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Abstract

Given a parametrized n-dimensional SQL query template and achoice of query optimizer, a plan
diagram is a color-coded pictorial enumeration of the execution plan choices of the optimizer over
the query parameter space. These diagrams have proved to be apowerful metaphor for the analysis
and redesign of modern optimizers, and are gaining currencyin diverse industrial and academic
institutions. However, their utility is adversely impacted by the impractically large computational
overheads incurred when standard brute-force exhaustive approaches are used for producing high-
dimension and high-resolution diagrams.

In this paper, we investigate strategies for efficiently producing high-quality approximate plan
diagrams that have low plan-identity and plan-location errors. Our techniques are customized to the
features available in the optimizer’s API, ranging from thegeneric optimizers that provide only the
optimal plan for a query to those which also support costing of sub-optimal plans and enumerating
rank-ordered lists of plans. The techniques collectively feature both random and grid sampling, as
well as interpolation techniques based on kNN classifiers , parametric query optimization and plan
cost monotonicity.

Extensive experimentation with a representative set of TPC-H and TPC-DS-based query tem-
plates on industrial-strength optimizers indicates that our techniques are capable of meeting identity
and location error bounds as low as 10% while incurring less than 15% of the computational over-
heads of the exhaustive approach. In fact, for full-featured optimizers, we can guarantee zero error
with overheads of less than 10%. These approximation techniques have been implemented in the
publicly available Picasso optimizer visualization tool.

1 Introduction

For a given database and system configuration, a query optimizer’s execution plan choices are primarily
a function of theselectivitiesof the base relations in the query. In a recent paper [16], we introduced the
concept of a “plan diagram” to denote a color-coded pictorial enumeration of the plan choices of the op-
timizer for a parameterized query template over the relational selectivity space. For example, consider
QT8, the parameterized 2D query template shown in Figure 1, based on Query 8 of TPC-H. Here, selec-
tivity variations on theSUPPLIERandLINEITEM relations are specified through thes acctbal :varies
andl extendedprice :varies predicates, respectively. The associated plan diagram forQT8 is shown
in Figure 2(a), produced with the Picasso optimizer visualization tool [19] on a popular commercial
database engine.

In this picture1, each colored region represents a specific plan, and a set of 89 different optimal
plans,P1 throughP89, cover the selectivity space. The value associated with each plan in the legend
indicates the percentage area covered by that plan in the diagram – the biggest,P1, for example, covers
about 22% of the space, whereas the smallest,P89, is chosen in only 0.001% of the space.

Applications of Plan Diagrams

Since their introduction in 2005 [16], plan diagrams have proved to be a powerful metaphor for the
analysis and redesign of industrial-strength database query optimizers. For example, as evident from

1The figures in this paper should ideally be viewed from a colorcopy, as the gray-scale version may not clearly register
the features.
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select oyear, sum(case when nation = ’BRAZIL’ then volume else 0 end)/ sum(volume)

from (select YEAR(oorderdate) as oyear, l extendedprice * (1 - ldiscount) as volume, n2.nname as
nation

from part, supplier, lineitem, orders, customer,
nation n1, nation n2, region

where ppartkey = lpartkey and ssuppkey = lsuppkey and lorderkey = oorderkey and
o custkey = ccustkey and cnationkey = n1.nnationkey and n1.nregionkey = rregionkey
and snationkey = n2.nnationkey and rname = ’AMERICA’ and ptype = ’ECONOMY AN-
ODIZED STEEL’ and
s acctbal :variesandl extendedprice :varies

) as all nations

group by oyear

order by oyear

Figure 1:Example Query Template: QT8

Figure 2(a), they can be surprisingly complex and dense, with a large number of plans covering the
space – several such instances spanning a representative set of benchmark-based query templates on
current optimizers are available at [19]. Through our extensive interactions with industrial developers,
we have found that these diagrams have proved to be quite contrary to the prevailing conventional
wisdom. While developers had certainly been extensively analyzing optimizer behavior onindividual
queries, plan diagrams provide a completely different perspectiveof behaviorover an entire space,
vividly capturing plan transition boundaries and optimality geometries. So, in a literal sense, they
deliver the “big picture”.

Plan diagrams are currently being used in various industrial and academic sites for a diverse set of
applications including analysis of existing optimizer designs; visually carrying out optimizer regres-
sion testing; debugging new query processing features; comparing the behavior between successive
optimizer versions; investigating the structural differences between neighboring plans in the space; in-
vestigating the variations in the plan choices made by competing optimizers; etc. Visual examples of
non-monotonic cost behavior in commercial optimizers, indicative of modeling errors, were highlighted
in [16].

A particularly compelling immediate utility of plan diagrams is that they provide the input to “plan
diagram reduction” algorithms. Specifically, given a plan diagram and a cost-increase-threshold (λ)
specified by the user, these reduction algorithms recolor the dense diagram to a simpler picture that
features only a subset of the original plans while ensuring that the cost of no individual query point
goes up by more thanλ. That is, some of the original plans are “completely swallowed” by their
siblings, leading to a reduced plan cardinality. It has beenshown last year [9] that if users were willing
to tolerate a minor cost increase ofλ =20% for any query point in the diagram, relative to its original
cost, the absolute number of plans in the final reduced picture could be brought down towithin or
around ten. In short, that complex plan diagrams can be made “anorexic”while retaining acceptable
query processing performance. For example, the reduced version of the QT8 plan diagram (Figure 2(a))
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(a) Plan Diagram (b) Approximate Diagram (10% Error Bound)

Figure 2:Sample Plan Diagram and Approximate Plan Diagram (QT8)

retains only 5 of the original 89 plans.
Anorexic plan diagram reduction has significant practical benefits [9], including quantifying the re-

dundancy in the plan search space, enhancing the applicability of parametric query optimization (PQO)
techniques [11, 12], identifying error-resistant and least-expected-cost plans [3, 4], and minimizing the
overhead of multi-plan approaches [1, 13]. A detailed studyof its application to identifying robust
plans that are resistant to errors in relational selectivity estimates is available in [10].

Generation of Plan Diagrams

The generation and analysis of plan diagrams has been facilitated by our development of the Picasso
optimizer visualization tool [19]. Given a multi-dimensional SQL query template like QT8 and a
choice of database engine, the Picasso tool automatically produces the associated plan diagram. It
is operational on several major platforms including IBM DB2, Oracle, Microsoft SQL Server, Sybase
ASE and PostgreSQL. The tool, which is freely downloadable,is now in use by the development groups
of several major database vendors, as also by leading industrial and academic research labs worldwide.

The diagram production strategy used in Picasso is the following: Given ad-dimensional query
template and a plot resolution ofr, the Picasso tool generatesrd queries that are either uniformly
or exponentially (user’s choice) distributed over the selectivity space. Then, for each of these query
points, based on the associated selectivity values, a querywith the appropriate constants instantiated is
submitted to the query optimizer to be “explained” – that is,to have its optimal plan computed. After
the plans corresponding to all the points are obtained, a different color is associated with each unique
plan, and all query points are colored with their associatedplan colors. Then, the rest of the diagram is
colored by painting the region around each point with the color corresponding to its plan. For example,
in a 2D plan diagram with a uniform grid resolution of 10, there are 100 real query points, and around
each such point a square of dimension 10x10 is painted with the point’s associated plan color.

The above exhaustive approach is eminently acceptable for diagrams with few dimensions (upto 2D)

4



and low resolutions (upto 100). However, it becomes impractically expensive for higher dimensions
and resolutions due to the exponential growth in overheads.For example, a 3D plan diagram with a
resolution of 100 on each selectivity dimension, requires invoking the optimizer1003 times – that is,
a million optimizations have to be carried out. Even with a conservative estimate of about half-second
per optimization, the total time required to produce the picture is close to a week! Therefore, although
plan diagrams have proved to be extremely useful, their high-dimensional and high-resolution versions
pose serious computational challenges.

Approximate Plan Diagrams

In this paper, we address this issue and investigate whetherit is possible to efficiently producehigh-
quality approximationsto plan diagrams. Denoting the true plan diagram asP and the approximation
asA, there are two categories of errors that arise in this process:

Plan Identity Error ( ǫI ): This error metric refers to the possibility of the approximation missing out
on a subset of the plans present in the true plan diagram. It iscomputed as the percentage of
plans lost inA relative toP.

TheǫI error is challenging to control since a majority of the plansin the plan diagrams, as seen
in Figure 2(a), are very small in area, and therefore hard to find.

Plan Location Error ( ǫL): This error metric refers to the possibility of incorrectly assigning plans to
query points in the approximate plan diagram. It is computedas the percentage of incorrectly
(relative toP) assigned points inA.

TheǫL error is also challenging to control since the plan boundaries, as seen in Figure 2(a), can
be highly non-linear, and are sometimes even irregular in shape [19].

Optimizer Classes

Our study shows that the ability to reduce overheads is a function of the plan-related functionalities
offered by the optimizer’s API, based on which we define the following three categories of optimizers:

Class I: OP Optimizers This class refers to the generic cost-based optimizers thatare routinely found
in virtually every enterprise database product, where the API only provides the optimal plan (OP),
as determined by the optimizer, for a query.

Class II: OP + FPC Optimizers This class of optimizers additionally provide a “foreign plan cost-
ing” (FPC) feature in their API, that is, of costing plansoutsidetheir native optimality regions.
Specifically, the feature supports the “what-if” question:“What is the estimated cost of sub-
optimal planp if utilized at query locationq?”. FPC has become available in the current ver-
sions of several industrial-strength optimizers, including DB2 [20] (Optimization Profile), SQL
Server [21] (XML Plan), and Sybase [22] (Abstract Plan).

Class III: OP + FPC + PRL Optimizers This class of optimizers support, in addition to FPC, an API
that provides not just the best plan but a “plan-rank-list” (PRL), enumerating the topk plans
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for the query. For example, withk = 2, both the best plan and the second-best plan are ob-
tained when the optimizer is invoked on a query. Note that thePRL feature istrivially imple-
mentablein current optimizers since this list is constructed by default in the root node of the
Dynamic Programming-based query optimization exercise. However, to our knowledge, it is not
yet available in any of the current systems. Therefore, we showcase its utility through our own
implementation in a public-domain optimizer.

Approximation Techniques and Results

For Class I (OP) and Class II (OP+FPC) optimizers, the techniques that we propose are based on a
combination of sampling and interpolation, while for ClassIII optimizers (OP+FPC+PRL), it is purely
based on interpolation. The sampling techniques include both classical random sampling and grid-
based sampling, while the interpolation approaches rely onkNN-classifiers [18] , parametric query
optimization (PQO) [11, 12] and plan cost monotonicity [9].For some of the techniques, theoreti-
cal results that help to provide guaranteed bounds on the errors are available, whereas for the others,
empirical evaluation is the only recourse.

We have quantitatively assessed the efficacy of the various strategies, with regard to plan identity
and location errors. This has been done through extensive experimentation with a representative suite
of multi-dimensional TPC-H and TPC-DS-based query templates on leading commercial and public-
domain optimizers. Our results are very promising since they indicate that high-quality approximations
can indeed be obtainedcheaply and consistently, as described below.

10 percent Error Bound. Consider the case where the user expects less than10 percentplan identity
and plan location errors. For Class I (OP) optimizers, it is possible to regularly achieve this target
with only around 15% overheadsof the brute-force exhaustive method. To put this in perspective,
the earlier-mentioned one-week plan diagram can be produced in a few hours. A sample approximate
diagram (having 10% identity and 10% location error) is shown in Figure 2(b), with all the erroneous
locations marked in black – as can be seen, the approximationis materially faithful to the features of
the true plan diagram, with the errors thinly spread across the picture and largely confined to the plan
transition boundaries.

For Class II (OP+FPC) systems, it is possible to achieve a similar error performance withonly
around 10%overheads. An important point to note here is that plan costing is considerably cheaper
than searching for the optimal plan. Finally, for Class III (OP+FPC+PRL) systems, the overheads come
down toless than 5%.

1 percent Error Bound. We have also investigated the scenario where the user has theextremely
stringent expectation of less than1 percentplan identity and location errors. For this situation, Class I
and II both take around40% overheads, while Class III incurs only10% overheads.

Contributions

In a nutshell, we present in this paper a range of techniques,customized to the optimizer’s API rich-
ness, for efficiently generating high-quality approximateplan diagrams. These results are summarized
in Table 1, where the typical range of overheads (relative tothe exhaustive approach) is shown as a
function of the user’s error constraint for each optimizer class.
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Optimizer Overheads Range Overheads Range
Class (ǫ = 10%) (ǫ = 1%)

Class I (OP) 10% - 15% 30% - 40%
Class II (OP + FPC) 5% - 10% 30% - 40%

Class III (OP + FPC + PRL) ≤ 5% ≤ 10%

Table 1: Summary Results

While not mentioned earlier, for Class II and Class III optimizers, our techniques can also produce
the “cost diagram” and “cardinality diagram” associated with the plan diagram [19]. The cost diagram
is a visualization of the estimated plan execution costs over the relational selectivity space, while the
cardinality diagram is a similar visualization of the estimated result cardinalities.

Organization

The remainder of this paper is organized as follows: The approximation algorithms are presented in
Section 2. Our experimental framework and performance results are highlighted in Section 3. Finally,
in Section 4, we summarize our conclusions and outline future research avenues.

2 Approximation Algorithms

In this section, we describe our suite of strategies for the efficient generation of approximate plan dia-
grams. We begin with algorithms for Class I optimizers, and then describe how these techniques can
be improved for Class II optimizers leveraging their foreign-plan-costing (FPC) feature. We conclude
with two variants of an algorithm for Class III optimizers with FPC and plan-ranking-list (PRL) func-
tionalities – the first versionguarantees zero error, while the second trades error for further reduction
in computational overheads.

For ease of presentation, we will assume in the following discussion that the query template is 2-
dimensional – the extension ton-dimensions is straightforward and mentioned in the 5. The true plan
diagram is denoted byP and the approximation asA, with the total number of query points in the
diagrams denoted bym. Each query point is denoted byq(x, y), corresponding to a unique query with
selectivitiesx, y in theX andY dimensions, respectively. The termspP (q) andpA(q) are used to refer
to the plans assigned to query pointq in theP andA plan diagrams, respectively (when the context is
clear, we drop the diagram subscript).

Finally, the plan identity and location errors are defined as

ǫI =
|P | − |A|

|P |
∗ 100 (1)

and

ǫL =
|pA(q) 6= pP (q)|

m
∗ 100 (2)

respectively.
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2.1 Class I Optimizers

The approximation procedures for this class of optimizers operate in two phases:

Optimization Phase: In this phase, a subset of the query points in the plan diagramare optimized to
obtain the optimal plan choices at those points.

Interpolation Phase: In this phase, the plan choices for a subset of the unoptimized points areinferred
using the results from the Optimization Phase.

For the random sampling-based algorithms, the above two phases are sequential, whereas for the
grid-sampling-based algorithms, the phases are interleaved.

2.1.1 Random Sampling with kNN Interpolation (RSkNN)

In the RSkNN algorithm, we first use the classical random sampling (without replacement) technique
to sample query points from the plan diagram that are to be optimized during the optimization phase.
Since we have empirically found that with this technique, the plan-identity errorǫI is almost always
greater than the plan-locality errorǫL, the stopping criterion for the sampling is based on the former
metric. The problem of finding the distinct plans in the plan diagram can be related to the classical
statistical problem of finding distinct classes in a population [7]. Applying the recent results of [2], we
obtain the following: Lets samples be taken on the plan diagram, letds be the number of distinct plans
in these samples, and letf1 denote the number of plans occurring onlyoncein the samples. Then, it
is highly likely that the the number of distinct plans,d, in the entire plan diagram is in the cardinality
range[ds, dmax], where

dmax = (
m

s
− 1)f1 + ds (3)

From [2], we can also deducêdML, the most-likely-value estimator ford, to be

d̂ML = (

√

m

s
− 1)f1 + ds (4)

which has an expected ratio error bound ofO(
√

m
s
).

If we ensure that the sampling is iteratively continued until ds is within ǫI of dmax, then it is highly
likely that the number of plans found thus far in the sample iswithin ǫI of d. Therefore, the RSkNN al-
gorithm continuously evaluates Equation 3 to determine when the sampling process can be terminated.

Resolution / Query No. of dmax dML HY BRID

Dimension Template Plans Sample % Identity Error Sample % Identity Error Sample % Identity Error
100x100x100 QT8 190 45% 6% 20% 12% 25% 11%
100x100x100 QT9 404 47% 7% 30% 11% 35% 8%
1000 x 1000 QT8 132 55% 4% 25% 7.75% 25% 7.75%
1000 x 1000 QT21 58 15% 2% 1% 20% 10% 10.34%

Table 2: Comparative study of performance of different estimator

Our experience, as borne out by the experimental results presented in Table 2, has been that the
above stopping condition may be too conservative in that it takes many more samples than is strictly
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RS kNN (QueryTemplate QT , ErrorBound ǫ, InitSampless0)

1. stage = 1;s = s0;

2. Optimizes samples chosen uniformly at random.

3. Compute the values ofdmax andd̂ML

4. if (stage = 1) then

5. if ds ≥ ((1 − δ)dmax) then stage = 2;

6. if (stage = 2) then

7. if ds ≥ ((1 − ǫ)d̂ML) thenstop.

8. s = s + s0

9. Go to Step 2.

10. End Algorithm RSkNN

Figure 3: The RSkNN Algorithm

necessary. Therefore, we refine it to the following two-stepprocess: Afterds increases to a value
within a (1 − δ) factor ofdmax, then continue the sampling untilds reaches to within a(1 − ǫ) factor
of d̂ML. The value ofδ conducive to good performance results has been empiricallydetermined to
be0.3. The intuition behind this method is that once the gap between ds anddmax has narrowed to a
sufficiently small range, then the estimator can be used as a reliable indicator of the plan cardinality in
the diagram. The complete RSkNN algorithm is shown in Figure 3. In our implementation, the initial
number of sampless0 is set to 1% of the space, and the increment in the number of samples after each
iteration is also set to this value.

Interpolation. After the completion of the sampling stage, the plan choicesat the non-optimized
points of the plan diagram need to be inferred from the plan choices made at the sampled points. This
is done using a k-Nearest Neighbor (kNN) style classification scheme [18]. Specifically, for each non-
optimized pointqn, we search for the nearest (as per a distance measure) optimized pointqo, and assign
the plan ofqo to qn. If there are multiple nearest optimized points, then the plan that occurs most often
in this set is chosen, and in case of a tie on this metric, a random selection is made from the contenders.

The distance between two query pointsq1(x1, y1) and q2(x2, y2) can be calculated using various
distance metrics. We have evaluated the following three popular metrics:

• Manhattan (L1Norm)) : dist12 = abs(x1 − x2) + abs(y1 − y2)

• Euclidean (L2Norm) : dist12 =
√

(x1 − x2)2 + (y1 − y2)2

• Chessboard (L∞Norm) : dist12 = max(abs(x1 − x2), abs(y1 − y2))

Our experience has been that the Chessboard Distance is mostsuitable, since the transition boundaries
between plans often tend to be aligned along the (horizontaland vertical) axes. The same metric was
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(a) (b) (c)

Figure 4:The Low Pass Filter

also used for establishing the geometries of plan clusters in the PLASTIC optimizer value-addition
tool [5, 17].

Low Pass Filter. Interpolation using the kNN scheme is well-known to result in errors along the plan
boundaries [18]. To reduce the impact of this problem, we apply a low-pass filter [6] after the initial
interpolation has assigned plans to all the points in the diagram. The filter operates as follows: For each
non-optimized pointqn, examine all its neighbors (both optimized and non-optimized) at a distance of
one to find the plan that is assigned to the majority of its neighbors. If such a plan exists, assign that
plan toqn, otherwise retain the original assignment.

The functionality of low-pass filter is illustrated in Figure4(a) - 4(c). The sample points in a 8 X
8 square area of a plan diagram is shown in Figure 4(a). Clearly the sampling has revealed only 2
plans - Red and Blue in this area and the interpolation will determine the border between these 2 plans.
Consider the point inside the greyed area. As we are searching for nearest neighbors in successive
chess-board distances, we will find 2 red neighbors and 1 blueneighbor within distance 1 and this
point will be classified as Red. Now consider the scenario after interpolation (Figure 4(b)). It turns out
that the neighborhood of the point which was dominated by Redsamples before interpolation, mostly
consists of Blue points (5 out of 8 neighbors) after interpolation. It is highly likely that nearest neighbor
classifier has miss-classified this point and hence we decideto assign Blue to this point by applying the
low-pass filter technique (Figure 4(c)).

2.1.2 Grid Sampling with PQO Interpolation (GS PQO)

We now turn our attention to an alternative approach based ongrid sampling. Here, a low resolution
grid of the plan diagram is first formed, which partitions theselectivity space into a set of smaller
rectangles. The query points corresponding to the corners of all these rectangles are optimized first.
Subsequently, these points are used as the seeds to determine which of the other points in the diagram
are to be optimized.

Specifically, if the plans assigned to the two corners of an edge of a rectangle are the same, then the
mid-point along that edge is also assigned the same plan. This is essentially a specific interpolation
based on the guiding principle of the Parametric Query Optimization (PQO) literature (e.g. [11]): “If a
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(a) (b) (c)

Figure 5:The GS PQO Algorithm

pair of points in the selectivity space have the same optimalplanpi, then all points along the straight
line joining these two points will also havepi as their optimal plan.” At first glance, our usage of the
PQO principle here may seem at odds with our earlier observation in [16] that, for industrial-strength
optimizers, this principle is observed more in the breach than in the observance. However, the difference
is that we are applying PQO at a “micro-level”, that is, within the confines of a small rectangle in the
selectivity space, whereas earlier work has effectively considered PQO as a universal truth that holds
across the entire space. Our experimental experience has been that micro-PQO generally holds in all
the plan diagrams that we have analyzed.

When the plans assigned to the end points of an edge are different, then the midpoint of this edge
is optimized. Once the sides of a given rectangle are processed, the center-point is then processed by
considering the plans lying along the “cross-hair” lines connecting the center-point to the mid-points of
the four sides of the rectangle. If the two end-points on one of the cross-hairs match, then the center-
point is assigned the same plan (if both cross-hairs have matching end-points, then one of the plans is
chosen randomly). Now, using the cross-hairs, the rectangle is divided into four smaller rectangles, and
the process recursively continues, until all points in the plan diagram have been assigned plans.

The progress of the GSPQO algorithm is illustrated in Figure 5. In this set of pictures, each large
dot indicates an optimized point, whereas each small dot indicates an inferred point. Figure 5(a) shows
the state after the initial grid sampling is completed. Then, the ‘?’ symbols in Figure 5(b) denote the
set of points that are to be optimized in the following iteration as we process the sides of the rectangles.
Finally, Figure 5(c) enumerates the set of points that are tobe optimized while processing the cross-
hairs.

We have found that a limitation of the GSPQO algorithm is that it may perform a substantial number
of unnecessary optimizations, especially when a rectanglewith different plans at its endpoints features
only a small number of new plans within its enclosed region. This is because GSPQO does not distin-
guish between sparse and dense low-resolution rectangles.For example, if two similar-sized rectangles
each have two plans featured at their four corner points, then they are divided similarly irrespective of
the expected number of new plans present in the interior. We attempt to address this issue by refining
the algorithm in the following manner: Assign each rectangleR with a “plan-richness” indicatorρ(R)
that serves to characterize the expected plan density inR, and then preferentially assign optimizations
to the rectangles with higherρ.
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(a) Plan TreeTi (b) Plan TreeTj

Figure 6: Example of Plan Tree Difference

Our strategy to assignρ values is as follows: Instead of merely having abooleancomparison at the
corners of the rectangle as to whether the plans at these points are identical or not, we now dig deeper
and compare theplan operator treesassociated with these plans in order to estimate plan density. As
an extreme example, consider the case where there is a left-deep tree at one corner of the rectangle,
and a right-deep tree at another corner. In this situation, it seems reasonable to expect that there will
be a significant number of plans in the interior of the rectangle since the process of shifting from a
left-deep to a right-deep tree usually occurs in incremental intermediate steps, each corresponding to a
new plan, rather than all at once – we have confirmed this observation through detailed analysis of the
plan diagrams of industrial optimizers.

Plan Tree Differencing. Let the operator trees corresponding to a pair of planspi andpj be denoted by
Ti andTj , respectively. Our comparison strategy is based on identifying and mapping similar operator
nodes in the two trees. We use color codes to depict matching and distinct nodes of the two trees. In
our description, the termbranchis used to refer to any connected chain of unary nodes betweena pair
of binary nodes, or between a binary node and a leaf, in these trees. Branches are directed from the
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lower node to the higher node. The matching proceeds as follows:

1. First, all the leaf nodes (relations) and all the nodes with binary inputs (typically join nodes) are
identified forTi andTj .

2. A leaf ofTi is matched with a leaf ofTj if and only if they both have the same relation name. In
the situation that there are multiple matches available (that is, if the same relation name appears
in multiple leaves), an edit-distance computation is made between the branches of all pairs of
matching leaves betweenTi andTj. The assignments are then made in increasing order of edit-
distances.

3. A binary node ofTi is matched with a binary node ofTj if the set of base relations that are
processed is the same. If the node operator names and the leftand right inputs are identical (in
terms of base relations), the nodes are made white. However,if the node operator names are
different, or if the left and right input relation subsets are different, then the nodes are colored.

4. A minimal edit-distance computation is made between the branches arising out of each pair of
matched nodes, and the nodes that have to be added or deleted,if any, in order to make the
branches identical, are colored. Unmodified nodes, on the other hand, are matched with their
counterparts in the sibling tree and made white.

To make the above concrete, Figure 6 shows an example pair of plan trees arising in the plan diagram
of Figure 2(a). In this figure, the white nodes represent the matching nodes, while the colored nodes
represent the distinct nodes between the trees.

Plan Difference Metric. We now describe the procedure to quantify plan-tree differences. Our for-
mulation uses|Ti| and|Tj| to represent the number of nodes in plan-treesTi andTj , respectively, and
|Ti ∩ Tj| to denote the number of matching (white) nodes between the trees.

Now, ρ is measured as the classical Jaccard Distance [18] between the trees of the two plans, and is
computed as

ρ(Ti, Tj) = 1 −
|Ti ∩ Tj|

|Ti ∪ Tj|
(5)

While the above works for a pair of plans, we need to be able to extend the metric to handle an
arbitrary set of plans, corresponding to the corners of the hyper-rectangle in the selectivity space. This
is achieved through the following computation:

Given a set ofn trees{T1, T2, . . . , Tn},

ρ(T1, . . . , Tn) =

∑n

i=1

∑n

j=i+1
ρ(Ti, Tj)

(

n

2

) (6)

Note that theρ values are normalized between 0 and 1, with values close to 0 indicating that all
the plans are very similar to each other, and values close to 1indicating that the plans are extremely
dis-similar in structure.

Figure 8 depicts theρ values calculated for a sample plan diagram after partitioning it into 20x20
squares. We see here thatρ reaches high values close to the origin and along the selectivity axes. This
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GS PQO (QueryTemplateQ, ErrorBound ǫ)

1. ρt = ǫ

2. Optimize the points in the initial low-resolution grid.

3. Calculate theρ plan density metric for each rectangle using Equation 6.

4. Organize the rectangles in a max-Heap structure based on theirρ values.

5. For the rectangleRtop at the top of the heap

6. If ρ(Rtop) ≤ ρT , stop

7. else

8. ExtractRtop from the heap

9. Apply PQO interpolation to mid-points of
qualifying edges ofRtop.
Optimize all the remaining mid-points.

10. SplitRtop into four equal rectangles.

11. Computeρ values for the smaller rectangles.

12. Insert the new rectangles into the heap

13. Return to 5

14. End Algorithm GSPQO

Figure 7: The GSPQO Algorithm

meshes perfectly with earlier observations in [11, 12, 14, 15, 16] that plans tend to be densely packed
in precisely these regions of the selectivity space.

We now describe how GSPQO utilizes the above characterization of plan-tree-differences. First,
the grid sampling procedure is executed as mentioned earlier. Then, for each resulting rectangle, the
ρ value is computed based on the plan-trees at the four corners, using Equation 6. The rectangles are
organized in a max-Heap structure based on theρ values, and the optimizations are directed towards
the rectangleRtop at the top of the heap, i.e. with the current highest value ofρ. Specifically, the PQO
principle is applied to the mid-points of all qualifying edges (those with common plans at both ends
of the edge) inRtop, and all the remaining edge mid-points are explicitly optimized. The rectangle is
then split into four smaller rectangles, for whom theρ values are recomputed, and these rectangles are
then inserted into the heap. This process continues until all the rectangles in the plan diagram have a
ρ value that is below a thresholdρt. The threshold is a function of theǫ bound given by the user, with
lower thresholds corresponding to tighter bounds. Our empirical assessment suggests that setting the
threshold to be equal to the error bound, i.e.ρt = ǫ, is conducive to good performance.

The complete GSPQO algorithm is shown in Figure 7.
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Figure 8:ρ calculated by GSPQO

2.2 Class II Optimizers

In the algorithms described for the Class I optimizers, we run into situations wherein we are forced
to pick from a set of equivalent candidate plans in order to make an assignment for a non-optimized
query point. For example, in the RSkNN approach, if there are multiple nearest neighbors at thesame
distance. Similarly, in the GSPQO approach, when theρ values of a rectangle goes below the threshold
and there are unassigned points inside the region.

One obvious option in all the above cases is to make a random choice from the closest neighbouring
plans. However, for Class II optimizers, which offer a “foreign plan costing” (FPC) feature, we can
make a more informed selection: Specifically, cost all the candidate plans at the query point in question,
and assign it the lowest cost plan. This method significantlyhelps in reducing the plan-location error,
since it enables precise demarcation of the boundaries between plan optimality regions.

A point to be noted here is that plan-costing is much cheaper than the optimizer’s standard optimal-
plan-searching process [12], and hence the overheads incurred through costing are negligible compared
to those incurred through optimization. In our experience,the overhead ratio of plan-costing to plan-
searching is around1:10 in the commercial optimizers, while in our implementation of this feature in
PostgreSQL, it is close to1:100.

2.3 Class III Optimizers

The algorithms discussed thus far minimize the number of explicit optimizations performed by assum-
ing certain properties of the plan diagram and using these properties to interpolate between the opti-
mized query points. We now move on to presenting for the ClassIII optimizers, the DiffGen algorithm,
which can be used to efficiently generatecompletely accurateplan diagrams. Subsequently, we provide
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DiffGen (QueryTemplate QT )

1. LetA be an empty plan diagram.

2. Setq = (0, 0)

3. while(q 6= null)

(a) Optimize queryQ at pointq.

(b) Letpi andpj be optimal and second-best plan atq, respectively.

(c) For all pointsq′ in the first quadrant ofq

if(ci(q
′) ≤ cj(q)), assign planpi to q′

(d) Setq = next unassigned query point inA

4. Return A

5. End Algorithm DiffGen

Figure 9: The DiffGen Algorithm

a variant, the ApproxDiffGen algorithm, which trades error, based on the user’s bound, for reduction
in optimization effort. Both algorithms utilize the foreign-plan-costing (FPC) and plan-rank-list (PRL)
features offered by the Class III optimizer API. Specifically, it is assumed that for each query point,
the optimizer provides both the best plan and the second-best plan. As discussed in the Introduction,
this is a feature that can be easily incorporated in today’s systems with only marginal changes to the
codebase.

2.3.1 The DiffGen Algorithm

The DiffGen algorithm for a 2D query template is shown in Figure 9. Let an optimization be performed
at query pointq(x, y) in the selectivity space. Letpi be the optimizer-estimated optimal plan atq, with
costci(q), and letpj be thesecond bestplan, with costcj(q). We then assign the planpi to all points
q′ in thefirst quadrantrelative toq as the origin, which obey the constraint thatci(q

′) ≤ cj(q). After
this step is complete, we then move to the next unassigned point in row-major order relative toq, and
repeat the process, which continues until no unassigned points remain.

This algorithm is predicated on thePlan Cost Motonicity(PCM) assumption that the cost of a plan is
monotonically non-decreasing throughout the selectivityspace, which is true in practice for most query
templates [9].

When the PCM property does not hold, we know that that that thecost function will still be mono-
tonic along another quadrant [9]. The algorithm can be easily modified to take this into consideration.
For example, if the costs are monotonically non-decreasingalong the fourth quadrant, then the algo-
rithm starts processing from the top-right of the plan diagram (Step 2),and the plan assignment is per-
formed along the fourth quadrant (Step 3c).The quadrant in which the cost of a plan is non-decreasing
can be easily obtained by comparing the costs of the plan at the4 corners of the selectivity space.

The following theorem proves that the DiffGen algorithm will exactly produce the true plan diagram
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P without any approximation whatsoever. That is,by definition, there is zero plan-identity and plan-
location errors.

Theorem 1 The plan assigned by DiffGen to any point in the approximate plan diagramA is exactly
the same as that assigned inP.

Proof: Let Po ⊆ P be the set of points which were optimized. Consider a pointq′ ∈ P \Po with a plan
pi. Let q ∈ Po be the point that was optimized whenq′ was assigned the planpi. Let pj be the second
best plan atq.

For the sake of contradiction, letpk(i 6= k), be the optimal plan atq′. We know that for a cost-based
optimizer,ck(q

′) < ci(q
′). This implies thatck(q

′) < cj(q) (due to the algorithm). Using the PCM
property, we haveck(q) ≤ ck(q

′) ⇒ ci(q) ≤ ck(q) < cj(q). This means thatpj is not the second best
plan atq, a contradiction.

2.3.2 The ApproxDiffGen Algorithm

While DiffGen always gives zero error, we now investigate the possibility of whether it is possible
to utilize the permissible error bound ofǫ given by the user to reduce the computational overheads
of DiffGen. To this end, we propose the following ApproxDiffGen algorithm: The plan assignment
constraintci(q

′) ≤ cj(q) is relaxed to beci(q
′) ≤ (1+δ)cj(q); (δ > 0), resulting in fewer optimizations

being required to fully assign plans in the diagram. The choice ofδ is a function of the user’sǫ error
bound, and our empirical assessment indicates that settingδ = 0.1 ∗ ǫ is sufficient to both meet the
error requirements and simultaneously significantly reduce the overheads. For example,ǫ = 10% can
be achieved with only around1% overheads.

3 Experimental Results

The testbed used in our experiments is the Picasso optimizervisualization tool [19], executing on a Sun
Ultra 20 workstation equipped with an Opteron Dual Core 4GHzprocessor, 4 GB of main memory and
720 GB of hard disk, running the Windows XP Pro operating system. The experiments were conducted
over plan diagrams produced from a variety of two, three, andfour-dimensionalTPC-H [24] andTPC-
DS [25] based query templates. In our discussion, we use QTx to refer to a query template based on
Queryxof the TPC-H benchmark, and DSQTx to refer to a query template based on Queryxof the TPC-
DS benchmark. The TPC-H database was of size 1GB, while the TPC-DS database occupies 100GB.
The plan diagrams were generated with a variety of industrial-strength database query optimizers –
we present representative results here for a commercial optimizer anonymously referred to hereafter as
OptCom, and a public-domain optimizer, hereafter referredto as OptPub.

In the remainder of this section, we evaluate the various approximaton plan diagram strategies with
regard to their computational efficiency, given a user errorbound for plan-identity and plan-locality.
The two error-bounds we consider are 10% and 1% for both metrics.
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Resolution / Query No. of Exhaustive Plan Diagram Approximation Time Taken Optimizations Required (%)
Dimension Template Plans Generation Time RS kNN GS PQO RS kNN GS PQO

100X100

QT2 44 0.5 hrs 10 mins (33%) 2 mins (9%) 33 % 7 %
QT3 16 8 mins 3 mins (42%) 33 secs (7%) 42 % 2 %
QT4 11 6 mins 1 min (12%) 21 secs (6%) 12 % 11 %
QT5 23 0.75 hrs 6 mins (13%) 4 mins (9%) 13 % 7 %
QT8 50 1 hr 31 mins (45%) 11 mins (16%) 45 % 11 %
QT9 44 2 hrs 44 mins (40%) 15 mins (14%) 40 % 6 %
QT10 17 12 mins 1 min (9%) 50 secs (7%) 9 % 4 %
QT11 16 36 mins 3 mins (8%) 2 mins (7%) 8 % 5 %
QT12 7 4 mins 22 secs (9%) 4 secs (2%) 9 % 4 %
QT16 32 10 mins 2 mins (21%) 1 min (11%) 21 % 7 %
QT20 33 4 hrs 1.5 hrs (40%) 16 mins (7%) 40 % 7 %
QT21 42 0.5 hrs 3 mins (11%) 3 mins (11%) 11 % 4 %

300X300

QT2 76 9.6 hrs 2 hrs (23%) 20 mins (4%) 23 % 4 %
QT3 22 1.7 hrs 9 mins (9%) 4 mins (4%) 9 % 4 %
QT4 12 1 hr 5 mins (8%) 3 mins (5%) 8 % 5 %
QT5 31 8.3 hrs 35 mins (7%) 15 mins (3%) 7 % 3 %
QT8 92 10.5 hrs 19 mins (35%) 44 mins (3%) 35 % 3 %
QT9 91 1 day 3 hrs 9 hrs (33%) 48 mins (3%) 33 % 3 %
QT10 31 5 hrs 26 mins (10%) 4 mins (2%) 10 % 2 %
QT11 20 2.5 hrs 20 mins (15%) 6 mins (4%) 15 % 4 %
QT12 7 1 hr 1 min (2%) 2 mins (4%) 2 % 4 %
QT16 38 1.6 hrs 5 mins (6%) 6 mins (6%) 6 % 6 %
QT20 46 1 day 7 hrs 0.3 hrs (1%) 33 mins (4%) 1 % 4 %
QT21 48 4.8 hrs 39.6 mins (14%) 8 mins (5%) 14 % 3 %

1000X1000
QT8 132 5 day 20 hrs 29 hrs (21%) 4.2 hrs (3%) 21 % 3%
QT16 25 16 hrs 10 mins (1%) 10 mins (1%) 1% 1%
QT21 58 2 day 6 hrs 2.7 hrs (5%) 32 mins (1%) 5 % 1%

100X100X100
QT8 190 6 day 10 hrs 24 hrs (16%) 2.4 hrs (7%) 16 % 7%
QT9 404 10 day 64 hrs (27%) 24 hrs (10%) 27 % 10%
QT21 130 3 day 7.6 hrs (11%) 3.5 hrs (5%) 11 % 5%

30X30X30X30 QT8 243 5 days 23 hrs (19%) 12 hrs (10%) 19 % 10%

Table 3: Algorithm Efficiency for Class I optimizers with TPC-H database (ǫ = 10%)

Resolution / Query No. of Exhaustive Plan Diagram Approximation Time Taken Optimizations Required (%)
Dimension Template Plans Generation Time RS kNN GS PQO RS kNN GS PQO

100X100

DSQT 12 13 16 mins 4 mins (25%) 1 min (5%) 25 % 5 %
DSQT 17a 39 6.7 hrs 2.6 hrs (39%) 40 mins (10%) 39 % 10 %
DSQT 18 47 2.6 hrs 1.5 hrs (53%) 14mins (9%) 53 % 9 %
DSQT 19 36 2 hrs 19 mins (18%) 7 mins (7%) 18 % 7 %
DSQT 25 33 7 hrs 4.6 hrs (65%) 46 mins (11%) 65 % 11 %
DSQT 25a 51 6.5 hrs 1.5 hrs (24%) 42 mins (11%) 24 % 11 %
DSQT 25b 45 7.3 hrs 2.6 hrs (36%) 48 mins (11%) 36 % 11 %

300X300
DSQT 12 15 2.2 hrs 37 mins (29 %) 5 mins (4 %) 29 % 4 %
DSQT 18 81 22.5 hrs 8.7 hrs (38%) 2.3 hrs (10%) 38 % 10 %
DSQT 19 42 16.2 hrs 1 hr (7%) 58 mins (6%) 7 % 6 %

Table 4: Algorithm Efficiency for Class I optimizers with TPC-DS database (ǫ = 10%)

3.1 Class I Optimizers

We start with evaluating the performance of the two algorithms applicable to Class I optimizers, namely,
RS kNN and GSPQO. In the RSkNN algorithm, as mentioned earlier, the parameterδ, which specifies
the transition of the algorithm from Stage 1 to Stage 2, is setto 0.3. For the GSPQO algorithm, the
resolution of the initial grid is set tor0 = (0.1×r)D, wherer is the resolution at which the plan diagram
is to be generated, andD is the dimensionality of the selectivity space.

For the above framework, Table 3 shows the algorithmic efficiency of the RSkNN and GSPQO
algorithms relative to the brute-force exhaustive approach for a variety of 2D, 3D and 4D query tem-
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Resolution/ Query No. of Exhaustive Plan Diagram Time taken by Optimizations performed
Resolution Template Plans Generation time GS PQO by GS PQO (%)

100X100
QT 8 50 1.1 hrs 28min (40%) 40 %
QT 9 44 2 hrs 26min (24%) 24 %

300X300
QT 8 92 10.5 hrs 3.6 hrs (35%) 35 %
QT 9 91 1 day 7.3 hrs (30%) 30 %

1000X1000 QT 8 132 5 days 20 hrs 1 day 18 hrs (30%) 30 %

100X100X100
QT 8 190 6 days 10 hrs 1 day 14 hrs (25%) 25 %
QT 9 404 10 days 4 days (40%) 40 %
QT 21 130 2 days 22 hrs 11 hrs (16%) 16 %

Table 5: Algorithm Efficiency for Class I optimizers with TPC-H database (ǫ = 1%)

Resolution/ Query No. of Exhaustive Plan Diagram Time taken by Optimizations performed
Resolution Template Plans Generation time GS PQO by GS PQO (%)

100X100

DSQT 17a 39 6.7 hrs 2 hrs (35%) 35 %
DSQT 18 47 2.6 hrs 1 hr (40 %) 40 %
DSQT 19 36 2 hrs 1.1 hrs (35 %) 35 %
DSQT 25 33 7 hrs 2 hrs (27%) 27 %
DSQT 25a 51 6.5 hrs 2.1 hrs (30%) 30 %
DSQT 25b 45 7.3 hrs 2.5 mins (33%) 33 %

300X300
DSQT 18 81 22.5 hrs 9 hrs (40%) 40 %
DSQT 19 42 16.2 hrs 4.7 hrs (29%) 29 %

Table 6: Algorithm Efficiency for Class I optimizers with TPC-DS database (ǫ = 1%)

plates, with a user error bound of 10%. The efficiency is presented both in terms of actual time, as
well as in terms of the number of optimizations that were carried out. The bracketed numbers in the
TimeTakencolumns indicate the percentage time taken relative to the exhaustive approach.

We see in Table 3 that the RSkNN algorithm requires a substantial amount of time, or equivalently,
number of optimizations, to generate the approximate plan diagram. For example, with the 3D QT9
template at a 1000 resolution, RSkNN takes about 27% of the exhaustive time. On the other hand,
when we consider GSPQO, we see that it has a much better performance, requiring not more than
15% even in the worst-case across all templates.

Turning our attention to Table 4, which repeats the above experiment on the TPC-DS database, we
see that the results are even more striking. RSkNN consumes very large overheads in general, whereas
GS PQO again does not exceed 15%.

An interesting point to note in both these tables is that the optimization percentages are virtually
identical to the time percentages. This means that the interpolation mechanisms of kNN and PQO take
insignificant time as compared to making optimizer calls.

When the user’s error constraint is tightened from 10 percent to 1 percent, the resulting algorithmic
performance is shown in Table 5 and Table 6. Only GSPQO is shown since for this stringent constraint,
the RSkNN algorithm tends to optimize close to the entire space. Itcan be seen from the table that
by optimizing only around40% of the points, GSPQO is able to generate extremely high-quality
approximate plan diagrams.

To demonstrate that the above results are not specific to OptCom, a sample comparison of the algo-
rithms across other commercial optimizers, anonymously referred to as OptA, OptB and OptC, is given
in Table 7. We see here that for different query templates (2D, resolution 100) with an error bound of
10%, GS PQO again incurs only low overheads as compared to RSkNN.
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Resolution / Query No. of Exhaustive Plan Diagram Approximation Time Taken Optimizations Required (%)
Dimension Template Plans Generation Time RS kNN GS PQO RS kNN GS PQO

OptA

2 10 4 hrs 14 mins (6%) 10 mins (4%) 6 % 4 %
5 16 3 hrs 18 mins 1 hr (30%) 14 mins (7%) 30 % 7 %
7 13 3 hrs 43 mins 22 mins (10%) 14 mins (6.5%) 10 % 6.5 %
8 74 7 hrs 41 mins 2.6 hrs (35%) 1.2 hr (15%) 35 % 15 %
9 47 5 hrs 20 mins 2.2 hrs (42%) 41 mins (13%) 42 % 13 %
21 21 3 hrs 40 mins 19 mins (9%) 4 mins (2%) 9 % 2 %

OptB

2 20 38 mins 5 mins (12%) 3 mins (7%) 12 % 7 %
5 12 3 mins 4 secs (2%) 2 secs (1%) 2 % 1 %
7 6 11 mins 26 secs (4%) 26 secs (4%) 4 % 4 %
8 12 10 mins 1 min (13%) 36 secs (6%) 13 % 6 %
9 18 14 mins 2 min (16%) 50 secs (6%) 16 % 6 %
21 8 3 mins 2 min (60%) 20 secs (11%) 60 % 11 %

OptC

2 12 22 mins 1 min (5%) 13 secs (1%) 5 % 1 %
5 3 25 mins 30 secs (2%) 15 secs (1%) 2 % 1 %
7 10 16 mins 28 secs (3%) 10 secs (1%) 3 % 1 %
8 16 21 mins 2 mins (10%) 51 secs (4%) 10 % 4 %
9 4 20 mins 36 secs (3%) 12 secs (1%) 3 % 1 %
21 10 35 mins 4 mins (12%) 1.75 mins (5%) 12 % 5 %

Table 7: Comparative Study of Approximation Techniques fordifferent DB-Engine

3.2 Class II Optimizers

We now move on to demonstrate how the FPC feature, provided byClass II optimizers, can be used to
improve the performance of GSPQO. Tables 8 and 9 show the effort required by GSPQO for obtain-
ing approximate plan diagrams with an error bound of10% on the TPC-H and TPC-DS benchmarks,
respectively. We see here that GSPQO consistently completes the approximation in less than10%
time, or equivalently, optimizations, testifying to the utility of FPC in improving the performance.

With a error bound of 1%, however, the role of FPC becomes limited since interpolation is at a
premium, and therefore the diagram generation time is similar to that seen for Class I optimizers.

3.3 Class III Optimizers

Turning our attention to Class III optimizers, we now evaluate the two algorithms, DiffGen and Ap-
proxDiffGen. For this experiment, the OptPub engine was modified to (a) implement the FPC feature
internally, and (b) to return the second best plan along withthe optimal plan when the “explain” com-
mand is executed.

As can be seen in Table 10, DiffGen usually requires at most10% optimizations to generate acom-
pletely accurateplan diagram for all query templates, except those based on Query 8, the reason for
which is discussed below. The good performance of DiffGen can be attributed to the following: Along
with the optimizations being performed at select points, all points (except the origin) are costed exactly
once. Since the FPC feature is internalized in the optimizer, the overhead incurred is very small, and an
important byproduct of this minor investment is the abilityto also obtain the cost diagram correspond-
ing to the plan diagram.

Though10% optimizations is usually the order of the day, there are occasional scenarios when the
DiffGen algorithm requires a substantial number of optimizations to generate the plan diagram. Such
a situation is seen for QT8 – the reason is that the cost of the second best plan is very close to that of
the optimal plan over an extended region. Even though the plan switch occurs much later, this close-
to-optimal cost causes the algorithm to optimize at frequent intervals as the constraintci(q

′) ≤ cj(q) is
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Resolution/ Query No. of Exhaustive Plan Diagram Time taken by Optimizations performed
Dimension Template Plans Generation time GS PQO by GS PQO (%)

100X100

QT2 44 0.5 hrs 2 mins (7%) 7 %
QT3 16 8 mins 28 secs (6%) 6 %
QT4 11 6 mins 18 secs (5%) 5 %
QT5 23 0.75 hrs 3 mins (7%) 7 %
QT8 50 1 hr 5 mins (7.5%) 7.5 %
QT9 44 2 hrs 8 mins (7.5%) 7.5 %
QT10 17 12 mins 43 secs (6%) 6 %
QT11 16 36 mins 1 min (3%) 3 %
QT12 7 4 mins 4 secs (2%) 2 %
QT16 32 10 mins 1 min (10%) 10 %
QT20 33 4 hrs 8 mins (3.5%) 3.5 %
QT21 42 0.5 hrs 2 mins (8%) 8 %

300X300

QT2 76 9.6 hrs 11 mins (2%) 2%
QT3 22 1.7 hrs 3 mins (3%) 3 %
QT4 12 1 hr 2 mins (3%) 3 %
QT5 31 8.3 hrs 10 mins (2%) 2 %
QT8 92 10.5 hrs 12 mins (2%) 2 %
QT9 91 26.8 hrs 32 mins (1.8%) 1.8 %
QT10 31 4.5 hrs 5 mins (1.6%) 1.6 %
QT11 20 2.5 hrs 5 mins (3.5%) 3.5 %
QT12 7 1 hr 30 secs (1%) 1 %
QT16 38 1.6 hrs 3 mins (3%) 3 %
QT20 46 1 day 7.5 hrs 28 mins (1.8%) 1.8 %
QT21 48 4.8 hrs 4 mins (1%) 1 %

1000X1000
QT8 132 6 days 3.8 hrs (3%) 3 %
QT16 25 16 hrs 9 mins (1%) 1 %
QT21 58 2 days 6 hrs 32 mins (1%) 1 %

100X100X100
QT8 190 6 day 10 hrs hrs (4%) 4 %
QT9 404 10 days 21.6 hrs (9%) 9 %
QT21 130 3 days 3.5 hrs (5%) 5 %

30X30X30X30 QT8 243 5 days 12 hrs (10%) 10 %

Table 8: Efficiency of GSPQO for Class II optimizers with TPC-H database (ǫ = 10%)

Resolution/ Query No. of Exhaustive Plan Diagram Time taken by Optimizations performed
Dimension Template Plans Generation time GS PQO by GS PQO (%)

100X100

DSQT 12 13 6.7 hrs 8 mins (2%) 2 %
DSQT 17a 39 6.7 hrs 20 mins (5%) 5 %
DSQT 18 47 2 hr 36 min 4 mins (5%) 5 %
DSQT 19 36 1 hr 48 min 3 mins (4%) 4 %
DSQT 25 33 7 hrs 45 mins (10%) 10 %
DSQT 25a 51 6.5 hrs 42 mins (10%) 10 %
DSQT 25b 45 7.3 hrs 30 mins (7%) 7 %

300X300
DSQT 12 15 2 hr 11 min 30 mins (4%) 4 %
DSQT 18 81 22.5 hrs 1.2 hrs (5%) 5 %
DSQT 19 42 16.2 hrs 24 mins (3%) 3 %

Table 9: Efficiency of GSPQO for Class II optimizers with TPC-DS database (ǫ = 10%)

Resolution Query No. of Exhaustive Plan Diagram Time taken by Optimizations performed
Dimension Template Plans Generation time DiffGen by DiffGen (%)

1000× 1000
QT5 22 5 hrs 20 mins 4 mins (1%) 0.17 %
QT8 20 6 hrs 10 mins 2 hrs 47 mins(45%) 44 %
QT9 16 6 hrs 40 mins 40 mins (10%) 7.4 %

100× 100× 100
QT5 23 5 hrs 48 mins 13mins (3%) 2.4 %
QT8 49 5 hrs 58 mins 2 hrs 2 mins (34%) 32 %
QT9 22 6 hrs 45 mins 5 mins (1%) 0.24 %

30× 30× 30× 30
QT5 37 4 hrs 50 mins 25 mins(8%) 5.8 %
QT8 28 4 hrs 30 mins 1 hr 18 mins(29%) 26 %
QT9 62 6 hrs 10 mins 7 mins(2%) 0.7 %

Table 10: Performance of the DiffGen Algorithm
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Resolution Query No. of Exhaustive Plan Diagram Approximate Plan Diagram Optimizations performed
Resolution Template Plans Generation time Generation time by ApproxDiffGen (%)

1000× 1000
QT5 22 5 hrs 20 mins 3 mins (1%) 0.09 %
QT8 20 6 hrs 10 mins 9 mins (2%) 1.16 %
QT9 16 6 hrs 40 mins 4 mins (1%) 0.12 %

100× 100× 100
QT5 23 5 hrs 48 mins 10 mins (3%) 1.7 %
QT8 49 5 hrs 58 mins 17 mins (5%) 3.4 %
QT9 22 6 hrs 45 mins 4 mins (1%) 0.06 %

30× 30× 30× 30
QT5 37 4 hrs 50 mins 20 mins (7%) 4.5 %
QT8 28 4 hrs 30 mins 10 mins (4%) 1.9 %
QT9 62 6 hrs 10 mins 5 mins (1%) 0.3 %

Table 11: Performance of the ApproxDiffGen Algorithm (ǫ = 10%)

easily violated.
Turning our attention to the ApproxDiffGen algorithm, we find that it can be consistently used to

generate an approximate plan diagram with a10% error bound, while performing less than 5% opti-
mizations – as highlighted in Table 11. A point to note here isthat, even for QT8, due to the relaxation
of the effect of the proximity of the second best plan, the plan diagram is now obtained incurring only
a low overhead.

A related point to note is that unlike the Optimizer I and II classes where the time and optimization
overheads were virtually identical, here the time overheads are a little more than that of optimization.
The reason is that, although FPC is very cheap, since it has tobe invoked for a very large number of
points, it adds a small but perceptible time overhead.

4 Conclusions

We have investigated in this paper the efficient generation of approximate plan diagrams, a key re-
source in the analysis and redesign of modern database queryoptimizers. Based on the optimizer’s
API capabilities, we made a partitioning into three different classes of optimizers, and developed ap-
propriate approximation techniques for each class. For Class I, which only provides the optimal plan,
our experimental results showed that the GSPQO algorithm, which combines grid sampling with PQO
interpolation at the micro level, performed very adequately requiring less than 15% overheads as com-
pared to the exhaustive approach, for an error bound of 10%. These overheads came down to 10%
when the same algorithm was used in Class II optimizers, due to their additional FPC feature. Finally,
for Class III systems, we proved that the DiffGen algorithm produced zero errors and was able to do so
incurring overheads of less than 10%. However, it performs poorly for query templates that have the
second-best plan being very close to the optimal choice overan extended region. Finally, the Approx-
DiffGen algorithm traded error for performance, and was able to satisfy the 10% error bound with less
than 5% optimizations. It was also able to adequately handlethe problem templates of DiffGen.

In summary, our work has shown that it is indeed possible to efficiently generate high-quality approx-
imations to high-dimension and high-resolution plan diagrams, with typical overheads being anorder
of magnitude lowerthan the brute-force approach. We hope that our results willencourage all database
vendors to incorporate the foreign-plan-costing and plan-rank-list features, both of which were critical
to the excellent performance of DiffGen and ApproxDiffGen,in their optimizer APIs.
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5 Appendix

In this section we have listed the n-dimensional version of the algorithms described and also the imple-
mentation procedure of different techniques mentioned earlier in the paper.

5.1 RSkNN

We describe the implementation procedure of the NN-Interpolation and Low Pass Filtering technique
mentioned so far.

5.1.1 NN-Interpolation

As we have mentioned earlier the interpolation technique relies on the nearest-neighbor approach to
look for a suitable plan around a non-sampled point as a candidate plan for it. The algorithm listed in
the Figure 10 is invoked for each non sampled point.

From here onwards we have usedd to represent the dimension of the diagram. The variabledist is
used to set the chessboard distance at which we are interested in finding the neighbors e.g. ifdist = 4
then the functionrecursiveNN()derives all possible offsets required to find out neighbors at that partic-
ular chessboard distance. The variabledimPresent is used to avoid generating offsets for neighbors
at a lesser distance i.e. ifdist = 4 then we should not generate neighbors fordist = 3, 2or1. This is
ensured by making at least one of the coordinates of the offset equal todist. dimPresent is used to
implement the same by forcefully turning the lowest dimension todist if none of the higher dimension
is set to so. Then we add these offsets with the coordinates ofnon-sampled pointX and apply the
interpolation technique thereafter.

5.1.2 Low-Pass

We run one iteration of Low-Pass Filter on the approximate diagram to remove jagged edges introduced
by NN interpolation. We look at all the neighbors at distance1 from a non-sampled point. This can be
done by invoking thekNearestNeighboralgorithm illustrated in Figure 10 withdist = 1. If any of the
neighboring plans occupies more than50% of points, we assign that plan to the non-sampled point.

5.2 GSPQO

The n-dimensional GSPQO algorithm is almost same as described in Section 2.1.2 except theinitial
grid samplingand rectangle decomposition. The initial grid sampling employs a simple recursive
function InitialGSPQOshown in Figure 11 to optimize the corner points of initial rectangles. In the
rectangle decomposition step we need to optimize or interpolate the mid-points of all thed · 2d−1 edges
of a d dimensional hyper-rectangle and break it into2d equal hyper-rectangles. The complete algorithm
is illustrated in Figure 11.
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//Global variables
Non-Sampled point:X(x1, x2, ..., xd);
Dimension:d;
Distance:dist;
Array of lengthd: DimV ar;
booleandimPresent;
QueueQ;
kNearestNeighbor()

1. dist = 1;

2. Call recursiveNN(d); //Recursively check neighbors at distancedist

3. if Q is not NULL

4. Assign plan P occupying maximum points to X.

5. Return;

6. dist + +;

7. Go to Step 2;

recursiveNN(Depth)

1. if Depth = 1

2. if dimPresent = true,

3. for i= -dist to +dist, increment i by 1

4. dimVar[1] = i;

5. doNNJob();

6. else

7. dimVar[1] = -dist;

8. doNNJob();

9. dimVar[1] = +dist;

10. doNNJob();

11. else

12. for i= -dist to +dist, increment i by 1

13. dimVar[Depth] = i;

14. dimPresent = false;

15. if i = -dist or i = +dist

16. dimPresent = true;

17. recursiveNN(Depth-1);

doNNJob()

1. NN [1...d] : dimvar[1...d] + X[1...d]

2. if NN [1...d] is a sampled point

3. AddNN into QueueQ;

4. Return;

Figure 10: The n-Dimensional RSkNN Interpolation Algorithm
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//Global Variables
Integerinterval; //Initial GSPQO interval
Array of lengthd: DimV ar;
Resolution:res;
GS PQO (QueryTemplateQ, ErrorBound ǫ,Dimensiond)

1. ρt = ǫ

2. InitialGSPQO(d); //Optimize points in the initial low-resolution grid

3. Calculate theρ plan density metric for each
hyper-rectangle with2d corners using Equation 6.

4. Organize the hyper-rectangles in a max-Heap structure based on theirρ values.

5. For the hyper-rectangleRtop at the top of the heap

6. If ρ(Rtop) ≤ ρT stop

7. else

8. ExtractRtop from the heap

9. Apply PQO interpolation to the mid-points of qualifying edges ofRtop.
Optimize all the remaining mid-points.

10. SplitRtop into 2d equal hyper-rectangles.

11. Computeρ values for the smaller hyper-rectangles.

12. Insert the new hyper-rectangles into the heap

13. Return to 5

14. End Algorithm GSPQO

InitialGSPQO(Depth d)

1. if Depth = 1

2. For DimVar[1] =1 to res increment by1

3. Optimize the point DimVar[1 ... d];

4. else

5. For DimVar[d] = 1 to res increment by1

6. InitialGSPQO(d − 1);

Figure 11: The n-Dimensional GSPQO Algorithm
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