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Abstract

Modern query optimizers choose their execution plans primarily on a cost-minimization ba-
sis, assuming that the inputs to the costing process, such asrelational selectivities, are accurate.
However, in practice, these inputs are subject to considerable run-time variation relative to their
compile-time estimates, often leading to poor plan choicesthat cause inflated response times.

We present in this paper a parametrized family of online plangeneration and selection algo-
rithms that substitute, whenever feasible, the optimizer’s solely cost-conscious choice with an alter-
native plan that is (a) guaranteed to be near-optimal in the absence of selectivity estimation errors,
and (b) likely to deliver comparatively stable performancein the presence of arbitrary errors. The
proposed algorithms have been implemented within the PostgreSQL optimizer, and their perfor-
mance evaluated on a rich spectrum of TPC-H and TPC-DS-basedquery templates in a variety of
database environments. Our experimental results indicatethat it is indeed possible to identify robust
plan choices that substantially curtail the adverse effects of erroneous selectivity estimates. In fact,
the plan selection quality provided by our online algorithms is often competitive with those obtained
through apriori knowledge of the plan search and optimalityspaces. Further, the additional opti-
mization overheads incurred by our algorithms are miniscule in comparison to the expected savings
in query execution times. Finally, we also demonstrate thatwith appropriate parameter choices, it
is feasible to directly produce anorexic plan diagrams, a potent objective in query optimizer design.

1 Introduction

In modern database engines, query optimizers choose their execution plans largely based on the classi-
cal System R strategy [21]: Given a user query, (i) apply a variety of heuristics to restrict the combina-
torially large search space of plan alternatives to a manageable size; (ii) estimate, with a cost model and
a dynamic-programming-based processing algorithm, the efficiency of each of these candidate plans;
(iii) finally, choose the plan with the lowest estimated cost.

An implicit assumption in the above approach is that the inputs to the cost model, such as selectivity
estimates of predicates on the base relations, are accurate. However, it is common knowledge that in
practice, these estimates are often significantly in error with respect to the actual values encountered
during query execution. Such errors arise due to a variety ofreasons [23], including outdated statistics,
attribute-value-independence (AVI) assumptions and coarse summaries. An adverse fallout of these
errors is that they often lead to poor plan choices, resulting in inflated query execution times.

Robust Plans. A variety of techniques have been presented in the literature to address the above
problem, including refined summary structures [1], feedback-based adjustments [23, 8], and on-the-
fly reoptimization of queries [17, 19, 3]. The particular approach we explore here is to identify, at
optimization-time,robust planswhose costs are relatively less sensitive to selectivity errors. In a nut-
shell, we “aim for resistance, rather than cure”. Specifically, our goal is to identify plans that are (a)
guaranteed to benear-optimalin the absence of errors, and (b) likely to be comparativelystablein the
presence of errors located across the entire selectivity space. If the optimizer’s standard cost-optimal
plan choice itself is robust, it is retained without substitution. Otherwise, where feasible, this choice
is replaced with an alternative plan that is marginally moreexpensive locally but expected to provide
better global performance.

Our notion of stability is the following: Given an estimatedcompile-time locationqe with optimal
plan Poe, and a run-time error locationqa with optimal planPoa, stability is measured by the extent
to which the replacement planPre bridges the gap between the costs ofPoe andPoa at qa. Note that
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stability is defined relative toPoe, and not in absolute comparison toPoa – while the latter is obviously
more desirable, achieving it appears to be only feasible by resorting to query re-optimizations and plan
switching at run-time. Further, the compile-time techniques presented in this paper can be used in
isolation, or in synergistic conjunction with run-time approaches.

An obvious issue with regard to the plan replacement approach is whether the additional overheads
involved in “second-guessing” the optimizer’s default choices are adequately offset by the expected
response time reductions in the presence of errors. We will demonstrate in this paper, through explicit
implementation within the PostgreSQL optimizer, that it isindeed feasible to achieve extremely at-
tractive tradeoffs. Further, the run-time savings scale supra-linearly in the database size, whereas the
replacement overheads are largely independent of this factor.

In essence, our objective is to design a multi-metric (cost and stability) query optimizer. Multi-metric
considerations in optimizers are not an entirely new concept – for example, PostgreSQL itself supports
using a combination of response time and latency to select execution plans. However, a critical and
fundamental difference in our work is the following: Our second metric, stability, is aglobal criterion
whereas previous multi-metrics have all beenlocal, relevant only to the specific query instance under
consideration.

The EXPAND Family of Algorithms. We propose here a family of algorithms, collectively called
EXPAND, that cover a spectrum of tradeoffs between the goalsof local near-optimality, global stabil-
ity andcomputational efficiency. Expand is based on judiciouslyexpandingthe candidate set of plan
choices that are retained during the core dynamic-programming exercise, based on both cost and ro-
bustness criteria. That is, instead of merely forwarding the cheapest sub-plan from each node in the DP
lattice, atrain of sub-plans is sent, with the cheapest being the “engine”, and viable alternative choices
being the “wagons”. The final plan selection is made at the root of the DP lattice from amongst the set
of complete plans available at this terminal node, subject to user-specified cost and stability criteria.

While the local cost information is easily obtained throughthe existing optimization process, global
stability is assessed through two heuristics: The first, borrowed from [13], compares, at thecorners
of the selectivity space, the costs of each wagon against theengine. The results are used to estimate
whether the wagon might beharmful in terms of being noticeably worse than the engine with regard
to global behavior. If this test is successfully passed, we bring into play the second heuristic which
compares the average of the corner costs of the wagon againstthat of the engine to assess whether
the wagon might be expected to actuallyimprovethe stability performance. The plan with the highest
expected benefit is selected as the final choice.

From the spectrum of algorithmic possibilities in the EXPAND family, we examine a few choices
that cover a range of tradeoffs between the number and diversity of the expanded set of plans, and the
computational overheads incurred in generating and processing these additional plans. Specifically, we
consider (i)RootExpand, wherein the expansion is only carried out at the terminal root node of the
DP lattice, representing the minimal change to the existingoptimizer structure; and (ii)NodeExpand,
wherein a limited expansion is also carried out at select internal nodes in the DP lattice. In particular,
we consider an expansion subject to the same cost and stability constraints as those applied at the root
node of the lattice.

To place the performance of these algorithms in perspective, we also evaluate: (i) (where feasible)
SkylineUniversal, an extreme version of NodeExpand whereinunlimitedexpansion is undertaken at
the internal nodes and the resultant wagons are filtered through a multidimensional cost-and-stability-
basedskyline[5]. The end result is that the root node of the DP lattice essentially receives theentire
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plan search space, modulo our wagon propagation heuristics. (ii)SEER [13], our recently-proposed
offline algorithm for determining robust plans, wherein apriori knowledge of the parametric optimal
set of plans (POSP) covering the selectivity space is utilized to make the replacements. This scheme
operates from outside the optimizer, treating it as a black box that supplies plan-related information
through its API.

Experimental Results. Our new online techniques have been implementedinside the PostgreSQL
optimizer kernel and their performance evaluated on a rich set of TPC-H and TPC-DS-based query
templates in a variety of database environments with diverse logical and physical designs. The ex-
perimental results indicate that it is often possible to make plan choices thatsubstantially curtail the
adverse effects of selectivity estimation errors. Specifically, while incurring additional time overheads
of the order of10-20 milliseconds, and memory overheads in the range of10-100MB, RootExpand
and NodeExpand deliver plan choices that eliminate more than two-thirds of the performance gap
for a significant number of error instances. Equally importantly, the replacement is almostneverma-
terially worse than the optimizer’s original choice. In a nutshell, our replacement plans“often help
substantially, but never seriously hurt”the query performance.

The robustness of our intra-optimizer online algorithms turns out to be competitive to that of (the
extra-optimizer/offline) SEER. Further, their performance is often close to that of SkylineUniversal
itself. In short, RootExpand and NodeExpand are capable of achieving comparable performance to
those obtained with in-depth knowledge of the plan search and optimality spaces.

Finally, while NodeExpand incurs more overheads than RootExpand, it deliversanorexic plan di-
agrams[12] in return. A plan diagram is a color-coded pictorial enumeration of the optimizer’s plan
choices over the selectivity space, and anorexic diagrams are gross simplifications that feature only a
small number of plans without materially degrading the processing quality of any individual query. The
anorexic feature, while not mandatory for stability purposes, has several database-related benefits, as
enumerated in detail in [12] – for example, it enhances the feasibility of parametric query optimization
(PQO) techniques [14, 15].

Creating anorexic plan diagrams is a relatively simple matter when the original plan diagram is apri-
ori available. However, it is a much harder task in our environment since we operate within the scope
of individual queries– this means that the plan choice at a given location is decided with absolutely no
knowledge of the choices that would be made at other locations in the selectivity space.

Another novel feature of NodeExpand is that, due to applyingselection criteria at the internal levels
of the plan generation process, it ensures that all thesub-plansof a chosen replacement are near-optimal
and stable with regard to the corresponding cost-optimal sub-plan. This is in marked contrast to SEER,
where only the complete plan offers such performance guarantees but the quality of the sub-plans is not
assured upfront.

A valid question at this point would be whether in practice the optimizer’s cost-optimal choice usu-
ally turns out toitself be the most robust choice as well – that is, are current industrial-strength opti-
mizersinherently robust? Our experiments with PostgreSQL clearly demonstrate thatthis may not be
the case. Concretely, the proportion of query locations forwhich plan replacement took place was quite
substantial – in the range of30-50% for providing stability, and in excess of80% to additionally attain
anorexic plan diagrams with NodeExpand. (This observationwas corroborated by results obtained on
a popular commercial optimizer with SEER, where similar replacement percentages were seen.)

We also hasten to add that the plan replacement approach primarily addresses only selectivity errors
that occur on thebase relations. However, since these base errors are often the source of poor plan
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choices due to the multiplier effect as they progress up the plan-tree [16], minimizing their impact
could be of significant value in practical environments. Further, the approach can be used in conjunction
with run-time techniques such as adaptive query processing[11] for addressing selectivity errors in the
higher nodes of the plan tree.

Contributions. In summary, we present a framework in this paper to analyze the production of query
execution plans that take into account both local-cost and global-stability perspectives. The framework
opens up a rich algorithmic design space, and we explore a part of it here in the context of industrial-
strength database environments. The initial results have turned out to be rather promising with regard
to substantially reducing the well-known adverse impact ofselectivity errors. Further, we expect that
our strategies, which have been implemented in PostgreSQL as a proof-of-concept, can easily be incor-
porated in commercial engines as well.

To the best of our knowledge, this is the first work to investigate the online and intra-optimizer
identification of stable query execution plans that provideboth guaranteed local near-optimality and
enhanced global-stability in an efficient manner on industrial-strength environments.

Organization. The remainder of this paper is organized as follows: In Section 2, we describe the
overall problem framework and motivation. The basic EXPANDapproach is outlined in Section 3, and
representative plan selection algorithms based on this approach are presented in Section 4. Algorithmic
extensions to handle various query complexities are discussed in Section 5, while the details of the im-
plementation in PostgreSQL are provided in Section 6. The experimental framework and performance
results are highlighted in Section 7. Related work is reviewed in Section 8. Finally, in Section 9, we
summarize our conclusions and outline future research avenues.

2 Problem Formulation

Before we begin, we would like to clarify that an implicit assumption in our study is that the query
optimizer provides a reasonably accurate model of run-timeperformance – while we are aware that
this assumption can often turn out to be off the mark in practice, improving the quality of plan cost
modeling is orthogonal to the issues analyzed in this paper.

Consider the situation where the user has submitted a query and desires stability with regard to
selectivity errors on one or more of the base relations that feature in the query. The choice of the
relations could be based on user preferences and/or the optimizer’s expectation of relations on which
selectivity errors could have a substantial adverse impactdue to incorrect plan choices. Let there be
n such “error-sensitive relations” – treating each of these relations as a dimension, we obtain ann-
dimensional selectivity spaceS. For example, consider the sample queryQ̂10 shown in Figure 1(a),
an SPJ version of Query 10 from the TPC-H benchmark – this query has four base relations (NATION

(N), CUSTOMER (C), ORDERS(O), LINEITEM (L)), two of which –ORDERS, LINEITEM – are deemed
to be error-sensitive relations. For this query, the associated 2D error selectivity spaceS is shown in
Figure 1(b).

Thed-dimensional selectivity space is represented by a finite dense grid of points wherein each point
q(x1, x2, . . . , xd) corresponds to a query instance with selectivityxj in the j-th dimension. We use
c(Pi, q) to represent the optimizer’s estimated cost of executing a query instanceq with planPi. The
corners of the selectivity space are referred to asVk, with k being the binary representation of the
location coordinates – e.g. the bottom-right corner(1, 0), in Figure 1(b) isV2.
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Given a planPi, the region ofS in which it is optimal is referred to as itsendo-optimalregion;
the region in which it is not optimal but its cost is within a factor (1 + λ) of the optimal plan as its
λ-optimal region (whereλ is a positive constant); and the remaining space as itsexo-optimalregion.
These disjoint regions together coverS and are pictorially shown in Figure 1(b). We will hereafter
use the notationendoi, λ-opti andexoi to refer to these various regions associated withPi. The endo-
optimal andλ-optimal regions are collectively referred to (for reasonsexplained below) as the plan’s
SafeRegion, denoted bysafei.

select C.custkey, C.name, C.acctbal, N.name, C.address, C.phone
from Customer C, Orders O, Lineitem L, Nation N
where C.custkey = O.custkey and L.orderkey = O.orderkey and

C.nationkey = N.nationkey and
O.totalprice < 2833andL.extendedprice< 28520

(a) Query InstanceQ̂10

(b) Selectivity Space

Figure 1:Example Query and Selectivity Space

2.1 Cost Constraints on Plan Replacement

Consider a specific query instance whose optimizer-estimated location inS is qe. Denote the cost-
optimal plan choice atqe by Poe. Let theactualrun-time location of the query be denoted byqa and the
optimal plan choice atqa by Poa.

Now, if Poe were to be replaced by a more expensive planPre, clearly there is a price to be paid when
there are no errors (i.e.qa ≡ qe). Further, even with errors, if it so happens thatc(Pre, qa) > c(Poe, qa).
We assume that the user is willing to accept these cost increases as long as they areboundedwithin a
pre-specified local cost thresholdλl and a global stability thresholdλg (λl, λg > 0). Specifically, the
user is willing to permit replacement ofPoe with Pre, iff:
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Local Constraint: At the estimated query locationqe,

c(Pre, qe)

c(Poe, qe)
≤ (1 + λl) (1)

For example, settingλl = 20% stipulates that the local cost of a query instance subject toplan
replacement is guaranteed to be within1.2 times its original value. We will hereafter refer to this
constraint aslocal-optimality.

Global Constraint: In the presence of selectivity errors,

∀qa ∈ S such thatqa 6= qe,
c(Pre, qa)

c(Poe, qa)
≤ (1 + λg) (2)

For example, settingλg = 100% stipulates that the cost of a query instance subject to plan re-
placement is guaranteed to be within twice its original value at all error locations in the selectivity
space. We will hereafter refer to this constraint asglobal-safety.

Essentially, the above requirements guarantee that no material harm (as perceived by the user) can arise
out of the replacement,irrespective of the selectivity error.

2.2 Impact of Plan Replacement

Now, consider the situation where we are contemplating the decision to replace thePoe choice atqe

with thePre plan. The actual query pointqa can be located in any one of the following disjoint regions
of Pre that together coverS (see Figure 1(b)):

Endo-optimal region of Pre: Here,qa is located inendore, which also implies thatPre ≡ Poa. Since
c(Pre, qa) = c(Poa, qa), it follows that the cost ofPre at qa, c(Pre, qa) ≤ c(Poe, qa) (by definition
of a cost-based optimizer). Therefore, improved resistance to selectivity errors is alwaysguaran-
teedin this region. (Note that if the replacement plan happens tonot be from the POSP set, as is
possible with our algorithms,endore will be empty.)

λl-optimal region of Pre: Here,qa is located in the region that could be “swallowed” byPre, replacing
the optimizer’s cost-optimal choices without violating the local cost-bounding constraint. By
virtue of theλl-threshold constraint, we are assured thatc(Pre, qa) ≤ (1 + λl)c(Poa, qa), and by
implication thatc(Pre, qa) ≤ (1 + λl)c(Poe, qa). Now, there are two possibilities: Ifc(Pre, qa) <

c(Poe, qa), then the replacement plan is again guaranteed to improve the resistance to selectivity
errors. On the other hand, ifc(Poe, qa) ≤ c(Pre, qa) ≤ (1 + λl)c(Poe, qa), the replacement is
certain to not cause any real harm, given the small values ofλl that we consider in this paper.

Exo-optimal region of Pre: Here,qa is located outsidesafere, and at such locations, we cannot apri-
ori predictPre’s behavior relative toPoe– it could range from being much better, substantially
reducing the adverse impact of the selectivity error, to theother extreme of beingmuch worse,
making the replacement a counter-productive decision.
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2.3 Motivational Scenario

We now present a sample scenario to motivate how plan replacement could help to improve robustness
to selectivity errors. Here, the example queryQ̂10 is input to the PostgreSQL optimizer; the optimizer
estimates the query locationqe in S to be(1%, 40%), and its cost-optimal choice at this location is plan
P1; and the suggested replacement (by our NodeExpand algorithm with λl, λg = 20%) is planP2. When
the costs of these plans are evaluated at a set of error locationsqa – for instance, along the principal
diagonal ofS, we obtain the graph shown in Figure 2(a). The results indicate thatP2 provides very
substantial performance improvements with respect toP1. In fact, the error-resistance is to the extent
that it virtually provides“immunity” to the error since the performance ofP2 is very close to that of
therun-time optimalplan (generically referred to asPoa in Figure 2(a)) at each of these locations.

To explicitly assess the compile-time predictions of performance improvements, weexecutedtheP1,
P2 andPoa plans at these various locations – the corresponding response-time graph is shown in Fig-
ure 2(b). As can be seen, the broad qualitative behavior is inkeeping with the optimizer’s predictions,
with substantial response-time improvements across the board. The somewhat decreased immunity in
a few locations is attributable to weaknesses in the optimizer’s cost model rather than our selection
policies – this is an orthogonal research issue that has to betackled separately.

Incidentally, the difference betweenP1 andP2 is in their join order – the former implements(C ⋊⋉

(L ⋊⋉ O)) ⋊⋉ N while the latter opts for the bushy join(L ⋊⋉ O) ⋊⋉ (C ⋊⋉ N).

(a) Compile-Time (b) Run-Time

Figure 2:Benefits of Plan Replacement (̂Q10, λl, λg = 20%)

2.4 Error Resistance Metrics

Our quantification of the stability delivered through plan replacements is based on theSERF error
resistance metric introduced in [13]. For a specific error instance, corresponding to estimated location
qe and cost-optimal planPoe, and a run-time locationqa, theSelectivity Error Resistance Factor(SERF)
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of a replacementPre w.r.t. Poe is computed as

SERF (qe, qa) = 1 −
c(Pre, qa) − c(Poa, qa)

c(Poe, qa) − c(Poa, qa)
(3)

Intuitively, SERF captures thefraction of the performance gapbetweenPoe andPoa at qa that is closed
by Pre. In principle, SERF values can range over(−∞, 1], with the following interpretations: SERF in
the range(0, 1], indicates that the replacement is beneficial, with values close to 1 implying immunity to
the selectivity error. For SERF in the range[−λg, 0], the replacement is indifferent in that it neither helps
nor hurts, while SERF values noticeably below−λg highlight a harmful replacement that materially
worsens the performance.

To capture theaggregateimpact of plan replacements on improving the resistance to selectivity errors
in the entire spaceS, we computeAggSERFas:1

AggSERF =

∑
qe∈rep(S)

∑
qa∈exooe(S) SERF (qe, qa)

∑
qe∈S

∑
qa∈exooe(S) 1

(4)

whererep(S) is the set of query instances inS whose plans were replaced, and the normalization is
with respect to the number of error locations that could benefit from improved robustness.

Note that in the above formulation, we assume for simplicitythat the actual locationqa is equally
likely to be anywhere inPoe’s exo-optimal space, that is, that the errors are randomly distributed over
this space. In our future work, we plan to investigate the more generic case where the error locations
have an associated probability distribution.

Apart from AggSERF, we also compute metricsMinSERF andMaxSERF, representing the min-
imum and maximum values of SERF over all replacement instances. MaxSERF values close to the
upper bound of 1 indicate that some replacements provided immunity to specific instances of selectiv-
ity errors. On the other hand, large negative values for MinSERF indicate that some replacements were
harmful. We measure the proportion of such harmful instances in our experiments.

An important point to note here is that it is, by definition, not possible to provide meaningful assis-
tance in the safe region of the optimizer’s plan choicePoe, that is, insafeoe. However, we still need to
consider the possibility that replacements may end up causing harm, reflected through negative SERF
values, in these regions. This is taken into account in our calculation of MinSERF by evaluating it over
theentireselectivity space.

2.5 Problem Definition

With the above background, our stable plan selection problem can now be more precisely stated as:

Stable Plan Selection Problem.Given a query locationqe in a selectivity spaceS and a (user-defined)
local-optimality thresholdλl and global-safety thresholdλg, implement a plan replacement strategy
such that:

1.
c(Pre, qe)

c(Poe, qe)
≤ (1 + λl)

1In [13], the aggregate impact was evaluated based on the locations where replacements were made, whereas our current
formulation is based on the locations where robustness is desired.
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2. ∀qa ∈ S s.t. qa 6= qe,
c(Pre, qa)

c(Poe, qa)
≤ (1 + λg)

or equivalently, MinSERF≥ −λg.

3. The contribution to the AggSERF metric is maximized.

In the above formulation, Condition 1 guarantees local-optimality; Condition 2 assures global-safety;
and Condition 3 captures the stability-improvement objective.

3 Stable Optimization

In this section, we present the generic process followed in our EXPAND family of algorithms to address
the Stable Plan Selection problem. There are two aspects to the algorithms: First, a procedure for
expanding the set of plans retained in the optimization exercise, and second, a selection strategy to pick
a stable replacement from among the retained plans.

For ease of presentation, we will assume that there are no “interesting order” plans [21] present in
the search space, and that the plan operator-trees do not have any “stems” – that is, the root join node,
which represents the combination of all the base relations in the query, terminates the DP lattice. The
algorithmic extensions for handling these scenarios are described in Section 5, and are included in our
experimental study (Section 7).

3.1 Plan Expansion

We now explain how the classical DP procedure, wherein only the cheapest plan identified at each
lattice node is forwarded to the upper levels, is modified in our EXPAND family of algorithms – the
detailed pseudocode listing is given in Figure 3. For ease ofunderstanding, we will use the term “train”
to refer to the expanded array of sub-plans that are propagated from one node to another, with the
“engine” being the cost-optimal sub-plan (i.e. the one thatDP would normally have chosen) and the
“wagons” the additional sub-plans. The engine is denoted bype, whilepw is generically used to denote
the wagons (the lower-casep indicates a sub-plan as opposed to complete plans which are identified
with P ). Finally, the notationx is used to indicate a generic node in the DP lattice.

3.1.1 Leaves and Internal Nodes

Given a query instanceqe, at each error-sensitive leaf (i.e. base relation) or internal nodex in the DP
lattice, the following four-stage retention procedure is used on the set of candidate wagons generated
by the standard exhaustive plan enumeration process.

1. Local Cost Check:In this first step, all wagons whose local cost is more than(1 + λx
l ) times that of

the enginepe are eliminated from consideration. Here,λx
l is an algorithmic cost-bounding parameter

that can, in principle, be set independently ofλl, the user’s local-optimality constraint (which is always
applied at the final root node, as explained later).

2. Global Safety Check:In the next step, we evaluate the behaviour of the “safety function”, defined
as

f(qa) = c(pw, qa) − (1 + λx
g)c(pe, qa) (5)
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Expand (Node x, λx
l , λ

x
g , δg)

Node x : A node in the DP-lattice

λx
l

: Local-optimality threshold for nodex (set as per Table 2)

λx
g : Global-safety threshold for nodex (set as per Table 2)

δg : Global-benefit threshold (set as per Table 2)

1: x.P lanTrain← φ
2: x.ErrorSensitive← FALSE
3: if SubTree(x) contains at least one error-sensitive relationthen
4: x.ErrorSensitive← TRUE
5: if x.ErrorSensitive = FALSE then
6: /∗ Standard DP∗/
7: x.P lanTrain← {Cheapest plan to computex + cheapest plan to computex for each interesting order}
8: Returnx.P lanTrain
9: else
10: /∗ Expansion Process∗/
11: if x.level = LEAF then
12: x.P lanTrain← All possible access paths for base relationi
13: else
14: for all pairwise node combinations that generate Nodex do
15: Let A andB be the lower level nodes combining to producex
16: Let A.P lanTrain andB.P lanTrain be the plan-trains ofA andB, respectively.
17: for eachpA in A.P lanTrain do
18: for eachpB in B.P lanTrain do
19: x.P lanTrain← x.P lanTrain ∪ {Plans formed by joiningpA andpB in all possible ways}
20:
21: for each planp with interesting orderr in x.P lanTrain do
22: Movep to sub-trainx.P lanTrainr.
23: Move all remaining plans to sub-trainx.P lanTrainNO ORDER.
24:
25: /∗ Stem handling for RootExpand∗/
26: if (RootExpand)and (isJoinRoot(x) or isInternalStem(x)) then
27: λx

l
←∞; λx

g ←∞

28:
29: for eachx.P lanTrainr of nodex do
30: /∗ 4-stage Pruning Process∗/
31: Let pe be the engine ofx.P lanTrainr

32: /∗ 1. Local Cost Check∗/
33: for each wagon planpw ∈ x.P lanTrainr do
34: if cost(pw, qe) > (1 + λx

l
)cost(pe, qe) then

35: x.P lanTrainr ← x.P lanTrainr − {pw}
36: /∗ 2. Global Safety Check∗/
37: for each wagon planpw ∈ x.P lanTrainr do
38: for each pointqa ∈ Corners(S) do
39: if cost(pw, qa) > (1 + λx

g )cost(pe, qa) then

40: x.P lanTrainr ← x.P lanTrainr − {pw}
41: break
42: /∗ 3. Global Benefit Check∗/
43: for each wagon planpw ∈ x.P lanTrainr do

44: pw.ξ←
Σqa∈Corners(S)cost(pe,qa)

Σqa∈Corners(S)cost(pw,qa)

45: if x.level = ROOT and pw.ξ ≤ δg then
46: x.P lanTrainr ← x.P lanTrainr − {pw}
47: else ifx.level 6= ROOT and pw.ξ ≤ 1 then
48: x.P lanTrainr ← x.P lanTrainr − {pw}
49: /∗ 4. Skyline Check∗/
50: x.P lanTrainr ← C-S-B Skyline (x.P lanTrainr)
51:
52: if x.level = ROOT then
53: x.P lanTrain← Plan with Maximumξ in x.P lanTrain
54: Returnx.P lanTrain

Figure 3: Node Expansion Procedure
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This function captures the difference between the costs ofpw and aλx
g -inflated version ofpe at location

qa. If f(qa) ≤ 0 throughout the selectivity spaceS, we are guaranteed that, if the cheapest sub-plan
were to be (eventually) replaced by the candidate sub-plan,the adverse impact (if any) of this replace-
ment is bounded byλx

g – that is, in this sense, it issafe. Here,λx
g is again an algorithmic parameter that

can be set independently ofλg (which is always applied at the final root node, as explained later). As a
practical matter, we would expect the choice to be such thatλx

g ≥ λx
l .

Evaluating the safety function requires the ability to costquery plans atarbitrary locations in the
selectivity space. This feature, called “Foreign Plan Costing” (FPC) in [13], is available in commercial
optimizers such as DB2 (Optimization Profile), SQL Server (XML Plan) and Sybase (Abstract Plan).
For PostgreSQL, we had to implement it ourselves (details inSection 6).

The safety check can be verified by exhaustively invoking theFPC function atall locations inS,
but the overheads become unviably large. We have recently developed theCornerCube-SEER (CC-
SEER) [22] algorithm to address this problem. CC-SEER guaranteesglobal safety by merely evaluat-
ing the safety function at theunit hyper-cubeslocated at thecornersof the selectivity space. That is,
given ad-dimensional space, FPC costing is carried out at only4d points. The intuition here is that,
given the nature of plan cost behavior in modern optimizers,if a replacement is known to be safe at the
corner regions of the selectivity space, then it is also safethroughout the interior region(see [22, 13]
for the formal details).

Finally, we have also found that an extremely simple heuristic, called LiteSEER [13], which simply
evaluates whether all thecorner pointsare safe, that is,

∀ qa ∈ Corners(S), f(qa) ≤ 0 (6)

works almost as well as CC-SEER in practice, although not providing formal safety guarantees. In
Figure 1(b), this corresponds to requiring that the replacement be safe atV0, V1, V2 and V3, and in
general, requires FPC evaluation only at2d points. The experimental study in Section 7 employs a
LiteSEER implementation by default, but we also provide sample results with CC-SEER in Section 7.6.

3. Global Benefit Check: While the safety check ensures that there is no material harm, it does not
really address the issue of whether there is anybenefitto be expected ifpe were to be (eventually)
replaced by a given wagonpw. To assess this aspect, we compute the benefit index of a wagonrelative
to its engine as

ξ(pw, pe) =
c(pe, qa)

c(pw, qa)
qa ∈ Corners(S) (7)

That is, we use aCornerAvgheuristic wherein the arithmetic mean of the costs at thecornersof S is
used as an indicator of the assistance that will be provided throughoutS. Benefit indices greater than
1 are taken to indicate beneficial replacements whereas lower values imply superfluous replacements.
Accordingly, only wagons that haveξ > 1 are retained and the remainder are eliminated.

Our choice of the CornerAvg heuristic is motivated by the following observation: The arithmetic
mean favors sub-plans that perform well in thetop-right regionof the selectivity space since the largest
cost magnitudes are usually seen there. We already know thatPOSP plans in this region tend to have
large endo-optimal space coverage [12]. Therefore, they are more likely to provide good stability since,
by definition, anyPre provides stability in its own endo-optimal region, as its cost has to be less than
that ofPoe in this subspace (as discussed previously in Section 2.2). The CornerAvg heuristic projects
that this observation holds true for the sub-plans of near-optimal plans as well.
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4. Cost-Safety-Benefit Skyline Check:After the above three checks, it is possible that some wagons
are “dominated” – that is, their local cost is higher, their corner costs are individually higher, and their
expected global benefit is lower, as compared to some other wagon in the candidate set. Specifically,
consider a pair of wagons,pw1 andpw2, with pw1 dominatingpw2 at the current node. As these wagons
move up the DP lattice, their costs and benefit indices comecloser together, since onlyadditivecon-
stants are incorporated at each level – that is, the “cost-coupling” and the “benefit-coupling” between a
pair of wagons becomesstrongerwith increasing levels. However, and this is the key point, the domi-
nation propertycontinues to hold, right until the lattice root, since the same constants are added to both
wagons.

Given the above, it is sufficient to simply use askylineset [5] of the wagons based on local cost,
global safety and global benefit considerations. Specifically, for 2D error spaces, the skyline is com-
prised of five dimensions – the local cost and the four remote corner costs (the benefit dimension, when
defined with the CornerAvg heuristic, becomes redundant since it is implied from the corner dimen-
sions). A formal proof that the skyline-based wagon selection technique is equivalent to having retained
the entire set of wagons is given in Appendix A.

After the multi-stage pruning procedure completes, the surviving wagons are bundled together with
thepe engine, and this train is then propagated to the higher levels of the DP lattice.

3.1.2 Root Node

When the final root node of the DP lattice is reached, all the above-mentioned pruning checks (Cost,
Safety, Benefit, Skyline) are again made, with the only difference being that bothλx

l andλx
g are now

mandatorilyset equal to the user’s requirements,λl andλg, respectively. On the other hand, the choice
of the benefit threshold,δg(δg ≥ 1), which determines the minimum benefit for which replacementis
considered a worthwhile option, is a design issue. Ideally,it should be set to ensure maximum stability
without falling prey to superfluous replacements. However,there is a secondary consideration – using
a lower value and thereby going ahead with some of the stability-superfluous replacements may help
to achieveanorexicplan diagrams, a potent objective in query optimizer construction. This issue is
discussed in the experimental study of Section 7.

3.2 Plan Selection

At the end of the expansion process, a set of complete plans are available at the root node. There are
two possible scenarios:
1) The only plan remaining is the standard cost-optimal planPoe, in which case this plan is output as
the final selection; or
2) In addition to the cost-optimal plan, there are a set of candidate replacement plans available that are
all expected to be more robust thanPoe (i.e. theirξ > δg). To make the final plan choice from among
this set, our current strategy is to simply use aMaxBenefit heuristic – that is, select the plan with the
highestξ. 2

Constant Ranking Property. An important property of the above selection procedure, borne out by
the definition ofξ, is that it always gives thesame rankingbetween a given pair of potential replacement
plansirrespective of the specific queryqe in S that is currently being optimized. This is exactly how it

2In the unlikely event of ties, they can be broken by choosing the plan with the least local cost from this set.
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should be since the stability of a plan vis-a-vis another plan should be determined by itsglobalbehavior
over the entire space.

Plan Local V0 V1 V2 V3 ξ Pruned
No Cost Cost Cost Cost Cost by
P1 322890 202089 224599 846630 1271678 1.00
P2 322901 202101 224610 846642 1271689 0.99 Benefit
P3 323026 202091 224593 905309 1247883 0.98 Benefit
P4 324203 202089 224604 846636 1952627 0.78 Safety
. . . . . . . . . . . . . . . . . . . . . . . .
P9 329089 208207 230766 356555 1280663 1.22
P10 329100 208219 230777 356567 1280674 1.22 Skyline
P11 329229 202090 224928 846959 4563459 0.43 Safety
. . . . . . . . . . . . . . . . . . . . . . . .
P19 334801 214078 236628 362417 1204051 1.26
P20 335428 208208 231095 356884 4572444 0.47 Safety
P21 337838 208218 231097 356886 9354574 0.25 Safety
. . . . . . . . . . . . . . . . . . . . . . . .
P32 390748 202208 500856 1866554 12495404 0.17 Cost
P33 395288 202096 228361 850384 38862955 0.06 Cost
. . . . . . . . . . . . . . . . . . . . . . . .
P73 > 1012 > 108 > 1012 > 109 > 1013 < 0.1 Cost
P74 > 1012 > 108 > 1012 > 109 > 1013 < 0.1 Cost

Table 1: Example Replacement at Root Node (Q̂10)

Example Replacement. To make the plan replacement procedure concrete, consider the example
situation shown in Table 1, obtained at the root of the DP lattice for queryQ̂10 using the NodeExpand
algorithm with λl, λg = 20%, δg = 1. We present in this table the engine (P1) and seventy three
additional wagons (P2 throughP74), ordered on their local costs. The corner costs and benefit indices
of these plans are also provided, and in the last column, the check (if any) that resulted in their pruning.
As can be seen, each of the checks eliminates some wagons, andfinally, only two wagons (P9, P19)
survive all the checks. From among them, the final plan chosenis P19 which has the maximumξ =
1.26, and whose local cost (334801) is within 4% ofP1 (322890).

4 Replacement Algorithms

Given the generic process described above, we can obtain a host of replacement algorithms by making
different choices for theλx

l andλx
g settings in the lattice interior. For example, we could choose to keep

them constant throughout the lattice. Alternatively, highvalues could be used at the leaves, progres-
sively becoming smaller as we move up the tree. Or, we could try out exactly the opposite, with the
leaves having low values and more relaxed thresholds going up the tree. In essence, a rich design space
opens up when stability considerations are incorporated into classical cost-based optimizers.

We consider here a few representative instances that cover arange of tradeoffs between the number
and diversity of the candidate replacement plans, and the computational overheads incurred in generat-
ing and processing these candidates.

RootExpand. The RootExpand algorithm is obtained by setting bothλx
l and λx

g to 0 at all leaves
and internal nodes, while at the root node, these parametersare set to the user’s constraintsλl, λg,
respectively. This is a simple variant of the classical DP procedure, wherein DP is used as-is starting
from the leaves until the final root node is reached. At this point, the competing (complete) plans that
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(a) RootExpand (b) SkylineUniversal (c) NodeExpand

Figure 4: Plan Expansion Algorithms (Q̂10: λl, λg = 20%, δg = 1)

are evaluated at the root node are filtered based on the four-check sequence, and a final plan selection
is made from the survivors using the procedure described in Section 3.2.

The functioning of RootExpand is pictorially shown in Figure 4(a) for the example querŷQ10 with
λl, λg = 20% (andδg = 1). In this picture,the nodes that contain one or more error-sensitive relations
in their sub-trees are symbolized by double boxes. Further,the value above each node signifies the cost
of the optimal sub-plan to compute the relational expression represented by the node – for example,
the cheapest method of joiningORDERS (O) andLINEITEM (L) has an estimated cost of 313924.
Finally, the number in brackets adjacent to each cost at the root node represents the BenefitIndex of the
associated plan.

At the root node, the second-cheapest plan,NCOL(2), is chosen in preference to the standard DP
choiceNCOL(1), due to locally being well within 20% of the lowest cost of 322890, and having the
maximum BenefitIndex ofξ = 1.23.

SkylineUniversal. The SkylineUniversal algorithm is obtained by setting bothλx
l andλx

g to ∞ at the
leaves and internal nodes. It represents the other end of thespectrum to RootExpand in that it propa-
gates, beginning with the leaves,all wagons evaluated at a node to the levels above. That is, modulo
the Skyline Check, which only eliminates redundant wagons,there is absolutely no other pruning any-
where in the internals of the lattice. This implies that the root node effectively processes theentire set
of complete planspresent in the optimizer’s search space for the query.

A pictorial representation of SkylineUniversal is shown inFigure 4(b) for the same example sce-
nario. In this picture, unfettered expansion is carried outat all the error-sensitive nodes (double boxes).
Whereas, the standard DP procedure is used in the remainder of the lattice, and this is the reason
for only single plans being forwarded, for example, in theN-C sub-lattice component – both leaves,
NATION andCUSTOMER, are not error-sensitive relations. The labels above the error-sensitive nodes
indicate the various plans that have survived the four-check procedure, along with their local costs and
benefit indices. For example,CO(2) has a cost of 31243 andξ = 3.24.

In this example, the number of plans enumerated at the root node NCOL is 1099 and 10 of them
successfully pass the four-stage check. The plan finally chosen isNCOL(3) which has a cost of 328820
(about 2% more expensive than the cost-optimalNCOL(1)) and provides the maximum BenefitIndex
of ξ = 1.38.
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NodeExpand.The NodeExpand algorithm strikes the middle ground betweenthe replacement richness
of Universal and the computational simplicity of RootExpand, by “opening the sub-plan pipe” to a
limited extent. Specifically, the version of NodeExpand that we evaluate here setsλx

l = λl, λ
x
g = λg

at all error-sensitive nodes – that is, the root node’s cost constraints are inherited at the lower levels as
well. These settings are chosen to ensure that thesub-plansalso provide the same local-optimality and
global-safety guarantees as the complete plan, a feature weexpect would prove useful in real-world
environments with aspects such as run-time resource consumption. Further, as a useful byproduct, the
settings also help to keep the expansion overheads under control.

An example of NodeExpand is shown in Figure 4(c), where 3 plans survive the four-stage check at
the root, andNCOL(3) whose BenefitIndex of 1.26 is the highest, is chosen as the final selection.

The constraints imposed by the three expansion algorithms presented above are summarized in Ta-
ble 2 – standard DP is also included for comparative purposes.

Optimization Leaf Node Internal Node Root Node
Algorithm λx

l , λx
g λx

l , λx
g λx

l , λx
g δg

Standard DP 0 0 0 –
RootExpand 0 0 λl,λg ≥ 1
NodeExpand λl,λg λl,λg λl,λg ≥ 1

SkylineUniversal ∞ ∞ λl,λg ≥ 1

Table 2: Constraints of Plan Replacement Algorithms

4.1 Reducing Expansion Overheads

As discussed above, the EXPAND algorithms permit, in general, a train of wagons to be propagated
from each node to the upper levels in the lattice. Due to the multiplicative nature of the DP tree, the
computational and resource overheads arising out of these additional wagons, if not carefully regulated,
can quickly spiral out of control. We have already discussedhow expansion is not carried out at the
error-insensitive nodes of the DP lattice. In addition, a crucial optimization for reducing overheads is
the following:

Inheriting Engine Costs for Wagons. When two plan-trains arrive and are combined at a node, the
cost of combining the engines of the two trains with a particular method is exactly the same cost as that
of combiningany other pairfrom the two trains. This is because the engines and wagons inany train
all represent thesame input data. Therefore, we need to only combine the two engines in all possible
ways, just like in standard DP, and then simply reuse these associated costs to evaluate the total costs
for all other pairings between the two trains. Further, thiscost reuse strategy can be used not just for
the local costs, but for the remote FPC-based corner costs aswell.

4.2 Comparison with SEER

Our earlier SEER approach [13] identified robust plans through theanorexic reduction of plan dia-
grams. There are fundamental differences between that “offline/extra-optimizer/reduction” approach
and our current “online/intra-optimizer/production” work:
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(i) Our techniques are applicable toad-hoc individual queries, whereas SEER is useable only on form-
based query templates for which plan diagrams have been previously computed.
(ii) Unlike SEER, our choice of replacement plans is not restricted to be only from the parametric opti-
mal set of plans (POSP). In principle, it could beany other planfrom the optimizer’s search space that
satisfies the user’s cost constraints. For example, a very good plan that is always second-best by a small
margin over the entire selectivity space. In this case, SEERwould, by definition, not be able to utilize
this plan, whereas it would certainly fall within our ambit.This is confirmed in our experimental study
(Section 7), where non-POSP plans regularly feature in the set of recommended plans.
(iii) Finally, as previously mentioned, an attractive feature of NodeExpand is that it ensures perfor-
mance fidelity of the replacement throughout its operator tree.

5 Handling Query Complexities

For ease of presentation, we had assumed earlier in Section 3that optimizing the user query did not
feature either (a) “interesting orders” (where a sub-plan produces results in a particular order that could
prove useful later in the optimization); or (b) “stems” (where a linear chain of nodes appear above the
join root node of the DP lattice). We now discuss the algorithmic extensions necessary to handle these
features.

5.1 Interesting Orders

Plans corresponding to interesting orders can be handled byhaving each train to be composed of not just
a single generic sequence of wagons, but instead aparallel array of sub-trains, one sub-train for each
interesting order. For the sake of uniformity, we treat the set of wagons corresponding to unordered
plans to also be part of a generic result order called NOORDER.

As discussed earlier, there are two steps to the expansion process – an exhaustive plan enumeration
step followed by the four-stage plan retention process. We discuss the changes required in each of the
two steps to be able to handle interesting orders.

Plan Enumeration. Let A andB be a pair of lower level nodes combining together to produce Nodex.
Then, the plan expansion procedure at Nodex involves exhaustively combiningall sub-trains ofA with
all sub-trains ofB. Subsequently, the result order (if any) of each of the newlyproduced combinations
is determined. Combinations with interesting orders are assigned to associated sub-trains, while the
unordered combinations are all placed in the NOORDER sub-train.

Plan Retention. The plan retention process is handledindependentlyfor each of the sub-trains and
exactly follows the 4-stage pruning procedure described for single trains in Section 3.

5.2 Stems

A stem in a DP-lattice is the linear chain of nodes that may appear above the “join root” node (the
node corresponding to the join of all the relations present in the query). The stem usually features
aggregation and grouping operators. A sample, based on the example query of Figure 1(a), is shown in
Figure 5, where the join root isNCOL , and the stem is displayed in the shaded box. The handling of
stems is algorithm-specific, as described below.
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Figure 5: Plan Stem

RootExpand. Here, as explained previously in Section 4, plan expansion takes place only at the
terminal node of the DP-lattice, with the rest of the processing in the lattice being identical to standard
DP. This is appropriate when the terminal node of the DP-lattice is the join root and there are a set of
alternative plans, corresponding to different join orders, to choose from. However, it becomes mean-
ingless if the terminal node is at the end of a stem since only asingleplan will have survived at this
stage in the normal DP process, and therefore the replacement space is virtually non-existent.

We therefore modify the RootExpand algorithm to permitall plans that reach the join root to continue
to be considered all the way until the terminal node of the stem. That is,λx

l andλx
g are set to∞ at the

join root and all internal stem nodes that lie between the join root and the terminal node. This procedure
is implemented in Lines 26 and 27 of Figure 3.

NodeExpand and SkylineUniversal. For these algorithms, we do not need to make any special
changes for handling stems since they, unlike RootExpand, carry out plan expansion at all levels of the
DP-lattice, and therefore the stem nodes can be treated in the same way as the canonical lattice nodes.
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6 Implementation in PostgreSQL

We have implemented the various algorithms described in theprevious sections inside the Post-
greSQL [25] kernel, specifically version 8.3.6 [26]. We briefly discuss here the issues related to our
implementation experience.

Foreign Plan Costing. In order to implement the LiteSEER andξ heuristics described in Section 3.2,
we need to be able to cost a sub-plan (or plan) at all corners ofS. While this feature is present in several
commercial optimizers, as mentioned before, it is currently not available in PostgreSQL.

Therefore, we have ourselves implemented remote costing inthe PostgreSQL optimizer kernel. Our
initial idea was to merely carry out a bottom-up traversal ofthe operator tree at the foreign location and
at each node appropriately invoke the optimizer’s costing and output estimation routines. This approach
is reasonably straightforward to implement, and more importantly, very efficient.

However, this approach failed to work because PostgreSQL caches certain temporary results during
the optimization process which have an impact on the final plan costs – these cached values are not
available to a purely offline costing approach. Therefore, we had to monitor and retain sufficient ad-
ditional information during the current plan generation process such that the cached values for remote
locations could be explicitly calculated.

Optimization Process.The PostgreSQL optimizer usually optimizes for a combination of latency and
response-time, especially if the access to the output data is through a cursor, or a limit on the number
of output tuples is specified. In order to focus our study, we modified the optimization objective to be
solely response-time.

Intrusiveness on Code-base.From an industrial perspective, an obvious question is the extent to which
the underlying code-base has to be modified to support the proposed approach. In our PostgreSQL
implementation, where we have added around 10K lines of code, the vast majority of the additions
have gone towards including the FPC feature, which as mentioned before, is already available in most
commercial optimizers. Therefore, while we are aware that these systems are considerably more so-
phisticated than PostgreSQL, our expectation is that incorporating our techniques would be minimally
intrusive on their code-base. This is especially true for the RootExpand algorithm, where the behavior
of only the final node in the DP lattice is modified.

7 Experimental Results

The replacement algorithms described in the previous sections were implemented in PostgreSQL
8.3.6 [26] operating on a Sun Ultra 24 workstation with 3 GHz processor, 8 GB of main memory,
1.2 TB of hard disk, and running Ubuntu Linux 8.04. In this section, we first outline the experimental
framework used to evaluate the performance characteristics of these algorithms, and then highlight the
results of the study.

The user-specified cost-increase thresholds in all our experiments areλl, λg = 20%, a practical value
as per our discussions with industrial development teams, and also a value found sufficient to provide
anorexic plan diagrams in popular commercial optimizers [12, 13]. With regard to the benefit threshold
δg, the default value is the minimum of 1, but we discuss the implications of alternative settings.

Query Templates and Plan Diagrams.To assess performance over the entire selectivity space, we
took recourse to parametrizedquery templates– for example, by treating the constants associated with
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O.totalprice andL.extendedprice in Q̂10 as parameters. These templates, enumerated in Appendix B,
are all based on queries appearing in theTPC-H andTPC-DSbenchmarks, and cover both 2D and 3D
selectivity spaces. The templates feature a variety of advanced SQL constructs including groupings,
orderings, nested queries, correlated predicates, aggregates, functions, etc., and the optimization pro-
cess involves handling complexities such as interesting orders and stemmed operator trees. The TPC-H
database contains uniformly distributed data of size 1GB, while the TPC-DS database hosts skewed
data that occupies 100GB.

For each of the query templates, we produced plan diagrams (at a uniform grid resolution of 100 on
each dimension) with the Picasso visualization tool [31].

Physical Design.We considered two physical design configurations in our study: PrimaryKey (PK)
andAllIndex (AI) . The PK configuration represents the default physical design of the database engine,
wherein a clustered index is created on each primary key. AI,on the other hand, represents an “index-
rich” situation with (single-column) indices available onall query-related schema attributes.

Query Template Descriptors. In the subsequent discussion, we useQTx andDSQTx to label query
templates based on Queryx of the TPC-H benchmark and the TPC-DS benchmark, respectively. By
default, the query template is 2D and evaluated on a PK physical design. An additional prefix of3D
indicates that the query template is three-dimensional, while AI signifies an AllIndex physical design.

Performance Metrics. A variety of performance metrics are used to characterize the behavior of the
various replacement algorithms:

1. Plan Stability and Safety The effect of plan replacements on stability is measured with the Ag-
gSERF and MaxSERF statistics. Further, we trackREP%, the percentage of locations where the
optimizer’s original choice is replaced, andHelp% , the percentage of error instances wherein
opting for a replacement plan reduced the performance gap substantially, specifically, by atleast
two-thirds .

Replacement safety is evaluated through MinSERF and the percentage of query locations with
MinSERF< −λg is tabulated.

2. Plan Diagram Cardinality: This metric tallies the number of unique plans present in theplan dia-
gram, with cardinalities less than or aroundten indicatinganorexic diagrams[12, 13]. We also
tabulate the number of non-POSP plans selected by our techniques.

3. Computational Overheads: This metric computes the average overheads incurred, with regard to
both time and space, relative to those incurred by the standard DP procedure.

7.1 Plan Stability Performance

The stability performance results of the RootExpand, NodeExpand, SkylineUniversal and SEER al-
gorithms are enumerated in Table 3 for a representative set of query templates from our study, which
covered a spectrum of error dimensionalities, benchmark databases, physical designs and query com-
plexities.

Our initial objective was to evaluate whether there is really tangible scope for plan replacement or
whether the optimizer’s plan itself is usually the robust choice. We see in Table 3 that REP% for both
RootExpand and NodeExpand is quite substantial, even reaching in excess of 90%for some templates
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Query RootExpand NodeExpand SkylineUniversal SEER
Temp- REP Agg Max Help REP Agg Max Help REP Agg Max Help REP Agg Max Help

late % SERF SERF % % SERF SERF % % SERF SERF % % SERF SERF %
QT5 84 0.54 1 55 85 0.54 1 55 85 0.54 1 55 47 0.61 1 64
QT8 42 0.11 1 1 84 0.13 1 3 – – – – 39 -0.09 1 1
QT10 32 0.20 1 19 98 0.21 1 20 98 0.21 1 20 37 0.21 1 20

AIQT5 87 0.37 1 36 99 0.37 1 38 – – – – 87 0.38 1 39
3DQT8 47 0.17 1 16 69 0.18 1 18 – – – – 59 0.17 1 18
3DQT10 30 0.37 1 67 99 0.39 1 71 99 0.39 1 71 24 0.38 1 41

AI3DQT8 30 0.18 1 21 98 0.19 1 21 – – – – 55 0.12 1 15
AI3DQT10 30 0.11 1 13 99 0.13 1 19 – – – – 55 0.11 1 13

DSQT7 93 0.28 1 28 93 0.28 1 28 93 0.28 1 28 46 0.28 1 28
DSQT18 12 0.31 1 33 58 0.48 1 49 – – – – 57 0.48 1 49
DSQT26 30 0.48 1 50 30 0.49 1 50 30 0.49 1 50 29 0.49 1 49

AIDSQT18 11 0.03 1 3 75 0.07 1 5 – – – – 68 0.04 1 8

Table 3: Plan Stability Performance

(e.g. DSQT7)! On average across all the templates, the replacement percentage was around 40% for
RootExpand and 80% for NodeExpand.

We hasten to add that not all of these replacements are required for achieving stability, and the
stability-superfluous replacements could be eliminated bysetting higher values ofδg. For example, with
QT5, δg = 1.03 achieves the same stability as the defaultδg = 1 and brings REP% of NodeExpand
down from 85% to 32%. Our analysis has shown that in general, about 30%-50% replacements are
sufficient to maximize the stability. However, the additional replacements are useful from a different
perspective – they help to produce anorexic plan diagrams, as seen later in this section.

Moving on to the stability performance itself, we observe that the AggSERF values of both RootEx-
pand and NodeExpand are usually in the range of0.1 to 0.6, with the average being about0.3, which
means that on average aboutone-thirdof the performance handicap due to selectivity errors is removed.
A deeper analysis leads to an even more positive view: Firstly, the Help% statistics indicate that, for
several templates, a significant fraction of the error population corresponding to query locations with
replaced plansdo receive substantial assistance. For example, QT5 has the performance gap more than
halved in about 55 percent of such error situations. Further, with 3DQT10, which has the best Help% of
over 70%, a sizeable fraction (~20%) receive SERF in excess of 0.9 – i.e., effectively achieveimmunity
from the errors.

A sample frequency distribution of the positive SERF valuesobtained with NodeExpand on 3DQT10,
which has the best Help% of over 70%, is shown in Figure 6. It isevident here that a sizeable fraction
(~20%) receive SERF in excess of 0.9 – i.e., effectively achieveimmunityfrom the errors.

Second, the AggSERF performance of (offline) SEER is quite similar to that of RootExpand and
NodeExpand. In our prior study [13], SEER had produced better results for these same templates –
the difference is that those experiments were carried out ona sophisticated commercial optimizer sup-
porting a richer space of quality replacements than PostgreSQL. Implementing our algorithms in such
high-end optimizers is likely to also significantly increase their AggSERF and Help% contributions.

Third, the performance of RootExpand and NodeExpand, in spite of considering a much smaller set
of replacement candidates, is virtually identical to that of SkylineUniversal in the templates where it
was able to successfully complete (the templates for which the algorithm ran out of memory are shown
with –). In fact, as shown in Section 7.5, their performance is fairly close to even anoptimal (wrt
AggSERF) version of SkylineUniversal!

Finally, MaxSERF was 1 for all the templates, testifying to the inherent power of the replacement
approach.
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Figure 6: Frequency Distribution of SERF values (3DQT10)

Taken in toto, these results suggest that the controlled expansion technique is capable of extracting
most of the benefits obtainable through plan replacement.

Replacement Plan Analysis.We have also conducted a preliminary analysis of the characteristics of
the replacement plans vis-a-vis the original choices. Our observations include the following:

• Index intersections are often replaced by joins based on sequential scans. This is due to the
indexes becoming very expensive at the higher selectivity regions of the selectivity space. In
Table 4, we quantify this change for sample query templates by aggregating the number of index
intersections at the replacement locations and comparing to the corresponding number with DP.

Query Template DP NodeExpand
AIQT5 493 3
AIQT7 991 691

Table 4: Index Intersection Statistics

• Nested-loop-based plans are frequently replaced with hash-join-based plans, but the reverse was
never observed. Further, merge joins were almost never retained. These observations are quan-
tified in Table 5, where we tabulate the aggregate number of times each of the join strategies
appears in the replacement plans produced by the NodeExpandapproach. The frequency corre-
sponding to standard DP at those replaced points is also shown in Table 5. As can be seen from
the results, the hash-join proportion, which was already predominant, tends to eat further into the
nested-loop and merge-join presence.

• Finally, we also often saw that the join order of the replacement plan was different to that of the
original plan. In particular, left-deep plans were typically replaced by bushy plans.
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Query Optimization # Nested # Merge # Hash
Template Algorithm Loop Join Join Join

DP 288 60 42022
QT5 NodeExpand 242 0 42128

DP 30 1297 28070
QT10 NodeExpand 30 0 29367

DP 1449 65 35538
DSQT7 NodeExpand 100 0 36952

DP 2377 2 9557
DSQT26 NodeExpand 100 0 11836

Table 5: Join Method Usage Statistics

7.2 Plan Safety Performance

We now shift our attention to the MinSERF metric to evaluate the safetyaspect of plan replacement.
The results are presented in Table 6 and we see that for both RootExpand and NodeExpand: (a) only a
few templates have negative values below−λg (-0.2), (b) even in these cases, the harmful replacements
(shown asHarm% ) occur for only a miniscule percentage of error locations (less than 1% for 2D
templates and less than 5% for 3D templates), and (c) most importantly, their magnitudes are small –
the lowest MinSERF value is within -5. (The reason that even SEER, which is supposed to guarantee
safe replacements, has a few minor negative MinSERF values is that, in order to maximize its scope for
replacement, we implemented it also with the LiteSEER heuristic.)

Query RootExpand NodeExpand SkyUniv SEER
Tem- Min Harm Min Harm Min Harm Min Harm
plate SERF % SERF % SERF % SERF %
QT5 0 0 0 0 0 0 -0.01 0
QT8 0 0 0 0 – – 0 0
QT10 -0.24 0.25 -0.24 0.01 -0.24 0.51 -0.25 0.20

AIQT5 0 0 0 0 – – 0 0
3DQT8 -1.05 0.01 -2.30 0.01 – – 0 0
3DQT10 -1.08 1.93 -0.78 2.15 -0.78 2.15 -0.76 0.01

AI3DQT8 -4.88 0.43 -2.80 4.30 – – 0 0
AI3DQT10 -2.08 1.74 -4.20 0.54 – – -0.69 0.01

DSQT7 0 0 0 0 0 0 0 0
DSQT18 0 0 0 0 – – 0 0
DSQT26 0 0 0 0 0 0 0 0

AIDSQT18 0 0 0 0 – – 0 0

Table 6: Plan Safety Performance

7.3 Plan Diagram Characteristics

We now turn our attention to the characteristics of theplan diagramsobtained with the replacement
algorithms. The associated results are also shown in Table 3, and to place them in context, the statistics
for the standard DP-based optimizer are included.

Plan Diagram Cardinality. We see in Table 7 that for templates such as 3DQT8, where DP gen-
erates “dense” diagrams with high plan cardinalities, RootExpand diagrams may also feature a large

23



Query DP RootExpand NodeExpand SkyUniv SEER
Tem- Plans Plans Non- Plans Non- Plans Non- Plans
plate POSP POSP POSP
QT5 11 3 0 3 0 3 0 2
QT8 18 15 11 3 0 – – 2
QT10 15 7 1 3 0 3 0 2

AIQT5 29 13 3 7 4 – – 4
3DQT8 43 22 17 3 0 – – 2
3DQT10 30 12 2 5 1 5 1 3

AI3DQT8 70 51 41 14 12 – – 7
AI3DQT10 83 37 5 26 17 – – 7

DSQT7 12 3 1 2 1 2 1 2
DSQT18 17 23 8 2 1 – – 2
DSQT26 13 9 7 2 1 2 1 2

AIDSQT18 28 31 7 3 1 – – 3

Table 7: Plan Diagram Performance

(a) DP: 28 plans (b) RootExpand: 31 plans (c) NodeExpand: 3 plans

Figure 7:Plan Diagrams for DP, RootExpand, NodeExpand (AIDSQT18,λl, λg = 20%, δg = 1)

number of plans. This behavior is more prevalent in index-rich environments, with the diagram cardi-
nalities evenexceedingthat of DP for some templates – e.g. DP has 28 plans for AIDSQT18, whereas
RootExpand features 31 plans!

NodeExpand, on the other hand, consistently delivers strongly anorexicplan diagrams for almost
all the templates. In fact, its plan cardinality is often comparable to that of SEER – this is quite
encouraging since it is obtained in spite of having to contend with (a) a much richer search space
from which to choose replacements, and (b) no prior knowledge of the choices made in the remaining
selectivity space.

A sample set of plan diagrams produced on the AIDSQT18 template by DP, RootExpand and Node-
Expand are shown in Figures 7(a) – 7(c).3 These pictures vividly demonstrate that NodeExpand
delivers anorexic diagrams in addition to good plan robustness, whereas RootExpand is only capable
of providing the latter.

An isolated exception to NodeExpand’s anorexic performance is AI3DQT10 where 26 plans feature,
whereas SEER is able to restrict the number to 7. However, this can be remedied ifλx

l andλx
g are

increased to 100% (from the default 20%) at the internal nodes – that is, if the size of the sub-plan
pipe is increased, we again obtain anorexic diagrams with the number of plans coming down to 16.

3We recommend viewing these diagrams directly from the colorPDF file, or from a color print copy, since the greyscale
version may not clearly register the various features.
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Query Maximum REP # of
Template δg % Plans

QT5 1.03 32 6
QT8 1.05 25 6

AIQT5 1.03 32 20

Table 8: Effect ofδg Setting (NodeExpand)

The tradeoffs here are (a) a marginally reduced AggSERF of 0.07, (b) weakened sub-plan performance
guarantees, and (c) about 10% increased memory consumptionto accommodate the larger pipe.

Yet another observation is of relevance here – the top 10 plans, area-wise, of the above-mentioned
26 plans, collectively cover more than99%of the plan diagram. This means that the remaining plans
occur in very few locations and if we assume that all queries are equally probable, these small-area
plans are unlikely to be encountered in practice, thereby approximating anorexia. With standard DP on
the other hand, 70 of the 83 plans are required for a similar area coverage!

Non-POSP plans. We also see in Table 3 that non-POSP plans do feature in the replacement plan
diagrams, occasionally in significant proportions, as in 3DQT8 with RootExpand. Again, this phenom-
ena is more prevalent in index-rich environments – as a case in point, with AI3DQT8, there are 41
non-POSP plans out of 51 for RootExpand, occupying 78% of thespace, while NodeExpand has 12 on
14, covering more than 90% area.

Usually, the non-POSP fraction is highest for RootExpand and this is attributable to POSP replace-
ments often not being available for consideration at the root node as they have been pruned earlier in
the DP lattice (our measurements suggest that this situation occurs in about half the cases).

Effect of δg setting. As stated earlier, not all the replacements imposed by our algorithms are required
for achieving stability. This is quantitatively highlighted in Table 8 where we show, for NodeExpand
on a few representative query templates, the maximum value to which δg can be increased without
compromising the stability achieved with the default setting of δg = 1. We see here that the higher
settings ofδg result in the replacement percentage (REP%) coming down substantially from those
listed in Table 7. As a specific case in point, running NodeExpand on AIQT5 withδg = 1.05 achieves
the same stability performance although the replacement percentage is brought down from 99% to only
32%. At first glance, these higher values may appear to be the preferred settings since they cause
least disruption to the normal optimizer selections and aretherefore more suitable from an industrial
perspective. However, as shown quantitatively in Table 8, the higherδg settings have a side-effect – the
plan diagram cardinalities may increase significantly. In fact, they can even result in aloss of anorexia,
as observed with AIQT5 where the plan diagram cardinality jumps up to 20 from the 7 obtained in
Table 7.

7.4 Computational Overheads

We now turn our attention to the price to be paid for providingplan stability and anorexic diagrams. The
time aspect is captured in Table 9 where the per-query optimization times (in milliseconds) are shown
for DP, RootExpand and NodeExpand – the increase relative toDP is also shown in parentheses. These
results indicate that the performance of both replacement algorithms is within10 to 20 millisecondsof
DP for all the templates.

With regard to memory overheads, shown in Table 10, the additional consumption is well within
10MB(for RootExpand) and100MB(for NodeExpand) over all the query templates. These overheads
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Query Optimization Time (ms)
Template DP RootExpand NodeExpand

QT5 5.4 7.5 (+2.1) 18.9 (+13.5)
QT8 6.0 9.6 (+3.6) 17.8 (+11.8)
QT10 1.5 3.3 (+1.8) 4.8 (+3.3)

AIQT5 6.8 9.7 (+2.9) 20.9 (+14.1)
3DQT8 6.0 20.1 (+14.1) 26.4 (+20.4)
3DQT10 1.5 5.6 (+4.1) 8.1 (+6.6)

AI3DQT8 7.0 27.0 (+20.0) 28.0 (+21.0)
AI3DQT10 1.9 8.2 (+6.3) 10.6 (+8.7)

DSQT7 2.2 3.8 (+1.6) 6.6 (+4.4)
DSQT18 5.0 8.4 (+3.4) 15.7 (+10.7)
DSQT26 2.1 3.5 (+1.4) 6.6 (+4.5)

AIDSQT18 8.6 15.5 (+6.9) 29.8 (+21.2)

Table 9: Time Overheads (in milliseconds)

appear quite acceptable given the richly-provisioned computing environments in vogue today. Further,
this usage is incurred only for a very brief time period (≪ 0.1s), as per Table 9.

Query Memory Overhead (MB)
Template DP RootExpand NodeExpand

QT5 2.0 2.6 (+0.6) 6.2 (+4.2)
QT8 2.0 2.8 (+0.8) 14.8 (+12.8)
QT10 1.6 1.9 (+0.3) 3.9 (+2.3)

AIQT5 2.7 3.5 (+0.8) 11.8 (+9.1)
3DQT8 2.0 5.2 (+3.2) 29.5 (+27.5)
3DQT10 1.6 2.5 (+0.9) 5.0 (+3.4)

AI3DQT8 2.8 6.8 (+4.0) 70.5 (+67.7)
AI3DQT10 1.7 3.6 (+1.9) 7.3 (+5.6)

DSQT7 1.7 2.2 (+0.5) 4.1 (+2.4)
DSQT18 2.0 2.9 (+0.9) 31.0 (+29.0)
DSQT26 1.7 2.1 (+0.4) 4.0 (+2.3)

AIDSQT18 3.2 4.0 (+0.8) 17.0 (+13.8)

Table 10: Memory Consumption (in MB)

Pruning Analysis. As presented in Section 4, our expansion algorithms involvea four-stage pruning
mechanism, comprising of Cost, Safety, Benefit and Skyline checks. We show in Table 8, a sample
instance of the collective ability of these checks to reducethe number of wagons forwarded from a
node to a limited viable number. In this table, obtained fromthe root node of a QT8 instance located
at (20%,20%) inS, we show the initial number of candidate wagons, and the number that remain after
each check. As can be seen, there are over 250 plans at the beginning, but this number is pruned to less
than five by the completion of the last check.

A large fraction of the overall pruning typically occurs dueto the Cost-Safety-Benefit Skyline Check,
as also seen in Table 8. We now show a visual example of this pruning quality through a Cost-Benefit
skyline (which we have found to be a good approximation to theCost-Safety-Benefit Skyline). Specif-
ically, Figure 9 is a plot of all the plans (shown in red) inputto the Cost-Benefit Skyline, while the
green overlays are the ones that form the skyline of this plot. As can be seen from the example, over a
hundred plans are pruned to a very small set of survivors, andthis is a typical occurrence.

7.5 Efficacy of CornerAvg heuristic

In order to quantify the efficacy of the CornerAvg heuristic used by our algorithms, we also evalu-
ated the AggSERF obtained through a “brute-force” algorithm, OptimalAggSERF-SkylineUniversal
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Figure 8: Impact of 4-stage Wagon Pruning

Figure 9: Cost-Benefit Skyline Pruning Example
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(OAS-SU). OAS-SU explicitly and exhaustively checks for each query location, the best replacement
with regard to the AggSERF metric, from the SkylineUniversal set of plans at that location. The per-
formance of OAS-SU is showcased in Table 11 against that of NodeExpand and SkylineUniversal for
all the query templates where SkylineUniversal was feasible.

The results of Table 11 are very encouraging since they demonstrate that the AggSERF achieved
through CornerAvgapproaches that obtained with OAS-SU, testifying to the potency of the CornerAvg
heuristic. For example, on template 3DQT10, CornerAvg achieves an AggSERF of 0.39 as compared
to OAS-SU’s 0.44.

Query NodeExpand SkyLineUniv OAS-SU
Temp- Rep Agg Rep Agg Rep Agg

late % SERF % SERF % SERF
QT5 85 0.54 85 0.54 85 0.64
QT10 98 0.21 98 0.21 99 0.26

3DQT10 99 0.39 99 0.39 94 0.44
DSQT7 93 0.28 93 0.28 99 0.28
DSQT26 30 0.49 30 0.49 99 0.49

Table 11: AggSERF efficacy of CornerAvg heuristic

7.6 Performance with CC-SEER

As mentioned previously in Section 3, the CC-SEER algorithmguarantees global safety, unlike Lite-
SEER, which is a heuristic. A sample result where the safety aspect of CC-SEER is clearly evident is
shown in Table 12, obtained by executing NodeExpand on querytemplate AIQT5.4 We see here that
LiteSEER replacements resulting in negative MinSERF values, which go upto-4.8, are prevented by
CC-SEER.

Query NodeExpand (LiteSEER) NodeExpand (CC-SEER)
Tem- Rep Agg Min Harm Rep Agg Min Harm
plate % SERF SERF % % SERF SERF %

AIQT5 94 0.91 -4.8 2% 93 0.96 0.0 0

Table 12: Guaranteed Replacement Safety with CC-SEER

The safety guarantee of CC-SEER is achieved at a price of increased computational overheads, and
these overheads are shown in Table 13 for a representative set of templates. We see here that the time
overheads of CC-SEER are 4 and 8 times that of LiteSEER for 2D and 3D templates, respectively. The
space overheads are also higher for CC-SEER since each sub-plan has to now carry a larger number of
corner costs to the higher levels, and this factor increasesexponentially with dimensionality.

4This experiment was carried out on a commercial query optimizer since high negative MinSERF values did not arise
on PostgreSQL with NodeExpand on any of our templates.
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Query NodeExpand NodeExpand
(LiteSEER) (CC-SEER)

Template Time Memory Time Memory
(ms) (MB) (ms) (MB)

QT5 18.9 6.2 81.5 15.9
QT10 4.8 3.9 20.4 5.4

3DQT8 26.4 29.5 215.3 118.1
AIQT5 20.9 11.8 86.1 31.5

Table 13: Computational Overheads of CC-SEER

7.7 Higher-dimensional Query Templates

In the previous experiments, the query templates were all either two or three-dimensional. Inherently,
there is no fundamental restriction on applying our algorithms to higher-dimensional templates. How-
ever, from a practical viewpoint, there are two issues: Firstly, given ad-dimensional template, FPC
costing has to be carried out at2d points with LiteSEER (as mentioned previously in Section 3). There-
fore, the safety computation costs increase exponentiallywith dimensionality. Even with this increase,
if we assume that query optimization times upto 1 second are acceptable, then it usually practical to
produce replacement plan choices with as many as 6 dimensions in the selectivity space – a sample
instance is shown in Table 14, where the overheads of optimizing query Q8 of the TPC-H benchmark
using NodeExpand are evaluated with 4, 5 and 6 error-sensitive relations, respectively. We see here
that NodeExpand takes about a quarter-second to optimize the 6D query, utilizing about 200MB of
memory. We expect that such dimensionalities would prove sufficient in practice especially given that
not all base relations would be sensitive to selectivity errors.

Dimen- DP NodeExpand
siona- Time Memory Time Memory

lity (ms) (MB) (ms) (MB)
4D

6.0 4
57 70

5D 119 113
6D 247 157

Table 14: Computational Overheads with Dimensionality

Secondly, explicitly demonstrating that our replacement algorithms do perform better on the various
quality metrics as compared to the classical DP approach requires computing SERF values at all points
of the selectivity space over all replacements. It is this“proving” process that is computationally time-
consuming, not the plan generation process itself, and is the main reason for the limitation to 2D and
3D templates in our study. However, for users who unilaterally subscribe to the Expand approach, plans
can be easily provided for higher-dimensional templates aswell.

We have given sample performance results of NodeExpand for a4D query template 4DQT8, in
Table 15, for which it was feasible to complete the proving process with a low-resolution diagram. The
SEER numbers are also given for comparative purposes.
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Metric NodeExpand SEER DP
Rep % 55 % 53 %

AggSERF 0.19 0.21
Help % 16 % 21 %

MinSERF 0.0 0.0
# of Plans 3 3 32
Non-POSP 1

Table 15: NodeExpand on 4DQT8

8 Related Work

The effective handling of selectivity estimation errors has been a long-standing problem in the database
literature. One approach has been to improve the quality of the statistical meta-data, for which several
techniques have been presented including including refinedsummary structures [1], feedback-based
adjustments [23, 8], hinting frameworks [7], and on-the-flyreoptimization of queries [17, 19, 3]. A
complementary and conceptually different approach has been the identification of robust plans – that
is, to “aim for resistance, rather than cure”, by identifying plans that provide comparatively good per-
formance over large regions of the selectivity space. Such plan choices are especially important for
industrial workloads where global stability is as much a concern as local optimality [18].

Over the last decade, a variety of compile-time strategies have been proposed for identifying robust
plans, including the Least Expected Cost [9, 10], Robust Cardinality Estimation [2] and Rio [3, 4]
approaches. These techniques provide novel and elegant formulations, but, as described previously in
[13], are limited on some important counts: First, they do not all retain a guaranteed level of local opti-
mality in the absence of errors. That is, at the estimated query location, the substitute plan chosen may
bearbitrarily poor compared to the optimizer’s original cost-optimal choice.Second, these techniques
have not been shown to provide sustained acceptable performancethroughoutthe selectivity space,
i.e., in the presence of arbitrary errors. Third, they requirespecializedinformation about the workload
and/or the system which may not always be easy to obtain or model. Finally, their query capabilities
may belimited compared to the original optimizer – e.g., only SPJ queries with key-based joins were
considered in [2, 3].

For completeness, we recapitulate from [13] a more detailedoverview of the above compile-time
strategies (a recent survey of run-time strategies is available in [11]): In the Least Expected Cost (LEC)
approach [9, 10], it is assumed that the distribution of predicate selectivities is apriori available, and
then the plan that has the least-expected-cost over the distribution is chosen for execution. While the
performance of this approach is likely to be good on average,it could be arbitrarily poor for a specific
query as compared to the optimizer’s optimal choice for thatquery. Moreover, it may not always be
feasible to provide the selectivity distributions.

An alternative Robust Cardinality Estimation (RCE) strategy proposed in [2] is to model the selectiv-
ity dependency of the cost functions of the various competing plan choices. Then, given a user-specified
“confidence threshold”T , the plan that is expected to have theleast upper boundwith regard to cost in
T percentile of the queries is selected as the preferred choice. The choice ofT determines the level of
risk that the user is willing to sustain with regard to worst-case behavior. Like the LEC approach, this
too may be arbitrarily poor for a specific query as compared tothe optimizer’s optimal choice.
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In the (initial) optimization phase of the Rio approach [3, 4], a set of uncertainty modeling rules from
[17] are used to classify selectivity errors into one of six categories (ranging from “no uncertainty”
to “very high uncertainty”) based on their derivation mechanisms. Then, these error categories are
converted to hyper-rectangular error boxes drawn around the optimizer’s point estimate. Finally, if the
plans chosen by the optimizer at the corners of the principaldiagonal of the box are the same as that
chosen at the point estimate, then this plan is assumed to be robust throughout the box.

However, in our framework, the above box essentially turns out to be the entire selectivity space and
it is very unlikely that the plans chosen along the principaldiagonal would be the same with respect to
each other, let alone that at the point estimate. Therefore,it would be hard to obtain positive results for
robustness. In contrast, our approach is to invoke plan replacement from a global perspective using the
aggregate behavior over the corners of the selectivity space as indicators.

Both our previous offline SEER technique, and the online algorithms proposed in this paper, address
the above limitations through a confluence of (i) mathematical models sourced from industrial-strength
optimizers, (ii) combined local and global constraints, and (iii) generic but effective heuristics. The
salient differences between SEER and EXPAND were discussedin detail earlier in the paper (Sec-
tion 4.2), the most important being, of course, that we implement an online intra-optimizer approach
that is based on individual query instances, and does not require any global information to be supplied
apriori.

Finally, our plan replacement approach only attempts to address selectivity errors that occur on the
base relations. However, since these base errors are often the source of poor plan choices due to the
multiplier effect as they progress up the plan-tree [16], minimizing their impact could be of significant
value in practical environments. Further, the approach canbe used in conjunction with run-time tech-
niques such as adaptive query processing [11] for addressing selectivity errors in the higher nodes of
the plan tree.

9 Conclusions and Future work

We investigated the systematic introduction of global stability criteria in the cost-based DP optimization
process, with a view to reducing the impact of selectivity errors. Specifically, we proposed the Expand
parametrized family of algorithms for striking the desiredbalance between the competing demands of
enriching the candidate space for replacement plans, and the associated computational overheads. Our
approach expands the set of plans sent from each node in the DPlattice to the higher levels, subject to
a four-stage checking process that ensures only plausible replacements are forwarded, and overheads
are minimized.

We implemented, in the PostgreSQL kernel, a variety of replacement algorithms that covered the
spectrum of design tradeoffs, and evaluated them on benchmark environments. Our results showed that
a significant degree of robustness can be obtained with relatively minor conceptual changes to current
optimizers, especially those supporting a foreign-plan-costing feature. Among the replacement algo-
rithms,NodeExpand, which propagates the user’s cost and stability constraints to the internal nodes
of the DP lattice, proved to be an excellent all-round choice. It simultaneously delivered good stabil-
ity, replacement safety, anorexic plan diagrams, acceptable computational overheads, and near-optimal
sub-plans. The typical situation was that its plan replacements were often able to eliminate more than
two-thirds of the adverse impact of selectivity errors for asubstantial number of error situations, in
return for investing relatively minor additional time and memory resources.
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We hope that the promising results presented here would encourage commercial database vendors
to incorporate such stability considerations in their optimization framework. Our purely compile-time
techniques can be used in conjunction with run-time re-optimization strategies, as well as plan caching
frameworks such as Progressive parametric query optimization (PQO) [6], to minimize the number of
different plans that have to be considered during their execution.

In our future work, we plan to investigate automated techniques for identifying customized assign-
ments to the node-specific cost, safety and benefit thresholds in the Expand approach. Further, it would
be interesting to extend our study to skewed distributions of error locations in the selectivity space.
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APPENDIX

A Proof of Skyline Sufficiency

In Section 3, we described a four-stage pruning procedure that is invoked at each node. The last
check in this procedure selectively retains only theskylineset of wagons based on cost-safety-benefit
considerations. We prove here that the final plan choices made by the optimizer using this restricted set
of wagons is exactly equivalent to that obtained by retaining the entire set of wagons – that is, there is
no “information loss” due to the pruning.

Theorem 1 A sub-planpw eliminated by the Skyline check cannot feature in the final replacement plan
Pre selected by the optimizer in the absence of this check.

Proof: We demonstrate this proof by negation. That is, assume in theabsence of the Skyline check,
the final planPre does contain a wagonpw1 eliminated by this check. Let the elimination have occurred
due to domination bypw2 on the dimensionality space comprised ofLocalCost, Cost(V1), Cost(V2),
Cost(V3), . . . Cost(V2n − 1), BenefitIndex.

Now, let us assess the relationship that develops betweenpw1 andpw2 had both been retained through
the higher levels of the DP lattice. For example, at the next higher nodex, the costs and benefits of the
wagons will be

Wagon Local Corner Benefit
Cost Costs Index

w1 c(pw1, qe) + c(pw1, Vi) + c(pw1, Vi) +
∆e ∆Vi

∑
∆Vi

w2 c(pw1, qe) + c(pw2, Vi) + c(pw2, Vi) +
∆e ∆Vi

∑
∆Vi

where the deltas are the incremental costs, at the local and corner locations, of computing nodex. Note
that these incremental costs will be the same for the two wagons since they both represent the same
input data and can therefore use the same strategy for computing x.

From the above, it is clear that the relative values along allskyline dimensions have indeed come
closer together due to the presence of the additive constants – that is, there is a tighter “coupling”.
However, there is no “inversion” on any dimension due to which the domination property could be
violated. This is because, as is trivially obvious, given two arbitrary numbersvi andvj with vi > vj ,
and a constanta, it is always true thatvi + a > vj + a.

By induction, the above relationship would continue to be true all the way up the lattice to the
root node. Now, in the final selection, the MaxBenefit selection heuristic chooses the wagon with the
maximum benefit. Therefore, it would still be the case that the plan withpw2 would be preferred over
the identical plan withpw1 instead since the benefit of the former is greater than that ofthe latter. Hence
our original assumption was wrong.
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B Query Templates

We give below the specific query templates, based on the TPC-Hand TPC-DS benchmarks, used in our
experimental study. The bold-faced predicates correspondto the selectivity space dimensions.

B.1 TPC-H Query Templates

select
n_name,
sum(l_extendedprice * (1 - l_discount)) as revenue

from
customer,
orders,
lineitem,
supplier,
nation,
region

where
c_custkey = o_custkey
and l_orderkey = o_orderkey
and l_suppkey = s_suppkey
and c_nationkey = s_nationkey
and s_nationkey = n_nationkey
and n_regionkey = r_regionkey
and r_name = ’ASIA’
and o_orderdate >= ’1994-01-01’
and o_orderdate < ’1995-01-01’
and c acctbal :varies
and s acctbal :varies

group by
n_name

order by
revenue desc

Figure 10: QT5 - 2D
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select
o_year,
sum(case

when nation = ’BRAZIL’ then volume
else 0

end) / sum(volume)
from

(
select

YEAR(o_orderdate) as o_year,
l_extendedprice * (1 - l_discount) as volume,
n2.n_name as nation

from
part,
supplier,
lineitem,
orders,
customer,
nation n1,
nation n2,
region

where
p_partkey = l_partkey
and s_suppkey = l_suppkey
and l_orderkey = o_orderkey
and o_custkey = c_custkey
and c_nationkey = n1.n_nationkey
and n1.n_regionkey = r_regionkey
and r_name = ’AMERICA’
and s_nationkey = n2.n_nationkey
and p_type = ’ECONOMY ANODIZED STEEL’
and s acctbal :varies
and l extendedprice :varies

) as all_nations
group by

o_year
order by

o_year

Figure 11: QT8 - 2D
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select
c_custkey,
c_name,
sum(l_extendedprice * (1 - l_discount)) as revenue,
c_acctbal,
n_name,
c_address,
c_phone,
c_comment

from
customer,
orders,
lineitem,
nation

where
c_custkey = o_custkey
and l_orderkey = o_orderkey
and o_orderdate >= ’1993-10-01’
and o_orderdate < ’1994-01-01’
and c_nationkey = n_nationkey
and c acctbal :varies
and l extendedprice :varies

group by
c_custkey,
c_name,
c_acctbal,
c_phone,
n_name,
c_address,
c_comment

order by
revenue desc

Figure 12: QT10 - 2D
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select
o_year,
sum(case

when nation = ’BRAZIL’ then volume
else 0

end) / sum(volume)
from

(
select

YEAR(o_orderdate) as o_year,
l_extendedprice * (1 - l_discount) as volume,
n2.n_name as nation

from
part,
supplier,
lineitem,
orders,
customer,
nation n1,
nation n2,
region

where
p_partkey = l_partkey
and s_suppkey = l_suppkey
and l_orderkey = o_orderkey
and o_custkey = c_custkey
and c_nationkey = n1.n_nationkey
and n1.n_regionkey = r_regionkey
and r_name = ’AMERICA’
and s_nationkey = n2.n_nationkey
and p_type = ’ECONOMY ANODIZED STEEL’
and s_acctbal :varies
and l extendedprice :varies
and o totalprice :varies

) as all_nations
group by

o_year
order by

o_year

Figure 13: QT8 - 3D
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select
c_custkey,
c_name,
sum(l_extendedprice * (1 - l_discount)) as revenue,
c_acctbal,
n_name,
c_address,
c_phone,
c_comment

from
customer,
orders,
lineitem,
nation

where
c_custkey = o_custkey
and l_orderkey = o_orderkey
and c_nationkey = n_nationkey
and c acctbal :varies
and o totalprice :varies
and l extendedprice :varies

group by
c_custkey,
c_name,
c_acctbal,
c_phone,
n_name,
c_address,
c_comment

order by
revenue desc

Figure 14: QT10 - 3D
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select
o_year,
sum(case

when nation = ’BRAZIL’ then volume
else 0

end) / sum(volume)
from

(
select

YEAR(o_orderdate) as o_year,
l_extendedprice * (1 - l_discount) as volume,
n2.n_name as nation

from
part,
supplier,
lineitem,
orders,
customer,
nation n1,
nation n2,
region

where
p_partkey = l_partkey
and s_suppkey = l_suppkey
and l_orderkey = o_orderkey
and o_custkey = c_custkey
and c_nationkey = n1.n_nationkey
and n1.n_regionkey = r_regionkey
and r_name = ’AMERICA’
and s_nationkey = n2.n_nationkey
and p_type = ’ECONOMY ANODIZED STEEL’
and s acctbal :varies
and l extendedprice :varies
and o totalprice :varies
and c acctbal :varies

) as all_nations
group by

o_year
order by

o_year

Figure 15: QT8 - 4D
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B.2 TPC-DS Query Templates

select
i_item_id,
avg(ss_quantity) as agg1,
avg(ss_list_price) as agg2,
avg(ss_coupon_amt) as agg3,
avg(ss_sales_price) as agg4

from
store_sales, customer_demographics,
date_dim, item, promotion

where
ss_sold_date_sk = d_date_sk
and ss_item_sk = i_item_sk
and ss_cdemo_sk = cd_demo_sk
and ss_promo_sk = p_promo_sk
and cd_gender = ’M’ and cd_marital_status = ’S’
and cd_education_status = ’College’
and (p_channel_email = ’N’ or p_channel_event = ’N’)
and d_year = 2000
and ss salesprice :varies
and i current price :varies

group by
i_item_id

order by
i_item_id

limit 100;

Figure 16: DSQT7
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select
i_item_id,
ca_country,
ca_state,
ca_county,
avg(cs_quantity) agg1,
avg(cs_list_price) agg2,
avg(cs_coupon_amt) agg3,
avg(cs_sales_price) agg4,
avg(cs_net_profit) agg5,
avg(c_birth_year) agg6,

avg(cd1.cd_dep_count) agg7
from

catalog_sales,
customer_demographics cd1,
customer_demographics cd2,
customer,
customer_address,
date_dim,
item

where
cs_sold_date_sk = d_date_sk
and cs_item_sk = i_item_sk
and cs_bill_cdemo_sk = cd1.cd_demo_sk
and cs_bill_customer_sk = c_customer_sk
and cd1.cd_gender = ’F’
and cd1.cd_education_status = ’Unknown’
and c_current_cdemo_sk = cd2.cd_demo_sk
and c_current_addr_sk = ca_address_sk
and c_birth_month in (3,11,9,5,8,10)
and d_year = 2000
and ca_state in (’NC’,’AK’,’PA’,’AK’,’CA’,’MA’,’WV’)
and cs list price :varies
and i current price :varies

group by
i_item_id,
ca_country,
ca_state,
ca_county

order by
ca_country,
ca_state,
ca_county

Figure 17: DSQT18
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select
i_item_id, avg(cs_quantity) as agg1,
avg(cs_list_price) as agg2,
avg(cs_coupon_amt) as agg3,
avg(cs_sales_price) as agg4

from
catalog_sales, customer_demographics,
date_dim, item, promotion

where
cs_sold_date_sk = d_date_sk
and cs_item_sk = i_item_sk
and cs_bill_cdemo_sk = cd_demo_sk
and cs_promo_sk = p_promo_sk
and cd_gender = ’M’ and cd_marital_status = ’S’
and cd_education_status = ’College’
and (p_channel_email = ’N’ or p_channel_event = ’N’)
and d_year = 2000
and cs list price :varies
and i current price :varies

group by
i_item_id

order by
i_item_id;

Figure 18: DSQT26
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