuristics used to estimate the output
size of operators.

Estimation of Size of Homostr Output
The output size of the Ξ operator is assumed to be similar
to that of normal = operator.
Estimation of Size of Homophone Output
We estimated the output of the Ψ operator, based on equiv-
alent q-grams of the given data set, as follows: Using the
notation given in Table 2, the number of records in the q-
gram table is given by, RL(lL + 2q − 2). Given a query
string squery with |squery |+2q−2 q-grams, the selectivity
may be estimated as |squery|+2q−2 / RL(lL+2q−2), for
a specific match. For small q, the above expression may be
approximated to |squery |/RLlL for the selectivity of scan
operations and |squery |RRlR/RLlL for join operations.
Estimation of Size of Homosem Output
We estimate the output size of Φ operator, using the nota-
tion in Table 2, as follows: Given the average height of
HML is h, the selectivity of scan predicate is given by
(h + 1)/|HML|, and the selectivity of join predicate is
given by RL(h+1)/|HML|. In the case where closures are
pre-computed and stored, the estimation accuracy may be
improved further by using the exact values as, |THML

(v)|
/|HML| and RL|THML

(v)| /|HML|, respectively, where
|THML

(v)| is the size of the closure of v in HML.

4 Implementation in PostgreSQL System
In this section we explore adding the multilingual func-
tionalities as first class operators in the PostgreSQL open-
source database system, with a core implementation of all
the elements of the Mural algebra in the database kernel.
We subsequently analyse the performance of such imple-
mentation and compare it with a quick outside-the-server
implementation using UDFs. Finally, we demonstrate the
power of Mural algebra in selecting efficient query execu-
tion plans.

4.1 System Setup for Core Implementation

The core implementation of the functionality was done on
the PostgreSQL open-source database system [7] (Version
7.4.3), on RedHat Linux (Version 2.4) operating system.
The implementation was tested on a stand-alone standard
Pentium IV workstation (2.3GHz) with 1 GB main Mem-
ory. The operator implementation took approximately 
person-months and was implemented in C. In addition to
the operators, we implemented a specialized index struc-
ture for metric spaces, using GiST features available in
PostgreSQL system. An open-source text-to-phoneme en-
gine – Dhvani [2], was integrated with the system, after
appropriate modification to output the phonemic strings in
IPA alphabet and to make it a callable routine from the
query processing engine.

4.2 Ψ Operator Implementation

The Ψ operator was implemented as a binary join operator,
using the facility provided by the PostgreSQL system to
define new operators. However, since there is no facility to
add a tertiary operator, we implemented Ψ as a binary op-
erator, and made the third input, the error threshold param-
eter, a user-settable parameter to be set in a system table.
The value of the parameter for matching may be globally
set by the administrators, based on the requirements of a
domain or application. The homophonic matching func-
tion in Figure 4 is modified slightly to take the two strings
as operator input, and the threshold from the system ta-
ble, and implemented in the system. A modified Dhvani
text-to-phoneme converter was used to convert the multi-
lingual strings to their phonemic representations. From an
efficiency point of view, the phonemic strings correspond-
ing to the multilingual strings were materialized to avoid
repeated conversions (as in the case of during a join query
processing). The selectivity of the fuzzy Ψ operator was
set by modifying the equi-join selectivity to take care of
the fact that a given string may match with multiple unique
target strings. The cost of the operator was set to the for-
mulae given in Table 3, and the selectivity estimate using
the methodology outlined in Section 3.8.

4.2.1 Specialized Index Structures

As the normal B+Tree index cannot be used in accessing
near phoneme strings, we chose a metric index structure
– M-Tree – to index the materialized phoneme strings, for

speeding up the Ψ operator. The M-Tree index is a height-
balanced tree and is appropriate for dynamic data environ-
ments, such as database systems. We chose the random-
split alternative [16] for splitting nodes when expanding
the tree, since it offers best index modification time and
has insignificant incremental disk I/O compared to other
alternatives that are more computationally intensive.

The M-Tree index was added to the PostgreSQL
database system using the GiST indexing feature [21] avail-
able in the system. GiST (Generalized Search Tree) de-
fines a framework for managing a balanced index structure
that can be extended to support new datatypes and new
queries that is natural to the datatypes. A more efficient
Slim Tree [34] could not be considered, as the necessary
explicit insertion of specific elements on designated nodes
of the index tree, is not supported in the PostgreSQL’s GiST
implementation.

4.3 Φ Operator Implementation

The Φ operator was also added to PostgreSQL system as
a binary join operator, using the operator addition facility
in the system. The homosemic matching functionality, as
given in Figure 6 was implemented in C. Due to the high
cost involved in computing closures on WordNet taxonom-
ical hierarchies from the database tables, we pinned the ta-
bles in the main memory, for efficient traversal. Further,
every time a closure for a RHS attribute value is computed,
it is materialized as a hash table in temporary tables in the
main memory, for fast execution of second step of Φ al-
gorithm in checking set-membership of LHS attribute, as
well as for possible reuse. When a closure computation is
needed, the materialized hash table is verified to check if
the closure is already available for the same RHS value.
Thus, a class of operators that need to process several LHS
operand values for a given RHS operand value may amor-
tize the cost of computing and materializing the closures.
For example, a scan or nested-loops join queries using Φ
operator may be made more efficient by making the RHS
operand the outer table, thus using the same closure for all
inner table values. Further optimization may be achieved
by sorting the RHS values and computing the closure only
for unique values. While we implemented these optimiza-
tions, we added a simple cost models as given in Table 3
and selectivities as given in Section 3.8, for use in the opti-
mizer.

4.4 Optimizer Prediction Performance

In order to ascertain the quality of our cost models and the
accuracy of the optimizer in predicting the query costs, a
a series of queries using our multilingual operators on a
suite of tables with varying data characteristics, were run
on the system. A series of tables of varying characteristics
(in terms of attribute size, tuple count, number of database
blocks and selectivity) were created, and a suite of queries
that used the multilingual operators were run on these ta-
bles. For each query, we recorded the optimizer predicted
cost and the actual runtime of the query. It should be noted

that the optimizer prediction cost is specified in terms of
units of disk-page fetch in PostgreSQL system.

 1000

 10000

 100000

 10000 100000 1e+06 1e+07

R
un

tim
e(

m
se

c)

Optimizer Predicted Cost

Optimizer Predicted Cost vs Actual Runtime

Figure 7: Optimizer Prediction Performance

Figure 7 plots the correlation between the predicted op-
timizer costs and the actual runtimes of the queries. The
computed correlation coefficient on the plot is well over
., indicating reasonably accurate cost models. Though
there is some error in computing large queries, we observed
that this error is in the same range as in the case of estima-
tion with conventional operators.

5 Performance Experiments
In this section, we outline our performance experiments
with our implementation of multilingual operators on Post-
greSQL database system. We first present a baseline per-
formance using a quick outside-the-server implementation,
and demonstrate the power of core implementation and the
optimization strategies.

5.1 Data Setup for Experiments

We used the same datasets that were used in our previous
work, in benchmarking the homophonic and homosemic
functionalities on commercial systems [26, 27]. For Ψ op-
erator, a pre-tagged ≈,  multilingual names data set
was used for scan experiments, and a fraction of the above
table used for join experiments. For homosemic experi-
ments the entire WordNet hierarchy with ≈,  word
forms ≈,  synsets and ≈,  relationships be-
tween them was stored in the database, occupying about
 MB of storage. Since different WordNets are in differ-
ent stages of development, for performance experiments we
simulated linked WordNets, by replicating English Word-
Net in Unicode, and creating an equivalence link between
corresponding synsets. Queries that compute closures of
varying sizes were employed for profiling the Φ operator.
All experiments were run on these dataset on a standard
workstation, quiesced of all other activities9.

9The quality of the results of the experiments are discussed in detail
in [26, 27], where similar experiments were conducted on a commercial
database system. We verified that the results are identical in both the cases.

5.1.1 Metric Distance Index

While the B+ Tree indexes are largely ineffective in the
edit-distance measure based metric space, a metric distance
index may be implemented using standard B+Tree index in
database systems. If the edit-distances of all strings in the
database are known, from a given string, then they may
be used for pruning the search space, based on the follow-
ing lemmas that follow from the definition of triangular
inequalities that define metric distances10.
Lemma .: Given two strings a and b at a distance of
dab from each other, and a query to return strings within a
distance of da and db from a and b respectively, there could
be no satisfying strings, if da + db < dab.
Lemma .: Given two strings a and b at a distance of dab

from each other, a query to return strings within a distance
of da and db from a and b respectively, and a candidate
string s at a distance of dsa (< da) from a, it may be in the
result set if and only if dsa + dab ≤ db.
Example .: Consider a query to find the Authors, pho-
netically close to Silversmith (threshold of 2) and
Aerosmith (threshold of 2). This query could return no
result set as per Lemma ., since the distance between
Silversmith and Aerosmith is . �

The lemmas . and . are useful in designing the op-
erator implementation, as they provide means of reducing
the edit distance computation, based on pre-computed dis-
tances from a known string. We pursue such a strategy as
follows: We chose a candidate string, key string, and com-
puted the edit-distance of each of the values of the attribute
from Sk to be stored along with attribute. We observed that
a judicious choice of the key string, with a length equal to
the average length of the values and with an alphabet dis-
tribution similar to that of the collection, reduces the com-
putation significantly. A B+tree index was built on the pair,
<distance,string>, called the Metric Distance Index (M).
Given M , a scan type operation to retrieve the strings that
are at an edit-distance less than dq from the query string,
Sq , is computed as follows: First, compute distance dkq of
Sq from Sk. Second, access the index M , and output all
those strings with distance dk, such that dkq + dk ≤ dq .
The correctness of this step is guaranteed by Lemma 5.1,
and it requires no explicit distance computation, but just
an access of the index structure. Third, for those strings
with distances dk, such that dkq + ds ≥ dq , compute edit
distance to verify if it is at an edit-distance ≤ dq.

5.1.2 Baseline Performance of Ψ Implementations

To baseline the performance of the outside-the-server im-
plementation of the Ψ operator, we first added it to the Post-
greSQL open-source database systems using user-defined
function, defined in PL/SQL programming environment.
The reason for the choice was to have parity with other sys-
tems that allow only such environments for adding UDFs.

10A similar metric index may be used for weighted edit-distances as
well, though they are not discussed here due to lack of space.

Query Type Scan-type Join-type
(Sec.) (Sec.)

Base Performance 3618 453
With Metric Index 362.9 166.9

Table 4: Outside-the-Server Performance of Ψ Operator

Table 4 lists the performance of the Ψ operator, without
and with appropriate indexes on the materialized phone-
mic strings. The results show clearly that while the no-
index implementation is expensive, the metric index struc-
ture helped in reducing the cost by nearly an order of mag-
nitude. The main impediment to the performance is the
expensive UDF invocations.

5.2 Baseline Performance of Φ Operator

Similarly, the basic Φ operator was implemented as a user
defined function using PL/SQL features, and a baseline per-
formance is measured running the operator on the dataset
based on the WordNet taxonomical hierarchy. The first
step of the Φ operator is the most expensive one, as clo-
sure computation on relational tables are recognized to be
expensive[13, 20, 22]. The cost models and the query plans
of the database systems indicate that nearly % of the
query time was spent on the first step. We present here the
time to compute a suite of queries, each with varying sizes
of transitive closures. Table 5 shows the performance of
our basic outside-the-server implementation of Φ operator.

Closure Outside-the-Server Outside-the-Server
Cardinality (without Index) (with Index)

(Sec.) (Sec.)
155 5.676 0.028
482 17.72 0.094
2041 75.62 0.642
2538 95.77 0.907
5340 201.8 2.778
11551 840.5 11.64

Table 5: Outside-the-Server Performance of Φ Operator

The basic no-index implementation of the Φ operator
is expensive, taking upto few hundred seconds for typical
queries. A basic index on the hierarchy table HML speeds
up the closure computation significantly, improving it by
nearly two orders of magnitude, though there is a signif-
icant increase in the costs, when large closures are com-
puted.

5.3 Core Performance of Ψ Operators

After implementing the Ψ operator in core as indicated
in the previous sections, we ran the same experiments
that were used for testing the performance of the outside-
the-server implementation. For homophonic experiments,
the GiST index (implementing the M-Tree) was also used
for enhancing the performance. We provide, in Table 6,

the performance of queries scanning and joining the same
,  row table that was used in outside-the-server ex-
periments for the Ψ operator.

Query Type Scan-type Join-type
(Sec.) (Sec.)

Base Performance 5.203 1.967

Table 6: Core Performance of Ψ Operator

As can be seen, the performance of the queries is two or-
ders of magnitude faster than the outside-the-server perfor-
mance of the same queries shown in Table 4. We measured
the performance gain due to the GiST index, and Figure 8
highlights the relative performance gain due to the GiST
index. We note that the performance of the Ψ operator is
significantly speeded up by the GiST index, upto nearly
%.

Figure 8: Performance of GiST Index

5.4 Core Performance of Φ Operators

The implementation of the Φ operator as a core operator
was tested for queries that require closures of various sizes
in WordNet taxonomic hierarchy, and the results are shown
in Table 7.

Closure Core Core
Cardinality (without Index) (with Index)

(Sec.) (Sec.)
155 1.378 0.005
482 4.303 0.014
2041 19.68 0.037
2538 22.70 0.042
5340 44.86 0.044
11551 96.71 0.068

Table 7: Core Performance of Φ Operator

Compared with the outside-the-server performance of Φ
operator (as shown in Table 5), we note that the perfor-
mance of the core implementation is about one order of
magnitude better, when computed without building an in-
dex on the hierarchy. With index, the performance is im-
proved by at least two orders of magnitude, to a few tens
of milliseconds. The performance of our PostgreSQL im-
plementation with index structures is sufficient for practical

deployments, given that the typical size of closure is around
,  [27].

5.5 A Motivating Optimization Example

We illustrate the power of the optimization strategies to dis-
tinguish between efficient and inefficient executions with
the new operators, by the following example:
Example .: Consider a query Find the books whose Au-
thor name sounds like that of the publisher (threshold of
.). Assuming the tables Author (A) with AuthorID and
Author Name, Books (B) with BookID and foreign key to
its author and publisher, and Publisher (P) with Publish-
erID and Publisher Name, the following two expressions
(also, shown pictorially in Figure 9) capture the semantics
of the above query:
Plan 1:ΠA.AuthorID,P.PubID,B.BookID

(σ(Threshold≤.)(ΨA.AName,P.PName(P, A)
(B ./BookID (A ./ B))))

Plan 2:ΠA.AuthorID,P.PubID,B.BookID(./BookID (A, B)
(σ(Threshold≤.)(ΨA.AName,P.PName(P, A))))

Plan (1) πAuthorID, PublisherID, BookID

Ψ
AuthorName,PubName (Threshold:0.25)

Plan (2) πAuthorID, PublisherID, BookID

Book

Materialize(BookID,...)

Materialize(PublisherID,Name)

Publisher

Author

Ψ
AuthorName,PubName (Threshold:0.25)

Author

Hash(AuthorID)
Book

NL−Join(AuthorID)

NL−Join(AuthorID)
Publisher

Figure 9: Query Plan for Example .

We created tables Author, Book and Publisher, along
the lines of our examples in the previous sections, and
forced the optimizer to evaluate and run two different ex-
ecution plans for the same query, on the same tables, by
enabling or disabling different optimizer options. For each
plan, we recorded the optimizer predicted cost and mea-
sured the runtime of the execution. The optimizer pre-
dicted cost and the runtime for Plan(1) are , ,  and
. seconds, respectively. The corresponding figures for
Plan(2) are , ,  and . seconds, respectively.
Clearly, Plan(1) is superior (in terms of runtime, a post-
facto observation) and is chosen (due to its lower predicted
cost by the optimizer) for execution. Further, we were able
to force different query execution plans by modifying the
characteristics of the underlying table, confirming the use
of our cost models and optimization strategies by the opti-
mizer. �

6 Migration Strategies

Database systems have well established software architec-
ture, query semantics and interface specifications. Any new
features addition must consider the impact of the proposal
on each of the above parameters. The new functionality
addition may be classified, based on the level of integration
with the system, as either Outside-the-Server or Core Im-
plementation. While we have detailed our core implemen-
tation of the functionalities on PostgreSQL in the previous
sections, in this section, we outline how these functionali-
ties may be added to other database systems with existing
database or SQL features. Clearly, such an implementation
will suffer from significant overheads and the fact that they
cannot leverage on the well-developed relational query op-
timizer.

6.1 The Homophonic Ψ Operator

In this section, we outline how the existing UDF features
of the database may be leveraged for an outside-the-server
implementation of Ψ operator. In the outside-the-server
approach, a UDF that implements the algorithm given in
Figure 4 is defined, in an environment that is native to
the database system. Examples for such environments are
the User-defined Function facility in IBM DB2 Universal
Server, Oracle Database Server and Microsoft SQL Server.
In PostgreSQL, we used the PL/SQL programming envi-
ronment for defining the UDF, in order to preserve the con-
sistency between equivalent facilities in different database
systems, though a more efficient PL/C feature could have
been used. Note that the interpreted nature of the environ-
ment may add additional processing overheads to the query
execution. In addition, the standard B+Tree index may be
used to define a metric distance index, as detailed in this
paper.

6.2 The Homosemic Φ Operator

In this section, we explore the implementations of the Φ
operator using existing SQL features available in database
management systems. For the Φ operator the taxonomic
hierarchy HML needed for computing the semantic clo-
sures may not be pinned on to the main memory, and would
need to be stored in relational tables. Given the relational
storage of HML, the Φ operator may be implemented in
two steps: First, the computation of the transitive closure
of the RHS in the hierarchy, namely, THML

(RHS). Sec-
ond, testing for the condition {LHS ∩ THML

(RHS)} = φ.
While precomputation of closures help in reducing the cost
of the first step of this operator, it comes at a heavy storage
penalty. Further, the availability of index structures pro-
duces different benefits for the Φ operator, depending on
which attribute they are available on. Availability of index
structures on HML table is very beneficial since it speeds
up the closure computation, which is the most expensive
part of the Φ operator. However index on operand tables, at
best, help only in eliminating the duplicate closure compu-
tation, be leveraging on their sort order, hence is not very

significant.

6.2.1 Database Features for Ψ Implementation

For an basic outside-the-server implementing of the Φ op-
erator, we relied on the standard SQL:1999 features. The
first was implemented by a recursive SQL feature, namely
the WITH clause of SQL:1999 standards and the second
part by the IN predicate of standard SQL. The WITH clause
is supported as it is by IBM DB2 Universal Server and by
CONNECT BY clause in Oracle 9i database. In Microsoft
SQL Server, the functionality may be implemented using
scripts. In the open source PostgreSQL server, since re-
cursive SQL is not available, we implemented the closure
computation using a user-defined function in PL/SQL. All
the servers support the IN clause needed for the second step
of the Φ implementation, by building efficient hash-tables.

7 Conclusion

In this paper, we first highlighted the need for seamless
processing of multilingual text data, with motivating ex-
ample from real-life domain. We presented formally the
definitions of specific multilignual operators and analysed
their properties that are used to define the composition rules
among them. We presented their cost models and selectiv-
ity estimates, the critical input to the relational query opti-
mizer. Subsequently, we presented a query algebra – Mural
that defines a multilingual datatype and operators, for intu-
itively expressing complex queries. We showed that Mural
is relationally complete, and hence could be added to exist-
ing relational systems at little cost.

We outlined a core implementation of the functional-
ity as first-class operators inside the database kernel. In
order to optimize the performance of homophonic oper-
ator, we added a metric M-Tree index using GiST index
features supported on PostgreSQL database system. We
first baselined the outside-the-server performance of Post-
greSQL database system, and demonstrated that the core
implementation improves the performance by two orders
of magnitude over the outside-the-server implementation.
Further, we showed that the indexes improves the perfor-
mance by another one to two orders of magnitude. Also,
we demonstrated the power of the query algebra in aiding
optimizer to selecte efficient execution plans. Finally, as
a migration strategy, we outlined how the existing features
of current database systems may be used to implement the
multilingual features. Thus, our proposal of MURAL mul-
tilingual operator algebra and its core implementation on
PostgreSQL database system represents the first step to-
wards the ultimate objective of achieving complete mul-
tilingual functionality in database systems.

7.1 Related Research

To the best of our knowledge, ours is the first proposal that
covered the entire spectrum of functionality proposal to the
core implementation of multilingual phonetic and semantic
matching in a database kernel.

While we had published multilingual query process-
ing [26, 27] features earlier, no holistic approach had been
taken earlier for defining and using a query algebra, which
we address here. There are vast amounts of literature in
the Information Retrieval [8] Research community in the
areas of Knowledge-based and Natural-language based re-
trieval. While the techniques employed are diverse, they
are not directly applicable to attribute level data in OLTP
type environments. Phonetic matching of English strings
was discussed in [35, 36], but their focus had been on the
linguistic issues and quality of the resulting match. Also,
their main-memory implementation did not raise issues re-
lated to the on-disk database processing. Recently, a major
database vendor [17] proposed and demonstrated matching
functionality using ontologies. While their implementation
is not available in the released versions of the software,
we expect that our multilingual operators to easily leverage
on such implementations, when available. Further, we are
heartened by this parallel effort in ontological query pro-
cessing that validates our approach. Algebras specific to a
domain are available, such as PiQA[33] in Bioinformatics
and TAX[23] in XML. Our approach parallels such efforts,
in multilingual text domain. We also leverage on research
on approximate string matching [15, 28, 29, 30], for our
implementation.

References
[1] The Computer Scope Ltd. http://www.NUA.ie/Surveys.

[2] Dhvani - A Text-to-Speech System for Indian Languages.
http://dhvani.sourceforge.net.

[3] Euro-WordNet. www.illc.uva.nl/EuroWordNet.

[4] Global Reach. http://www.globalreach.biz.

[5] Indo-WordNet. www.cfilt.iitb.ac.in.

[6] International Phonetic Association.
http://www.arts.gla.ac.uk/IPA/ipa.html.

[7] PostgreSQL Database System. http://www.postgresql.com.

[8] ACM SIGIR. www.acm.org/sigir.

[9] The Unicode Consortium. http://www.unicode.org.

[10] The WebFountain. http://www.almaden.ibm.com/WebFountain.

[11] The WordNet. http://www.cogsci.princeton.edu/w̃n.

[12] R. Agrawal et al. Direct algorithms for computing Transi-
tive Closure of DB Relations. Proc. of 13th VLDB Conf.,
1987.

[13] R. Agrawal, S. Dar and H. V. Jagadish. Direct Transitive
Closure Algorithms: Design and Performance Evaluation.
ACM Trans. on Database Systems, 1990.

[14] R. Baeza-Yates and G. Navarro. Faster Approximate String
Matching. Algorithmica, Vol 23(2):127-158, 1999.

[15] E. Chavez, G. Navarro, R. Baeza-Yates and J. Marroquin.
Searching in Metric Space. ACM Computing Surveys, Vol
33(3):273-321, 2001.

[16] P. Ciaccia, M. Patella and P. Zezula. M-Tree: An Efficient
Access Method for Similarity Search in Metric Space. Proc.
of 23rd VLDB Conf., 1997.

[17] S. Das et. al. Supporting Ontology-based Semantic Match-
ing in RDBMS. Proc. of 30th VLDB Conf., 2004.

[18] L. Gravano, P. Ipeirotis, H. Jagadish, N. Koudas,
S. Muthukrishnan and D. Srivastava. Approximate String
Joins in a Database (almost) for Free. Proc. of 27th VLDB
Conf., 2001.

[19] D. Gusfield. Algorithms on Strings, Trees and Sequences.
Cambridge University Press, 2001.

[20] J. Han et al. Some Performance Results on Recursive Query
Processing in Relational Database Systems. Proc. of 2nd
IEEE ICDE Conf., 1986.

[21] J. M. Hellerstein, J. F. Naughton and A. Pfeffer. Generalized
Search Trees for Database Systems. Proc. of 21st VLDB
Conf., 1995.

[22] Y. Ioannidis. On the Computation of TC of Relational Op-
erators. Proc. of 12th VLDB Conf., 1986.

[23] H. V. Jagadish, L. Lakshmanan, D. Srivastava and
K. Thompson. TAX: A Tree Algebra for XML. Proc. of
DBPL Conf., Sept 2001.

[24] D. Jurafskey and J. Martin. Speech and Language Process-
ing. Pearson Education, 2000.

[25] D. Knuth. The Art of Computer Programming, Volume 3:
Sorting and Searching. Addison-Wesley, 1993.

[26] A. Kumaran and J. R. Haritsa. LexEQUAL: Supporting
Multiscript Matching in Database Systems. Proc. of 9th
EDBT Conf., March 2004.

[27] A. Kumaran and J. R. Haritsa. SemEQUAL: Multilingual
Semantic Matching in Relational Systems. Proc. of 10th
DASFAA Conf., April 2005.

[28] G. Navarro. A Guided Tour to Approximate String Match-
ing. ACM Computing Surveys, Vol 33(1):31-88, 2001.

[29] G. Navarro, E. Sutinen, J. Tanninen, J. Tarhio. Indexing
Text with Approximate q-grams. Proc. of 11th Combinato-
rial Pattern Matching Conf., June 2000.

[30] G. Navarro, R. Baeza-Yates, E. Sutinen and J. Tarhio. In-
dexing Methods for Approximate String Matching. IEEE
Data Engineering Bulletin, Vol 24(4):19-27, 2001.

[31] P. G. Selinger et. al. Access Path Selection in a Relational
Database Management System. Proc. of the ACM SIGMOD
Intl. Conf. on Mgmt. of Data, 1979.

[32] P. H. Sellers. On the Theory and Computation of Evolution-
ary Distances. SIAM Jour. of Applied Math., June 1974.

[33] S. Tata and J. M. Patel. PiQA: An Algebra for Querying
Protein Data Sets. Conf. on Scientific and Statistical Data
Management, July 2003.

[34] C. Traina Jr., A. Traina, B. Seeger and C. Faloutsos. Slim-
trees: High Performance Metric Trees Minimizing Overlap
Between Nodes. Proc. of 7th EDBT Conf., March 2000.

[35] J. Zobel and P. Dart. Finding Approximate Matches in
Large Lexicons. Software – Practice and Experience, Vol
25(3):331-345, March, 1995.

[36] J. Zobel and P. Dart. Phonetic String Matching: Lessons
from Information Retrieval. Proc. of 19th ACM SIGIR
Conf., August 1996.

