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Abstract

Estimates of predicate selectivities by database query optimizers oftensififféficantly from
those actually encountered during query execution, leading to poor ptaces and inflated re-
sponse times. In this paper, we investigate mitigating this problem by repladewiigéy error-
sensitive plan choices with alternative plans that provide robust peafoce. Our approach is
based on the recent observation that even the complex and dense iggjeamts” associated with
industrial-strength optimizers can be efficiently reduced to “anorexicivatgnts featuring only a
few plans, without materially impacting query processing quality.

Extensive experimentation with a rich set of TPC-H and TPC-DS-basery gemplates in a
variety of database environments indicate that plan diagram reductionltyp@ins plans that
are substantially resistant to selectivity errors on the base relations. vidgvitecan sometimes
also be severely counter-productive, with the replacements performiof) morse. We address
this problem through a generalized mathematical characterization of plabetsvior over the
parameter space, which lends itself to efficient criteria of when it is safedioce. Our strategies
are fully non-invasive and have been implemented in the Picasso optimizalizédion tool.

1 Introduction

The query execution plan choices made by database engteesain out to be poor in practice because
the optimizer’s selectivity estimates are significantlyemor with respect to the actual values encoun-
tered during query execution. Such errors, which can evan beders of magnitude in real database
environments [18], arise due to a variety of reasons [28Junhing outdated statistics, attribute-value
independence assumptions and coarse summaries.

Robust Plans.To address this problem, an obvious approach is to impravguhlity of the statistical
meta-data, for which several techniques have been presentbe literature ranging from improved
summary structures [1] to feedback-based adjustmentd4¢2a8j-the-fly reoptimization of queries [15,
18, 3]. A complementary and conceptually different apphoachich we consider in this paper, is to
identify robust planghat are relatively less sensitive to such selectivity mtrén a nutshell, to “aim
for resistance, rather than cure”, by identifying plang fv@vide comparatively good performance
over large regions of the selectivity space. Such plan @soare especially important for industrial
workloads where global stability is as much a concern ad mmiamality [17].

Over the last decade, a variety of strategies have been ggdgo identify robust plans, including
the Least Expected Cost [6, 8], Robust Cardinality Estimati®jrahd Rio [3, 4] approaches. These
techniques provide novel and elegant formulations (suna@a@in Section 6), but have to contend with
the following issues:

Firstly, they arentrusiverequiring, to varying degrees, modifications to the opteniengine. Sec-
ondly, they requirepecializednformation about the workload and/or the system which natyaiways
be easy to obtain or model. Thirdly, their query capabditieay bdimited compared to the original
optimizer — e.g., only SPJ queries with key-based joins wersidered in [2, 3]. Further, [3] has been
implemented and evaluated on a non-commercial optimizeallly and most importantly, as explained
in Section 6, none of them provide, on an individgakry basis, quantitatiguarantee®n the quality
of their final plan choice relative to the original (unmodifj@ptimizer’s selection. That is, they “cater
to the crowd, not individuals”.



The SEER Algorithm. In this paper, we prese®EER (Selectivity-Estimate-Error-Resistance), a new
strategy for identifying robust plans that can be directgdi on operational database environments.
More concretely, it

e Treats the optimizer as a black-box and therefore is inhigréam) completely non-intrusive, and
(b) capable of handling whatever SQL is supported by theegysEurther, it does not expect to
have any additional information beyond that provided byahgine interface.

e Provides plan performance guarantees thairatieidually applicable to queries in the selectivity
space.

e Considers only th@arametric optimal set of plandOSP) [12] as replacement candidates and
therefore delivers, for errors that lie within the replaesmtnplan’s optimality region, robustness
“for free”. In contrast, the previously proposed algorithin the literature may evaluate plans
that are not optimal anywhere in the space.

¢ Is validated oncommercialoptimizers on both the classical TPC-H [25] and the recent TPC-
DS [26] benchmarks.

We hasten to add that SEER, due to its non-intrusive desigectig, only attempts to address
selectivity errors that occur on thmse relationssimilar to [1]. However, since these base errors are
often the source of poor plan choices due to the multiplifroéfas they progress up the plan-tree [14],
minimizing their impact could be of significant value in ptiaal environments. Further, since SEER
is a purely compile-time approach, it can be used in conjanatith run-time techniques such as
adaptive query processing [9] for addressing selectivityrs in the higher nodes of the plan tree.

Anorexic Reduction of Plan Diagrams.SEER is based on thenorexic reduction of plan diagrama
notion that was recently presented and analyzed in [11]ciSgaly, a “plan diagram” [21] is a color-
coded pictorial enumeration of the plan choices of the ogenfor a parametrized query template over
the relational selectivity space. That is, it visually aaps the POSP geometry.

For example, consider QT8, the parametrized 2D query tampleown in Figure 1, based on Query
8 of TPC-H. Selectivity variations on tr@JPPLIERaNdLINEITEM relations are specified through the
s_acctbal :varies andl_ extendedprice :varies predicates, respectively. The associated plan diagram
for QT8 is shown in Figure 2(a), produced with the Picassontpér visualization tool [20] on a
popular commercial database engine.

As evident from Figure 2(&) plan diagrams can be extremely complex and dense, witlye tram-
ber of plans covering the space — several such instancesisgamrepresentative set of benchmark-
based query templates on industrial-strength optimizersagailable at [20]. However, these dense
diagrams can typically be “reduced” to much simpler picsufieaturing significantly fewer plangijth-
out materially degrading the processing quality of any indiwal query For example in Figure 2(a), if
users are willing to tolerate a minor cost increaseof at most 10% for any query point in the diagram,
relative to its original cost, the picture could be redueeBigure 2(b), where only 7 plans remain — that
is, most of the original plans have been “completely swadldihby their siblings, leading to a highly
reduced plan cardinality.

1The figures in this paper should ideally be viewed from a cotmy, as the grayscale version may not clearly register
the features.



select ayear, sum(case when nation = 'BRAZIL' then volume else 0 endjri(solume)

from (select YEAR(oorderdate) as gear, Lextendedprice * (1 - Hiscount) as volume

n2.n.name as nation

from part, supplier, lineitem, orders, customer,
nation n1, nation n2, region

where ppartkey = Lpartkey and suppkey = Isuppkey and_brderkey = aorderkey
and acustkey = ccustkey and mationkey = nl.mationkey and nl.megionkey =
r_regionkey and sationkey = n2.mationkey and mame = ’AMERICA and ptype
=’ECONOMY ANODIZED STEEL and
s acctbal :variesand|_extendedprice :varies

) as allnations

group by ayear

order by ayear

Figure 1:Example Query Template: QT8
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Figure 2:Sample Plan Diagram and Reduced Plan Diagram (QT8)



A detailed study of the plan diagram reduction problem was@nted in [11], and it was shown that a
cost increase threshold ofly 20 percenis usually amply sufficient to bring down the absolute number
of plans in the final reduced picture wthin or around ten In short, that complex plan diagrams can
be made “anorexic” while retaining acceptable query prsiogsperformance.

Example. We now show an example of how anorexic reduction helps totiigeselectivity-error-
resistant plans: In Figure 2(a), estimated selectivitiesround (14%,1%) lead to a choice of
plan P70. However, if the actual selectivities at runtime turn oubt significantly different,
say (50%,40%), executing witR70, whose cost increases steeply with selectivity, would be
disastrous. In contrast, this error would have had no impattt the reduced plan diagram of
Figure 2(b), sinc®1, the replacement plan choice at (14%,1%), remains thernpeefelan for a
large range of higher values, including (50%,40%). Quatnitly, at the run-time location, plan
P1 has a cost of 135, while70’s cost of 402 is abouhree timesnore expensive.

It is easy to see, as in the above example, that the replat¢gri@@nwill, by definition be a robust
choice for errors that lie within its optimality region, .i.é&s “endo-optimal” region. This is the ad-
vantage, mentioned earlier, of considering replacemanysfiom the POSP set of plans. The obvious
guestion then is whether the sizes of these regions areatjplarge enough to materially improve the
system performance.

A second, and even more important question, is: What if thereare such that the run-time loca-
tions areexo-optimal” w.r.t. the replacement plan? For example, if the run-tinoafion happens to
be at (80%,90%), which is outside the optimality regiorPdf? In this situation, nothing can be said
upfront — the replacement could be much better, similar ochmwoorse than the original plan. There-
fore, ideally speaking, we would like to have a mechanismaugh which one could assess whether a
replacement iglobally safeover the entire parameter space.

Contributions. In this paper, we address the above issues from both thealratid empirical perspec-
tives. We have conducted extensive experimentation ondiniga&ommercial optimizer with a rich

suite of multi-dimensional TPC-H and TPC-DS based query tataploperating on a variety of logical
and physical database designs. Our results demonstrafddhaliagram reduction typically produces
plan choices that substantially curtail the adverse effagftselectivity estimation errorsTherefore,

it clearly has potential to improve performance in gendmalpoth the endo-optimal and exo-optimal
regions.

However, we have also encountered occasional situatioesendreplacement plan performs much
worse in its exo-optimal region than the original optimizhoice, highlighting the need to establish an
efficient criterion of when a specific swallowing is globadlgfe. To achieve this objective, we present
a generalized mathematical model of the behavior of plabfaostions over the selectivity space. The
model, although simple, is sufficient to capture the costligh of all plans that have arisen from our
query templates. Using this model, we then prove that cheslkanly theperimeterof the selectivity
space are sufficient to decide the safety of reduction oveettiire space. These checks involve the
costing of“foreign plans”, that is, of costing plans in their exo-optimal regions, atfiee that has
become available in the current versions of several indstirength optimizers, including DB2[27]
(Optimization Profile), SQL Server[28] (XML Plan) and Sybf9] (Abstract Plan).

Apart from providing reduction safety, foreign-plan castiis additionally leveraged to both (a)
enhance the reduction levels of the plan diagram, and (b)awepthe complexity characteristics of



the reduction process, as compared to our earlier CostGreedgtion algorithm [11]. Note that the
increased diagram reduction automatically implager within-\-of-optimal regiondor the retained
plans, upfront guaranteeing more robustness.

In summary, we present in this paper SEER, an efficient, éffeeind safe mechanism for iden-
tifying robust plans that are resistant, as compared to gtener’s original choices, to errors in
the base relation selectivity estimates. Through a detaiedy of benchmark-based query templates
on commercial optimizers, we empirically demonstrate 8ER provides robust good performance
for industrial-strength database environments. We alssgnt LiteSEER, a (complexity-wise) opti-
mally efficient heuristic algorithm, which delivers comahle robustness to that offered by SEER.
Both SEER and LiteSEER have been implemented in the frealifadoke Picasso optimizer visualiza-
tion tool [20].

Organization. The remainder of this paper is organized as follows: In $a@i we present the overall
problem background, framework and motivation. The plart sasdels and the checks for replacement
safety are discussed in Section 3. The design of the SEERtredwlgorithm and its analysis are pre-
sented in Section 4. Our experimental framework and peiioga results are highlighted in Section 5.
Related work is overviewed in Section 6. Finally, in Sectigrwé summarize our conclusions and
outline future research avenues.

2 Problem Framework

For ease of exposition, we assume in the following discussiiat the SQL query template is 2-
dimensional in its selectivity variations — the extensiomigher dimensions is straightforward.

2.1 Plan and Reduced Plan Diagrams

From a query templat®, a plan diagran® is produced on a 2-dimensiorél 1] selectivity spac& by
making repeated calls to the optimizer. The selectivitycepa represented by a grid of points where
each pointg(z,y) corresponds to a unique query with selectivitieg in the X and Y dimensions,
respectively. Each is associated with an optimal (as determined by the optiman P;, and a cost
c¢i(q) representing the estimated effort to execyteith plan P,. Corresponding to each plaf is

a unique colorL;, which is used to color all the query points that are assigoned. As mentioned
earlier, the plan diagram is essentially a visual chareztgon of the parametric optimal set of plans
(POSP) [12]. We usP andS interchangeably in the remainder of the paper based on titexto

Plan Diagram Reduction Problem This problem is defined as follows [11]: Given an input plan
diagramP, and a maximum-cost-increase threshal@\ > 0), find a reduced plan diagraR with
minimum cardinalitysuch that for every pla®; in P,

1. EitherP, € R, or

2. VY q € P, the assigned replacement plBne R guaranteesc% < (14X
Gi\q
That is, find the maximum possible subset of the planB ihat can be completely “swallowed” by

their sibling plans in the POSP set. A point worth reemphagihere is that the threshold constraint



applies on anndividual querybasis. For example, setting= 10% stipulates that the cost efach
guery point in the reduced diagram is witHirl times its original value.

It was proved in [11] that the above problem is NP-Hard. Tfueee an efficient heuristic-based
online algorithm, calledCostGreedy, was proposed and shown to deliver near-optimal “anorexic”
levels of reduction, wherein the plan cardinality of theueed diagram usually came down to around
10 or less for a\-threshold of only 20%. In a nutshell, complex plan diagra&aus be easily made very
simple without materially affecting the query processingldy.

2.2 Selectivity Estimation Errors

Consider a specific query poigt, whose optimizer-estimated location $is (z.,y.). Denote the
optimizer’s optimal plan choice at point by P,.. Due to errors in the selectivity estimates, gdatual
location ofg. could be different at execution-time — denote this locabgny,(x,, y,), and the opti-
mizer’s optimal plan choice at, by P,,. Assume thaf’,. has been swallowed by a sibling plan during
the reduction process and denote the replacement plamaddigg. in R by P,.. Finally, extend the
definition of query cost (which applied to the optimal plamhtvec;(¢) denote the cost of an arbitrary
POSP planP; at an arbitrary query poiritin S.

With respect tdR, the actual query point, will be located in one of the following disjoint regions
of P,. that together coves:

Endo-optimal region of P,.. Here,q, is located in the optimality region of the replacement pfan
which also implies thaP,. = P,,. Sincec,.(¢.) = ¢.u(qa), it follows that the cost of,. at q,,
cre(qa) < coe(qa) (by definition of a cost-based optimizer). Therefore, inwe resistance to
selectivity errors is alwayguaranteedn this region.

Swallow-region of P,.. Here, g, is located in the region “swallowed” by,. during the reduction
process. Due to thi-threshold constraint, we are assured thaly,) < (1 + \)cea(qa), @and by
implication thatc,.(q,) < (1 + A)coe(qa)- Now, there are two possibilities: #..(¢.) < coe(qa),
then the replacement plan is again guaranteed to improvesistance to selectivity errors. On
the other hand, it,.(¢.) < cre(qa) < (1 + X)coe(qa), the replacement is guaranteed to not cause
any real harm, given the small values)ofhat we consider in this paper.

Exo-optimal region of P,.: Here,q, is located outside both the endo-optimal and swallow- Iregf
P,.. At such locations, we cannot apriori prediét.’s behavior, and therefore the replacement
may not always be a good choice — in principle, it couldaoeitrarily worse. Therefore, we
would like to ensure that even if the replacement does naotigecany improvement, it is at least
guaranteed to not do any harm. That is,éRe-optimal region should have the same performance
guarantees as the swallow-regiofVe show in Section 3 how this objective can be efficiently
achieved through simple but powerful checks to decide whptacement is advisable.

2.3 Motivational Scenarios

Given the above framework, we now present example sceng@riosotivate (a) the error-resistance
utility of plan diagram reduction, and (b) the need for safatthis process.
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Figure 3: Beneficial Impact of Plan Replacement

Ouir first scenario, typical of that seen in most of our experita, demonstrates how the replacement
plan P,. can provide extremely substantial improvemehteughout the selectivity spac8pecifically,
on a vanilla PC with a popular commercial optimizer, we gatest a plan diagram for a query template
based on TPC-H Q5, with selectivity variations on thesTOMERandsUPPLIERrelations, and carried
out reduction with\ = 10%. On this diagram, considet = (0.36,0.05) and a sample set of actual
locations §,) — for instance, along the principal diagonal®ffor this scenario, the costs Bf, (P45),

P.. (P17) andP,, (the optimal plan at eacf, location) are shown in Figure 3(a) — note that the costs
are measured onlag scale

It is clear from Figure 3(a) that the replacement plgn providesorders-of-magnituddenefit
w.r.t. P,.. In fact, the error-resistance is to the extent that it alyuprovides “immunity” to the
error since the performance 6%, is close to that of théocally optimal planP,, throughout the space,
although the endo-optimal region 6f. constitutes only a very small fraction of this space.

To demonstrate that the benefits anticipated from the centipile analysis do translate to corre-
sponding improvementst runtime we show in Figure 3(b) the query response times (again measu
on alog scalg of P, (P45), P,. (P17) andP,, at the samey, locations. It is vividly clear in this
picture that huge savings in processing time are obtainadsing the replacement plan instead of the
optimizer’s original choice, and that the replacementidgrenance is virtually indistinguishable from
the optimal choices.

While performance improvements are usually the order of tye there are occasional situations
wherein P,. performs worse thai®,. at ¢,. A particularly egregious example, arising from teme
plan diagram described above, is shown in Figure 4(&)fer (0.03,0.14) — we see here that it is now
the replacement pla®,. (P34), which isorders-of-magnitudevorse thanP,. (P26) in the presence
of selectivity errors. This compile-time assessment igatmrated in Figure 4(b) which shows the
corresponding query response times.
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Figure 4. Adverse Impact of Plan Replacement

2.4 Robust Reduction

From the above discussion, it is clear that we need to ensat®nly safe replacements are permitted.
This means that replacement should be permitted only if\tteeshold criterion is satisfied not just
at the estimated point, bat all locationsin the selectivity space. At the same time, it is important to
ensure that the safety check is not unnecessarily conseryvateventing most plan replacements, and
in the process losing all the error-resistance benefitsrefbee, the overall goal is to maximize plan
diagram reduction without violating safety considerasiomore formally, our problem formulation is:

Robust Reduction Problem.Given an input plan diagraf, and a maximum cost-increase-threshold
A (A > 0), find a reduced plan diagraRwith minimum plan cardinalitysuch that for every pla; in
P,

1. P, eR,or

2.V q € P, the assigned replacement pl&h € R guarantee¥ query pointsy’ € P,
(14+X)

That s, find the minimum-sized error-resistant “cover” s that reduces the plan diagr&without
increasing the cost of any reassigned query point by moretttecost increase threshoidespective
of the actual location of the query at run-time

It is easy to see that the Robust Reduction problem is NP-Hastlike the standard Plan Diagram
Reduction problem, and therefore we present a heuristieebalgiorithm later in Section 4. But, prior
to that, we show in the following section how replacemenésatan be checked efficiently.



3 Ensuring Robust Reduction

To find an error-resistant cover of the plan diagram, we needaluate the behavior of each replace-
ment planF,., w.r.t. its swallowing targeP,., atall pointsin S. This requires, in principle, finding
the costs ofP,. and all potentialP,. at every point in the diagram. Of coursi,. and P,. need not
be costed in their respectivando-optimakegions, since these values are already known through the
plan diagram production process. The remaireérg-optimalcosts can be obtained using thareign-
Plan-Costingfeature, hereafter referred to BRC, that is now supported in several industrial-strength
optimizers, as mentioned in the Introduction.

While the above solution is conceptually feasible, it is ficatly unviable due to its enormous
computational overheads. Plan-costing is certainly chetiqan the optimizer’s standard optimal-plan-
searching process [13], but the overall overhead is@fitlm) wheren andm are the number of plans
and the number of points, respectivelyRAnTypical values of: range from the several tens to several
hundreds, whilen is at least in thousands, making an exhaustive approaclaatipal.

The above situation motivates us to study whether it is péssbased on using FPC at onlyeav
select locationsto infer the behavior in the rest of the space. In the remainder ofs#gtion, we de-
scribe our strategy for making such an inference. We begidsygning a parametrized mathematical
model for characterizing plan cost behavior. Our model asgly simplified in comparison to those
used in real optimizers, which are much more complex [19, H)wever, what we have found in
practice (with several hundred distinct plans arising dutlRC-H and TPC-DS-based query templates
on industrial optimizers) is that with appropriate settirgf the parameters, our simple model is quite
accurate, both behaviorally and quantitatively. The reaswe that (a) in our problem space all param-
eters, barring the selectivities, arenstantresulting in complex models degenerating to comparativel
simple equivalents; (b) we aféting the model to the observed cost behaviors, rather than ttging
predict them; and (c) our modeling is at the level of entire plans,regating the effects of several
individual operators, thereby reducing the variabilityofdover, the quantitative accuracy is a bonus —
it is not really required since onlyehavioralaccuracy is necessary for our scheme to work.

3.1 Modeling Plan Cost Functions

For ease of presentation, we will initially assume that dojective is to model the cost behavior of
plans with respect to a 2-D selectivity space (e.g. Figuag)2{orresponding to distinct relatioms,
andR,. The extension to higher dimensions is straightforwardiamuovided later in this section.

In current optimizers, the operators in the execution planadl typically eitherunary or binary
with regard to their inputs. Therefore, given a specific pdaerator tree, like the sample one shown
in Figure 5 (obtained on &k, = LINEITEM, R, = CUSTOMER selectivity space), we can define the
following types of nodes:

Selectivity Nodes: These are the unary nodes that implement the selectiontapesan relations?,
andR,. In Figure 5, they are colored orange, corresponding toxXisd&ans on theINEITEM and
CUSTOMERrelations, respectively.

Dependent Nodes:These are the nodes in the tree that have at least one Siyelstde in the sub-
tree below them. They are colored blue in Figure 5.



SELECT STATEMENT
Hash Match
Clustered Index Scan | Hash Match

NATION | Hash Match | Clustered Index Scan

) T

Compute Scalar

Merge Join

Clustered Index Scan

e

ORDERS Clustered Index Scan

LINEITEM |

Figure 5: Sample Plan Tree

Independent Nodes: These are all the remaining nodes in the tree that do not petaither of the
above two categories. They are colored white in Figure 5.

3.2 Node Cost Models

We now enumerate the cost models that can be associatedheidbbve node categories on the 2-D
selectivity spacé. Our formulation is based on detailed observations of cebabior of individual
operators on commercial database optimizers. In the faligythe variables andy are used to denote
the (fractional) selectivities on the respective dimensio

Independent Nodes: Since these nodes do not have a Selectivity Node in theitreah-variations in
x andy do not change their inputs, and consequently their outgutsrefore, for a given plan,
the costs at these nodes remain the same throughout

Selectivity Nodes: The input cardinalities for these nodes will be constanaéttp the corresponding
base relation’s cardinality) while the output cardinality is directly dependent on thkestivity
value. Therefore, the cost behavior can be captured by thgleilinear model involving coeffi-
cientsa; anda, shown in Table 1. For exampl&able-Scanwvill have a; = 0, while Index-Scans
are likely to have non-zero values for both constants.

Dependent Unary Nodes: The input cardinalities for these nodes will be a function ahd/ory, and
the associated family of cost models is as shown in Table t.operators such a&ggregates
Arithmetic ExpressionsScalar functionsetc. the simple linear model will apply, whereas the



| Node Type | Input Cardinalities | Cost Model |
| Selectivity Node ¢ = z) || n \ ainx + as |

a1 T + ag
ainizlognix + as
a1 Y + as

nix

9

Dependant Unary Nodes

niTy
ainixylognixy + as
nxT N9 aimx + asng + agnina® + aq
Dependant Binary Nodes njxy N9 a1n1xyY + asng + asninsxy + ay
nix oY a1 + asney + asnNinaTY + aq

Table 1. Cost Models for Various Node Types

logarithmic model would apply to operators suchSst and Group Bythat require multiple
passes over the data.

Dependent Binary Nodes: These are the nodes that represent binary set operatoraslaih, Union,
Minus etc. The different types of input possibilities and theoassted cost models are shown in
Table 1.

Note that we deliberately do not consider the case whetkthe inputs to the binary node are
functions ofx (ory or zy). This is because it is easy to prove that such a situatioatipessible
unless operators hawénary outputs- we have not encountered any such operators in our study.

Lemma 1 There cannot be a binary node that has both inputs to be fomefz (or functions
of y, or functions ofry).

Proof: If there exists a binary nod®& with input cardinalities»;x andnsyz, then there should
exist some node in its subtree that hdsirsary output However, we know that all nodes in the
plan tree have unary outputs (since there is no cycle in #&).tA similar argument holds for the
yandzry cases. m

3.2.1 Cost Model of a Complete Plan

The cost function of the entire plan is the aggregate sumeofdists of the individual nodes. Consider-
ing all possible cost models a node can have, we can condiatiéhe overall cost model of a plan for
a 2D selectivity space is of the form

Cost(x,y) =a1x + agy + asxy + agxlog x + asy log y+
agxylog ry + a7 Q)

wherea,, as, as, as, as, ag, a7 are coefficients, and, y represent the selectivities &, andR,, respec-
tively.

Modeling a specific plan requires suitably choosing the ses@efficients, and this is achieved
through standard surface-fitting techniques, describ&gation 5.



3.3 Extension to d-dimensional spaces

Generalizing the arguments used in the 2D case, we obtafaltbewing cost model for a-dimensional
selectivity space.

Cost(xq, ..., xq) = Z(ailxil + bi, i, log )+
i1
Z (Qiyig i, Tiy, + iyin T3y Uiy 10g 4, T4,
i <is
+ ...+ a1g a(T17273..24)
+ b1 q(T12273..24) log(x12923..4)
+ ag (2

where thea’s andb’s are the(2¢! — 1) coefficients and the;,i = 1...d represent thel relational
selectivities.

3.4 Replacement Safety Conditions

For the 2D scenario, using the abadr«eoefficient cost model, our goal now is to come up with an
efficient mechanism to assess, given an optimal ptancandidate replacement pld?, and a cost-

increase threshold, whether it would be safe fromglobal perspective to have,. swallow P,..
Let the cost functions foP,. andP,. be

fre(z,y) = a1x + agy + aszy + asxlog x + asylogy + agzry log xy + ar 3)

and
foe(®,y) = b1z + bay + bzwy + baw log x + bsylogy + by log xy + by 4)
respectively. Now consider thfeafety function”

f@,y) = fre = (1 +A) foe )

which captures the differences between the cost3 o&nd a)-inflated version of?,. in the selectivity
space. All points wherg(x,y) < 0 are referred to aSafePointsvhereas points that havéz, y) > 0
are calledviolatingPoints For a replacement to be globally safe, there should be natiigPoint
anywhere in the selectivity space.

In the following, we will use LR-Boundaries to collectively mte the left and right boundaries of
the selectivity space, and TB-Boundaries to collectivelyadenhe top and bottom boundaries of the
space.

For a specific value of, the safety functiorf(z, y) can be rewritten as
fy(@) =g *xx+ g2 *xxlogx + g3

for appropriate coefficientg,, g-, g3. Similarly, we can defing,(y). With this terminology, the fol-
lowing theorem provides us with conditions for checking Wiee the selectivity space is safe for the
plan-pair @,.,P,.) with regard to replacement.



Theorem 1 For a plan-pair (P,.,P,.) and a selectivity spac® with corners|(xy, 1), (1, y2), (2, Y2),
(x2,11)], the replacement is safe (i.e., withirthreshold) inS if any one of the conditions, SC1 through

SC6, given in Table 2 is satisfied.

Left Right Top Bottom
Boundary Boundary Boundary Boundary
SC1 Safe Safe () >0 | fil () >0
SC2 || fy(z1) <0 Safe Jo(@) <0 | fi (z) <0
& Safe
SC3 Safe Jo(x2) >0 || fiL(x) <0 | ff () <0
& Safe
SC4 || fh(y)>0 | fil.(y) >0 Safe Safe
SC5 || f2,(y) <0 | fi,(y) <0 || fa(y2) >0 Safe
& Safe
SC6 || fi (y) <0 | fi,(y) <0 Safe fi(y1) <0
& Safe

Table 2: Safety Satisfaction Conditions

In order to prove the above theorem, we will start with dexgviwo lemmas — the first provides us with
a condition that is sufficient to ensure safety of all poimglre straight line segment joining a pair of
safe points, while the second describes the behaviour cidipe of the safety function.

Lemma 2 (Line Safety) Given a fixedy = y,, and a pair of safe pointéz,,y,) and (z9,y,) with
Ty > 1, the straight line joining the two points is safe if the slof}gx) is either

(i) monotonically non-decreasing, @ OR

(i) monotonically decreasing witff (z;) < 0or f; (v2) >0
A similar result holds when is fixed.

Proof: The various possible behaviors ff(z) are shown in Figure 6 as Curves (a) through (e). When
the slopef, (z) is monotonically non-decreasing (i.e. Condition (i) is séid), the safety function
curve that connects the two safe points is guaranteed bel@vthe straight line joining the two points

— Curve (a) in Figure 6 shows an example of this situation. €hsures that the safety function along
the given line segment is always negative and hence safe.

fy 00
[

(d)
©

(b)

()

(CY

Figure 6: Behavior of the safety functigf(z)



If, on the other handf, (z) is monotonically decreasing, then the possible behavibtiseosafety
function f,, (x) are shown in Curves (b) through (e) in Figure 6. Curves (b) andigieote the behaviour
of the safety function when Condition (ii) is satisfied, anebely the value of the safety function is again
negative in the given range. m

In Figure 6, Curve (d) also corresponds to a safe scenario evewit is not possible to differentiate
between Curve (d) and the unsafe case, namely Curve (e), wigxplicitly computing the safety
function at every point on the given line-segment. Hencecuoreservativelycategorize both cases as
unsafe. We have also observed that the case correspondiug\e (e) occurs rarely in practice.

Lemma 3 (Slope Behavior)If the slope of the safety functiorf, (=), is non-decreasing (resp. de-
creasing) along the line-segments= y; andy = 1, then it is non-decreasing (resp. decreasing) for
all line segments in the interval, y2). A similar result holds forf’ (y).

Proof: Consider the slope of the safety function

f/o(x> — dfilo—g(jw) =01+ g2<1 + logl') (6)

Forz € (0,1), this slope is monotonic and its behavior depends on thedfign From Equations 3
and 4, we know thajg, can be written as the following function of

92(y) = (ag— (14 A)bs) + (a6 — (1 + X)bs)y
= (k1 + koy) (7)

wherek; andk, are constants.
Sincegs(y) is a linear function ofj, the Lemma immediately follows. m

We now prove Theorem 1 using the LineSafety and SlopeBehknunas:

Proof: Consider the SC1 condition in Table 2: Sinf§z) > 0 (i.e. slopef, () is non-decreasing)
at the TB-boundaries, then from Lemma 3, we know that the sfppe is non-decreasing throughout
the rang€(y:, y2).

Moving on to the SC2 and SC3 conditions: Singgr) < 0 (i.e. slopef,(z) is decreasing) at the
TB-boundaries, then from Lemma 3, we know that the slfjie) is decreasing throughout the range
(y1,2). Further, we know that for a given= y, € (y1,12), eitherf; (z1) < 0(SC2) orf, (v2) >0
(SC3).

Thus, when SC1, SC2 or SC3 is satisfied, then for all lines betweerts (x,y) and (z,y),

y € (y1,92), the end-points are safe (because the LR-boundaries ane aafethe slope conditions
given in Lemma 2 are satisfied. Hence, all such line-segnagatsafe, the union of which is the given
region.

Similar arguments can be used to show safety of the regiomwbeditions SC4, SC5 or SC6 are
satisfied. Hence the theorem. m

The test criteria of Theorem 1 are utilized for determiniaduction safety in the SafetyCheck al-
gorithm, described next. A related point to note here is these checks amonservativan that it is
possible to have global safety even if none of the conditamesmet — i.e. the test is sufficient, but not
necessary.



4 The SEER Algorithm

In this section, we first describe the safety checking procgdwhich given a plan-pairR,., F,.),
responds whether the replacementif by P,. is globally safe throughout the selectivity sp&eNe
then present and analyze the SEER algorithm which usesrtbgegure to perform error-resistant plan
diagram reduction.

In the following, we will assume that the selectivity sp&es represented by a gri@, with m =
r X r points, i.e. the grid resolution in each dimension.is

4.1 Safety Checking

To implement safe reduction in a 2-D plan diagram, we neecttaldbe to check for the satisfaction of
any of the conditions (SC1 through SC6) stipulated in TheorerA &traightforward way to achieve
this is the followingPerimeter Tesprocedure:

Perimeter Test. First compute the safety function at all points on pegimeterof G — this is obtained
through the foreign-plan-costing (FPC) feature. Then, astienthe slope behavior (non-decreasing or
decreasing) along all the grid lines — this is achieved byuatag the slopes at the matching end-
points on the perimeter and comparing the values. The slbagarimeter point is approximated by
computing the value of the safety function at its immediaternal neighbor — i.e., along the “inner
perimeter”, and evaluating the slope of the line segmenmingi these two points. Finally, use these
results to verify whether any of the 6 safety conditions atesged.

In the Perimeter test, the number of FPC operations«id(r — 1) for the perimeter (the is due to
having to compute botfi.. andf,.), while the computation of the slopes takes an additianalr — 3)
costings of the inner perimeter, leading to a total of appnately 16r. Note that this is much less than
the 2> FPC operations required by a brute-force approach of apsinth plans at all points in the
diagram. For example, with = 100, the overhead is brought down by over an order of magnitude.
The red and blue points shown in Figure 7 are to be costedsndhkt.

An obvious minor improvement that could be carried out on e overhead is to perform the
inner perimeter costings only when conditions SC1 and SC4 iatated. In this case, only one of
SC2 or SC3 (resp. SC5 or SC6) can be valid. Hence, we need to pdffdthoperations only dtvo
boundaries of the inner perimeter, one along each dimensius reduces the FPC overhead f.

Wedge Test.We now present a powerful optimization, calMédge Testhat allows conditions SC1
and SC4 to be checked withcanstantnumber of FPC, specificall§4, irrespective of the resolution
This is based on the observation that the slope of the safettibn is a monotonic function (Equa-
tion 6). Thus, by comparing the slopes at the corners of theespve can infer the slope behaviour of
the safety function along its boundaries. Applying Lemméh2,safety of the boundaries can also be
inferred. Hence, it is sufficient to perform FPC only at eaomer of the space and its two adjacent
points on the perimeter boundaries — that is, at the “correxfg@s”. Only the red points shown in
Figure 7 are to be costed in this test.

Based on the above observations, we employ a two-stage protssafety-checking — in the first
stage, use the extremely cheap Wedge Test check, and onllgii§j use the more expensive Perimeter
Test to verify replacement safety.
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Figure 7: Perimeter and Wedge Test

Note that once a plan is costed at a given location, we stesectyst in a cache for reuse later,
ensuring no redundant computations.

4.2 Plan Diagram Reduction

We now show how the above safety checks are integrated ietS8ER procedure for plan diagram
reduction. Note that SEER’s design is completely differeotrf that of CostGreedy [11] because now
reduction is permitted only if it satisfies a safety criterithat is applicable ove®, whereas Cost-
Greedy’s attention is limited to onl¥,.’s endo-optimal region.

The complete SEER algorithm is shown in Figure 8. Here, a&C®®er instance is first created from
the input plan diagran®. Then the two-stage global safety checking procedure oftkdge Test,
followed by the Perimeter Test, is implemented to evaluepgacement possibilities across each pair
of plans inP, and the Set-Cover instance is updated accordingly. Firtafyresulting instance is solved
using the standard greedy techniques [22, 10] to obtairettheced plan diagram.

Analysis. As discussed earlier, each replacement assessment of-patai®’,.,P,.) requires atmost
O(r) FPCs to be performed. There &¢n?) such comparisons performed by the algorithm. However,
since we cache the already obtained costs, the amortizetderuoh FPC to be performed per plan
is O(r). Thus, for gridG with m = r x r points, the comparison of all plan pairs requires only
O(ny/m + n?) time. Solving the Set-Cover problem using the Greedy Set-Calgerithm [22, 10]
requiresO(n?) time. This results in a®(n+/m + n?) reduction algorithm. Further, since the set cover
instance created h&§'| = n, the approximation factor of this reduction algorithniflog n).

The above bounds and approximation factors for SEER compayefavorably with those of the
CostGreedy reduction algorithm [11], which has time comipye® (nm) and approximation factor of
O(log m), since typicallyn << m.



SEER (Plan DiagramP, Threshold \)

1. Create a Set-Cover Instanfe= (U, S), whereS = {5,5;,...,5,}, U = {1,2,....,n},
corresponding to the plans in the original plan diagraf

2. Seteaclp; = {i},Vi=1..n

3. For each pair of plang’;, P;) do

if WEDGE_TEST (P,,P;,)\) == Safe) then

Si =5 U{s}
else if (PERIMETERTEST (F;,F;,\) == Safe) then
Si =S U{J}
4. Solve the Set-Cover instan¢eising the Greedy Set-Cover algorithm to identify the plans
retained inR.

Figure 8: The SEER Reduction Algorithm

4.2.1 Extension to Higher Dimensions

The SafetyCheck algorithm used to verify the safety of th&aagment ofP,. by P,. in ad-dimensional
selectivity space is given in Figure 9.

SafetyCheck (Plan DiagramP, Threshold A, Plan P,., Plan P,., Dimensiond)
1. if(d==2)
(a) if (WEDGETEST @P,F;,P;,A\) == Safe) then

return true.
else if (PERIMETERTEST @,F;,P;,\) == Safe) then

return true.

(b) return false.

2. else

(@) safety = true;
(b) for each(d — 1)-dimension slicé®’ of P
safety = safetyN SafetyCheckR’,lambda, P,e, Pre, d — 1)

3. return safety.

Figure 9: n-Dimensional SafetyCheck Algorithm

The above algorithm recursively finds the safe area of(the 1)-dimension “slices” of the input
d-dimension selectivity space. Wheh= 2, the WEDGETEST and PERIMETERTEST methods
are used to check for safety. The SEER algorithm incorpagdtiis checking mechanism is shown in
Figure 10.



SEER (Plan DiagramP, Threshold \)

1. Create a Set-Cover Instante= (U, S), whereS = {51, S2,...,S5,}, U = {1,2,...,n}, corre-
sponding to the plans in the original plan diagraf

2. Seteacty; = {i},Vi=1..n
3. For each pair of plang?;, P;) do
if (SafetyCheck R,\,P;,P;,d) == true) then
Si =S U{i}

4. Solve the set-cover instan€aising the Greedy Setcover algorithm to identify the plans retained
inRR.

Figure 10: n-Dimensional SEER Reduction Algorithm

Eachd-dimensional plan diagram is composedrofd — 1)-dimensional plan diagrams. The time
complexity of the SafetyCheck algorithm for the base casewhe 2 is O(r). Thus the SafetyCheck
algorithm runs inO(r?-1) time. Given a grid withn = r¢ points, FPC is performe@(m ‘) times
for each plan pair. Thus, the time complexity of the SEER c#ida algorithm for ad-dimensional
plan diagram i)(m @ n + n?).

4.3 Variants of SEER
4.3.1 LiteSEER: A Fast Variant

The SEER design makes conscious efforts, as described ,aoovenimize the computational over-
heads, but these overheads do grow with increasing dimsadgioof the query template. Therefore,
we have also designed and evaluated LiteSEER, a light-wéigintistic-based algorithm that trades
SEER'’s safety guarantee for providing rapid running-timed.iteSEER, a replacement is simply as-
sumed to be safe #ll the corner points of the selectivity space are safde intuition behind this
observation is that when two points are safe, then the sirdiige joining them is also usually safe.
This is corroborated by our experimental results (Sectjonttich indicate that the heuristic provides
almost the same safety as that obtained through the skréxtking criteria of SEER.

Given ad-dimensional plan diagram® with n plans, the LiteSEER algorithm only computes the
safety function at th@? corners of the associated selectivity space. It immegidtalows that its
overall complexity isO(2%n + n?). Since, in most practical scenarios of interéét<< n (e.g. in the
2-D case2? = 4, while n is typically in the several tens, if not more), the effecto@mplexity turns
out to beO(n?). Note that, in principle, in the absence of any apriori infation, this is theninimum
workrequired to be executed lanyreduction algorithm. Therefore, LiteSEER is an optimabailiipm
(complexity-wise) w.r.t. efficiency.



4.3.2 PartialSEER

The problem formulation for robust reduction required teplacement plan to bglobally safe As a
generalized variant, the safety criteria can be relaxedl®ava plan P,. to replace plar?,, if P, is
safe in at least a user-defingdnimum safe fraction (MSFf the area covered by (MSF < 1).

PartialSafetyCheck (Plan DiagramP, Threshold A, Area allowedViolation, Plan P,., Plan P,.,
Dimensiond)

1. if(d ==2)

(a) if (WEDGETEST @,P,¢,Py.,\) == Safe)return allowedViolation
(b) if (PERIMETERTEST P,P,e,Pre,A\) == Safe)return allowedViolation
(c) if the slope criteria of the six conditions of Theorem 1 are not satisfddrn —1
(d) if (allowedViolation = 0) return —1
(e) if notwo adjacent boundaries are safeturn —1.
(f) Let the first violating point at the top-boundary of the g@doccur atx = z,,. Setx = x,,
y=r1r—1, NumViolatingPoints = (
(9) Whilex # r andy # —1
i. Setcount =0
ii. While current point is violating (i.¢f (x,y) > 0) andy # —1
A. move down (i.ey--)
B. if (NumViolatingPoints + (r —y — 1) x (r —x — 1)) > allowedViolation,
return —1
iii. While current point is safe (i.¢(x,y) < 0) andxz # r
A. move right (i.e.z++), count++

B. if (NumViolatingPoints+ count x (r —y — 1)) > allowedV'iolation,
return —1

iv. NumViolatingPoints + = count x (r —y — 1)
(h) allowedViolation — = NumViolatingPoints
() return allowedViolation

2. else

(a) for each(d — 1)-dimension slicé®’ of P
i. allowedViolation = PartialSafetyCheckX,\, allowedViolation, P, Pre, d — 1)

ii. if (allowedViolation < 0)
return allowedViolation;

3. return allowedViolation.

Figure 11: The PartialSafetyCheck Algorithm



PartialSEER (Plan Diagram P, Threshold A, MinSafeFraction
MSF)

1. Create a Set-Cover Instance = (U,S), where S =
{51,852,....,5.}, U = {1,2,...,n}, corresponding to the plans
in the original plan diagrarf.

2. Seteacty; = {i},Vi=1..n

3. For each pair of plang?;, P;) do

(@) SetallowedViolation = (1 — MSF) x Area(P).

(b) if (PartialSafetyCheckR,\,allowedViolation, P;,P;,d) >
0) then

. . Si = SiU{s}
Figure 12: The PartialSafety-
Check Algorithm 4. Solve the set-cover instanfesing the Greedy Setcover algorithm
to identify the plans retained iR.

Figure 13: The PartialSEER Reduction Algorithm

In order to assess partial safety, we first perform the WED®&ST and PERIMETERTEST checks
for global safety. If this fails, we verify whether the slopeteria of any of the 6 conditions given in
Theorem 1 is satisfied. If true, we allow pl&h,. to replace plarP,, if

1. Atleast two adjacent boundaries in the perimete® afe safe; and
2. TheM SF requirement is met i®.

The reason for restricting our attention to situations wharleast two adjacent boundaries are safe
is that, for this case, an efficient algorithm can be set uphexk satisfaction of the area requirement,
as described below. Figure 11 shows the modified SafetyCHhgokitam that finds the safe area when
the left and bottom boundaries 8fare safe. The algorithm is similar when other boundariesai®

From Theorem 1 we know that the safe (and violating) pointsifcontiguous regions i8 when the
slope criteria of at least one of the size conditions arsfadi. Since the left and bottom boundaries of
the grid are safe, theandy axes form a part of the boundary of the safe region. The PaafietyCheck
algorithm traces the remainder of this boundary.

Figure 12 shows the flow of the algorithm while tracing the faary between the safe (green) and
violating (red) regions of the selectivity space for a pdiptans. In this figure, the top and right
boundaries of the region violate the safety requirement.

We start from the first violating point on the top-boundaryte# grid, and at each stage either move
down or right in the grid. At each interior point that we mowe we perform the costing of the plans
P,. andP,.. The algorithm stops when we reach the bottom or right boueslaf the grid.

The number ofight or downmovements required to reach this termination situatiortnsoat 2r
movements for a& x r grid. Hence, for a pair of plans, atmaBt extra costings are needed to obtain
the error-resistant area. Steps 1 through 3 of the algontgquire an additional2r costings in the



worst case scenario — it is usually much smaller. Thus, tleeadivtime complexity of the modified
PartialSafetyCheck algorithm for a 2-dimensional sel@gtspace isO(r).

The PartialSEER reduction algorithm, which employs thdi&@&afetyCheck safety-checking tech-
nique, is shown in Figure 13.

5 Experimental Results

The testbed used in our experiments is the Picasso optimigealization tool [20], executing on
a Sun Ultra 20 workstation equipped with an Opteron Dual Cob&RIz processor, 4 GB of main
memory and 720 GB of hard disk, running the Windows XP Pro afjpey system. The experiments
were conducted over plan diagrams produced from a varigiymand three-dimensionaPC-H and
TPC-DS-based query templates operating on the OptCom commerdialiapr. The TPC-H database
containsuniformly distributed data of size 1GB, while the TPC-DS database rsi&weddata that
occupies 100GB. The cost-increase threshold used in allémediagram reductions is = 20%.

Physical Design.Following a methodology similar to that advocated in [5], eamsidered three differ-
ent physical design configurations in our stu@®imaryKey (PK) , Allindex (Al) , andTunedindex
(T . PK represents the default physical design of our databagaes wherein a clustered index is cre-
ated on each primary key. Al, on the other hand, representsid@x-rich” situation wherein (single-
column) indices are available on all query-related schettndoates. Finally, Tl represents the index
environment obtained by implementing the recommendatajrtie database engine’s index tuning
advisor (which include multi-column indices).

In the subsequent discussion, we usex@irefer to a query template based on Queof the TPC-
H benchmark, and DS(XTto refer to a query template based on Quenf the TPC-DS benchmark,
operating in the default PK configuration. We prefix Al and @lthe query template identifiers in
describing our results for these specialized configuration

Query Location Distribution. All the performance results shown initially in this sectiare for plan
diagrams generated wittxponentiallydistributed locations for the query points across the sglgc
space, resulting in higher query densities near the seiigctixes and towards the origin. This choice
is based on earlier observations in the literature (e.g.13221]) that plans tend to be densely packed
in precisely these regions of the selectivity space. Fromeréopmance perspective, these diagrams
represent the “tough-nut” challenging situations withpess to obtaining anorexic reduction due to
their high plan densities and substantially broader rarigdam cost values.

For completeness, we have also conducted all the expesmettt auniformdistribution of query
locations — these results, which are qualitatively simitathose presented here, are detailed in Sec-
tion 5.6.

Performance Metrics. In the remainder of this section, we evaluate the SEER rextuatgorithm with
regard to the following performance parameters: (a) DiagReduction Quality, (b) Error-resistance
obtained through Reduction, (c) Safety of Reduction, and () @dational Efficiency. As a precursor,
we first evaluate the validity of the plan cost function moB#ction 3.1).
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Figure 14: Plan Cost Function Modeling

5.1 Validity of Plan Cost Model

The validity of the plan cost model presented in Equation & assessed by attempting to fit the costs
of plans generated by OptCmThe experimental data consisted of optimizer-estimatedigion
costs over the selectivity space of the plans that appearé#ukeivarious plan diagrams (taken from
both exponentially and uniformly distributed query teme&. As mentioned earlier, the foreign-plan-
costing (FPC) feature was used to evaluate plans outsideiofethdo-optimal regions.

The surface fitting was carried out with the classical Linesast Squares method [16] and imple-
mented using Matlab 7.4 [24]. An example 2-D fitted cost fiorcts:

Cost(x,y) = 17.92 + 45.9y + 1046xy — 39.5z log x + 4.5y log y + 27.6xy log zy + 97.3

For this plan, the complete plots of the actual cost surfackthe fitted cost surface, as a function of
the selectivities of the two base relations, are shown imf@d4. It is visually evident that the fit is
very good.

As further evidence of the accuracy of our model, Table 3 shtbw quality-of-fit, measured in terms
of the maximum and averad®oot-Mean-Square(RM$®Jrors, over a large number of plans featuring
in the plan diagrams arising from our suite of multi-dimemsil query templates. The consistently low
RMS values suggest that the model is sufficiently accuratedopurposes.

Finally, as an additional precaution, we deliberately slead for plan cost functions with complex
shapes to assess the quality-of-fit in these difficult ca8esexample is shown in Figure 15, and we
see that even here, the fit is of high quality (the RMS Error Ig around 10%). This can be attributed
to the fact that our cost model has 7 parameters which giviisisat freedom to fit most of the plan
cost functions found in practice. Our curve fitting tech@gloes not impose any restriction on the
behaviour of the cost function, and hence we see for this pigra small PCM violation in the fitted
curve.

2We have also validated this plan cost model on another comiateiatabase, and found the results to be similar



Dimension || Number Maximum Average
of Plans | RMS Error (%) | RMS Error(%)
2D (TPC-H) 614 14.20 1.82
2D (TPC-DS) 168 7.31 2.87
3D (TPC-H) 28 6.98 1.92
3D (TPC-DS) 100 2.71 1.58

Table 3: RMS Errors in Fitted Cost Surfaces
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Figure 15: Complex Plan Cost Function

5.2 Plan Diagram Reduction Quality

A potentially worrisome aspect of our quest to obtain glgbabdbust reduction is whether it might
result in losing out on the anorexic reduction levels obsémn the localized reduction processes of
[11]. This concern is quantitatively allayed in Table 4, ahhpresents a comparison between SEER and
CostGreedy (CG) of the number of plans in the reduced diagraendiverse suite of multi-dimensional
query templates on the TPC-H database. The PK physical desidiguration was operational in these
experiments.

At first glance, SEER might have been expected to perform evtitan CostGreedy because its
additional safety checks may prevent some plan swallowmpagmitted by CostGreedy- in fact, this
was the source of our concern. However, in Table 4, we agttiatl theconverse- while CostGreedy
does provide anorexic reduction, SEER does even bettereBisen for this is that CostGreedy follows
a conservative cost-bounding approach to estimate the abptans outside their endo-optimal regions
(details in [11]). SEER, on the other hand, uses the forelgn-posting feature to obtain the exact



Query Original CG | CG-FPC | SEER | LiteSEER

Template | No. of plans

QT2 (2D) 60 14 3 6 6
QT5 (2D) 51 7 2 2 2
QT8 (2D) 121 7 2 2 2
QT9 (2D) 137 9 3 4 4
QT10 (2D) 44 3 3 3 3
QT16 (2D) 32 11 3 3 3
QT5 (3D) 68 8 3 3 3
QT8 (3D) 191 8 3 3 3
QT10 (3D) 75 10 3 4 4

Table 4: Plan Diagram Reduction Quality (TPC-H)

Query Original CG | CG-FPC | SEER | LiteSEER
Template No. of plans
DSQT12 (2D) 25 6 3 2 2
DSQT18 (2D) 114 13 2 2 2
DSQT19 (2D) 55 11 3 4 4
DSQT12 (3D) 33 11 2 2 2
DSQT18 (3D) 222 15 2 4 4
DSQT19 (3D) 98 15 2 4 4

Table 5: Plan Diagram Reduction Quality (TPC-DS)

costs in these regions, and therefore has superior redystissibilities. Therefore, the FPC feature
comes in handy from both quality and safety perspectives.

A question that immediately arises is how SEER would compgganst a CostGreedy variant that
also utilized the FPC feature. This issue is also address@&dhle 4, where the performance of this
variant (CG-FPC) is presented. We see that CG-FPC does perédten br as well as SEER, as should
be expected — however, the gap, if any, is always very smalleléted point to note here is that the
SEER reduction quality remains excellent even for the 3Dytemplates, in spite of the fact that the
additional dimension increases the possibility of thetyadenditions being violated.

Finally, we observe in Table 4 that the LiteSEER fast vartaappens to provide reduction quality
identical to SEER. Under the Al (and TI) configurations, hoarewt occasionally performs slightly
better (see Section 5.2.1), as should be expected due g less stringent in allowing replacements.

TPC-DS Results. The above results were generated on the TPC-H database, tdmctniformly
distributed data. Table 5 shows a corresponding set oftesigulplan diagrams generated on the TPC-
DS database, which features skewed data. It is immediatelg|t that the reduction profiles of the
various reduction algorithms are very similar to those segm TPC-H.



Query Original CG | CG-FPC | SEER | LiteSEER
Template No. of plans
AIQT2 (2D) 87 12 2 2 2
AIQT5 (2D) 126 14 4 6 5
AlQT8 (2D) 121 7 3 3 3
AIQT9 (2D) 132 14 3 4 3
AIQT10 (2D) 37 8 4 5 5
AlQT16 (2D) 35 9 2 2 2
AIQT5 (3D) 139 14 5 7 5
AIQTS8 (3D) 168 14 4 6 5
AIQT10 (3D) 77 16 7 8 8

Table 6: Plan Diagram Reduction Quality (TPCH-AI)

5.2.1 Reduction Quality with Allindex Configuration

While the PK configuration had only 8 primary-key indices,lAdlex includes an additional 53 (non-
clustered) single-column indices covering all the remmajmjuery-related schema attributes. The re-
duction quality results for this index-rich configuratioreahown in Table 6. We first notice that the
number of plans in the original diagram usually increaséienosubstantially, as should be expected
since the optimizer’s search space has increased due toahebdlity of the additional indices. For
example, the number of plans for AIQT5(2D) goes up to 125 fidnmwhile AIQT5(3D) jumps to 139
from 68. However, when we consider the reduction qualityhefiarious algorithms, we find that they
continue tomaterially adhere to anorexic levelalthough the actual cardinalities may have gone up by
a couple of plans. For example, SEER on AIQT5(2D) retainsa@$hs compared to 2 under PK.

Another point to note in Table 6 is that we now see LiteSEERisimmally permitting slightly greater
reduction than SEER, due to its relaxed constraint in allgweplacements.

5.2.2 Reduction Quality with Tunedindex Configuration

The reduction quality results for thuned IndeXT!1) configuration which implements the recommen-
dations of the index tuning advisor shipped with OptCom iswghan Table 7. The parameters of
the tuning advisor were set to their default values, and tR€-H benchmark queries (generated with
the QGen utility) formed the input workload. For this setthg advisor recommended 20 additional
indices beyond the default Primary Key configuration.

We see here that the reduction performance is very simildhdb obtained with the PK and Al
configurations, testifying to SEER’s consistent behavi@r@/wide variety of database environments.

5.3 Error-resistance and Safety

Having established the retention of diagram reductionityiale now move on to assessing the extent
to which resistance to selectivity errors is provided tigtoSEER reduction. We begin with defining a
metric that quantitatively captures this effect:



Query Original CG | CG-FPC | SEER | LiteSEER
Template No. of plans
TIQT2 (2D) 52 10 4 5 5
TIQTS8 (2D) 108 16 3 3 3
TIQT9 (2D) 101 16 6 5 5
TIQT10 (2D) 50 10 4 2 2
TIQT16 (2D) 36 14 4 6 6
TIQTS (3D) 84 10 4 5 5
TIQTS (3D) 181 14 4 6 5
TIQT10 (3D) 78 12 6 8 7

Table 7: Plan Diagram Reduction Quality (TPCH-TI)

Error Resistance Metric. Given an estimated query locatignand an actual locatioq,, the Selec-
tivity Error Resistance Facto(SERF) of a replacement plaFk,. w.r.t. the optimal plarP,. is defined
as,

Cre(Qa) - Coa(Qa)
(1 + N)coe(qa) — Coa(qa)

Intuitively, SERF captures the fraction of the performanap petweenP,. and P,, that is closed by
P,.. In principle, SERF values can range oVeroo, 1], with the following interpretations: SERF in
the rangd \, 1] indicates that the replacement is beneficial, with valuesecto 1 implying “immunity”
to the selectivity error. For SERF in the rang@e)\|, the replacement is indifferent in that it neither
helps nor hurts, while SERF values beléviighlight a harmful replacement that materially worsens
the performance.

The above formula applies to a specific instance of replanerie capture the net impact of reduc-
tion on improving the resistance in antire plan diagramwe compute the following

ZQeETGp(P) aneexooe(P) SERF(Q@v qa)
quETep(P) zqa,Eemo,,e(P) 1

SERF (e, q.) = 1 —

AvgSERF =

whererep(P) is the set of points in the plan diagrd?that were replaced during the reduction process,
andexo,.(P) is the set of points lying in the exo-optimal region definethwespect taP,., the opti-
mizer’s plan choice fog.. The normalization is with respect to the number of possblectivity errors

in the diagram. (To ensure meaningful AvgSERF values fronbastmess perspective, we exclude the
uninteresting scenarios wherein bethandc,, have extremely low absolute values, or are both within
A-threshold ofc,,,.)

Note that in the above formulation, we assume for simplitiigt the actual location, is equally
likely to be anywhere irP,.’s exo-optimal space, that is, that the errors are unifordmyributed over
this space. However, our conceptual framework is also eglplie to the more generic case where the
error locations have an associated probability distrduti

Resistance Results.For CostGreedy, SEER and LiteSEER, we show in Table 8, the AR§SES
defined above, as well as MInSERF and MaxSERF, the minimum amdmaen values of SERF over
all replacement instances, for the various query templdtiesfirst see here that for all the algorithms,



Query CG SEER LiteSEER
Template MIinSERF | AvgSERF | MaxSERF || MinSERF | AvgSERF | MaxSERF || MinSERF | AvgSERF | MaxSERF
QT2 (2D) -58.6 0.2 1 0 0.38 0.98 0 0.38 0.98
QT5 (2D) -15.6 0.5 1 0.14 0.51 0.99 0.14 0.51 0.99
QT8 (2D) -2.9 0.82 1 0.3 0.93 1 0.3 0.93 1
QT9 (2D) -46.3 0.37 1 0 0.77 1 0 0.77 1
QT10 (2D) -23.8 0.09 1 0 0.35 1 0 0.35 1
QT16 (2D) -132.5 0.03 0.99 0.04 0.33 0.96 0.04 0.33 0.96
QT5 (3D) -15.4 0.6 1 0.03 0.38 1 0.03 0.38 1
QT8 (3D) -177.7 -0.5 1 0 0.63 1 0 0.63 1
QT10 (3D) -130.7 -2 1 0 0.45 1 0 0.45 1

AIQT2 (2D) -202 -1.1 0.99 0 0.8 0.99 0 0.8 0.99
AIQTS5 (2D) -1336 -3.1 1 0 0.58 1 -10 0.54 1
AIQT8 (2D) -62.4 0.35 1 0 0.54 1 0 0.54 1
AIQT9 (2D) -9486 -3.1 1 0 0.62 1 -5 0.66 1
AlQT10 (2D) -20.2 0.24 1 0 0.25 0.98 0 0.25 0.98
AIQT16 (2D) -76 0.07 1 0 0.75 1 0 0.75 1
AIQTS5 (3D) -2151 0.24 1 0.05 0.62 1 -2 0.66 1
AlQT8 (3D) -103.7 0.43 1 0 0.44 1 -6 0.44 1
AIQT10 (3D) -4680 -4.4 1 0 0.33 1 0 0.33 1
TIQT2 (2D) -161.3 -0.12 0.99 0.01 0.32 0.94 0.01 0.32 0.94
TIQT8 (2D) -550.1 -3.4 1 0 0.54 1 0 0.54 1
TIQT9 (2D) -87.5 0.01 1 0 0.44 1 0 0.44 1
TIQT10 (2D) -671.4 -15.7 1 0 0.27 0.99 0 0.27 0.99
TIQT16 (2D) -14.4 0.11 0.99 0.02 0.39 0.97 0.02 0.39 0.97
TIQT5 (3D) -166.3 -1.42 1 0 0.71 1 0 0.71 1
TIQT8 (3D) -4188.5 -4.23 1 0 0.61 1 -1.3 0.61 1
TIQT10 (3D) -574 -4.97 1 0 0.31 1 -8.9 0.31 1
DSQT12 (2D) -4 0.61 1 0.07 0.44 1 0.06 0.44 1
DSQT18 (2D) -194.75 -2 1 0.07 0.81 1 0.07 0.81 1
DSQT19 (2D) -86 0.17 1 0 0.63 1 0 0.63 1
DSQT12 (3D) -142 -0.32 1 0.06 0.53 1 0.06 0.53 1
DSQT18 (3D) -3104 -0.14 1 0 0.85 1 0 0.85 1
DSQT19 (3D) -106.6 0.33 1 0.02 0.82 1 0.02 0.82 1

Table 8: Characterization of Error-Resistance through Rextuct

plan diagram reduction is capable, across the board, ofgingvcomplete immunity (MaxSERF tend-
ing to 1) to selectivity errors for individual replacemenstiances. Secondly, and more importantly, the
AvgSERF is also quite substantial for SEER. For example, in DE8Qon average, more than three-
guarters of the performance gap due to selectivity errdrsidged by the SEER reduction process.

With CostGreedy, on the other hand, the AvgSERF is compahatisegy poor, and occasionally
even negative! The important point to note here is that th@seaverages are an artifact arising out
of a small fraction of points (around 10-20% points occunwith probability of around 0.1) whose
performance is grossly adversely affected by plan replacémThat is, plan reduction does help in
the vast majority of cases but the “few very bad apples”, cédleg by the hugely negative MinSERF
values (which sometimes even run into the thousands), h@roverall performance statistics. More
pertinently, these results serve to quantitatively andiiynvsubstantiate the need for safe replacement,
the motivation underlying our design of the SEER algorithm.

Finally, turning our attention to LiteSEER, we see that it®eresistance profile is very similar to
that of SEER — in fact, the AvgSERF and MaxSERF numbers areigdfiir most templates. Further,
although like CostGreedy it does not guarantee safety, &figdso by the negative values in the
MInSERF column, note that (a) the templates having negatheeg are relatively rare, (b) even in
these cases, unsafe replacements occur only for about 18é pbints (with probability< 0.01), and
(c) most importantly, their magnitudes are small in comgaari(the maximum is -10 for AIQT5(2D)).
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Figure 16: Safe Error-resistance with SEER

Safety Example

In the example of Figure 4, plan diagram reduction withoudliexly checking for safety led to situa-
tions whereinP,. performed much worse thaR,. at¢,. The effectiveness of SEER in avoiding such
unsafe replacements is visually highlighted in the seqai@h@ictures in Figure 16, corresponding to
the same example.

Assuming that the actual location of a query at run-tipas uniformly distributed overS, Fig-
ure 16(a) shows thexpected codbr each query poing., when executed with its optimizer-selected
plan P,.. Note that the peaks in the picture correspond to situatidmere the plan-choice is highly
sensitive to selectivity errors.

Then, Figure 16(b) shows the expected cost of each query @oivhen executed witl®,, from the
reduced plan diagram obtained using CostGreedy. Note thaglly all the peaks in Figure 16(a) are
substantively eliminated through the replacement chaicéise reduced plan diagram — for example,
the dark-blue peak at the left-top corner of Figure 16(aprgely removed. However, on the down
side, some plans suffer injurious replacements — for ehg.,etarth-brown colored plan in the left-
bottom corner of Figure 16(a) is now replaced by the fluoneisgesen colored plan in Figure 16(b),
whose expected cost is orders of magnitude greater. ThaogGreedy in the process of eliminating
existing peaks, may introduceew peaks

Finally, in Figure 16(c), we show the performance of SEERio#idn. We see here that (a) it removes
all the peaks of Figure 16(a) like CostGreedy, and (b) it dadsmroduce any new peaks courtesy its
safety criterion. In a nutshell, “it provides virtually @alle good, and doesn’t introduce any harm”.

5.4 Efficiency of Reduction Process

We now move on to profiling the time taken to complete the rédogrocess by SEER as compared
to CostGreedy. These results are shown in Table 9 for our dasrplate suite.

Focussing initially on the 2D query templates, we see th&FS& performance is quite acceptable
in terms of absolute times (a few minutes per reduction)eesfly in comparison to the original plan



Query CG | CG-FPC | SEER | LiteSEER

Template (ms) | (min) (min) (sec)
QT2 (2D) 15 53.1 3.6 14.2
QT5 (2D) 16 45.0 1.0 12
QT8 (2D) 17 108 9.6 28.8
QT9 (2D) 13 122.4 10.6 32.6
QT10 (2D) 15 38.7 3.0 10.3
QT16 (2D) 15 27.9 1.3 7.5
QT5 (3D) 25 67 19.0 32
QT8 (3D) 21 190 65.0 91
QT10 (3D) 17 74 16.5 4.5
AIQT2 (2D) 17 77.4 5.0 20.6
AIQTS5 (2D) 12 1125 3.7 30.0
AIQT8 (2D) 11 108.0 6.9 28.8
AIQT9 (2D) 18 107.9 9.1 31.4
AIQT10(2D) | 12 324 2.0 8.6
AIQT16 (2D) | 12 30.6 2.0 8.2

AIQTS (3D) | 26 138 | 37.7 66.2
AIQT8 (3D) | 19 167 | 47.3 80.2
AIQT10 (3D) | 24 76 14.9 36.5

TIQT2(2D) | 18 | 45.9 2.9 12.2
TIQT8 (2D) | 12 | 96.3 4.9 25.7
TIQT9(2D) | 16 | 90.0 7.2 24.0
TIQT1I0(2D) | 14 | 44.1 2.6 11.8
TIQT16 (2D) | 12 | 315 2.0 8.4

TIQT5 (3D) || 28 83 20.8 39.8
TIQT8(3D) | 24 | 180 | 67.8 86.4
TIQT10 (3D) | 19 78 15.9 37.0

DSQT12 2D)| 14 | 21.6 | 26 5.8
DSQT18 (2D)|| 13 | 101.7 | 9.4 27.1
DSQT19 (2D)| 14 | 486 | 6.4 13.0
DSQT12 (3D)[| 20 | 320 | 7.4 15.4

DSQT18 (3D)|| 25 221.0 89.1 106.1
DSQT19 (3D)| 23 97.0 35.8 46.6

Table 9: Efficiency of Reduction Process

diagramproduction time However, it is much slower relative to CostGreedy, whiclerdfsub-second
response times. This might seem surprising in light of oalysis in Section 4 showing that SEER is
anO(n./m + n?) algorithm, whereas CostGreedy@§nm). The reason for the higher running time
of SEER is that the basic cost-bounding computation in Ces@y is much faster than the foreign-
plan-costing operator provided by the commercial optimszéur discussions with the development
team of OptCom have indicated that this is not due to the apstaelf, but is largely an artifact of



setting up the contexts for the costing, including verifythe validity of the plan with respect to the
guery. Therefore, it is possible that future better implatagons of the FPC feature may bring SEER’s
running time closer to CostGreedy. (In fact, our own impletagon of FPC in a public-domain
optimizer indicates that its cost can be further broughtrdbwanorder of magnitud¢7].)

When we consider the 3D query templates, however, the rurimreg of SEER can be quite large.
It is here that LiteSEER shows its worth since its runningenare only a few minutes or even less,
across the board for all the query templates. Taken in catipmwith its good safety performance
(Section 5.3), it suggests that LiteSEER offers an extrgragtactive compromise between the speed
of CostGreedy and the robustness of SEER, making it a viabtecfitsreduction technique in real-
world installations.

Finally, to normalize the effect of the different costingpl@mentations, the running time of the
CG-FPC algorithm is also shown in Table 9 — we see here that GGté&lkes in the order aseveral
tens or few hundreds of minutes complete the reduction process. In comparison, SEER et
usage of the FPC operator, courtesy Theorem 1 and the tge-steecking process, does succeed in
substantially bringing down the overheads.

5.5 Performance of PartialSEER

Sample results obtained with the PartialSEER algorithmMig&f A = 0.8 are shown in Table 10, 11
and 12, for the various metrics of reduction quality, eremistance and efficiency of the reduction.

Query Original
Template No. of plans | PartialSEER
QT5(2D) 51 1
QT16(2D) 32 3
DSQT18(2D) 114 2

Table 10: Plan Diagram Reduction Quality£ 20%, M SA = 0.8)

Query MINSERF | AvgSERF | MaxSERF Query No of FPC | Time (min)
QT5(2D) -15.6 0.37 1 QT5(2D) 8738 8.7
QT16(2D) -0.25 0.37 0.99 QT16(2D) 5046 5.0
DSQT18(2D) -0.26 0.83 1 DSQT18(2D) 27284 27.3

Table 11: Error-Resistance of PartialSEERable 12: Efficiency of Partial SEER\ (=
(A =20%, MSA =0.8) 20%, MSA = 0.8)

5.6 Uniform Query Distribution

The results shown thus far were produced with an exponetisaibution of query points across the

selectivity space. We present here the correspondingsdsuplan diagrams generated withiaiform

distribution of query points. Tables 13 and 14 show the r@docguality over our suite of query

templates on the TPC-H and TPC-DS databases, respectivelgtom with a Primary Key physical

configuration. The performance on an All Index configurat®metailed in Table 15. Finally, the

error-resistance quality and the reduction efficiency hoeve in Tables 16 and 17, respectively.
These results are behaviorally similar to those obtainek the exponential distribution.



Query Original CG | CG-FPC | SEER | LiteSEER

Template || No. of plans

QT2 (2D) 25 5 3 3 3
QT5 (2D) 10 3 1 1 1
QT8 (2D) 31 4 2 2 2
QT9 (2D) 21 2 1 1 1
QT10 (2D) 13 3 2 2 2
QT16 (2D) 26 9 2 3 3
QT5 (3D) 18 1 1 1 1
QT8 (3D) 18 6 3 3 3
QT10 (3D) 18 4 2 2 2

Table 13: Plan Diagram Reduction Quality (TPC-H)

Query Original CG | CG-FPC | SEER | LiteSEER
Template No. of plans
DSQT12 (2D) 7 4 2 2 2
DSQT18 (2D) 21 3 1 1 1
DSQT19 (2D) 28 5 2 2 2
DSQT12 (2D) 8 2 1 1 1
DSQT18 (3D) 36 2 1 1 1
DSQT19 (2D) 64 2 1 1 1

Table 14: Plan Diagram Reduction Quality (TPC-DS)

Query Original CG | CG-FPC | SEER | LiteSEER
Template No. of plans
AlQT2 (2D) 30 8 3 3 3
AIQTS5 (2D) 25 6 2 2 2
AlQT8 (2D) 25 3 2 3 3
AlQT9 (2D) 25 5 1 1 1
AIQT10 (2D) 16 4 3 3 3
AlQT16 (2D) 22 14 3 4 4
AIQTS5 (3D) 37 4 2 2 2
AlQT8 (3D) 39 5 2 3 3
AIQT10 (3D) 50 9 4 3 3

Table 15: Plan Diagram Reduction Quality (TPCH-AI)

6 Related Work

Over the last decade, a variety@mpile-timestrategies have been proposed to identify robust plans.
For example, in the Least Expected Cost (LEC) approach [6t B],@ssumed that the distribution of
predicate selectivities is apriori available, and thenglan that has the least-expected-cost over the
distribution is chosen for execution. While the performantéhis approach is likely to be good on
average, it could be arbitrarily poor for a specific query @®pared to the optimizer’s optimal choice
for that query. Moreover, it may not always be feasible tovate the selectivity distributions.

An alternative Robust Cardinality Estimation (RCE) strategyppised in [2] is to model the selectiv-
ity dependency of the cost functions of the various compgatlan choices. Then, given a user-specified
“confidence thresholdT’, the plan that is expected to have thast upper bounavith regard to cost in



Query CG SEER LiteSEER
Template MIinSERF | AvgSERF | MaxSERF || MinSERF | AvgSERF | MaxSERF || MinSERF | AvgSERF | MaxSERF
QT2 (2D) 0 0.76 0.98 0.02 0.62 0.98 0.02 0.62 0.98
QT5 (2D) 0.99 0.99 0.99 0.96 0.98 1 0.96 0.98 1
QT8 (2D) -0.47 0.73 0.99 0.27 0.44 0.99 0.27 0.44 0.99
QT9 (2D) -55.3 -0.56 1 0.86 0.99 1 0.86 0.99 1
QT10 (2D) -0.81 0.4 0.99 0.14 0.34 0.60 0.14 0.34 0.60
QT16 (2D) -0.33 0.49 0.97 0.04 0.46 0.92 0.04 0.46 0.92
QT5 (3D) 0 0.01 0.02 0.78 0.95 1 0.78 0.95 1
QT8 (3D) -22.6 0.41 1 0.15 0.36 0.99 0.15 0.36 0.99
QT10 (3D) -5.5 0.43 1 0.19 0.69 1 0.19 0.69 1

AIQT2 (2D) -3.95 0.16 0.97 0.15 0.64 0.94 0.15 0.64 0.94
AIQTS5 (2D) 0.17 0.38 1 0.28 0.51 1 0.28 0.51 1
AIQT8 (2D) -0.27 0.48 0.99 0.19 0.46 0.99 0.19 0.46 0.99
AIQT9 (2D) -1999.8 2.1 1 0.96 0.99 1 0.96 0.99 1
AlQT10 (2D) -5.7 0.32 1 0.16 0.33 0.68 0.16 0.33 0.68
AIQT16 (2D) -0.39 0.58 0.96 0 0.58 0.98 0 0.58 0.98
AIQTS5 (3D) 0.3 0.6 1 0.05 0.9 1 0.05 0.9 1
AlQT8 (3D) -9.25 0.32 0.99 0.03 0.75 0.99 0.03 0.75 0.99
AIQT10 (3D) -24.6 0.44 1 0.08 0.5 1 0.08 0.5 1
DSQT12 (2D) -1 0.16 1 0.25 0.32 0.54 0.25 0.32 0.54
DSQT18 (2D) -12.2 0.38 1 0.59 0.99 1 0.59 0.99 1
DSQT19 (2D) -11.8 0.08 1 0.18 0.47 1 0.18 0.47 1
DSQT12 (3D) 1 1 1 1 1 1 1 1 1
DSQT18 (3D) 0.99 0.99 0.99 0.72 0.86 1 0.72 0.86 1
DSQT19 (3D) -0.53 0.74 1 0.77 0.87 1 0.77 0.87 1

Table 16: Characterization of Error-Resistance through Rexfuc

Query CG | CG-FPC | SEER | LiteSEER
Template (ms) (min) (min) (sec)
QT2 (2D) 15 21.6 2.2 5.8
QT5 (2D) 14 8.1 0.7 2.2
QT8 (2D) 14 27.0 1.9 7.2
QT9 (2D) 13 18.0 2.1 4.8
QT10 (2D) 14 10.8 0.7 29
QT16 (2D) 13 22.5 14 6.0
QT5 (3D) 25 17.0 5.1 8.2
QT8 (3D) 21 29.0 10.7 13.9
QT10 (3D) 22 23.0 7.8 11.0

AIQT2 (2D) 16 26.1 2.8 7.0
AIQTS5 (2D) 16 21.6 0.7 5.8
AIQTS8 (2D) 14 215 2.1 5.8
AIQT9 (2D) 15 21.6 1.7 5.7
AIQT10 (2D) 13 135 0.7 3.6
AIQT16 (2D) 13 18.9 0.4 5.0
AIQT5 (3D) 23 36.0 12.0 17.3
AIQTS8 (3D) 20 38.0 14.0 18.2
AIQT10 (3D) 20 49.0 14.0 235
DSQT12 (2D) 19 5.4 0.07 14
DSQT18 (2D) 17 18.0 1.2 4.8
DSQT19 (2D) 14 24.3 1.7 6.5
DSQT12 (3D) 20 7.0 12 3.4
DSQT18 (3D) || 30 35.0 7.2 16.8
DSQT19 (3D) 26 63.0 12.7 30.2

Table 17: Efficiency of Reduction Process

T percentile of the queries is selected as the preferred eh®tee choice of” determines the level of
risk that the user is willing to sustain with regard to worase behavior. Like the LEC approach, this
too may be arbitrarily poor for a specific query as compardtiemptimizer’s optimal choice.

Finally, in the (initial) optimization phase of the Rio appoh [3, 4], a set of uncertainty modeling
rules from [15] are used to classify selectivity errors iobte of six categories (ranging from “no uncer-



tainty” to “very high uncertainty”) based on their deriv@timechanisms. Then, these error categories
are converted to hyper-rectangular error boxes drawn drthenoptimizer’s point estimate. Finally, if
the plans chosen by the optimizer at the corners of the pahcliiagonal of the box are the same as
that chosen at the point estimate, then this plaassmumedo be robust throughout the box. However,
the conditions under which this assumption is likely to bkdvare not outlined.

7 Conclusions

Errors in selectivity estimates are well-documented caon$poor plan choices by database optimizers.
In this paper, we investigated whether the optimizer’s césicould be replaced by alternative plans,
more resilient to these errors, from the parametric optseabver the selectivity space. In particular,
the recently proposed notion of anorexic reduction of pliagims was used to provide replacements
that had large endo-optimal regions, making them errastiast by definition in these areas. Further,
the empirical evidence suggested that error-resistansegpnavided even in the exo-optimal regions
in the vast majority of the cases. However, there were ocnasisituations where the replacement
could turn out to be significantly worse. To prevent this, vesaloped a simple but accurate model
of plan cost behavior. To our knowledge, this model is the fiteh characterization for industrial-
strength query optimizers. Using this formulation, we dedi efficient checks that operate only on the
boundaries of the space to decide safety in the entire spdeese checks are implemented utilizing
foreign-plan costing, a recent feature addition in commaédatabase engines. A particularly attractive
feature of our approach is that the safety guarantee applienindividual query basisAs a bonus,
the foreign-plan costing, in addition to providing safetigs leveraged to further improve the quality
and complexity of the plan diagram reduction process.

The above techniques were integrated into the SEER algosaiid the intended benefits validated
on a representative range of TPC-H and TPC-DS-based querjat@spn a leading commercial opti-
mizer. We observed that typically at least one-third of tagg@rmance gap due to selectivity errors was
bridged by the SEER reduction process, while in some ins@ngrtuallycomplete immunitagainst
selectivity errors was obtained. Our results remainedisterg across different data distributions and
physical design configurations.

Overall, SEER provides an effective and safe compile-tineelmanism for substantially increasing
resistance to selectivity errors on base relations, witheguiring modifications to the optimizer or
specialized knowledge of the workload/system. We alsogmtesl LiteSEER, an optimally efficient
light-weight heuristic version of SEER that very cheaplg\pdes a high degree of safety by restricting
its attention to only the corners of the selectivity spadeeREER could be viably used in practice as a
first-cut almost-safe reduction technique, especiallynining time is a critical concern.

Currently, SEER operates as a post-processor after produatithe plan diagram. In our future
work, we intend to investigate how optimizers could intéizethese ideas and be redesigned to directly
produce safe reduced plan diagrams. Also, while we assumatf@m distribution of selectivity
estimation errors, it would be interesting to extend ouultsso incorporate user-defined probability
distributions.
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