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Abstract

Given a parametrized n-dimensional SQL query template ahdiae of query optimizer, a plan
diagram is a color-coded pictorial enumeration of the etteniplan choices of the optimizer over
the query parameter space. These diagrams have proved fmlegul metaphor for the analysis
and redesign of modern optimizers, and are gaining currandyverse industrial and academic
institutions. However, their utility is adversely impagtby the impractically large computational
overheads incurred when standard brute-force exhaugimeaches are used for producing high-
dimension and high-resolution diagrams.

In this paper, we investigate strategies for efficientlyduaing high-quality approximate plan
diagrams that have low plan-identity and plan-locatiomstr Our techniques are customized to the
features available in the optimizer’s API, ranging from gemeric optimizers that provide only the
optimal plan for a query to those which also support costingub-optimal plans and enumerating
rank-ordered lists of plans. The techniques collectivebtdire both random and grid sampling, as
well as interpolation techniques based on kNN classifieesampetric query optimization and plan
cost monotonicity.

Extensive experimentation with a representative set of-HP&hd TPC-DS-based query tem-
plates on industrial-strength optimizers indicates thatechniques are capable of meeting identity
and location error bounds as low as 10% while incurring Ikas t115% of the computational over-
heads of the exhaustive approach. In fact, for full-featwptimizers, we can guarantee zero error
with overheads of less than 10%. These approximation tqaksihave been implemented in the
publicly available Picasso optimizer visualization tool.

1 Introduction

For a given database and system configuration, a query @etiexecution plan choices are primarily
a function of theselectivitiesf the base relations in the query. In a recent paper [16]nveduced the
concept of a “plan diagram” to denote a color-coded pictemnameration of the plan choices of the op-
timizer for a parameterized query template over the retaliselectivity space. For example, consider
QT8, the parameterized 2D query template shown in Figuragedbon Query 8 of TPC-H. Here, selec-
tivity variations on thesupPLIERaNdLINEITEM relations are specified through theacctbal :varies
andl_ extendedprice :varies predicates, respectively. The associated plan diagra@T@&ris shown

in Figure 2(a), produced with the Picasso optimizer visaadion tool [19] on a popular commercial
database engine.

In this picture!, each colored region represents a specific plan, and a sé& différent optimal
plans,P1 throughP89, cover the selectivity space. The value associated with pkm in the legend
indicates the percentage area covered by that plan in tjeaaiie— the biggesE1, for example, covers
about 22% of the space, whereas the smalR&9, is chosen in only 0.001% of the space.

Applications of Plan Diagrams

Since their introduction in 2005 [16], plan diagrams havevpd to be a powerful metaphor for the
analysis and redesign of industrial-strength database/qpimizers. For example, as evident from

The figures in this paper should ideally be viewed from a cotqy, as the gray-scale version may not clearly register
the features.



select ayear, sum(case when nation = 'BRAZIL then volume else 0 érsdim(volume)

from (select YEAR(ocorderdate) as gear, Lextendedprice * (1 -_Hiscount) as volume, n2.mame as
nation

from part, supplier, lineitem, orders, customer,
nation nl, nation n2, region

where ppartkey = lpartkey and ssuppkey = Isuppkey and _brderkey = oorderkey and
o_custkey = ccustkey and mationkey = nl.mationkey and nl.megionkey = rregionkey
and snationkey = n2.mationkey and_name = ’AMERICA' and ptype ='ECONOMY AN-
ODIZED STEEL' and
s acctbal :variesandl_extendedprice :varies

) as allnations
group by ayear

order by ayear

Figure 1:Example Query Template: QT8

Figure 2(a), they can be surprisingly complex and densdy aviarge number of plans covering the
space — several such instances spanning a representatofebesmchmark-based query templates on
current optimizers are available at [19]. Through our esininteractions with industrial developers,
we have found that these diagrams have proved to be quiteacprio the prevailing conventional
wisdom. While developers had certainly been extensiveljyamg optimizer behavior omdividual
gueries plan diagrams provide a completely different perspeatifvbehaviorover an entire space
vividly capturing plan transition boundaries and optirmaljeometries. So, in a literal sense, they
deliver the “big picture”.

Plan diagrams are currently being used in various induistnd academic sites for a diverse set of
applications including analysis of existing optimizer ides; visually carrying out optimizer regres-
sion testing; debugging new query processing featurespadng the behavior between successive
optimizer versions; investigating the structural diffezes between neighboring plans in the space; in-
vestigating the variations in the plan choices made by coimgpeptimizers; etc. Visual examples of
non-monotonic cost behavior in commercial optimizersidgative of modeling errors, were highlighted
in [16].

A particularly compelling immediate utility of plan diagres is that they provide the input to “plan
diagram reduction” algorithms. Specifically, given a plaagdam and a cost-increase-thresholdl (
specified by the user, these reduction algorithms recodénse diagram to a simpler picture that
features only a subset of the original plans while ensurag the cost of no individual query point
goes up by more than. That is, some of the original plans are “completely swaéldivby their
siblings, leading to a reduced plan cardinality. It has b&ewn last year [9] that if users were willing
to tolerate a minor cost increase £20% for any query point in the diagram, relative to its anai
cost, the absolute number of plans in the final reduced gatould be brought down twithin or
around ten In short, that complex plan diagrams can be made “anorexigle retaining acceptable
guery processing performance. For example, the reducsbwef the QT8 plan diagram (Figure 2(a))
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Figure 2:Sample Plan Diagram and Approximate Plan Diagram (QT8)

retains only 5 of the original 89 plans.

Anorexic plan diagram reduction has significant practialddfits [9], including quantifying the re-
dundancy in the plan search space, enhancing the appiigaibibarametric query optimization (PQO)
techniques [11, 12], identifying error-resistant and teagpected-cost plans [3, 4], and minimizing the
overhead of multi-plan approaches [1, 13]. A detailed stoflits application to identifying robust
plans that are resistant to errors in relational selegtestimates is available in [10].

Generation of Plan Diagrams

The generation and analysis of plan diagrams has beentdéaiiby our development of the Picasso
optimizer visualization tool [19]. Given a multi-dimens@ SQL query template like QT8 and a
choice of database engine, the Picasso tool automaticallyupes the associated plan diagram. It
is operational on several major platforms including IBM DEXacle, Microsoft SQL Server, Sybase
ASE and PostgreSQL. The tool, which is freely downloadableow in use by the development groups
of several major database vendors, as also by leading mal@std academic research labs worldwide.

The diagram production strategy used in Picasso is thewollp Given ad-dimensional query
template and a plot resolution of the Picasso tool generate$ queries that are either uniformly
or exponentially (user's choice) distributed over the stléy space. Then, for each of these query
points, based on the associated selectivity values, a quiinthe appropriate constants instantiated is
submitted to the query optimizer to be “explained” — thataeshave its optimal plan computed. After
the plans corresponding to all the points are obtained,fardiit color is associated with each unique
plan, and all query points are colored with their associated colors. Then, the rest of the diagram is
colored by painting the region around each point with thercobrresponding to its plan. For example,
in a 2D plan diagram with a uniform grid resolution of 10, #are 100 real query points, and around
each such point a square of dimension 10x10 is painted watpdimt’s associated plan color.

The above exhaustive approach is eminently acceptableggrains with few dimensions (upto 2D)



and low resolutions (upto 100). However, it becomes imjcally expensive for higher dimensions
and resolutions due to the exponential growth in overhe&ds.example, a 3D plan diagram with a
resolution of 100 on each selectivity dimension, require®king the optimizei00? times — that is,
amillion optimizations have to be carried out. Even with a consereastimate of about half-second
per optimization, the total time required to produce théyeis close to a week! Therefore, although
plan diagrams have proved to be extremely useful, their-Higiensional and high-resolution versions
pose serious computational challenges.

Approximate Plan Diagrams

In this paper, we address this issue and investigate whetisepossible to efficiently produckigh-
quality approximationso plan diagrams. Denoting the true plan diagran®asd the approximation
asA, there are two categories of errors that arise in this psoces

Plan Identity Error ( ¢;): This error metric refers to the possibility of the approxiioa missing out
on a subset of the plans present in the true plan diagram.ctingputed as the percentage of
plans lost inA relative toP.

Thee; error is challenging to control since a majority of the plamghe plan diagrams, as seen
in Figure 2(a), are very small in area, and therefore haratb fi

Plan Location Error (€;,): This error metric refers to the possibility of incorrectlysggning plans to
query points in the approximate plan diagram. It is compu@igdhe percentage of incorrectly
(relative toP) assigned points iA.

Thee, error is also challenging to control since the plan bouregams seen in Figure 2(a), can
be highly non-linear, and are sometimes even irregularapsil19].

Optimizer Classes

Our study shows that the ability to reduce overheads is aifumof the plan-related functionalities
offered by the optimizer's API, based on which we define thiefang three categories of optimizers:

Class I: OP Optimizers This class refers to the generic cost-based optimizeratkabutinely found
in virtually every enterprise database product, where tReokly provides the optimal plan (OP),
as determined by the optimizer, for a query.

Class II: OP + FPC Optimizers This class of optimizers additionally provide a “foreigraplcost-
ing” (FPC) feature in their API, that is, of costing plaostsidetheir native optimality regions.
Specifically, the feature supports the “what-if” questidlvhat is the estimated cost of sub-
optimal planp if utilized at query locatiorg?”. FPC has become available in the current ver-
sions of several industrial-strength optimizers, inahgdDB2 [20] (Optimization Profile), SQL
Server [21] (XML Plan), and Sybase [22] (Abstract Plan).

Class lll: OP + FPC + PRL Optimizers This class of optimizers support, in addition to FPC, an API
that provides not just the best plan but a “plan-rank-li®®R{), enumerating the top plans
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for the query. For example, with = 2, both the best plan and the second-best plan are ob-
tained when the optimizer is invoked on a query. Note that”RRé& feature igrivially imple-
mentablein current optimizers since this list is constructed by défan the root node of the
Dynamic Programming-based query optimization exercissveéver, to our knowledge, it is not
yet available in any of the current systems. Therefore, vesvshse its utility through our own
implementation in a public-domain optimizer.

Approximation Techniques and Results

For Class | (OP) and Class Il (OP+FPC) optimizers, the tephes that we propose are based on a
combination of sampling and interpolation, while for Cls®ptimizers (OP+FPC+PRL), it is purely
based on interpolation. The sampling techniques includk blassical random sampling and grid-
based sampling, while the interpolation approaches relkNMN-classifiers [18] , parametric query
optimization (PQO) [11, 12] and plan cost monotonicity [for some of the techniques, theoreti-
cal results that help to provide guaranteed bounds on tloeseare available, whereas for the others,
empirical evaluation is the only recourse.

We have quantitatively assessed the efficacy of the varimategies, with regard to plan identity
and location errors. This has been done through extensperiexentation with a representative suite
of multi-dimensional TPC-H and TPC-DS-based query teneglain leading commercial and public-
domain optimizers. Our results are very promising sinceg ih@icate that high-quality approximations
can indeed be obtainatheaply and consistentlgs described below.

10 percent Error Bound. Consider the case where the user expects lesslib@ercenfplan identity
and plan location errors. For Class | (OP) optimizers, itasgible to regularly achieve this target
with only around 15% overheadsf the brute-force exhaustive method. To put this in perspec
the earlier-mentioned one-week plan diagram can be pradaca few hours. A sample approximate
diagram (having 10% identity and 10% location error) is shawFigure 2(b), with all the erroneous
locations marked in black — as can be seen, the approximigtimterially faithful to the features of
the true plan diagram, with the errors thinly spread acreepicture and largely confined to the plan
transition boundaries.

For Class Il (OP+FPC) systems, it is possible to achieve aasirarror performance witlonly
around 10%overheads. An important point to note here is that plan r©gss considerably cheaper
than searching for the optimal plan. Finally, for Class OR+FPC+PRL) systems, the overheads come
down toless than 5%

1 percent Error Bound. We have also investigated the scenario where the user hatienely
stringent expectation of less tharpercentplan identity and location errors. For this situation, Glas
and Il both take around0% overheadswhile Class Il incurs only10% overheads

Contributions

In a nutshell, we present in this paper a range of techniquespmized to the optimizer's API rich-
ness, for efficiently generating high-quality approximpln diagrams. These results are summarized
in Table 1, where the typical range of overheads (relativihéoexhaustive approach) is shown as a
function of the user’s error constraint for each optimizass.
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Optimizer Overheads Range|| Overheads Range
Class (e = 10%) (e =1%)
Class | (OP) 10% - 15% 30% - 40%
Class Il (OP + FPC) 5% - 10% 30% - 40%
Class lll (OP + FPC + PRL < 5% <10%

Table 1. Summary Results

While not mentioned earlier, for Class Il and Class Il op#ers, our techniques can also produce
the “cost diagram” and “cardinality diagram” associatethvihe plan diagram [19]. The cost diagram
is a visualization of the estimated plan execution costs therelational selectivity space, while the
cardinality diagram is a similar visualization of the esdted result cardinalities.

Organization

The remainder of this paper is organized as follows: The @ppration algorithms are presented in
Section 2. Our experimental framework and performancdiseare highlighted in Section 3. Finally,
in Section 4, we summarize our conclusions and outline éutesearch avenues.

2 Approximation Algorithms

In this section, we describe our suite of strategies for theient generation of approximate plan dia-
grams. We begin with algorithms for Class | optimizers, dmehtdescribe how these techniques can
be improved for Class Il optimizers leveraging their forejglan-costing (FPC) feature. We conclude
with two variants of an algorithm for Class Il optimizerstwiFPC and plan-ranking-list (PRL) func-
tionalities — the first versioguarantees zero errpwhile the second trades error for further reduction
in computational overheads.

For ease of presentation, we will assume in the followinguksion that the query template is 2-
dimensional — the extension tedimensions is straightforward and mentioned in the 5. The plan
diagram is denoted bl and the approximation a&, with the total number of query points in the
diagrams denoted by.. Each query point is denoted by, y), corresponding to a unique query with
selectivitiesz, y in the X andY” dimensions, respectively. The terms(q) andp4(q) are used to refer
to the plans assigned to query poinin the P andA plan diagrams, respectively (when the context is
clear, we drop the diagram subscript).

Finally, the plan identity and location errors are defined as

Pl—|A
E[:M*loo

and

_ Ipalg) :pP(CI)\ « 100 )

€L

respectively.



2.1 Class | Optimizers
The approximation procedures for this class of optimizgesate in two phases:

Optimization Phase: In this phase, a subset of the query points in the plan diagranoptimized to
obtain the optimal plan choices at those points.

Interpolation Phase: In this phase, the plan choices for a subset of the unoptahmpeets arenferred
using the results from the Optimization Phase.

For the random sampling-based algorithms, the above twegshare sequential, whereas for the
grid-sampling-based algorithms, the phases are intexteav

2.1.1 Random Sampling with KNN Interpolation (RSkNN)

In the RSKNN algorithm, we first use the classical random samplingh@ut replacement) technique
to sample query points from the plan diagram that are to benigetd during the optimization phase.
Since we have empirically found that with this technique, ptan-identity errog; is almost always
greater than the plan-locality errer, the stopping criterion for the sampling is based on the &rm
metric. The problem of finding the distinct plans in the plaagdam can be related to the classical
statistical problem of finding distinct classes in a popataf7]. Applying the recent results of [2], we
obtain the following: Lets samples be taken on the plan diagramdldbe the number of distinct plans
in these samples, and I¢t denote the number of plans occurring oolycein the samples. Then, it
is highly likely that the the number of distinct plang,in the entire plan diagram is in the cardinality
range|ds, d,nq.], where

™

dmam = ( s )fl + ds (3)

From [2], we can also deduehm, the most-likely-value estimator fak, to be

dyr, = (\/? —1)fi +ds 4)

which has an expected ratio error boundf, /).

If we ensure that the sampling is iteratively continued luhtis within €; of d,,...., then it is highly
likely that the number of plans found thus far in the sampieitbin ¢; of d. Therefore, the R&NN al-
gorithm continuously evaluates Equation 3 to determinenithe sampling process can be terminated.

Resolution / Query No. of dmaz dyrr HY BRID
Dimension Template | Plans || Sample % | Identity Error Sample % | Identity Error Sample % | Identity Error
100x100x100 QT8 190 45% 6% 20% 12% 25% 11%
100x100x100 QT9 404 47% 7% 30% 11% 35% 8%
1000 x 1000 QT8 132 55% 4% 25% 7.75% 25% 7.75%
1000 x 1000 QT21 58 15% 2% 1% 20% 10% 10.34%

Table 2. Comparative study of performance of differentreator

Our experience, as borne out by the experimental resulsepted in Table 2, has been that the
above stopping condition may be too conservative in thatkié$ many more samples than is strictly
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RS kNN (QueryTemplate QT', ErrorBound e, InitSamples sg)
1. stage =135 = sq;
2. Optimizes samples chosen uniformly at random.
3. Compute the values @f,,,, andda; .
4. if (stage = 1) then
5. if ds > ((1 — 0)dpmas) then stage = 2;
6. if (stage = 2) then
7 if dy > ((1 — €)dasz,) thenstop.
8. s=s+ 39
9. Goto Step 2.
10. End Algorithm RSKNN

Figure 3: The RKNN Algorithm

necessary. Therefore, we refine it to the following two-gtepcess: Afterd, increases to a value
within a (1 — 0) factor ofd,,...., then continue the sampling undl] reaches to within &1 — ¢) factor
of dy;. The value of§ conducive to good performance results has been empiridatigrmined to
be0.3. The intuition behind this method is that once the gap betwkendd,,., has narrowed to a
sufficiently small range, then the estimator can be used elsadble indicator of the plan cardinality in
the diagram. The complete B&IN algorithm is shown in Figure 3. In our implementatiore thitial
number of samples, is set to 1% of the space, and the increment in the number gflsarafter each
iteration is also set to this value.

Interpolation. After the completion of the sampling stage, the plan choatethe non-optimized
points of the plan diagram need to be inferred from the plamogs made at the sampled points. This
is done using a k-Nearest Neighbor (KNN) style classificasicheme [18]. Specifically, for each non-
optimized point,,, we search for the nearest (as per a distance measure) ogdipointy,, and assign
the plan ofg, to ¢,. If there are multiple nearest optimized points, then tlaaphat occurs most often
in this set is chosen, and in case of a tie on this metric, sorargklection is made from the contenders.

The distance between two query poigt$xy,y;) and g»(z2,y2) can be calculated using various
distance metrics. We have evaluated the following threaijaopnetrics:

e Manhattan [.; Norm)) : dist1s = abs(x1 — x2) + abs(yr — y2)

e Euclidean (o Norm) : dist;s = \/(x1 —29)% + (y1 — y2)?
e Chessboardl(,, Norm) : dist;; = max(abs(xy — x3),abs(y1 — y2))

Our experience has been that the Chessboard Distance isuoitadtie, since the transition boundaries
between plans often tend to be aligned along the (horizem@lvertical) axes. The same metric was
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Figure 4:The Low Pass Filter

also used for establishing the geometries of plan clustetea PLASTIC optimizer value-addition
tool [5, 17].

Low Pass Filter. Interpolation using the KNN scheme is well-known to resalérrors along the plan
boundaries [18]. To reduce the impact of this problem, wdyappow-pass filter [6] after the initial
interpolation has assigned plans to all the points in thgrdia. The filter operates as follows: For each
non-optimized point,,, examine all its neighbors (both optimized and non-opted)zt a distance of
one to find the plan that is assigned to the majority of its Inlegys. If such a plan exists, assign that
plan tog,, otherwise retain the original assignment.

The functionality of low-pass filter is illustrated in Figud€a) - 4(c). The sample points in a 8 X
8 square area of a plan diagram is shown in Figure 4(a). @ltlael sampling has revealed only 2
plans - Red and Blue in this area and the interpolation wiktdrine the border between these 2 plans.
Consider the point inside the greyed area. As we are segré¢brmearest neighbors in successive
chess-board distances, we will find 2 red neighbors and 1 idighbor within distance 1 and this
point will be classified as Red. Now consider the scenarier afterpolation (Figure 4(b)). It turns out
that the neighborhood of the point which was dominated by $edples before interpolation, mostly
consists of Blue points (5 out of 8 neighbors) after integpioh. It is highly likely that nearest neighbor
classifier has miss-classified this point and hence we dégiagsign Blue to this point by applying the
low-pass filter technique (Figure 4(c)).

2.1.2 Grid Sampling with PQO Interpolation (GS_PQO)

We now turn our attention to an alternative approach basegridnrsampling. Here, a low resolution
grid of the plan diagram is first formed, which partitions t#wectivity space into a set of smaller
rectangles. The query points corresponding to the corrfeal these rectangles are optimized first.
Subsequently, these points are used as the seeds to detevmah of the other points in the diagram
are to be optimized.
Specifically, if the plans assigned to the two corners of ajeeaif a rectangle are the same, then the

mid-point along that edge is also assigned the same plars iJtassentially a specific interpolation
based on the guiding principle of the Parametric Query Opéation (PQO) literature (e.g. [11]): “If a

10



i
B

|
|
I
w

!
g -
|

—|ﬂ—|—— — g -—
g
1
| {
[l
1

ng
ng

(a) (b) (c)
Figure 5:The GSPQO Algorithm

pair of points in the selectivity space have the same optptaad p;, then all points along the straight
line joining these two points will also haye as their optimal plan.” At first glance, our usage of the
PQO principle here may seem at odds with our earlier observat [16] that, for industrial-strength
optimizers, this principle is observed more in the breaenih the observance. However, the difference
is that we are applying PQO at a “micro-level”, that is, withine confines of a small rectangle in the
selectivity space, whereas earlier work has effectivelysatered PQO as a universal truth that holds
across the entire space. Our experimental experience kastih& micro-PQO generally holds in all
the plan diagrams that we have analyzed.

When the plans assigned to the end points of an edge areedifféhen the midpoint of this edge
is optimized. Once the sides of a given rectangle are predesise center-point is then processed by
considering the plans lying along the “cross-hair” linesmecting the center-point to the mid-points of
the four sides of the rectangle. If the two end-points on drit@@ cross-hairs match, then the center-
point is assigned the same plan (if both cross-hairs havelmat end-points, then one of the plans is
chosen randomly). Now, using the cross-hairs, the rectanglivided into four smaller rectangles, and
the process recursively continues, until all points in tlamgliagram have been assigned plans.

The progress of the GBQO algorithm is illustrated in Figure 5. In this set of prets, each large
dot indicates an optimized point, whereas each small datateks an inferred point. Figure 5(a) shows
the state after the initial grid sampling is completed. Thee ‘?’ symbols in Figure 5(b) denote the
set of points that are to be optimized in the following itevatas we process the sides of the rectangles.
Finally, Figure 5(c) enumerates the set of points that ateetoptimized while processing the cross-
hairs.

We have found that a limitation of the GZQO algorithm is that it may perform a substantial number
of unnecessary optimizations, especially when a rectamigtedifferent plans at its endpoints features
only a small number of new plans within its enclosed regidmsTs because GBQO does not distin-
guish between sparse and dense low-resolution rectarkgiesxample, if two similar-sized rectangles
each have two plans featured at their four corner points, tivey are divided similarly irrespective of
the expected number of new plans present in the interior. tt@enat to address this issue by refining
the algorithm in the following manner: Assign each rectarfgwith a “plan-richness” indicatos( R)
that serves to characterize the expected plan density and then preferentially assign optimizations
to the rectangles with higher
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Figure 6: Example of Plan Tree Difference

Our strategy to assigmvalues is as follows: Instead of merely having@leancomparison at the
corners of the rectangle as to whether the plans at theses@smidentical or not, we now dig deeper
and compare thplan operator treesssociated with these plans in order to estimate plan gemsst
an extreme example, consider the case where there is eelgftttlee at one corner of the rectangle,
and a right-deep tree at another corner. In this situatisgems reasonable to expect that there will
be a significant number of plans in the interior of the reckarsgnce the process of shifting from a
left-deep to a right-deep tree usually occurs in incrementarmediate steps, each corresponding to a
new plan, rather than all at once — we have confirmed this gasen through detailed analysis of the
plan diagrams of industrial optimizers.

Plan Tree Differencing. Let the operator trees corresponding to a pair of ptaasdp,; be denoted by
T; andTj, respectively. Our comparison strategy is based on idemgfand mapping similar operator
nodes in the two trees. We use color codes to depict matchidglistinct nodes of the two trees. In
our description, the terraranchis used to refer to any connected chain of unary nodes betapair

of binary nodes, or between a binary node and a leaf, in thess.t Branches are directed from the
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lower node to the higher node. The matching proceeds assillo

1. First, all the leaf nodes (relations) and all the nodeg Wihary inputs (typically join nodes) are
identified forZ; and7}.

2. Aleaf of T} is matched with a leaf dfj if and only if they both have the same relation name. In
the situation that there are multiple matches availablet (&) if the same relation name appears
in multiple leaves), an edit-distance computation is maelevben the branches of all pairs of
matching leaves betwedhn and7;. The assignments are then made in increasing order of edit-
distances.

3. A binary node off; is matched with a binary node @f; if the set of base relations that are
processed is the same. If the node operator names and tlaadefight inputs are identical (in
terms of base relations), the nodes are made white. Howé\the node operator names are
different, or if the left and right input relation subsets different, then the nodes are colored.

4. A minimal edit-distance computation is made between thadhes arising out of each pair of
matched nodes, and the nodes that have to be added or déledag, in order to make the
branches identical, are colored. Unmodified nodes, on therdtand, are matched with their
counterparts in the sibling tree and made white.

To make the above concrete, Figure 6 shows an example pdarofrpes arising in the plan diagram
of Figure 2(a). In this figure, the white nodes represent thé&ching nodes, while the colored nodes
represent the distinct nodes between the trees.

Plan Difference Metric. We now describe the procedure to quantify plan-tree diffees. Our for-
mulation use$7;| and|7}| to represent the number of nodes in plan-tr€eand7’, respectively, and
|T; N T;| to denote the number of matching (white) nodes between ¢les tr

Now, p is measured as the classical Jaccard Distance [18] betlwedrees of the two plans, and is
computed as | |
T,N17;
T.UT, ©

While the above works for a pair of plans, we need to be ablextene the metric to handle an
arbitrary set of plans, corresponding to the corners of {fpehrectangle in the selectivity space. This
is achieved through the following computation:

Given a set of: trees{T}, T, ..., T, },

p(TZ,T]) =1-

_ D it Z?:i-i—l p(T;, T5)
(3)
Note that thep values are normalized between 0 and 1, with values close mali@ating that all
the plans are very similar to each other, and values closdrdidating that the plans are extremely
dis-similar in structure.

Figure 8 depicts the values calculated for a sample plan diagram after partitgit into 20x20
squares. We see here thateaches high values close to the origin and along the sétgcixes. This

o(Ty, ..., Tp) (6)

13



GS PQO (QueryTemplate @, ErrorBound )
1 pr=c¢
. Optimize the points in the initial low-resolution grid.
. Calculate the plan density metric for each rectangle using Equation 6.

. Organize the rectangles in a max-Heap structure basdtwom tvalues.

2
3
4
5. For the rectangl&,,,, at the top of the heap
6 If p(Reop) < pr, StOp

7 else

8 ExtractR;,, from the heap

9

Apply PQO interpolation to mid-points of
qualifying edges ofz;,,.
Optimize all the remaining mid-points.

10. Split Ry, into four equal rectangles.

11. Computep values for the smaller rectangles.
12. Insert the new rectangles into the heap

13. Returnto 5

14. End Algorithm GSPQO

Figure 7: The GPQO Algorithm

meshes perfectly with earlier observations in [11, 12, 4,15] that plans tend to be densely packed
in precisely these regions of the selectivity space.

We now describe how GBQO utilizes the above characterization of plan-treecdiffices. First,
the grid sampling procedure is executed as mentioned eaflen, for each resulting rectangle, the
p value is computed based on the plan-trees at the four coumrggy Equation 6. The rectangles are
organized in a max-Heap structure based ongthalues, and the optimizations are directed towards
the rectangle?,,, at the top of the heap, i.e. with the current highest value &pecifically, the PQO
principle is applied to the mid-points of all qualifying ezlg(those with common plans at both ends
of the edge) inRk,,,, and all the remaining edge mid-points are explicitly ofitieal. The rectangle is
then split into four smaller rectangles, for whom {healues are recomputed, and these rectangles are
then inserted into the heap. This process continues uhth@lrectangles in the plan diagram have a
p value that is below a thresho}d. The threshold is a function of thebound given by the user, with
lower thresholds corresponding to tighter bounds. Our dogbiassessment suggests that setting the
threshold to be equal to the error bound, pe= ¢, is conducive to good performance.

The complete GFQO algorithm is shown in Figure 7.
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Figure 8:p calculated by GSPQO

2.2 Class Il Optimizers

In the algorithms described for the Class | optimizers, we indo situations wherein we are forced
to pick from a set of equivalent candidate plans in order t&kemen assignment for a non-optimized
guery point. For example, in the RGN approach, if there are multiple nearest neighbors asénee
distance. Similarly, in the GBQO approach, when thevalues of a rectangle goes below the threshold
and there are unassigned points inside the region.

One obvious option in all the above cases is to make a randomecfrom the closest neighbouring
plans. However, for Class Il optimizers, which offer a “figge plan costing” (FPC) feature, we can
make a more informed selection: Specifically, cost all threladate plans at the query pointin question,
and assign it the lowest cost plan. This method significamlps in reducing the plan-location error,
since it enables precise demarcation of the boundariesleetplan optimality regions.

A point to be noted here is that plan-costing is much chedyzar the optimizer’s standard optimal-
plan-searching process [12], and hence the overheadsaddinrough costing are negligible compared
to those incurred through optimization. In our experieribe,overhead ratio of plan-costing to plan-
searching is arountl:10 in the commercial optimizers, while in our implementatidritos feature in
PostgreSQL, itis close t©:100

2.3 Class Il Optimizers

The algorithms discussed thus far minimize the number di@kpptimizations performed by assum-
ing certain properties of the plan diagram and using thegpapties to interpolate between the opti-
mized query points. We now move on to presenting for the Glasptimizers, the DiffGen algorithm,
which can be used to efficiently generatenpletely accuratplan diagrams. Subsequently, we provide
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DiffGen (QueryTemplate QT)
1. LetA be an empty plan diagram.
2. Setg = (0,0)
3. while(g # null)

(a) Optimize queryy at pointg.
(b) Letp; andp; be optimal and second-best plamyatespectively.
(c) For all pointsq’ in the first quadrant of
if(ci(q') < ¢j(g)), assign plam; to ¢
(d) Setq = next unassigned query pointA
4. Return A

5. End Algorithm DiffGen

Figure 9: The DiffGen Algorithm

a variant, the ApproxDiffGen algorithm, which trades erfmaised on the user’s bound, for reduction
in optimization effort. Both algorithms utilize the foreigplan-costing (FPC) and plan-rank-list (PRL)
features offered by the Class Il optimizer API. Specifigait is assumed that for each query point,
the optimizer provides both the best plan and the secondptes As discussed in the Introduction,
this is a feature that can be easily incorporated in todayssesns with only marginal changes to the
codebase.

2.3.1 The DiffGen Algorithm

The DiffGen algorithm for a 2D query template is shown in Feg8. Let an optimization be performed
at query point(z, y) in the selectivity space. Let be the optimizer-estimated optimal planjatvith
coste;(q), and letp; be thesecond besplan, with cost;(¢). We then assign the plan to all points
¢’ in thefirst quadrantrelative tog as the origin, which obey the constraint thdly’) < c;(q). After
this step is complete, we then move to the next unassigned jmaiow-major order relative tg, and
repeat the process, which continues until no unassignedsp@main.

This algorithm is predicated on tlirtan Cost Motonicitf PCM) assumption that the cost of a plan is
monotonically non-decreasing throughout the selectsfigce, which is true in practice for most query
templates [9].

When the PCM property does not hold, we know that that thattse function will still be mono-
tonic along another quadrant [9]. The algorithm can be pasddified to take this into consideration.
For example, if the costs are monotonically non-decreasiogg the fourth quadrant, then the algo-
rithm starts processing from the top-right of the plan deagi(Step 2),and the plan assignment is per-
formed along the fourth quadrant (Step 3c).The quadranticmthe cost of a plan is non-decreasing
can be easily obtained by comparing the costs of the plaredtd¢brners of the selectivity space.

The following theorem proves that the DiffGen algorithmhekactly produce the true plan diagram
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P without any approximation whatsoever. Thathg, definition there is zero plan-identity and plan-
location errors.

Theorem 1 The plan assigned by DiffGen to any point in the approximé#ea gdiagramA is exactly
the same as that assignedmn

Proof: Let P, C P be the set of points which were optimized. Consider a pgiatP \ P, with a plan
pi. Letq € P, be the point that was optimized whefwas assigned the plan. Let p,; be the second
best plan at.

For the sake of contradiction, Igt(i # k), be the optimal plan af. We know that for a cost-based
optimizer,c,(¢') < ¢;i(¢’). This implies that(¢') < ¢;(¢q) (due to the algorithm). Using the PCM
property, we have,(q) < cx(q') = ci(q) < cx(q) < ¢j(¢). This means thai; is not the second best
plan atq, a contradiction. =

2.3.2 The ApproxDiffGen Algorithm

While DiffGen always gives zero error, we now investigate gossibility of whether it is possible

to utilize the permissible error bound efgiven by the user to reduce the computational overheads
of DiffGen. To this end, we propose the following Approx[Bin algorithm: The plan assignment
constraint;(q’) < ¢;(q) is relaxed to be;(¢') < (1+0)c;(q); (6 > 0), resulting in fewer optimizations
being required to fully assign plans in the diagram. The odaif) is a function of the user’s error
bound, and our empirical assessment indicates that settind).1 « ¢ is sufficient to both meet the
error requirements and simultaneously significantly redhe overheads. For exampte= 10% can

be achieved with only arouritbo overheads.

3 Experimental Results

The testbed used in our experiments is the Picasso optim&elization tool [19], executing on a Sun
Ultra 20 workstation equipped with an Opteron Dual Core 4@Hxessor, 4 GB of main memory and
720 GB of hard disk, running the Windows XP Pro operatingaystThe experiments were conducted
over plan diagrams produced from a variety of two, three fanddimensionall PC-H [24] andTPC-
DS [25] based query templates. In our discussion, we use tQTefer to a query template based on
Queryxof the TPC-H benchmark, and DS®T0 refer to a query template based on Queoythe TPC-
DS benchmark. The TPC-H database was of size 1GB, while tk:D0¥® database occupies 100GB.
The plan diagrams were generated with a variety of industtiangth database query optimizers —
we present representative results here for a commerciahizet anonymously referred to hereafter as
OptCom, and a public-domain optimizer, hereafter refetoeas OptPub.

In the remainder of this section, we evaluate the variousegmaton plan diagram strategies with
regard to their computational efficiency, given a user elb@und for plan-identity and plan-locality.
The two error-bounds we consider are 10% and 1% for both asetri
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Resolution / Query No. of | Exhaustive Plan Diagram Approximation Time Taken Optimizations Required (%)
Dimension Template | Plans Generation Time RS_kNN GS.PQO RS_kNN GS.PQO
QT2 44 0.5 hrs 10 mins (33%) 2 mins (9%) 33% 7%
QT3 16 8 mins 3 mins (42%) 33 secs (7%) 42 % 2%
QT4 11 6 mins 1 min (12%) 21 secs (6%) 12 % 11%
QT5 23 0.75 hrs 6 mins (13%) 4 mins (9%) 13 % 7%
QT8 50 lhr 31 mins (45%) | 11 mins (16%) 45 % 11 %
100X100 QT9 44 2 hrs 44 mins (40%) | 15 mins (14%) 40 % 6 %
QT10 17 12 mins 1 min (9%) 50 secs (7%) 9% 4%
QT11 16 36 mins 3 mins (8%) 2 mins (7%) 8 % 5%
QT12 7 4 mins 22 secs (9%) 4 secs (2%) 9% 4%
QT16 32 10 mins 2 mins (21%) 1 min (11%) 21% 7%
QT20 33 4 hrs 1.5 hrs (40%) 16 mins (7%) 40 % 7%
QT21 42 0.5 hrs 3 mins (11%) 3 mins (11%) 11 % 4%
QT2 76 9.6 hrs 2 hrs (23%) 20 mins (4%) 23 % 4%
QT3 22 1.7 hrs 9 mins (9%) 4 mins (4%) 9% 4%
QT4 12 lhr 5 mins (8%) 3 mins (5%) 8 % 5%
QT5 31 8.3 hrs 35 mins (7%) 15 mins (3%) 7% 3%
QT8 92 10.5hrs 19 mins (35%) | 44 mins (3%) 35% 3%
300X300 QT9 91 1day 3 hrs 9 hr_s (33%) 48 m_ins (3%) 33% 3%
QT10 31 5hrs 26 mins (10%) 4 mins (2%) 10 % 2%
QT11 20 25hrs 20 mins (15%) 6 mins (4%) 15 % 4%
QT12 7 1hr 1 min (2%) 2 mins (4%) 2% 4%
QT16 38 1.6 hrs 5 mins (6%) 6 mins (6%) 6 % 6 %
QT20 46 lday 7 hrs 0.3 hrs (1%) 33 mins (4%) 1% 4%
QT21 48 4.8 hrs 39.6 mins (14%)| 8 mins (5%) 14 % 3%
QT8 132 5 day 20 hrs 29 hrs (21%) 4.2 hrs (3%) 21% 3%
1000X1000 QT16 25 16 hrs 10 mins (1%) 10 mins (1%) 1% 1%
QT21 58 2 day 6 hrs 2.7 hrs (5%) 32 mins (1%) 5% 1%
QT8 190 6 day 10 hrs 24 hrs (16%) 2.4 hrs (7%) 16 % 7%
100X100X100 QT9 404 10 day 64 hrs (27%) 24 hrs (10%) 27 % 10%
QT21 130 3 day 7.6 hrs (11%) 3.5 hrs (5%) 11 % 5%
30X30X30X30 QT8 243 5 days 23 hrs (19%) 12 hrs (10%) 19 % 10%

Table 3: Algorithm Efficiency for Class | optimizers with TR€databases(= 10%)

Resolution / Query No. of | Exhaustive Plan Diagram Approximation Time Taken Optimizations Required (%)
Dimension Template Plans Generation Time RS_KNN GS.PQO RS_kNN GS.PQO
DSQT 12 13 16 mins 4 mins (25%) 1 min (5%) 25% 5%
DSQT 17a 39 6.7 hrs 2.6 hrs (39%) | 40 mins (10%) 39 % 10 %
DSQT 18 47 2.6 hrs 1.5hrs (53%) | 14mins (9%) 53 % 9%
100X100 DSQT 19 36 2 hrs 19 mins (18%) | 7 mins (7%) 18 % 7%
DSQT 25 33 7 hrs 4.6 hrs (65%) | 46 mins (11%) 65 % 11 %
DSQT 25a 51 6.5 hrs 1.5 hrs (24%) | 42 mins (11%) 24 % 11%
DSQT 25b 45 7.3 hrs 2.6 hrs (36%) | 48 mins (11%) 36 % 11%
DSQT 12 15 2.2 hrs 37 mins (29 %) | 5 mins (4 %) 29 % 4%
300X300 DSQT 18 81 22.5hrs 8.7 hrs (38%) | 2.3 hrs (10%) 38% 10 %
DSQT 19 42 16.2 hrs 1 hr (7%) 58 mins (6%) 7% 6 %

Table 4: Algorithm Efficiency for Class | optimizers with THZS database: (= 10%)

3.1 Class | Optimizers

We start with evaluating the performance of the two algonglapplicable to Class | optimizers, namely,
RS_KNN and GSPQO. In the RXNN algorithm, as mentioned earlier, the paraméterhich specifies
the transition of the algorithm from Stage 1 to Stage 2, id®6t3. For the GSPQO algorithm, the
resolution of the initial grid is set tay = (0.1 xr)”, wherer is the resolution at which the plan diagram
is to be generated, and is the dimensionality of the selectivity space.

For the above framework, Table 3 shows the algorithmic efficy of the RKNN and GSPQO
algorithms relative to the brute-force exhaustive appndac a variety of 2D, 3D and 4D query tem-
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Resolution/ Query No. of | Exhaustive Plan Diagram Time taken by Optimizations performed
Resolution Template | Plans Generation time GS_PQO by GS_PQO (%)

QT8 50 1.1hrs 28min (40%) 40 %
100X100 oT9 P > hrs Z6min (24%) 4%
QT8 92 10.5 hrs 3.6 hrs (35%) 35%
300300 QT9 91 Tday 7.3 hrs (30%) 30%
1000X1000 QT8 132 5 days 20 hrs 1 day 18 hrs (30%) 30 %
QT8 190 6 days 10 hrs 1 day 14 hrs (25%) 25%
100X100X100 QT9 404 10 days 4 days (40%) 40 %
QT21 130 2 days 22 hrs 11 hrs (16%) 16 %

Table 5: Algorithm Efficiency for Class | optimizers with TR€databases(= 1%)

Resolution/ Query No. of | Exhaustive Plan Diagram | Time taken by | Optimizations performed
Resolution | Template | Plans Generation time GS_PQO by GS_PQO (%)
DSQT 17a 39 6.7 hrs 2 hrs (35%) 35 %
DSQT 18 47 2.6 hrs 1 hr (40 %) 40 %
DSQT 19 36 2 hrs 1.1 hrs (35 %) 35%
100X100 5175 T 33 7hrs 2 hirs (27%) 7%
DSQT 25a 51 6.5 hrs 2.1 hrs (30%) 30 %
DSQT 25b 45 7.3 hrs 2.5 mins (33%) 33%
0, 0,
300X300 DSQT 18 81 225 hrs 9 hrs (40%) 40 %
DSQT 19 42 16.2 hrs 4.7 hrs (29%) 29 %

Table 6: Algorithm Efficiency for Class | optimizers with THQS database: (= 1%)

plates, with a user error bound of 10%. The efficiency is preskboth in terms of actual time, as
well as in terms of the number of optimizations that wereiedrout. The bracketed numbers in the
TimeTakercolumns indicate the percentage time taken relative toxhauestive approach.

We see in Table 3 that the R&N algorithm requires a substantial amount of time, or egjently,
number of optimizations, to generate the approximate plagrdm. For example, with the 3D QT9
template at a 1000 resolution, BRSIN takes about 27% of the exhaustive time. On the other hand,
when we consider GBRQO, we see that it has a much better performance, requiaghghare than
15% even in the worst-case across all templates.

Turning our attention to Table 4, which repeats the aboveexpent on the TPC-DS database, we
see that the results are even more striking. KRBl consumes very large overheads in general, whereas
GS PQO again does not exceed 15%.

An interesting point to note in both these tables is that théngzation percentages are virtually
identical to the time percentages. This means that thepol&ion mechanisms of kNN and PQO take
insignificant time as compared to making optimizer calls.

When the user’s error constraint is tightened from 10 pdrtefh percent, the resulting algorithmic
performance is shown in Table 5 and Table 6. OnlyB30 is shown since for this stringent constraint,
the RSKNN algorithm tends to optimize close to the entire spaceait be seen from the table that
by optimizing only aroundt0% of the points, GSPQO is able to generate extremely high-quality
approximate plan diagrams.

To demonstrate that the above results are not specific toddpt& sample comparison of the algo-
rithms across other commercial optimizers, anonymou$gymed to as OptA, OptB and OptC, is given
in Table 7. We see here that for different query templates (2Bolution 100) with an error bound of
10%, GS.PQO again incurs only low overheads as compared t«R'S.
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Resolution / Query No. of | Exhaustive Plan Diagram Approximation Time Taken Optimizations Required (%)
Dimension | Template | Plans Generation Time RS_KNN GS_PQO RS_KNN GS_.PQO
2 10 4 hrs 14 mins (6%) 10 mins (4%) 6 % 4%
5 16 3 hrs 18 mins 1 hr (30%) 14 mins (7%) 30 % 7%
OptA 7 13 3 hrs 43 mins 22 mins (10%) | 14 mins (6.5%) 10 % 6.5 %
8 74 7 hrs 41 mins 2.6 hrs (35%) 1.2 hr (15%) 35% 15 %
9 47 5 hrs 20 mins 2.2 hrs (42%) | 41 mins (13%) 42 % 13%
21 21 3 hrs 40 mins 19 mins (9%) 4 mins (2%) 9% 2%
2 20 38 mins 5 mins (12%) 3 mins (7%) 12 % 7%
5 12 3 mins 4 secs (2%) 2 secs (1%) 2% 1%
OptB 7 6 11 mins 26 secs (4%) 26 secs (4%) 4% 4%
8 12 10 mins 1 min (13%) 36 secs (6%) 13 % 6 %
9 18 14 mins 2 min (16%) 50 secs (6%) 16 % 6 %
21 8 3 mins 2 min (60%) 20 secs (11%) 60 % 11 %
2 12 22 mins 1 min (5%) 13 secs (1%) 5% 1%
5 3 25 mins 30 secs (2%) 15 secs (1%) 2% 1%
optC 7 10 16 mins 28 secs (3%) 10 secs (1%) 3% 1%
8 16 21 mins 2 mins (10%) 51 secs (4%) 10 % 4%
9 4 20 mins 36 secs (3%) 12 secs (1%) 3% 1%
21 10 35 mins 4 mins (12%) | 1.75 mins (5%) 12 % 5%

Table 7: Comparative Study of Approximation Techniquedifferent DB-Engine

3.2 Class Il Optimizers

We now move on to demonstrate how the FPC feature, providétidss Il optimizers, can be used to
improve the performance of GBQO. Tables 8 and 9 show the effort required by B3O for obtain-
ing approximate plan diagrams with an error bound @f on the TPC-H and TPC-DS benchmarks,
respectively. We see here that ®®O consistently completes the approximation in less fliéfH
time, or equivalently, optimizations, testifying to thelity of FPC in improving the performance.

With a error bound of 1%, however, the role of FPC becomestdithsince interpolation is at a
premium, and therefore the diagram generation time is airtol that seen for Class | optimizers.

3.3 Class Il Optimizers

Turning our attention to Class Il optimizers, we now evaéduthe two algorithms, DiffGen and Ap-
proxDiffGen. For this experiment, the OptPub engine wasifremtito (a) implement the FPC feature
internally, and (b) to return the second best plan along thi¢hoptimal plan when the “explain” com-
mand is executed.

As can be seen in Table 10, DiffGen usually requires at m@&t optimizations to generatecm-
pletely accurateplan diagram for all query templates, except those basedumny B, the reason for
which is discussed below. The good performance of Diff Genlmaattributed to the following: Along
with the optimizations being performed at select pointgya@ints (except the origin) are costed exactly
once. Since the FPC feature is internalized in the optimikeroverhead incurred is very small, and an
important byproduct of this minor investment is the abitiyalso obtain the cost diagram correspond-
ing to the plan diagram.

Though10% optimizations is usually the order of the day, there are siotel scenarios when the
DiffGen algorithm requires a substantial number of optetians to generate the plan diagram. Such
a situation is seen for QT8 — the reason is that the cost ofdbensl best plan is very close to that of
the optimal plan over an extended region. Even though the gMaich occurs much later, this close-
to-optimal cost causes the algorithm to optimize at fre¢jurgarvals as the constrainf(¢’) < ¢;(q) is
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Resolution/ Query No. of | Exhaustive Plan Diagram | Time taken by | Optimizations performed
Dimension Template | Plans Generation time GS_PQO by GS_PQO (%)
QT2 44 0.5 hrs 2 mins (7%) 7%
QT3 16 8 mins 28 secs (6%) 6 %
QT4 11 6 mins 18 secs (5%) 5%
QT5 23 0.75 hrs 3 mins (7%) 7%
QT8 50 lhr 5 mins (7.5%) 7.5%
QT9 44 2 hrs 8 mins (7.5%) 75%
100x100 oT10 17 2 mins 43 secs (6%) 6%
QT11 16 36 mins 1 min (3%) 3%
QT12 7 4 mins 4 secs (2%) 2%
QT16 32 10 mins 1 min (10%) 10 %
QT20 33 4 hrs 8 mins (3.5%) 35%
QT21 42 0.5 hrs 2 mins (8%) 8%
QT2 76 9.6 hrs 11 mins (2%) 2%
QT3 22 1.7 hrs 3 mins (3%) 3%
QT4 12 1hr 2 mins (3%) 3%
QT5 31 8.3 hrs 10 mins (2%) 2%
QT8 92 10.5hrs 12 mins (2%) 2%
QT9 91 26.8 hrs 32 mins (1.8%) 1.8%
300X300 oT10 31 45 hrs 5 mins (1.6%) 6%
QT11 20 25hrs 5 mins (3.5%) 35%
QT12 7 1hr 30 secs (1%) 1%
QT16 38 1.6 hrs 3 mins (3%) 3%
QT20 46 lday 7.5 hrs 28 mins (1.8%) 1.8%
QT21 48 4.8 hrs 4 mins (1%) 1%
QT8 132 6 days 3.8 hrs (3%) 3%
1000X1000 QT16 25 16 hrs 9 mins (1%) 1%
QT21 58 2 days 6 hrs 32 mins (1%) 1%
QT8 190 6 day 10 hrs hrs (4%) 4%
100X100X100 QT9 404 10 days 21.6 hrs (9%) 9 %
QT21 130 3days 3.5 hrs (5%) 5%
30X30X30X30 QT8 243 5 days 12 hrs (10%) 10 %

Table 8: Efficiency of GEPQO for Class Il optimizers with TPC-H database<(10%)

Resolution/ Query No. of | Exhaustive Plan Diagram | Time taken by | Optimizations performed
Dimension | Template | Plans Generation time GS_PQO by GS_PQO (%)
DSQT 12 13 6.7 hrs 8 mins (2%) 2%
DSQT 17a 39 6.7 hrs 20 mins (5%) 5%
DSQT 18 47 2 hr 36 min 4 mins (5%) 5%
100X100 DSQT 19 36 1 hr 48 min 3 mins (4%) 1%
DSQT 25 33 7 hrs 45 mins (10%) 10 %
DSQT 25a 51 6.5 hrs 42 mins (10%) 10 %
DSQT 25b 45 7.3 hrs 30 mins (7%) 7%
DSQT 12 15 2 hr 11 min 30 mins (4%) 4%
300X300 DSQT 18 81 22.5hrs 1.2 hrs (5%) 5%
DSQT 19 42 16.2 hrs 24 mins (3%) 3%

Table 9: Efficiency of GFPQO for Class Il optimizers with TPC-DS database-(10%)
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Resolution Query No. of | Exhaustive Plan Diagram Time taken by Optimizations performed
Dimension Template | Plans Generation time DiffGen by DiffGen (%)
QT5 22 5 hrs 20 mins 4 mins (1%) 0.17 %
1000 x 1000 QT8 20 6 hrs 10 mins 2 hrs 47 mins(45%) 44 %
QT9 16 6 hrs 40 mins 40 mins (10%) 7.4%
QT5 23 5 hrs 48 mins 13mins (3%) 24%
100 x 100 x 100 QT8 49 5 hrs 58 mins 2 hrs 2 mins (34%) 32%
QT9 22 6 hrs 45 mins 5 mins (1%) 0.24 %
QT5 37 4 hrs 50 mins 25 mins(8%) 5.8%
30 x 30 x 30x 30 QT8 28 4 hrs 30 mins 1 hr 18 mins(29%) 26 %
QT9 62 6 hrs 10 mins 7 mins(2%) 0.7%
Table 10: Performance of the DiffGen Algorithm




Resolution Query No. of | Exhaustive Plan Diagram | Approximate Plan Diagram | Optimizations performed
Resolution Template | Plans Generation time Generation time by ApproxDiffGen (%)

QT5 22 5 hrs 20 mins 3 mins (1%) 0.09 %
1000 x 1000 QT8 20 6 hrs 10 mins 9 mins (2%) 1.16 %
QT9 16 6 hrs 40 mins 4 mins (1%) 0.12 %
QT5 23 5 hrs 48 mins 10 mins (3%) 1.7%
100 x 100 x 100 QT8 49 5 hrs 58 mins 17 mins (5%) 3.4%
QT9 22 6 hrs 45 mins 4 mins (1%) 0.06 %
QT5 37 4 hrs 50 mins 20 mins (7%) 45%
30 x 30 x 30x 30 QT8 28 4 hrs 30 mins 10 mins (4%) 19%
QT9 62 6 hrs 10 mins 5 mins (1%) 0.3%

Table 11: Performance of the ApproxDiffGen Algorithm=€ 10%)

easily violated.

Turning our attention to the ApproxDiffGen algorithm, wedithat it can be consistently used to
generate an approximate plan diagram withDeo error bound, while performing less than 5% opti-
mizations — as highlighted in Table 11. A point to note herthad, even for QT8, due to the relaxation
of the effect of the proximity of the second best plan, thengleagram is now obtained incurring only
a low overhead.

A related point to note is that unlike the Optimizer | and kgtes where the time and optimization
overheads were virtually identical, here the time overteaé a little more than that of optimization.
The reason is that, although FPC is very cheap, since it hias tovoked for a very large number of
points, it adds a small but perceptible time overhead.

4 Conclusions

We have investigated in this paper the efficient generatiompproximate plan diagrams, a key re-
source in the analysis and redesign of modern database gpBmyizers. Based on the optimizer’s
API capabilities, we made a partitioning into three diffeirelasses of optimizers, and developed ap-
propriate approximation techniques for each class. Foslawvhich only provides the optimal plan,
our experimental results showed that the BQO algorithm, which combines grid sampling with PQO
interpolation at the micro level, performed very adequatetjuiring less than 15% overheads as com-
pared to the exhaustive approach, for an error bound of 10B&sd overheads came down to 10%
when the same algorithm was used in Class Il optimizers, dtieeir additional FPC feature. Finally,
for Class lll systems, we proved that the DiffGen algorithroduced zero errors and was able to do so
incurring overheads of less than 10%. However, it perforomly for query templates that have the
second-best plan being very close to the optimal choice avextended region. Finally, the Approx-
DiffGen algorithm traded error for performance, and wag ablsatisfy the 10% error bound with less
than 5% optimizations. It was also able to adequately hahél@roblem templates of DiffGen.

In summary, our work has shown that it is indeed possibleficiently generate high-quality approx-
imations to high-dimension and high-resolution plan diags, with typical overheads being arder
of magnitude lowethan the brute-force approach. We hope that our resultendburage all database
vendors to incorporate the foreign-plan-costing and péark-list features, both of which were critical
to the excellent performance of DiffGen and ApproxDiffGantheir optimizer APIs.
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5 Appendix

In this section we have listed the n-dimensional versiomefalgorithms described and also the imple-
mentation procedure of different techniques mentionelieean the paper.

5.1 RSkKNN

We describe the implementation procedure of the NN-Infatpm and Low Pass Filtering technique
mentioned so far.

5.1.1 NN-Interpolation

As we have mentioned earlier the interpolation techniqlies®n the nearest-neighbor approach to
look for a suitable plan around a non-sampled point as a datelplan for it. The algorithm listed in
the Figure 10 is invoked for each non sampled point.

From here onwards we have usétb represent the dimension of the diagram. The varidbleis
used to set the chessboard distance at which we are intéragteding the neighbors e.g. dfist = 4
then the functiomecursiveNN(derives all possible offsets required to find out neighbotkat partic-
ular chessboard distance. The varialdle: Present is used to avoid generating offsets for neighbors
at a lesser distance i.e. dist = 4 then we should not generate neighborsdoit = 3, 2or1. This is
ensured by making at least one of the coordinates of thetataeal todist. dimPresent is used to
implement the same by forcefully turning the lowest dimengbdist if none of the higher dimension
is set to so. Then we add these offsets with the coordinatesmsampled poink and apply the
interpolation technique thereafter.

5.1.2 Low-Pass

We run one iteration of Low-Pass Filter on the approximaégdim to remove jagged edges introduced
by NN interpolation. We look at all the neighbors at distahdeom a non-sampled point. This can be
done by invoking thé&NearestNeighboalgorithm illustrated in Figure 10 witlist = 1. If any of the
neighboring plans occupies more th#¥ of points, we assign that plan to the non-sampled point.

5.2 GSPQO

The n-dimensional GRQO algorithm is almost same as described in Section 2.t&pexheinitial
grid samplingand rectangle decompositionThe initial grid sampling employs a simple recursive
function InitialGSPQOshown in Figure 11 to optimize the corner points of initiadtengles. In the
rectangle decomposition step we need to optimize or intatpthe mid-points of all the - 2¢-! edges

of a d dimensional hyper-rectangle and break it ftequal hyper-rectangles. The complete algorithm
is illustrated in Figure 11.
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/IGlobal variables

Non-Sampled pointX (z1, zo, ..., 24);
Dimension:d;

Distance:dist;

Array of lengthd: DimVar;
booleandim Present;

QueueR;
kNearestNeighbor()

1. dist =1,
. Call recursiveNN{); //Recursively check neighbors at distantet
if Q is not NULL
Assign plan P occupying maximum points to X.
Return;
. dist + +;
. Goto Step 2;

Noas®N

recursiveNN(Depth)

1. if Depth=1
2. if dimPresent = true,
for i= -dist to +dist, increment i by 1
dimVar[1] =1i;
doNNJob();
else
dimVar[1] = -dist;
doNNJob();
dimVar[1] = +dist;
10. doNNJob();
11. else
12. for i= -dist to +dist, increment i by 1
13. dimVar[Depth] = 1i;
14. dimPresent = false;
15. if i = -dist or i = +dist
16. dimPresent = true;
17. recursiveNN(Depth-1);

© o NG A®

doNNJob()

1. NNI1..d] : dimvar[l...d] + X[1...d]
2. if NNJ1...d] is a sampled point

3. Add N N into Queue);

4. Return;

Figure 10: The n-Dimensional RENN Interpolation Algorithm
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//Global Variables

Integerinterval; /l/Initial GSPQO interval
Array of lengthd: DimVar;
Resolution:res;

GS_PQO (QueryTemplate @, ErrorBound ¢,Dimensiond)

1.
2.
3.

10.
11.
12.
13.
14.

© N Ok

pt =€

InitialGS PQO(d); I/Optimize points in the initial low-resolution grid

Calculate they plan density metric for each

hyper-rectangle witR? corners using Equation 6.
Organize the hyper-rectangles in a max-Heap structigedoan theip values.
For the hyper-rectanglg,, at the top of the heap

If p(Riop) < pr StOp
else
ExtractR;,, from the heap

Apply PQOQ interpolation to the mid-points of qualifyingges ofR,,,,.
Optimize all the remaining mid-points.

SplitRy,, into 24 equal hyper-rectangles.

Computep values for the smaller hyper-rectangles.

Insert the new hyper-rectangles into the heap

Returnto 5
End Algorithm GSPQO

InitialGSPQO(Depth d)

1.
2.

S

if Depth =1
For DimVar[1] =1 to res increment byl
Optimize the point DimVar[1 ... d];
else
For DimVar[l] = 1 to res increment byl
InitialGSPQO{ — 1);

Figure 11: The n-Dimensional GBQO Algorithm
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