Stability-conscious Query Optimization

M. Abhirama Sourjya Bhaumik Atreyee Dey Harsh Shrimal Jay#aritsa

Technical Report
TR-2009-01

Database Systems Lab
Supercomputer Education and Research Centre

Indian Institute of Science

Bangalore 560012, India

http://dsl.serc.iisc.ernet.in

Oct 5, 2009

Abstract

Modern query optimizers choose their execution plans pilynan a cost-minimization ba-
sis, assuming that the inputs to the costing process, sucbla®nal selectivities, are accurate.
However, in practice, these inputs are subject to conditienaun-time variation relative to their
compile-time estimates, often leading to poor plan choibascause inflated response times.

We present in this paper a parametrized family of online glaneration and selection algo-
rithms that substitute, whenever feasible, the optimizenlely cost-conscious choice with an alter-
native plan that is (a) guaranteed to be near-optimal in lisersce of selectivity estimation errors,
and (b) likely to deliver comparatively stable performaimté¢he presence of arbitrary errors. The
proposed algorithms have been implemented within the RES@L optimizer, and their perfor-
mance evaluated on a rich spectrum of TPC-H and TPC-DS-lipssg templates in a variety of
database environments. Our experimental results indilcatét is indeed possible to identify robust
plan choices that substantially curtail the adverse effeterroneous selectivity estimates. In fact,
the plan selection quality provided by our online algorithisioften competitive with those obtained
through apriori knowledge of the plan search and optimalfisices. Further, the additional opti-
mization overheads incurred by our algorithms are minsgutomparison to the expected savings
in query execution times. Finally, we also demonstrate whtkt appropriate parameter choices, it
is feasible to directly produce anorexic plan diagrams,tamgambjective in query optimizer design.

1 Introduction

In modern database engines, query optimizers choose #emugon plans largely based on the classi-
cal System R strategy [21]: Given a user query, (i) apply &waof heuristics to restrict the combina-
torially large search space of plan alternatives to a maatagesize; (ii) estimate, with a cost model and
a dynamic-programming-based processing algorithm, thaesfcy of each of these candidate plans;
(iii) finally, choose the plan with the lowest estimated cost

An implicit assumption in the above approach is that the ispaithe cost model, such as selectivity
estimates of predicates on the base relations, are acclitateever, it is common knowledge that in
practice, these estimates are often significantly in eritr vespect to the actual values encountered
during query execution. Such errors arise due to a varietgagons [23], including outdated statistics,
attribute-value-independence (AVI) assumptions andssbaummaries. An adverse fallout of these
errors is that they often lead to poor plan choices, resultinnflated query execution times.

Robust Plans. A variety of techniques have been presented in the litezatoiraddress the above
problem, including refined summary structures [1], fee#daamsed adjustments [23, 8], and on-the-
fly reoptimization of queries [17, 19, 3]. The particular eggch we explore here is to identify, at
optimization-timeyobust plansvhose costs are relatively less sensitive to selectivitgrsr In a nut-
shell, we “aim for resistance, rather than cure”. Specifjcalur goal is to identify plans that are (a)
guaranteed to beear-optimalin the absence of errors, and (b) likely to be comparatis&yplein the
presence of errors located across the entire selectivigesplf the optimizer’'s standard cost-optimal
plan choice itself is robust, it is retained without suhgidn. Otherwise, where feasible, this choice
is replaced with an alternative plan that is marginally mexpensive locally but expected to provide
better global performance.

Our notion of stability is the following: Given an estimatedmpile-time locatiory. with optimal
plan P,., and a run-time error locatiog, with optimal planP,,, stability is measured by the extent
to which the replacement plaR.. bridges the gap between the costsif and P,, at q,. Note that

2

stability is defined relative t@,., and not in absolute comparisoniy, — while the latter is obviously
more desirable, achieving it appears to be only feasiblebgrting to query re-optimizations and plan
switching at run-time. Further, the compile-time techmigjypresented in this paper can be used in
isolation, or in synergistic conjunction with run-time apaches.

An obvious issue with regard to the plan replacement appr@sawhether the additional overheads
involved in “second-guessing” the optimizer's default ides are adequately offset by the expected
response time reductions in the presence of errors. We ®ifiahstrate in this paper, through explicit
implementation within the PostgreSQL optimizer, that itndeed feasible to achieve extremely at-
tractive tradeoffs. Further, the run-time savings scafgailinearly in the database size, whereas the
replacement overheads are largely independent of thisrfact

In essence, our objective is to design a multi-metric (codtsability) query optimizer. Multi-metric
considerations in optimizers are not an entirely new conedpr example, PostgreSQL itself supports
using a combination of response time and latency to selestugion plans. However, a critical and
fundamental difference in our work is the following: Our eed metric, stability, is global criterion
whereas previous multi-metrics have all béecal, relevant only to the specific query instance under
consideration.

The EXPAND Family of Algorithms. We propose here a family of algorithms, collectively called
EXPAND, that cover a spectrum of tradeoffs between the gofdtscal near-optimality global stabil-

ity andcomputational efficiencyExpand is based on judiciousixpandinghe candidate set of plan
choices that are retained during the core dynamic-progiamexercise, based on both cost and ro-
bustness criteria. That is, instead of merely forwardirggdheapest sub-plan from each node in the DP
lattice, atrain of sub-plans is sent, with the cheapest being the “engimel véable alternative choices
being the “wagons”. The final plan selection is made at thé @bthe DP lattice from amongst the set
of complete plans available at this terminal node, subpgeaser-specified cost and stability criteria.

While the local cost information is easily obtained throtigé existing optimization process, global
stability is assessed through two heuristics: The firstydveed from [13], compares, at tle®rners
of the selectivity space, the costs of each wagon againgripme. The results are used to estimate
whether the wagon might Bearmfulin terms of being noticeably worse than the engine with reégar
to global behavior. If this test is successfully passed, wegbinto play the second heuristic which
compares the average of the corner costs of the wagon adlaatstf the engine to assess whether
the wagon might be expected to actuattyprovethe stability performance. The plan with the highest
expected benefit is selected as the final choice.

From the spectrum of algorithmic possibilities in the EXHARamily, we examine a few choices
that cover a range of tradeoffs between the number and divefdshe expanded set of plans, and the
computational overheads incurred in generating and psougthese additional plans. Specifically, we
consider (i)RootExpand, wherein the expansion is only carried out at the terminat node of the
DP lattice, representing the minimal change to the exiggpignizer structure; and (iilNodeExpand
wherein a limited expansion is also carried out at seleerial nodes in the DP lattice. In particular,
we consider an expansion subject to the same cost and tstabifistraints as those applied at the root
node of the lattice.

To place the performance of these algorithms in perspectieealso evaluate: (i) (where feasible)
SkylineUniversal, an extreme version of NodeExpand wheremimited expansion is undertaken at
the internal nodes and the resultant wagons are filteredghra multidimensional cost-and-stability-
basedskyline[5]. The end result is that the root node of the DP lattice misaky receives theentire

plan search spaganodulo our wagon propagation heuristics. 8EER [13], our recently-proposed
offline algorithm for determining robust plans, wherein apriorowhedge of the parametric optimal
set of plans (POSP) covering the selectivity space is atilito make the replacements. This scheme
operates from outside the optimizer, treating it as a blawk that supplies plan-related information
through its API.

Experimental Results. Our new online techniques have been implememesdie the PostgreSQL
optimizer kernel and their performance evaluated on a ratto§ TPC-H and TPC-DS-based query
templates in a variety of database environments with devérgical and physical designs. The ex-
perimental results indicate that it is often possible to enplan choices thaubstantially curtail the
adverse effects of selectivity estimation errd@pecifically, while incurring additional time overheads
of the order 0f10-20 milliseconds and memory overheads in the rangel6f100MB, RootExpand
and NodeExpand deliver plan choices that eliminate more tiva-thirds of the performance gap
for a significant number of error instances. Equally impatfia the replacement is almoséverma-
terially worse than the optimizer’s original choice. In ashell, our replacement plafisften help
substantially, but never seriously hurtfie query performance.

The robustness of our intra-optimizer online algorithmsisuout to be competitive to that of (the
extra-optimizer/offline) SEER. Further, their performans often close to that of SkylineUniversal
itself. In short, RootExpand and NodeExpand are capabletlukaing comparable performance to
those obtained with in-depth knowledge of the plan seardoatimality spaces.

Finally, while NodeExpand incurs more overheads than RqmdRd, it deliversanorexic plan di-
agrams[12] in return. A plan diagram is a color-coded pictorial ereration of the optimizer’s plan
choices over the selectivity space, and anorexic diagraengrass simplifications that feature only a
small number of plans without materially degrading the pesing quality of any individual query. The
anorexic feature, while not mandatory for stability purggshas several database-related benefits, as
enumerated in detail in [12] — for example, it enhances thsilglity of parametric query optimization
(PQO) techniques [14, 15].

Creating anorexic plan diagrams is a relatively simple erathen the original plan diagram is apri-
ori available. However, it is a much harder task in our envinent since we operate within the scope
of individual queries- this means that the plan choice at a given location is ddaidtd absolutely no
knowledge of the choices that would be made at other locaiiothe selectivity space.

Another novel feature of NodeExpand is that, due to applgelgction criteria at the internal levels
of the plan generation process, it ensures that abtibeplanf a chosen replacement are near-optimal
and stable with regard to the corresponding cost-optimagan. This is in marked contrast to SEER,
where only the complete plan offers such performance gtegarut the quality of the sub-plans is not
assured upfront.

A valid question at this point would be whether in practice tptimizer’s cost-optimal choice usu-
ally turns out toitself be the most robust choice as well — that is, are current indisstrength opti-
mizersinherently robus? Our experiments with PostgreSQL clearly demonstratettiginay not be
the case. Concretely, the proportion of query locationsviuich plan replacement took place was quite
substantial — in the range 80-50% for providing stability, and in excess 80% to additionally attain
anorexic plan diagrams with NodeExpand. (This observatias corroborated by results obtained on
a popular commercial optimizer with SEER, where similataepment percentages were seen.)

We also hasten to add that the plan replacement approachrgyimddresses only selectivity errors
that occur on thdase relations However, since these base errors are often the source ofpfao

choices due to the multiplier effect as they progress up tae-pee [16], minimizing their impact
could be of significant value in practical environments.tker, the approach can be used in conjunction
with run-time techniques such as adaptive query proce$sirjdor addressing selectivity errors in the
higher nodes of the plan tree.

Contributions. In summary, we present a framework in this paper to analyeg@tbduction of query
execution plans that take into account both local-cost dolokdy stability perspectives. The framework
opens up a rich algorithmic design space, and we exploretapirere in the context of industrial-
strength database environments. The initial results haved out to be rather promising with regard
to substantially reducing the well-known adverse impacteadéctivity errors. Further, we expect that
our strategies, which have been implemented in PostgreS@lpeoof-of-concept, can easily be incor-
porated in commercial engines as well.

To the best of our knowledge, this is the first work to investilgthe online and intra-optimizer
identification of stable query execution plans that provbdéh guaranteed local near-optimality and
enhanced global-stability in an efficient manner on indakstrength environments.

Organization. The remainder of this paper is organized as follows: In $acH, we describe the
overall problem framework and motivation. The basic EXPA&liproach is outlined in Section 3, and
representative plan selection algorithms based on thi®app are presented in Section 4. Algorithmic
extensions to handle various query complexities are dészlis Section 5, while the details of the im-
plementation in PostgreSQL are provided in Section 6. Tipeemental framework and performance
results are highlighted in Section 7. Related work is ree@w Section 8. Finally, in Section 9, we
summarize our conclusions and outline future researchusagen

2 Problem Formulation

Before we begin, we would like to clarify that an implicit assption in our study is that the query
optimizer provides a reasonably accurate model of run-perdormance — while we are aware that
this assumption can often turn out to be off the mark in pcagtimproving the quality of plan cost
modeling is orthogonal to the issues analyzed in this paper.

Consider the situation where the user has submitted a quehydesires stability with regard to
selectivity errors on one or more of the base relations thature in the query. The choice of the
relations could be based on user preferences and/or thaipetis expectation of relations on which
selectivity errors could have a substantial adverse imgaetto incorrect plan choices. Let there be
n such “error-sensitive relations” — treating each of thedations as a dimension, we obtain an
dimensional selectivity spac®. For example, consider the sample quéno shown in Figure 1(a),
an SPJ version of Query 10 from the TPC-H benchmark — thisyques four base relationsi£TION
(N), CUSTOMER(C), ORDERS(0), LINEITEM (L)), two of which —ORDERS LINEITEM — are deemed
to be error-sensitive relations. For this query, the asgedi2D error selectivity spacis shown in
Figure 1(b).

Thed-dimensional selectivity space is represented by a finiselgrid of points wherein each point
q(x1,29,...,24) COrresponds to a query instance with selectivifyin the j-th dimension. We use
c(P;, q) to represent the optimizer’s estimated cost of executingeayginstance with plan P;. The
corners of the selectivity space are referred td/gaswith k& being the binary representation of the
location coordinates — e.g. the bottom-right corfien), in Figure 1(b) isl.

Given a planP;, the region ofS in which it is optimal is referred to as itsndo-optimalregion;
the region in which it is not optimal but its cost is within afar (1 + \) of the optimal plan as its
A-optimalregion (where) is a positive constant); and the remaining space asxisoptimalregion.
These disjoint regions together cov&rand are pictorially shown in Figure 1(b). We will hereafter
use the notatioando;, A-opt; andexo; to refer to these various regions associated \WjthThe endo-
optimal andA-optimal regions are collectively referred to (for reaserplained below) as the plan’s

SafeRegiondenoted byafe;.

select C.custkey, C.name, C.acctbal, N.name, C.address, C.phone
from Customer C, Orders O, Lineitem L, Nation N
where C.custkey = O.custkey and L.orderkey = O.orderkey and
C.nationkey = N.nationkey and
O.totalprice < 2833andL.extendedprice < 28520

(a) Query Instance Q10

<
(=
WS

@
©
3
T :
'E .
endoj;
: g
% A-opt;
~ exo;
V,
o O.totalprice —» VZ

(b) Selectivity Space
Figure 1:Example Query and Selectivity Space

2.1 Cost Constraints on Plan Replacement

Consider a specific query instance whose optimizer-estighiatcation inS is ¢.. Denote the cost-
optimal plan choice af, by P,.. Let theactualrun-time location of the query be denotedfyand the
optimal plan choice aj, by P,,,.

Now, if P,. were to be replaced by a more expensive gtanclearly there is a price to be paid when
there are no errors (i.@, = ¢.). Further, even with errors, if it so happens th@®,., ¢.) > ¢(Poe, qa)-
We assume that the user is willing to accept these cost iseseas long as they abeundedwithin a
pre-specified local cost thresholdand a global stability thresholtl, (\;, A\, > 0). Specifically, the
user is willing to permit replacement &f,. with P,., iff:

Local Constraint: At the estimated query locatiap,

C(Prea QE)
C(P067 Qe> < (1 +)‘l) (1)

For example, setting, = 20% stipulates that the local cost of a query instance subjeptaio
replacement is guaranteed to be withi2 times its original value. We will hereafter refer to this
constraint asocal-optimality.

Global Constraint: In the presence of selectivity errors,

C(P’I“67 Qa)

Yq, € S such thay, # q.,
7 (Pre, qa)

< (1+2) (2)

For example, setting, = 100% stipulates that the cost of a query instance subject to @an r
placement is guaranteed to be within twice its original gatiall error locations in the selectivity
space. We will hereafter refer to this constraingésbal-safety

Essentially, the above requirements guarantee that noialdtarm (as perceived by the user) can arise
out of the replacemenitrespective of the selectivity error

2.2 Impact of Plan Replacement

Now, consider the situation where we are contemplating #sin to replace th&,. choice atg,
with the P,. plan. The actual query poigt can be located in any one of the following disjoint regions
of P,. that together cove® (see Figure 1(b)):

Endo-optimal region of P,.: Here,q, is located inendo,., which also implies thaf,. = P,,. Since
¢(Pre,qa) = ¢(Poa, qa), it follows that the cost of,. atq,, ¢(Pre, ¢u) < ¢(Phe, qo) (by definition
of a cost-based optimizer). Therefore, improved resigémselectivity errors is alwaygiaran-
teedin this region. (Note that if the replacement plan happemstde from the POSP set, as is
possible with our algorithmsy.do,. will be empty.)

A-optimal region of P,.. Here,q, is located in the region that could be “swallowed” By, replacing
the optimizer’s cost-optimal choices without violatingettocal cost-bounding constraint. By
virtue of the\;-threshold constraint, we are assured H#.., ¢,) < (1 + \)c(Pos, q2), @nd by
implication thatc(P,., ¢.) < (1 + \)c(Poe, ¢a). Now, there are two possibilities: H P, ¢,) <
¢(P,e, q.), then the replacement plan is again guaranteed to impreveetlistance to selectivity
errors. On the other hand, i Py, gu) < ¢(Pre,qa) < (1 4+ N)c(Poe, ¢a), the replacement is

certain to not cause any real harm, given the small valuestbiat we consider in this paper.

Exo-optimal region of P,.. Here,q, is located outsideafe,., and at such locations, we cannot apri-
ori predict P,.’'s behavior relative taP,.— it could range from being much better, substantially
reducing the adverse impact of the selectivity error, todtier extreme of beingiuch worse
making the replacement a counter-productive decision.

2.3 Motivational Scenario

We now present a sample scenario to motivate how plan repktecould help to improve robustness
to selectivity errors. Here, the example qué}yo is input to the PostgreSQL optimizer; the optimizer
estimates the query locatignin S to be(1%, 40%), and its cost-optimal choice at this location is plan
P;; and the suggested replacement (by our NodeExpand algowtth);, A, = 20%) is planP,. When
the costs of these plans are evaluated at a set of errordasati — for instance, along the principal
diagonal ofS, we obtain the graph shown in Figure 2(a). The results in€it@at P, provides very
substantial performance improvements with respect toln fact, the error-resistance is to the extent
that it virtually providesimmunity” to the error since the performance Bf is very close to that of
therun-time optimabplan (generically referred to d@3,, in Figure 2(a)) at each of these locations.

To explicitly assess the compile-time predictions of perfance improvements, wexecutedhe P,
P, and P,, plans at these various locations — the corresponding respame graph is shown in Fig-
ure 2(b). As can be seen, the broad qualitative behaviorkeaping with the optimizer’s predictions,
with substantial response-time improvements across taelbdhe somewhat decreased immunity in
a few locations is attributable to weaknesses in the opériszost model rather than our selection
policies — this is an orthogonal research issue that has tadiéed separately.

Incidentally, the difference betwedn and P is in their join order — the former implementg’’ x
(L x O)) x N while the latter opts for the bushy joifi. x O) x (C' x N).

loar

3507
T 140 [_g—Poel®)) _ 300 | —g—Toe®))
[£2]
\E’ Lzor —I—Pre(Pz) \% 250} —I—Pre(Pg)
5 100} A Foa E anob A P,
g so =
& g 150} A
> s0r =
é 40t § 100F
"
= £a] A A
& 20t 501
Q
0,0 20,20 4040 Q060 80,80 100,100 %,U 20,20 4040 6060 80,80 100,100
Actnal Selectivity Location q, (xa,ya) Actnal Selectivity Location q, (xa,ya)
(a) Compile-Time (b) Run-Time

Figure 2:Benefits of Plan Replacement@10, \;, A, = 20%)

2.4 Error Resistance Metrics

Our quantification of the stability delivered through plaplacements is based on tB&RF error
resistance metric introduced in [13]. For a specific errgtance, corresponding to estimated location
q. and cost-optimal pla®,., and a run-time locatiog,, theSelectivity Error Resistance Fact6GERF)

of a replacemeng®,. w.r.t. P,. is computed as

C(PT67 qd) — C(Poaa Qa)
C(P0€7 qd) - C(PO(I7 Qa)

Intuitively, SERF captures thfeaction of the performance gapetweenP,. andP,, atq, that is closed
by P,.. In principle, SERF values can range ovyex, 1], with the following interpretations: SERF in
the rang€0, 1], indicates that the replacement is beneficial, with vallesecto 1 implying immunity to
the selectivity error. For SERF in the ranjge)\,, 0], the replacement is indifferent in that it neither helps
nor hurts, while SERF values noticeably belew, highlight a harmful replacement that materially
worsens the performance.

To capture thaggregatempact of plan replacements on improving the resistancelezsvity errors
in the entire spacg, we computeéAggSERF as?

ZQ&ET@])(S) ZqQEBzOOE(S) SERF(Q@? Qa)
ques aneea:ooe(S) 1

whererep(S) is the set of query instances $1whose plans were replaced, and the normalization is
with respect to the number of error locations that could Befiem improved robustness.

Note that in the above formulation, we assume for simplitigt the actual location, is equally
likely to be anywhere irP,.'s exo-optimal space, that is, that the errors are randomslyilduted over
this space. In our future work, we plan to investigate theergeneric case where the error locations
have an associated probability distribution.

Apart from AggSERF, we also compute metrdnSERF andMaxSERF, representing the min-
imum and maximum values of SERF over all replacement insandlaxSERF values close to the
upper bound of 1 indicate that some replacements providetuimty to specific instances of selectiv-
ity errors. On the other hand, large negative values for MRRB indicate that some replacements were
harmful. We measure the proportion of such harmful instamteur experiments.

An important point to note here is that it is, by definitionf possible to provide meaningful assis-
tance in the safe region of the optimizer’s plan chai;g that is, insa fe,.. However, we still need to
consider the possibility that replacements may end up ogisirm, reflected through negative SERF
values, in these regions. This is taken into account in deut&ion of MInSERF by evaluating it over
theentireselectivity space.

SERF(qe,q.) =1 — 3)

AggSERF =

(4)

2.5 Problem Definition

With the above background, our stable plan selection proloign now be more precisely stated as:

Stable Plan Selection ProblemGiven a query location, in a selectivity spac& and a (user-defined)
local-optimality threshold\; and global-safety threshold,, implement a plan replacement strategy
such that:

¢(Pre, ge)
c(Poe, Ge)

1In [13], the aggregate impact was evaluated based on thédnsavhere replacements were made, whereas our current
formulation is based on the locations where robustnesssiseaike

< (1+)\1)

C(P’I“67 Qa)
c(Poe, qa)

or equivalently, MInSERE> —A\,.

2. Yq, € SS.t.q, # qe, < (14 X))

3. The contribution to the AQgSERF metric is maximized.

In the above formulation, Condition 1 guarantees locairoglity; Condition 2 assures global-safety;
and Condition 3 captures the stability-improvement olpject

3 Stable Optimization

In this section, we present the generic process followedieXPAND family of algorithms to address
the Stable Plan Selection problem. There are two aspectsetalgorithms: First, a procedure for
expanding the set of plans retained in the optimization@seyand second, a selection strategy to pick
a stable replacement from among the retained plans.

For ease of presentation, we will assume that there are nerésting order” plans [21] present in
the search space, and that the plan operator-trees do r@ahgvstems” — that is, the root join node,
which represents the combination of all the base relatiorise query, terminates the DP lattice. The
algorithmic extensions for handling these scenarios aserd®d in Section 5, and are included in our
experimental study (Section 7).

3.1 Plan Expansion

We now explain how the classical DP procedure, wherein drdycheapest plan identified at each
lattice node is forwarded to the upper levels, is modifiedun BXPAND family of algorithms — the
detailed pseudocode listing is given in Figure 3. For easmdérstanding, we will use the term “train”
to refer to the expanded array of sub-plans that are propddedm one node to another, with the
“engine” being the cost-optimal sub-plan (i.e. the one DRtwould normally have chosen) and the
“wagons” the additional sub-plans. The engine is denoted. loyhile p,, is generically used to denote
the wagons (the lower-cageindicates a sub-plan as opposed to complete plans whicldaengified
with P). Finally, the notatiorr is used to indicate a generic node in the DP lattice.

3.1.1 Leaves and Internal Nodes

Given a query instancg, at each error-sensitive leaf (i.e. base relation) or m#kenoder in the DP
lattice, the following four-stage retention procedure sed on the set of candidate wagons generated
by the standard exhaustive plan enumeration process.

1. Local Cost Check:In this first step, all wagons whose local cost is more tfian A7) times that of
the enginep. are eliminated from consideration. Herg, is an algorithmic cost-bounding parameter
that can, in principle, be set independently\gfthe user’s local-optimality constraint (which is always
applied at the final root node, as explained later).

2. Global Safety Check:In the next step, we evaluate the behaviour of the “safetgtian”, defined
as

f(@a) = c(Pws @a) — (1 + Ag)c(pe, 4a) (5)

10

Expand (Node z, A\, A}, d,)

Node x : Anode in the DP-lattice

A7 : Local-optimality threshold for node (set as per Table 2)
A3 : Global-safety threshold for node(set as per Table 2)
d4 : Global-benefit threshold (set as per Table 2)

1: z.PlanTrain — 1)

2. z.ErrorSensitive «— FALSE

3. if SubTree(x) contains at least one error-sensitive reldtien

4. z.ErrorSensitive — TRUFE

5: if z.ErrorSensitive = FALSE then

6: /x Standard DPx/

7. z.PlanTrain — {Cheapest plan to computet cheapest plan to compuiefor each interesting ordgr
8: Returnz. PlanT'rain

9: else

10: /«Expansion Process:/

11: if z.level = LEAF then

12: z.PlanTrain — All possible access paths for base relation

13: else

14: for all pairwise node combinations that generate Nod®

15: Let A and B be the lower level nodes combining to produce

16: Let A. PlanTrain and B.PlanTrain be the plan-trains oft and B, respectively.
17: for eachp 4 in A.PlanTrain do

18: for eachpp in B.PlanTrain do

%8: x.PlanTrain — z.PlanTrain U {Plans formed by joining 4 andpz in all possible way}
21. for each plarp with interesting order in z. PlanTrain do

22: Move p to sub-trainz. PlanTrain.,..

%2: Move all remaining plans to sub-train PlanTrainno .o RD ER-

25: /x Stem handling for RootExpand */
26. if (RootExpandpnd (isJoinRootg) or isinternalStemg)) then

27: AT 00 A§ < o0
28:
29: for eachz.PlanTrain, of nodez do
30: /x 4-stage Pruning Process:/
31: Let p be the engine af. PlanTrain,
32: /x 1. Local Cost Checks/
33: for each wagon plap,, € «.PlanTrain, do
34: if cost(pw,qe) > (14 A7)cost(pe, qe) then
35: z.PlanTrain, «— x.PlanTrain, — {pw}
36: /x 2. Global Safety Checks/
37: for each wagon plap,, € «.PlanTrain, do
38: for each poiny, € Corners(S) do
39: if cost(pw,qa) > (1 + Af)cost(pe, ga) then
40: z.PlanTrain, «— z.PlanTrain, — {pw}
41: break
42: /x 3. Global Benefit Checkx/
43: for each wagon plap,, € z.PlanTrain, do

. BgqeCorners(s)cost(Pe;qa)
44- pwg - E:a,ECorners((S;COSi(pwa‘Za)
45: if z.level = ROOT andp,,.£ < &, then
46: z.PlanTrain, < z.PlanTrain, — {pw}
47: else ifz.level £ ROOT and py,.€ < 1then
48: z.PlanTrain, — z.PlanTrain, — {pw}
49: / 4. Skyline Checks/
g(l): z.PlanTrain, «— C-S-B Skyline ¢.PlanTrain,)
52: if z.level = ROOT then
53: x.PlanTrain «— Plan with Maximum¢ in z. PlanTrain

54: Returnz. PlanTrain

Figure 3: Node Expansion Procedure

11

This function captures the difference between the costg ahd a);-inflated version op, at location
¢.- If f(q.) < 0 throughout the selectivity spa& we are guaranteed that, if the cheapest sub-plan
were to be (eventually) replaced by the candidate sub-giaradverse impact (if any) of this replace-
ment is bounded by —that is, in this sense, it safe Here,\] is again an algorithmic parameter that
can be set independently ®f (which is always applied at the final root node, as explaiaéer). As a
practical matter, we would expect the choice to be suchixhat ;.

Evaluating the safety function requires the ability to cgséry plans agrbitrary locations in the
selectivity space. This feature, called “Foreign Plan @gst(FPC) in [13], is available in commercial
optimizers such as DB2 (Optimization Profile), SQL ServeM{XPlan) and Sybase (Abstract Plan).
For PostgreSQL, we had to implement it ourselves (detai®&eiction 6).

The safety check can be verified by exhaustively invokingRRE function all locations inS,
but the overheads become unviably large. We have recentblajeed theCornerCube-SEER (CC-
SEER) [22] algorithm to address this problem. CC-SEER guarargéssal safety by merely evaluat-
ing the safety function at thenit hyper-cubes$ocated at theornersof the selectivity space. That is,
given ad-dimensional space, FPC costing is carried out at dflgoints. The intuition here is that,
given the nature of plan cost behavior in modern optimizéssteplacement is known to be safe at the
corner regions of the selectivity space, then it is also 8afeughout the interior regiorisee [22, 13]
for the formal details).

Finally, we have also found that an extremely simple hegrisalled LiteSEER [13], which simply
evaluates whether all theorner pointsare safe, that is,

V q, € Corners(S), f(q.) <0 (6)

works almost as well as CC-SEER in practice, although notiginog formal safety guarantees. In
Figure 1(b), this corresponds to requiring that the reptear® be safe atg, V1,1, and V3, and in
general, requires FPC evaluation only24tpoints. The experimental study in Section 7 employs a
LiteSEER implementation by default, but we also provide gi@rmesults with CC-SEER in Section 7.6.

3. Global Benefit Check: While the safety check ensures that there is no material hagoes not
really address the issue of whether there is bagefitto be expected ip. were to be (eventually)
replaced by a given wagan,. To assess this aspect, we compute the benefit index of a walgbine

to its engine as

(e, 4a)
&(Pw, qa)

That is, we use &ornerAvgheuristic wherein the arithmetic mean of the costs atctir@ersof S is
used as an indicator of the assistance that will be providextighoutS. Benefit indices greater than
1 are taken to indicate beneficial replacements whereas halges imply superfluous replacements.
Accordingly, only wagons that have> 1 are retained and the remainder are eliminated.

Our choice of the CornerAvg heuristic is motivated by thddiwing observation: The arithmetic
mean favors sub-plans that perform well in tbp-right regionof the selectivity space since the largest
cost magnitudes are usually seen there. We already knoWwr®&P plans in this region tend to have
large endo-optimal space coverage [12]. Therefore, theynare likely to provide good stability since,
by definition any P,. provides stability in its own endo-optimal region, as itsichas to be less than
that of P,. in this subspace (as discussed previously in Section 2t#).ClornerAvg heuristic projects
that this observation holds true for the sub-plans of n@éiral plans as well.

E(Pw, pe) = ¢o € Corners(S) ()

12

4. Cost-Safety-Benefit Skyline CheckAfter the above three checks, it is possible that some wagons
are “dominated” — that is, their local cost is higher, tha@rrer costs are individually higher, and their
expected global benefit is lower, as compared to some othgomia the candidate set. Specifically,
consider a pair of wagong,,; andp,», with p,,; dominatingp,» at the current node. As these wagons
move up the DP lattice, their costs and benefit indices comsertogether, since onlgdditive con-
stants are incorporated at each level — that is, the “cagoc®” and the “benefit-coupling” between a
pair of wagons becomestrongerwith increasing levels. However, and this is the key poime, domi-
nation propertycontinues to holdright until the lattice root, since the same constants dded to both
wagons.

Given the above, it is sufficient to simply useskylineset [5] of the wagons based on local cost,
global safety and global benefit considerations. Spedyictr 2D error spaces, the skyline is com-
prised of five dimensions — the local cost and the four remaitear costs (the benefit dimension, when
defined with the CornerAvg heuristic, becomes redundaresinis implied from the corner dimen-
sions). A formal proof that the skyline-based wagon sedediechnique is equivalent to having retained
the entire set of wagons is given in Appendix A.

After the multi-stage pruning procedure completes, theigung wagons are bundled together with
thep. engine, and this train is then propagated to the highersesfahe DP lattice.

3.1.2 Root Node

When the final root node of the DP lattice is reached, all theevabmentioned pruning check€dst,
Safety, Benefit, Skylipare again made, with the only difference being that bgtand Ay are now
mandatorilyset equal to the user’s requirementsand)\, respectively. On the other hand, the choice
of the benefit threshold, (6, > 1), which determines the minimum benefit for which replacenignt
considered a worthwhile option, is a design issue. Ideidkyhould be set to ensure maximum stability
without falling prey to superfluous replacements. Howetleare is a secondary consideration — using
a lower value and thereby going ahead with some of the staiiliperfluous replacements may help
to achieveanorexicplan diagrams, a potent objective in query optimizer casion. This issue is
discussed in the experimental study of Section 7.

3.2 Plan Selection

At the end of the expansion process, a set of complete plansvailable at the root node. There are
two possible scenarios:

1) The only plan remaining is the standard cost-optimal gtanin which case this plan is output as
the final selection; or

2) In addition to the cost-optimal plan, there are a set ofldate replacement plans available that are
all expected to be more robust th&y. (i.e. their{ > 4,). To make the final plan choice from among
this set, our current strategy is to simply uslaxBenefitheuristic — that is, select the plan with the
highest¢. 2

Constant Ranking Property. An important property of the above selection procedurenbaut by
the definition of, is that it always gives theame rankindpetween a given pair of potential replacement
plansirrespective of the specific quegyin S that is currently being optimized his is exactly how it

2In the unlikely event of ties, they can be broken by choosiegtian with the least local cost from this set.

13

should be since the stability of a plan vis-a-vis anothen glzould be determined by iggobal behavior
over the entire space.

Plan| Local Vo 1%1 Va V3 I3 Pruned
No | Cost | Cost | Cost Cost Cost by

P1 | 322890(202089 224599| 846630 1271678 1.00
P2 | 322901| 202101| 224610| 846642 | 1271689| 0.99 | Benefit
P3 | 323026| 202091| 224593| 905309 | 1247883| 0.98 | Benefit
P4 | 324203| 202089 224604| 846636 | 1952627 | 0.78 | Safety

P9 | 329089| 208207| 230766| 356555 | 1280663| 1.22
P10| 329100| 208219 230777| 356567 | 1280674| 1.22 | Skyline
P11|329229| 202090| 224928| 846959 | 4563459| 0.43 | Safety
P19|334801| 214078 236628| 362417 | 1204051| 1.26
P20 | 335428| 208208| 231095| 356884 | 4572444| 0.47 | Safety
P21| 337838| 208218| 231097| 356886 | 9354574 | 0.25 | Safety
P32| 390748| 202208| 500856| 1866554 12495404 0.17 | Cost
P33| 395288| 202096| 228361| 850384 | 38862955 0.06 | Cost
P73|> 1012 | > 108 | > 1012 | > 10° | > 10'% | < 0.1| Cost
P74|>10'2| > 108 | > 102 | >10° | > 10'% | < 0.1| Cost

Table 1: Example Replacement at Root No€k q)

Example Replacement. To make the plan replacement procedure concrete, consgidegxample
situation shown in Table 1, obtained at the root of the DRtiafior query()10 using the NodeExpand
algorithm with \;, A, = 20%,d, = 1. We present in this table the enging) and seventy three
additional wagons, through P-,), ordered on their local costs. The corner costs and bendfites
of these plans are also provided, and in the last column lteekd(if any) that resulted in their pruning.
As can be seen, each of the checks eliminates some wagongnalhg only two wagons £, Pi)
survive all the checks. From among them, the final plan chas&hy which has the maximurg =
1.26, and whose local cost (334801) is within 4%%f(322890).

4 Replacement Algorithms

Given the generic process described above, we can obtaist ah@placement algorithms by making
different choices for thaj and A7 settings in the lattice interior. For example, we could det keep
them constant throughout the lattice. Alternatively, higlhues could be used at the leaves, progres-
sively becoming smaller as we move up the tree. Or, we couldut exactly the opposite, with the
leaves having low values and more relaxed thresholds ggqinigautree. In essence, a rich design space
opens up when stability considerations are incorporateddiassical cost-based optimizers.

We consider here a few representative instances that coasga of tradeoffs between the number
and diversity of the candidate replacement plans, and thpatational overheads incurred in generat-
ing and processing these candidates.

RootExpand. The RootExpand algorithm is obtained by setting bathand A7 to 0 at all leaves
and internal nodes, while at the root node, these paramaterset to the user’'s constraintg \,,
respectively. This is a simple variant of the classical D&cpdure, wherein DP is used as-is starting
from the leaves until the final root node is reached. At thimpohe competing (complete) plans that

14

NCOL(1): 322890 [1.00] NCOL(1): 322890 [1.00] NCOL(1): 322890 [1.00]
NCOL(2): 322901 [1.23; NCOL(2): 322901 [1.23
NCOL(2): 329089 [1.23 [1.23] 2 (23]
NCOL(3): 328820 [1.38 NCOL(3): 334801 [1.26

NCOL

NCOL(10): 334801[1.26] NCOL

NCO(1): 25428 [1.00] COL(1): 322729 [1.00])
NCO(1): 25428 COL(1): 322729 NCO(2): 31347 [2.67] COL(2): 328648 [1.4] COL(1): 322729 [1.00]
NCO(1): 25428 [1.00] COL(2): 328929 [1.24]
- NCO(5): 65877 [2.66] COL(10): 365012 [1.29]
! (o]
CO(1): 25323 [1.00] OL(1): 313924 [1.00]
NC(1): 7199 CO(1): 25323 OL(1): 313924 CO(2): 31243 [3.24] OL(2): 321245 [1.08]

NC(1) 7199 CO(1): 25323 [1 00] OL(1): 313924[1.00]

NC(1): 7199 CO(3): 60005 [3.07] OL(3); 350007 [1.06]
/ /’\ \\ C)\ O\ |eg /"w"\ "°L"\\
/N \
/ /\ N\ 0(1): 16810 tz;; f;iss‘t /\ \ /

O(2): 45572

N(1) 1 c(1) 5135 O(1): 16810 L(1): 212 N(1): C(12‘:/E:135 0(3): 69537 L(5): 9700974 N(J):1 C(1): 5135 0O(1): 16810 L(1): 212
[o] IILIIINI <] L] CJ 1 <] ° L
(a) RootExpand (b) SkylineUniversal (c) NodeExpand

Figure 4. Plan Expansion AIgorithmé}QO: A, Ag = 20%, 0, = 1)

are evaluated at the root node are filtered based on the fieoksequence, and a final plan selection
is made from the survivors using the procedure describeédti@ 3.2.

The functioning of RootExpand is pictorially shown in Figut(a) for the example query10 with
A, Ay = 20% (andd, = 1). In this picture,the nodes that contain one or more ereostive relations
in their sub-trees are symbolized by double boxes. Furtheralue above each node signifies the cost
of the optimal sub-plan to compute the relational expressépresented by the node — for example,
the cheapest method of joinimRDERS (O) andLINEITEM (L) has an estimated cost of 313924.
Finally, the number in brackets adjacent to each cost abittanode represents the Benefitindex of the
associated plan.

At the root node, the second-cheapest pd@OL(2), is chosen in preference to the standard DP
choiceNCOL(1), due to locally being well within 20% of the lowest cost of 82P, and having the
maximum Benefitindex of = 1.23.

SkylineUniversal. The SkylineUniversal algorithm is obtained by setting bathand A7 to oo at the
leaves and internal nodes. It represents the other end spiéerum to RootExpand in that it propa-
gates, beginning with the leaved| wagons evaluated at a node to the levels above. That is, modul
the Skyline Check, which only eliminates redundant wagtresge is absolutely no other pruning any-
where in the internals of the lattice. This implies that thetmode effectively processes thetire set

of complete planpresent in the optimizer’s search space for the query.

A pictorial representation of SkylineUniversal is shownFigure 4(b) for the same example sce-
nario. In this picture, unfettered expansion is carriedatatll the error-sensitive nodes (double boxes).
Whereas, the standard DP procedure is used in the remaihdiee dattice, and this is the reason
for only single plans being forwarded, for example, in the sub-lattice component — both leaves,
NATION andCUSTOMER are not error-sensitive relations. The labels above tter-eensitive nodes
indicate the various plans that have survived the fourkipeacedure, along with their local costs and
benefit indices. For exampl€0(2) has a cost of 31243 argd= 3.24.

In this example, the number of plans enumerated at the rad¢ NCOL is 1099 and 10 of them
successfully pass the four-stage check. The plan finallgamsNCOL(3) which has a cost of 328820
(about 2% more expensive than the cost-optiM@OL(1)) and provides the maximum Benefitindex
of ¢ = 1.38.

15

NodeExpand.The NodeExpand algorithm strikes the middle ground betwleereplacement richness
of Universal and the computational simplicity of RootExgaby “opening the sub-plan pipe” to a
limited extent. Specifically, the version of NodeExpand the evaluate here sef§ = A, A7 = A,
at all error-sensitive nodes — that is, the root node’s cosstraints are inherited at the lower levels as
well. These settings are chosen to ensure thasiheplansalso provide the same local-optimality and
global-safety guarantees as the complete plan, a featuexpexrt would prove useful in real-world
environments with aspects such as run-time resource cqrtgaim Further, as a useful byproduct, the
settings also help to keep the expansion overheads undieokon

An example of NodeExpand is shown in Figure 4(c), where 3gfanvive the four-stage check at
the root, andNCOL(3) whose Benefitindex of 1.26 is the highest, is chosen as thlestshection.

The constraints imposed by the three expansion algorithesepted above are summarized in Ta-
ble 2 — standard DP is also included for comparative purposes

Optimization Leaf Node | Internal Node | Root Node
Algorithm A5 A Y AL A | 9y
Standard DP 0 0 0 -
RootExpand 0 0 AAg | >1
NodeExpand AL Ag AliAg AAg | >1
SkylineUniversal 00 00 A g | =1

Table 2: Constraints of Plan Replacement Algorithms

4.1 Reducing Expansion Overheads

As discussed above, the EXPAND algorithms permit, in gdnar&rain of wagons to be propagated
from each node to the upper levels in the lattice. Due to thiiphoative nature of the DP tree, the
computational and resource overheads arising out of tlieeanal wagons, if not carefully regulated,
can quickly spiral out of control. We have already discudsed expansion is not carried out at the
error-insensitive nodes of the DP lattice. In addition, @ca@l optimization for reducing overheads is
the following:

Inheriting Engine Costs for Wagons. When two plan-trains arrive and are combined at a node, the
cost of combining the engines of the two trains with a paléicmethod is exactly the same cost as that
of combiningany other pairfrom the two trains. This is because the engines and wagaasyitrain

all represent theame input dataTherefore, we need to only combine the two engines in akipbs
ways, just like in standard DP, and then simply reuse thesecased costs to evaluate the total costs
for all other pairings between the two trains. Further, tist reuse strategy can be used not just for
the local costs, but for the remote FPC-based corner costslas

4.2 Comparison with SEER

Our earlier SEER approach [13] identified robust plans tghotheanorexic reduction of plan dia-
grams There are fundamental differences between that “offlitedeoptimizer/reduction” approach
and our current “online/intra-optimizer/production” vior

16

(i) Our techniques are applicablead-hoc individual queriesvhereas SEER is useable only on form-
based query templates for which plan diagrams have beeropsty computed.

(i) Unlike SEER, our choice of replacement plans is notriettd to be only from the parametric opti-
mal set of plans (POSP). In principle, it could &y other plarfrom the optimizer’s search space that
satisfies the user’s cost constraints. For example, a vay gian that is always second-best by a small
margin over the entire selectivity space. In this case, S&B&d, by definition, not be able to utilize
this plan, whereas it would certainly fall within our ambitis is confirmed in our experimental study
(Section 7), where non-POSP plans regularly feature inghefsecommended plans.

(i) Finally, as previously mentioned, an attractive i@& of NodeExpand is that it ensures perfor-
mance fidelity of the replacement throughout its operat®.tr

5 Handling Query Complexities

For ease of presentation, we had assumed earlier in Sectiwet 8ptimizing the user query did not
feature either (a) “interesting orders” (where a sub-pladpces results in a particular order that could
prove useful later in the optimization); or (b) “stems” (wbe linear chain of nodes appear above the
join root node of the DP lattice). We now discuss the algamithextensions necessary to handle these
features.

5.1 Interesting Orders

Plans corresponding to interesting orders can be handled\wbgg each train to be composed of not just
a single generic sequence of wagons, but instegaakallel array of sub-trains, one sub-train for each
interesting order. For the sake of uniformity, we treat taeaf wagons corresponding to unordered
plans to also be part of a generic result order called @RDER.

As discussed earlier, there are two steps to the expansi@ess — an exhaustive plan enumeration
step followed by the four-stage plan retention process. M&uds the changes required in each of the
two steps to be able to handle interesting orders.

Plan Enumeration. Let A andB be a pair of lower level nodes combining together to producee\.
Then, the plan expansion procedure at Ned®/olves exhaustively combinirgl sub-trains ofA with

all sub-trains oB. Subsequently, the result order (if any) of each of the ngmtguced combinations
is determined. Combinations with interesting orders astgagd to associated sub-trains, while the
unordered combinations are all placed in the X®DER sub-train.

Plan Retention. The plan retention process is handladependentlyor each of the sub-trains and
exactly follows the 4-stage pruning procedure describedifgle trains in Section 3.

5.2 Stems

A stem in a DP-lattice is the linear chain of nodes that mayeap@bove the “join root” node (the
node corresponding to the join of all the relations preserthe query). The stem usually features
aggregation and grouping operators. A sample, based oxanepte query of Figure 1(a), is shown in
Figure 5, where the join root NCOL, and the stem is displayed in the shaded box. The handling of
stems is algorithm-specific, as described below.

17

ORDERBY (1): 322915[1.00]
ORDERBY (2) : 329114 [1.21]

ORDERBY

I
GROUPBY (1) : 322910 [1.00]
GROUPBY (2) : 329101 [1.21]

Stem

GROUPBY

I
NCOL(1): 322890 [1.00]
NCOL(2): 329089 [1.23]

PN
/7N N\

NCO(1): 25428 COL(1) 322729

/ \
NCO coL |

N

NC(1): 7199 CO(1): 25323 OL(1): 313924
1 AV4 \

NC co oL

N(1):1 C(1): 5135 0O(1): 16810 L(1): 21
. A4 N i

NV
N C o} L

Figure 5: Plan Stem

RootExpand. Here, as explained previously in Section 4, plan expansakaes place only at the
terminal node of the DP-lattice, with the rest of the prosess the lattice being identical to standard
DP. This is appropriate when the terminal node of the DRekais the join root and there are a set of
alternative plans, corresponding to different join ordésschoose from. However, it becomes mean-
ingless if the terminal node is at the end of a stem since osingle plan will have survived at this
stage in the normal DP process, and therefore the replacepace is virtually non-existent.

We therefore modify the RootExpand algorithm to pemtiiplans that reach the join root to continue
to be considered all the way until the terminal node of thenst€hat is,\j and \; are set tox at the
join root and all internal stem nodes that lie between thefjoot and the terminal node. This procedure
is implemented in Lines 26 and 27 of Figure 3.

NodeExpand and SkylineUniversal. For these algorithms, we do not need to make any special
changes for handling stems since they, unlike RootExpardy out plan expansion at all levels of the
DP-lattice, and therefore the stem nodes can be treateé satine way as the canonical lattice nodes.

18

6 Implementation in PostgreSQL

We have implemented the various algorithms described inptiegious sections inside the Post-
greSQL [25] kernel, specifically version 8.3.6 [26]. We Hlyigdiscuss here the issues related to our
implementation experience.

Foreign Plan Costing.In order to implement the LiteSEER agdheuristics described in Section 3.2,
we need to be able to cost a sub-plan (or plan) at all corne3s\While this feature is present in several
commercial optimizers, as mentioned before, it is curyemdit available in PostgreSQL.

Therefore, we have ourselves implemented remote costitiggiRostgreSQL optimizer kernel. Our
initial idea was to merely carry out a bottom-up traversahefoperator tree at the foreign location and
at each node appropriately invoke the optimizer’s costimj@utput estimation routines. This approach
is reasonably straightforward to implement, and more intgrly, very efficient.

However, this approach failed to work because PostgreS@hesacertain temporary results during
the optimization process which have an impact on the final ptasts — these cached values are not
available to a purely offline costing approach. Therefore,had to monitor and retain sufficient ad-
ditional information during the current plan generationgess such that the cached values for remote
locations could be explicitly calculated.

Optimization Process.The PostgreSQL optimizer usually optimizes for a comboratf latency and
response-time, especially if the access to the output ddbaough a cursor, or a limit on the number
of output tuples is specified. In order to focus our study, veglified the optimization objective to be
solely response-time.

Intrusiveness on Code-basef-rom an industrial perspective, an obvious question isxkenéto which

the underlying code-base has to be modified to support theopeal approach. In our PostgreSQL
implementation, where we have added around 10K lines of ,cb@evast majority of the additions
have gone towards including the FPC feature, which as megdibefore, is already available in most
commercial optimizers. Therefore, while we are aware thase systems are considerably more so-
phisticated than PostgreSQL, our expectation is that parating our techniques would be minimally
intrusive on their code-base. This is especially true ferRootExpand algorithm, where the behavior
of only the final node in the DP lattice is modified.

7 Experimental Results

The replacement algorithms described in the previous @ectivere implemented in PostgreSQL
8.3.6 [26] operating on a Sun Ultra 24 workstation with 3 GHagessor, 8 GB of main memory,
1.2 TB of hard disk, and running Ubuntu Linux 8.04. In thistsat, we first outline the experimental
framework used to evaluate the performance characteristithese algorithms, and then highlight the
results of the study.

The user-specified cost-increase thresholds in all ourerpats are\;, \, = 20%, a practical value
as per our discussions with industrial development teansaéso a value found sufficient to provide
anorexic plan diagrams in popular commercial optimize®s 1B]. With regard to the benefit threshold
d4, the default value is the minimum of 1, but we discuss the icagibns of alternative settings.

Query Templates and Plan Diagrams.To assess performance over the entire selectivity space, we
took recourse to parametrizgdery templates for example, by treating the constants associated with

19

O.totalprice andL.extendedprice in Q10 as parameters. These templates, enumerated in Appendix B,
are all based on queries appearing inTR&C-H andTPC-DS benchmarks, and cover both 2D and 3D
selectivity spaces. The templates feature a variety oframhéh SQL constructs including groupings,
orderings, nested queries, correlated predicates, agfgedunctions, etc., and the optimization pro-
cess involves handling complexities such as interestidgrarand stemmed operator trees. The TPC-H
database contains uniformly distributed data of size 1GHi|lenthe TPC-DS database hosts skewed
data that occupies 100GB.

For each of the query templates, we produced plan diagramsi@form grid resolution of 100 on
each dimension) with the Picasso visualization tool [31].

Physical Design.We considered two physical design configurations in ounstédimaryKey (PK)
andAllindex (Al) . The PK configuration represents the default physical desighe database engine,
wherein a clustered index is created on each primary keyorthe other hand, represents an “index-
rich” situation with (single-column) indices available alh query-related schema attributes.

Query Template Descriptors. In the subsequent discussion, we G8Ex andDSQTx to label query
templates based on Quexyof the TPC-H benchmark and the TPC-DS benchmark, respbctiBy
default, the query template is 2D and evaluated on a PK palydesign. An additional prefix 8D
indicates that the query template is three-dimensionalew#i signifies an Allindex physical design.

Performance Metrics. A variety of performance metrics are used to characteriedotthavior of the
various replacement algorithms:

1. Plan Stability and Safety The effect of plan replacements on stability is measured tie Ag-
gSERF and MaxSEREF statistics. Further, we tre&f%, the percentage of locations where the
optimizer’s original choice is replaced, ahtklp%, the percentage of error instances wherein
opting for a replacement plan reduced the performance dagtantially, specifically, by atleast
two-thirds.

Replacement safety is evaluated through MIinSERF and theeperge of query locations with
MIinSERF< —), is tabulated.

2. Plan Diagram Cardinality: This metric tallies the number of unique plans present imptha dia-
gram, with cardinalities less than or aroutesh indicatinganorexic diagram$12, 13]. We also
tabulate the number of non-POSP plans selected by our tpotmi

3. Computational Overheads: This metric computes the average overheads incurred, egard to
both time and space, relative to those incurred by the stdrigld procedure.

7.1 Plan Stability Performance

The stability performance results of the RootExpand, NogeBd, SkylineUniversal and SEER al-
gorithms are enumerated in Table 3 for a representativef sptavy templates from our study, which
covered a spectrum of error dimensionalities, benchmatdbdaes, physical designs and query com-
plexities.

Our initial objective was to evaluate whether there is yethgible scope for plan replacement or
whether the optimizer’s plan itself is usually the robustice. We see in Table 3 that REP% for both
RootExpand and NodeExpand is quite substantial, eveniregathexcess of 90%or some templates

20

Query RootExpand NodeExpand SkylineUniversal SEER
Temp- REP Agg Max Help | REP Agg Max Help | REP Agg Max Help | REP Agg Max Help
late % SERF SERF % % SERF SERF % % SERF SERF % % SERF SERF %
QT5 84 054 1 55 85 054 1 55 85 054 1 55 47 061 1 64
QT8 42 011 1 1 84 013 1 3 - - - - 39 -009 1 1
QT10 32 020 1 19 98 021 1 20 98 021 1 20 37 021 1 20
AIQT5 87 037 1 36 99 037 1 38 - - - - 87 038 1 39
3DQT8 47 017 1 16 69 018 1 18 - - - - 59 017 1 18
3DQT10 30 037 1 67 9 039 1 71 9 039 1 71 24 038 1 41
AI3DQT8 30 018 1 21 98 019 1 21 - - - - 55 012 1 15
AI3DQT10 30 011 1 13 99 013 1 19 - - - - 55 011 1 13
DSQT7 93 028 1 28 93 028 1 28 93 028 1 28 46 028 1 28
DSQT18 12 031 1 33 58 048 1 49 - - - - 57 048 1 49
DSQT26 30 048 1 50 30 049 1 50 30 049 1 50 29 049 1 49
AIDSQT18 11 003 1 3 75 007 1 5 - - - - 68 004 1 8

Table 3: Plan Stability Performance

(e.g. DSQT7)! On average across all the templates, theaemplant percentage was around 40% for
RootExpand and 80% for NodeExpand.

We hasten to add that not all of these replacements are eelgfor achieving stability, and the
stability-superfluous replacements could be eliminatesdtyng higher values @f,. For example, with
QT5, 4, = 1.03 achieves the same stability as the defaylt= 1 and brings REP% of NodeExpand
down from 85% to 32%. Our analysis has shown that in genebaluta30%-50% replacements are
sufficient to maximize the stability. However, the addibreplacements are useful from a different
perspective — they help to produce anorexic plan diagrasnseen later in this section.

Moving on to the stability performance itself, we observatithe AggSERF values of both RootEx-
pand and NodeExpand are usually in the range. bto 0.6, with the average being abo3, which
means that on average aboue-thirdof the performance handicap due to selectivity errors inerd.

A deeper analysis leads to an even more positive view: Hitsté Help% statistics indicate that, for
several templates, a significant fraction of the error patah corresponding to query locations with
replaced plando receive substantial assistané¢@®r example, QT5 has the performance gap more than
halved in about 55 percent of such error situations. Furthigh 3DQT10, which has the best Help% of
over 70%, a sizeable fraction (~20%) receive SERF in exde39e-i.e., effectively achievenmunity
from the errors.

A sample frequency distribution of the positive SERF vakligtsined with NodeExpand on 3DQT10,
which has the best Help% of over 70%, is shown in Figure 6. dzident here that a sizeable fraction
(~20%) receive SERF in excess of 0.9 —i.e., effectively@aafimmunityfrom the errors.

Second, the AggSERF performance of (offline) SEER is quitelar to that of RootExpand and
NodeExpand. In our prior study [13], SEER had produced bettgults for these same templates —
the difference is that those experiments were carried oat @phisticated commercial optimizer sup-
porting a richer space of quality replacements than PoS@ke Implementing our algorithms in such
high-end optimizers is likely to also significantly increabeir AQgSERF and Help% contributions.

Third, the performance of RootExpand and NodeExpand, e gificonsidering a much smaller set
of replacement candidates, is virtually identical to thiaSkylineUniversal in the templates where it
was able to successfully complete (the templates for wiielatgorithm ran out of memory are shown
with —). In fact, as shown in Section 7.5, their performarsdairly close to even aoptimal (wrt
AggSERF) version of SkylineUniversal!

Finally, MaxSERF was 1 for all the templates, testifyinghe inherent power of the replacement
approach.

21

0.4

Frequency
=) =)
N W

e
i

0.0
0.0 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1.0

SERF Values

Figure 6: Frequency Distribution of SERF values (3DQT10)

Taken in toto, these results suggest that the controlledresipn technique is capable of extracting
most of the benefits obtainable through plan replacement.

Replacement Plan AnalysisWe have also conducted a preliminary analysis of the cheniatits of
the replacement plans vis-a-vis the original choices. @geovations include the following:

* Index intersections are often replaced by joins based qoes#ial scans. This is due to the
indexes becoming very expensive at the higher selectieigyons of the selectivity space. In
Table 4, we quantify this change for sample query templagegigregating the number of index
intersections at the replacement locations and compavitigetcorresponding number with DP.

Query Template | DP | NodeExpand
AIQT5 493 3
AIQT7 991 691

Table 4: Index Intersection Statistics

* Nested-loop-based plans are frequently replaced with-fas-based plans, but the reverse was
never observed. Further, merge joins were almost nevaneetaThese observations are quan-
tified in Table 5, where we tabulate the aggregate numbemuddieach of the join strategies
appears in the replacement plans produced by the NodeExmundach. The frequency corre-
sponding to standard DP at those replaced points is alsorsimoWable 5. As can be seen from
the results, the hash-join proportion, which was alreagglpminant, tends to eat further into the
nested-loop and merge-join presence.

* Finally, we also often saw that the join order of the replaeat plan was different to that of the
original plan. In particular, left-deep plans were typigaeplaced by bushy plans.

22

Query | Optimization | # Nested | # Merge | # Hash
Templatg Algorithm Loop Join Join Join
DP 288 60 42022

QT5 | NodeExpand 242 0 42128

DP 30 1297 28070

QT10 | NodeExpand 30 0 29367

DP 1449 65 35538

DSQT7| NodeExpand 100 0 36952
DP 2377 2 9557

DSQT26 NodeExpand 100 0 11836

Table 5: Join Method Usage Statistics

7.2 Plan Safety Performance

We now shift our attention to the MinSERF metric to evalusiiedafetyaspect of plan replacement.
The results are presented in Table 6 and we see that for battiEReand and NodeExpand: (a) only a
few templates have negative values belew, (-0.2), (b) even in these cases, the harmful replacements
(shown asHarm%) occur for only a miniscule percentage of error locatiomsglthan 1% for 2D
templates and less than 5% for 3D templates), and (c) mogiriangtly, their magnitudes are small —
the lowest MINSERF value is within -5. (The reason that evERS, which is supposed to guarantee
safe replacements, has a few minor negative MinSERF vadubat, in order to maximize its scope for
replacement, we implemented it also with the LiteSEER Is¢iar)

Query RootExpand | NodeExpand SkyUniv SEER
Tem- Min Harm Min Harm Min Harm Min Harm
plate SERF % SERF % SERF % SERF %
QT5 0 0 0 0 0 0 001 O
QT8 0 0 0 0 - - 0 0
QT10 -0.24 0.25 -0.24 0.01 -0.24 051 | -0.25 0.20
AIQT5 0 0 0 0 - - 0 0
3DQT8 -1.05 0.01 -2.30 0.01 - - 0 0
3DQT10 -1.08 1.93 -0.78 2.15 -0.78 2.15 | -0.76 0.01
AI3DQT8 -4.88 0.43 -2.80 4.30 - - 0 0
AI3DQT10 -2.08 1.74 | -420 0.54 - - -0.69 0.01
DSQT7 0 0 0 0 0 0 0 0
DSQT18 0 0 0 0 - - 0 0
DSQT26 0 0 0 0 0 0 0 0
AIDSQT18 0 0 0 0 - - 0 0

Table 6: Plan Safety Performance

7.3 Plan Diagram Characteristics

We now turn our attention to the characteristics of phen diagramsobtained with the replacement
algorithms. The associated results are also shown in Talaled3to place them in context, the statistics
for the standard DP-based optimizer are included.

Plan Diagram Cardinality. We see in Table 7 that for templates such as 3DQT8, where DP gen
erates “dense” diagrams with high plan cardinalities, Egpand diagrams may also feature a large

23

Query DP RootExpand | NodeExpand SkyUniv SEER
Tem- Plans | Plans Non- | Plans Non- Plans Non- | Plans
plate POSP POSP POSP
QT5 11 3 0 3 0 3 0 2
QT8 18 15 11 3 0 - - 2
QT10 15 7 1 3 0 3 0 2
AIQT5 29 13 3 7 4 - - 4
3DQT8 43 22 17 3 0 - - 2
3DQT10 30 12 2 5 1 5 1 3
AI3DQTS8 70 51 41 14 12 - - 7
AI3DQT10 83 37 5 26 17 - - 7
DSQT7 12 3 1 2 1 2 1 2
DSQT18 17 23 8 2 1 - - 2
DSQT26 13 9 7 2 1 2 1 2
AIDSQT18 28 31 7 3 1 - - 3

Table 7: Plan Diagram Performance

-

2

=1
|

o 100

@
=}
o
=]

av
<
N

@
o

=
=)
&
=

item.i_current_price [0.0,100.0]@ 100

)
o
I

item.|_current_prica [0.0,100.0]@ 100

~
=

item.i_current_price [0.0,100.0]@ 100

T T T T T 1 ; T T T T T l
0 20 40 60 80 100 0 20 40 50 o= 106 o 20 40 60 80 100
catalog_sales.cs_list_price [0.0,100.0]@ 100 catalog_sales.cs_list_price [0.0,100.0]@ 100 catalog_sales.cs_list_price [0.0,100.0]@ 100

(a) DP: 28 plans (b) RootExpand: 31 plans (c) NodeExpand: 3 plans
Figure 7:Plan Diagrams for DP, RootExpand, NodeExpand (AIDSQT18);, A\, = 20%, 0, = 1)

number of plans. This behavior is more prevalent in indek-anvironments, with the diagram cardi-
nalities everexceedinghat of DP for some templates — e.g. DP has 28 plans for AIDS&QWhereas
RootExpand features 31 plans!

NodeExpand, on the other hand, consistently delivers glyasmorexicplan diagrams for almost
all the templates. In fact, its plan cardinality is often garaeble to that of SEER - this is quite
encouraging since it is obtained in spite of having to codtenth (a) a much richer search space
from which to choose replacements, and (b) no prior knowdasighe choices made in the remaining
selectivity space.

A sample set of plan diagrams produced on the AIDSQT18 templaDP, RootExpand and Node-
Expand are shown in Figures 7(a) — 7(6). These pictures vividly demonstrate that NodeExpand
delivers anorexic diagrams in addition to good plan rokestnwhereas RootExpand is only capable
of providing the latter.

An isolated exception to NodeExpand’s anorexic perforreas@13DQT10 where 26 plans feature,
whereas SEER is able to restrict the number to 7. Howeves,cdm be remedied Xj and \] are
increased to 100% (from the default 20%) at the internal sedéhat is, if the size of the sub-plan
pipe is increased, we again obtain anorexic diagrams w&mtimber of plans coming down to 16.

3We recommend viewing these diagrams directly from the deIdF file, or from a color print copy, since the greyscale
version may not clearly register the various features.

24

Query Maximum REP # of
Template Og % Plans
QT5 1.03 32 6
QT8 1.05 25 6
AlQT5 1.03 32 20

Table 8: Effect ob, Setting (NodeExpand)

The tradeoffs here are (a) a marginally reduced AggSERFIGT, Qb) weakened sub-plan performance
guarantees, and (c) about 10% increased memory consunp@asommodate the larger pipe.

Yet another observation is of relevance here — the top 1Gspkmea-wise, of the above-mentioned
26 plans, collectively cover more th&9% of the plan diagram. This means that the remaining plans
occur in very few locations and if we assume that all querresegjually probable, these small-area
plans are unlikely to be encountered in practice, therepyagmating anorexia. With standard DP on
the other hand, 70 of the 83 plans are required for a simika aoverage!

Non-POSP plans. We also see in Table 3 that non-POSP plans do feature in thecezpent plan
diagrams, occasionally in significant proportions, as Q3B with RootExpand. Again, this phenom-
ena is more prevalent in index-rich environments — as a eageint, with AI3DQTS8, there are 41
non-POSP plans out of 51 for RootExpand, occupying 78% ofplaee, while NodeExpand has 12 on
14, covering more than 90% area.

Usually, the non-POSP fraction is highest for RootExpardithrs is attributable to POSP replace-
ments often not being available for consideration at thé node as they have been pruned earlier in
the DP lattice (our measurements suggest that this situatiours in about half the cases).

Effect of §, setting. As stated earlier, not all the replacements imposed by garigdhms are required
for achieving stability. This is quantitatively highligétt in Table 8 where we show, for NodeExpand
on a few representative query templates, the maximum valwehich §, can be increased without
compromising the stability achieved with the default seftof 6, = 1. We see here that the higher
settings ofd, result in the replacement percentage (REP%) coming dowstauitally from those
listed in Table 7. As a specific case in point, running Nodetfixpon AIQTS5 withd, = 1.05 achieves
the same stability performance although the replacemeoéptage is brought down from 99% to only
32%. At first glance, these higher values may appear to bergferped settings since they cause
least disruption to the normal optimizer selections andtlaeeefore more suitable from an industrial
perspective. However, as shown quantitatively in Tablaé@htigher, settings have a side-effect — the
plan diagram cardinalities may increase significantlyalktfthey can even result in@ss of anorexia
as observed with AIQT5 where the plan diagram cardinalitygs up to 20 from the 7 obtained in
Table 7.

7.4 Computational Overheads

We now turn our attention to the price to be paid for providaten stability and anorexic diagrams. The
time aspect is captured in Table 9 where the per-query ogithon times (in milliseconds) are shown
for DP, RootExpand and NodeExpand — the increase relati@tis also shown in parentheses. These
results indicate that the performance of both replacenigotithms is within10 to 20 millisecondsf
DP for all the templates.

With regard to memory overheads, shown in Table 10, the iatdit consumption is well within
10MB (for RootExpand) andOOMB (for NodeExpand) over all the query templates. These oaglhe

25

Query Optimization Time (ms)
Template DP RootExpand NodeExpand
QT5 5.4 75 (+2.1) | 189 (+13.5)
QT8 6.0 9.6 (+3.6) | 17.8 (+11.8)
QT10 15 3.3 (+1.8) 48 (+3.3)
AIQT5 6.8 9.7 (+2.9) | 209 (+14.1)
3DQT8 6.0 | 20.1 (+14.1)| 26.4 (+20.4)
3DQT10 15 56 (+4.1) 8.1 (+6.6)
AI3DQT8 7.0 | 27.0 (+20.0)| 28.0 (+21.0)
AI3DQT10 | 1.9 8.2 (+6.3) | 10.6 (+8.7)
DSQT7 2.2 3.8 (+1.6) 6.6 (+4.4)
DSQT18 5.0 8.4 (+3.4) | 157 (+10.7)
DSQT26 2.1 35 (+1.4) 6.6 (+4.5)
AIDSQT18 | 8.6 | 1565 (+6.9) | 29.8 (+21.2)

Table 9: Time Overheads (in milliseconds)

appear quite acceptable given the richly-provisioned agimg environments in vogue today. Further,
this usage is incurred only for a very brief time peried (.1s), as per Table 9.

Query Memory Overhead (MB)

Template DP | RootExpand | NodeExpand
QT5 20| 26 (+0.6) 6.2 (+4.2)
QT8 20| 28 (+0.8) | 148 (+12.8)

QT10 16| 19 (+03)| 39 (+23)
AIQTS 27|35 (+0.8) | 11.8 (+9.1)
3DQT8 | 20| 5.2 (+3.2) | 295 (+27.5)
3DQT10 | 16| 25 (+0.9)| 50 (+3.4)

AI3DQT8 | 2.8 | 6.8 (+4.0) | 705 (+67.7)

AI3DQT10 | 1.7 | 36 (+1.9)| 7.3 (+5.6)
DSQT7 | 17| 22 (+05)| 41 (+2.4)
DSQT18 | 2.0 | 2.9 (+0.9) | 31.0 (+29.0)
DSQT26 | 1.7 | 21 (+0.4) | 4.0 (+2.3)

AIDSQT18 | 3.2 | 40 (+0.8) | 17.0 (+13.8)

Table 10: Memory Consumption (in MB)

Pruning Analysis. As presented in Section 4, our expansion algorithms invalf@ur-stage pruning
mechanism, comprising of Cost, Safety, Benefit and Skyllmecks. We show in Table 8, a sample
instance of the collective ability of these checks to redingenumber of wagons forwarded from a
node to a limited viable number. In this table, obtained fiva root node of a QT8 instance located
at (20%,20%) ir5, we show the initial number of candidate wagons, and the ruithiat remain after
each check. As can be seen, there are over 250 plans at timainggibut this number is pruned to less
than five by the completion of the last check.

A large fraction of the overall pruning typically occurs doghe Cost-Safety-Benefit Skyline Check,
as also seen in Table 8. We now show a visual example of thisrngujuality through a Cost-Benefit
skyline (which we have found to be a good approximation todbst-Safety-Benefit Skyline). Specif-
ically, Figure 9 is a plot of all the plans (shown in red) inpatthe Cost-Benefit Skyline, while the
green overlays are the ones that form the skyline of this plstcan be seen from the example, over a
hundred plans are pruned to a very small set of survivorstlaads a typical occurrence.

7.5 Efficacy of CornerAvg heuristic

In order to quantify the efficacy of the CornerAvg heuristsed by our algorithms, we also evalu-
ated the AggSERF obtained through a “brute-force” algarnit®ptimalAggSERF-SkylineUniversal

26

300

M # Plans
250 -
200 -
150 -
100 -
50 +
0 T T T T
Before Prunning After Local Cost After Global Safety After Global Benefit After Cost - Safety -
Check Check Check Benefit - Skyline
Check
Figure 8: Impact of 4-stage Wagon Pruning
L + After Benefit Check
m After Skyline Check
1.09
1.08 L -
. -
™ =§
1.07
1.06 .
g
-
E .
= 1.05
ol
=
&
<}
1.04
1.03
1.02
1.01
Engine
1.00 - -

233000 233250 233500 233750 234000 234250 234500 234750 235000 235250 235500

Local Cost

Figure 9: Cost-Benefit Skyline Pruning Example

27

(OAS-SU) OAS-SU explicitly and exhaustively checks for each queation, the best replacement
with regard to the AQgSERF metric, from the SkylineUnivésss of plans at that location. The per-
formance of OAS-SU is showcased in Table 11 against that deEgpand and SkylineUniversal for
all the query templates where SkylineUniversal was feasibl

The results of Table 11 are very encouraging since they dstraia that the AQgSERF achieved
through CornerAv@pproaches that obtained with OAS-3ektifying to the potency of the CornerAvg
heuristic. For example, on template 3DQT10, CornerAvgaas an AQgSERF of 0.39 as compared
to OAS-SU’s 0.44.

Query | NodeExpand| SkyLineUniv OAS-SU
Temp- | Rep Agg | Rep Agg | Rep Agg
late % SERF| % SERF | % SERF
QT5 85 0.54 | 85 054 | 85 0.64
QT10 98 0.21 | 98 0.21 | 99 0.26
3DQT10| 99 0.39 | 99 0.39 | 94 0.44
DSQT7 | 93 0.28 | 93 0.28 | 99 0.28
DSQT26| 30 0.49 | 30 0.49 | 99 0.49

Table 11: AggSERF efficacy of CornerAvg heuristic

7.6 Performance with CC-SEER

As mentioned previously in Section 3, the CC-SEER algorithuarantees global safety, unlike Lite-
SEER, which is a heuristic. A sample result where the safgbget of CC-SEER is clearly evident is
shown in Table 12, obtained by executing NodeExpand on ceenplate AIQT5* We see here that

LiteSEER replacements resulting in negative MinSERF \glwhich go uptc4.8, are prevented by

CC-SEER.

Query | NodeExpand (LiteSEER) | NodeExpand (CC-SEER)
Tem- | Rep| Agg Min Harm | Rep| Agg Min Harm
plate % | SERFSERF % % | SERFSERF %
AIQT5 | 94 | 091 -48 2% | 93 | 096 0.0 O

Table 12: Guaranteed Replacement Safety with CC-SEER

The safety guarantee of CC-SEER is achieved at a price acdasedd computational overheads, and
these overheads are shown in Table 13 for a representatioé teenplates. We see here that the time
overheads of CC-SEER are 4 and 8 times that of LiteSEER fom2CB® templates, respectively. The
space overheads are also higher for CC-SEER since eacHauhgs to now carry a larger number of
corner costs to the higher levels, and this factor increaspsnentially with dimensionality.

4This experiment was carried out on a commercial query opémsince high negative MinSERF values did not arise
on PostgreSQL with NodeExpand on any of our templates.

28

Query NodeExpand NodeExpand
(LiteSEER) (CC-SEER)
Template | Time | Memory | Time | Memory
(ms) | (MB) | (ms) | (MB)
QT5 18.9 6.2 81.5 15.9
QT10 4.8 3.9 20.4 5.4
3DQT8 | 26.4 29.5 215.3| 118.1
AIQT5 20.9 11.8 86.1 315

Table 13: Computational Overheads of CC-SEER

7.7 Higher-dimensional Query Templates

In the previous experiments, the query templates weretakketwo or three-dimensional. Inherently,
there is no fundamental restriction on applying our aldonis to higher-dimensional templates. How-
ever, from a practical viewpoint, there are two issues: tlirgiven ad-dimensional template, FPC
costing has to be carried outzitpoints with LiteSEER (as mentioned previously in Sectian3)ere-
fore, the safety computation costs increase exponentigttydimensionality. Even with this increase,
if we assume that query optimization times upto 1 second ecepable, then it usually practical to
produce replacement plan choices with as many as 6 dimengidhe selectivity space — a sample
instance is shown in Table 14, where the overheads of optijnquery Q8 of the TPC-H benchmark
using NodeExpand are evaluated with 4, 5 and 6 error-se@siiations, respectively. We see here
that NodeExpand takes about a quarter-second to optime&éhquery, utilizing about 200MB of
memory. We expect that such dimensionalities would pro¥icgnt in practice especially given that
not all base relations would be sensitive to selectivitpesr

Dimen- DP NodeExpand
siona- || Time | Memory | Time | Memory
lity (ms) (MB) (ms) (MB)

4D 57 70
5D 6.0 4 119 113
6D 247 157

Table 14: Computational Overheads with Dimensionality

Secondly, explicitly demonstrating that our replacemdg@thms do perform better on the various
quality metrics as compared to the classical DP approachre=gcomputing SERF values at all points
of the selectivity space over all replacements. Itis thieving” process that is computationally time-
consuming, not the plan generation process itself, anceisnhin reason for the limitation to 2D and
3D templates in our study. However, for users who unilalgraibscribe to the Expand approach, plans
can be easily provided for higher-dimensional templatesels

We have given sample performance results of NodeExpand #id guery template 4DQTS8, in
Table 15, for which it was feasible to complete the provinggesss with a low-resolution diagram. The
SEER numbers are also given for comparative purposes.

29

Metric NodeExpand | SEER | DP

Rep % 55 % 53 %
AQgSERF 0.19 0.21

Help % 16 % 21 %
MIinSERF 0.0 0.0
of Plans 3 3 32
Non-POSP 1

Table 15: NodeExpand on 4DQT8

8 Related Work

The effective handling of selectivity estimation errors baen a long-standing problem in the database
literature. One approach has been to improve the qualitiyeo$tatistical meta-data, for which several
techniques have been presented including including resoeanary structures [1], feedback-based
adjustments [23, 8], hinting frameworks [7], and on-therflpptimization of queries [17, 19, 3]. A
complementary and conceptually different approach has thezidentification of robust plans — that
is, to “aim for resistance, rather than cure”, by identifyplans that provide comparatively good per-
formance over large regions of the selectivity space. Sulah ghoices are especially important for
industrial workloads where global stability is as much aczyn as local optimality [18].

Over the last decade, a variety of compile-time strategae Ibeen proposed for identifying robust
plans, including the Least Expected Cost [9, 10], Robusti@ality Estimation [2] and Rio [3, 4]
approaches. These techniques provide novel and elegamiiletions, but, as described previously in
[13], are limited on some important counts: First, they dballretain a guaranteed level of local opti-
mality in the absence of errors. That is, at the estimatedydaeation, the substitute plan chosen may
bearbitrarily poor compared to the optimizer’s original cost-optimal choiecond, these techniques
have not been shown to provide sustained acceptable paemoethroughoutthe selectivity space,
i.e., in the presence of arbitrary errors. Third, they regspecializednformation about the workload
and/or the system which may not always be easy to obtain oeméahally, their query capabilities
may belimited compared to the original optimizer — e.g., only SPJ queriéls key-based joins were
considered in [2, 3].

For completeness, we recapitulate from [13] a more detalestview of the above compile-time
strategies (a recent survey of run-time strategies isaaiin [11]): In the Least Expected Cost (LEC)
approach [9, 10], it is assumed that the distribution of [waeé selectivities is apriori available, and
then the plan that has the least-expected-cost over thibdisdn is chosen for execution. While the
performance of this approach is likely to be good on averageuld be arbitrarily poor for a specific
guery as compared to the optimizer’s optimal choice for thedry. Moreover, it may not always be
feasible to provide the selectivity distributions.

An alternative Robust Cardinality Estimation (RCE) stggtproposed in [2] is to model the selectiv-
ity dependency of the cost functions of the various comggilan choices. Then, given a user-specified
“confidence thresholdT’, the plan that is expected to have thast upper bounavith regard to cost in
T percentile of the queries is selected as the preferred ehdtee choice of” determines the level of
risk that the user is willing to sustain with regard to worase behavior. Like the LEC approach, this
too may be arbitrarily poor for a specific query as compardtemptimizer’s optimal choice.

30

In the (initial) optimization phase of the Rio approach [Badset of uncertainty modeling rules from
[17] are used to classify selectivity errors into one of sategories (ranging from “no uncertainty”
to “very high uncertainty”) based on their derivation meaalans. Then, these error categories are
converted to hyper-rectangular error boxes drawn aroua@plimizer’s point estimate. Finally, if the
plans chosen by the optimizer at the corners of the princ@ajonal of the box are the same as that
chosen at the point estimate, then this plan is assumed taboistrthroughout the box.

However, in our framework, the above box essentially tuutd@ be the entire selectivity space and
it is very unlikely that the plans chosen along the princgiagonal would be the same with respect to
each other, let alone that at the point estimate. Theretosmuld be hard to obtain positive results for
robustness. In contrast, our approach is to invoke plamcephent from a global perspective using the
aggregate behavior over the corners of the selectivityespagéndicators.

Both our previous offline SEER technique, and the onlineritlyms proposed in this paper, address
the above limitations through a confluence of (i) mathenaatitodels sourced from industrial-strength
optimizers, (ii) combined local and global constraintsg &i) generic but effective heuristics. The
salient differences between SEER and EXPAND were discuissddtail earlier in the paper (Sec-
tion 4.2), the most important being, of course, that we im@at an online intra-optimizer approach
that is based on individual query instances, and does notreegny global information to be supplied
apriori.

Finally, our plan replacement approach only attempts toesddselectivity errors that occur on the
base relations However, since these base errors are often the source opfoochoices due to the
multiplier effect as they progress up the plan-tree [16Jsimizing their impact could be of significant
value in practical environments. Further, the approachbeansed in conjunction with run-time tech-
niques such as adaptive query processing [11] for addiggseilectivity errors in the higher nodes of
the plan tree.

9 Conclusions and Future work

We investigated the systematic introduction of globaliitgiteriteria in the cost-based DP optimization
process, with a view to reducing the impact of selectivitpes. Specifically, we proposed the Expand
parametrized family of algorithms for striking the desitedance between the competing demands of
enriching the candidate space for replacement plans, @waksgociated computational overheads. Our
approach expands the set of plans sent from each node in thegti2l to the higher levels, subject to
a four-stage checking process that ensures only plaugiplacdements are forwarded, and overheads
are minimized.

We implemented, in the PostgreSQL kernel, a variety of ptaent algorithms that covered the
spectrum of design tradeoffs, and evaluated them on ben&rengironments. Our results showed that
a significant degree of robustness can be obtained withvelaminor conceptual changes to current
optimizers, especially those supporting a foreign-plastiag feature. Among the replacement algo-
rithms, NodeExpand which propagates the user’s cost and stability consgamthe internal nodes
of the DP lattice, proved to be an excellent all-round choltsimultaneously delivered good stabil-
ity, replacement safety, anorexic plan diagrams, accéptaimputational overheads, and near-optimal
sub-plans. The typical situation was that its plan repla@siwere often able to eliminate more than
two-thirds of the adverse impact of selectivity errors fasubstantial number of error situations, in
return for investing relatively minor additional time an@&mory resources.

31

We hope that the promising results presented here wouldueage commercial database vendors
to incorporate such stability considerations in their mgation framework. Our purely compile-time
techniques can be used in conjunction with run-time rerpogation strategies, as well as plan caching
frameworks such as Progressive parametric query optimiz@®QO) [6], to minimize the number of
different plans that have to be considered during their eteac.

In our future work, we plan to investigate automated techeggfor identifying customized assign-
ments to the node-specific cost, safety and benefit threshottle Expand approach. Further, it would
be interesting to extend our study to skewed distributidresi@r locations in the selectivity space.

Acknowledgements.This work was supported in part by generous research gnamsMicrosoft and
Google.

References

[1] A. Aboulnaga and S. Chaudhuri, “Self-tuning Histogramsiilding Histograms without Looking at Data”,
Proc. of ACM SIGMOD Intl. Conf. on Management of Datéay 1999.

[2] B.Babcock and S. Chaudhuri, “Towards a Robust Queryr@igér: A Principled and Practical Approach”,
Proc. of ACM SIGMOD Intl. Conf. on Management of Dalane 2005.

[3] S. Babu, P. Bizarro and D. DeWitt, “Proactive Re-Optiatian”, Proc. of ACM Sigmod Intl. Conf. on
Management of Datalune 2005.

[4] S. Babu, P. Bizarro and D. DeWitt, “Proactive Re-Optiaiion with Rio”, Proc. of ACM SIGMOD Intl.
Conf. on Management of Datdune 2005.

[5] S. Borzsonyi, D. Kossmann and K. Stocker, “The Skylinee@por”, Proc. of 17th IEEE Intl. Conf. on
Data Engineering (ICDE)April 2001.

[6] i Bizzaor(r)%, N. Bruno and D. DeWitt, “Progressive ParatceQuery Optimization”,|IEEE TKDE 21(4),
pri :

[7] N. Bruno, S. Chaudhuri and R. Ramamurthy, “Power HintsQaiery Optimization”,Proc. of 25th IEEE
Intl. Conf. on Data Engineering (ICDEMarch 2009.

[8] S. Chaudhuri, V. Narasayya and R. Ramamurthy, “A Pay¥As-Go Framework for Query Execution
Feedback”,Proc. of 34th Intl. Conf. on Very Large Data Bases (VLPB)gust 2008.

[9] F. Chu, J. Halpern and P. Seshadri, “Least Expected Cue%timization: An Exercise in Utility”,
Proc. of ACM Symp. on Principles of Database Systems (P 1999.

[10] F. Chu, J. Halpern and J. Gehrke, “Least Expected Costy)Dptimization: What Can We Expecfroc.
of ACM Symp. on Principles of Database Systems (POR&y 2002.

[11] ébg;eshpande, Z.lves and V. Raman, “Adaptive Query Bssing”’,Foundations and Trends in Databases

[12] Harish D., P. Darera and J. Haritsa, “On the ProductibAmrexic Plan Diagrams”Proc. of 33rd Intl.
Conf. on Very Large Data Bases (VLOEeptember 2007.

[13] Harish D., P. Darera and J. Haritsa, “Robust Plans tjindRlan Diagram ReductionBroc. of 34th Intl.
Conf. on Very Large Data Bases (VLOQRB)ugust 2008.

[14] A.Hulgeri and S. Sudarshan, “Parametric Query Optatian for Linear and Piecewise Linear Cost Func-
tions”, Proc. of 28th Intl. Conf. on Very Large Data Bases (VLDBJgust 2002.

[15] A. Hulgeriand S. Sudarshan, “AniPQO: Almost Non-irsitee Parametric Query Optimization for Nonlin-
ear Cost Functions’Proc. of 29th Intl. Conf. on Very Large Data Bases (VLD8&ptember 2003.

32

[16] Y. loannidis and S. Christodoulakis, “On the Propagatof Errors in the Size of Join Result®yoc. of
ACM SIGMOD Intl. Conf. on Management of DaMay 1991.

[17] N. Kabra and D. DeWitt, “Efficient Mid-Query Re-Optingtion of Sub-Optimal Query Execution Plans”,
Proc. of ACM SIGMOD Intl. Conf. on Management of Datéay 1998.

[18] L. Mackert and G. Lohman, “R* Optimizer Validation anegfformance Evaluation for Local Queries”,
Proc. of ACM SIGMOD Intl. Conf. on Management of Ddtéay 1986.

[19] V. Markl, V. Raman, D. Simmen, G. Lohman, H. Pirahesh &hdCilimdzic, “Robust Query Processing
through Progressive OptimizatiorPyoc. of ACM SIGMOD Intl. Conf. on Management of Dalane 2004.

[20] N. Reddy and J. Haritsa, “Analyzing Plan Diagrams of dbatse Query OptimizersRroc. of 31st Intl.
Conf. on Very Large Data Bases (VLOQRBugust 2005.

[21] P. Selinger, M. Astrahan, D. Chamberlin, R. Lorie andPTice, “Access Path Selection in a Relational
Database SystemProc. of ACM SIGMOD Intl. Conf. on Management of Datane 1979.

[22] H. Shrimal, “Characterizing Plan Diagram Reductionafdty and Efficiency”, Master’s Thesis, Indian Inst.
of Science, June 2009.
http://dsl.serc.iisc.ernet.in/publications/thesessh. pdf

[23] M. Stillger, G. Lohman, V. Markl and M. Kandil, “LEO, DB& LEarning Optimizer”,Proc. of 27th VLDB
Intl. Conf. on Very Large Data Bases (VLOEeptember 2001.

[24] http://publib.boulder.ibm.com/infocenter/db2luw/m@lex.jsp?topic=/com.ibm.db2.udb.admin.doc/doc/&EB3.htm
[25] http://postgresqgl.org

[26] http://www.postgresql.org/docs/8.3/static/releasd-8.html

[27] http://msdn2.microsoft.com/en-us/library/ms18929fxa

[28] http://infocenter.sybase.com/help/index.jsp? topiont.sybase.dc3498P500/html/miggde/BABIFCAF.htm

[29] http://www.tpc.org/tpch

[30] http://www.tpc.org/tpcds

[31] http://dsl.serc.iisc.ernet.in/projects/PICASSO/giwa.html

33

APPENDIX

A Proof of Skyline Sufficiency

In Section 3, we described a four-stage pruning proceduwatishinvoked at each node. The last

check in this procedure selectively retains only shglineset of wagons based on cost-safety-benefit
considerations. We prove here that the final plan choicegrhwadhe optimizer using this restricted set

of wagons is exactly equivalent to that obtained by retgnire entire set of wagons — that is, there is
no “information loss” due to the pruning.

Theorem 1 A sub-plarp,, eliminated by the Skyline check cannot feature in the firdaeement plan
P,. selected by the optimizer in the absence of this check.

Proof: We demonstrate this proof by negation. That is, assume ialtkence of the Skyline check,
the final planP,. does contain a wagan,; eliminated by this check. Let the elimination have occurred
due to domination by, on the dimensionality space comprisedl@ialCost, Cost(V1), Cost(Va),
Cost(V3), ... Cost(Van — 1), BenefitIndex.

Now, let us assess the relationship that develops betwgeandp,» had both been retained through
the higher levels of the DP lattice. For example, at the nggtidr noder, the costs and benefits of the
wagons will be

Wagon | Local Corner Benefit
Cost Costs Index

’LUl C(pwb Qe) + C(pwla ‘/;) + C(pwb ‘/z) +
A, Ay, > Ay,

’LU2 C(pwb Qe) + C(pra ‘/;) + C(pw2> ‘/z) +
A, Ay, > Ay,

where the deltas are the incremental costs, at the local@nérclocations, of computing node Note
that these incremental costs will be the same for the two nwagmce they both represent the same
input data and can therefore use the same strategy for corgput

From the above, it is clear that the relative values alonglalline dimensions have indeed come
closer together due to the presence of the additive comsstatitat is, there is a tighter “coupling”.
However, there is no “inversion” on any dimension due to \Whigce domination property could be
violated. This is because, as is trivially obvious, givemw @vbitrary numbers; andv; with v; > v;,
and a constant, it is always true that; + a > v; + a.

By induction, the above relationship would continue to hestell the way up the lattice to the
root node. Now, in the final selection, the MaxBenefit setacheuristic chooses the wagon with the
maximum benefit. Therefore, it would still be the case thatglan withp,,, would be preferred over
the identical plan withp,,; instead since the benefit of the former is greater than ththiedhtter. Hence
our original assumption was wrong. =

34

B Query Templates

We give below the specific query templates, based on the TRBeH PC-DS benchmarks, used in our
experimental study. The bold-faced predicates correspmtite selectivity space dimensions.

B.1 TPC-H Query Templates

sel ect
n_nane,
sun(| _extendedprice * (1 - | _discount)) as revenue
from
cust omer,
orders,
lineitem
supplier,
nati on,
region
wher e
c_custkey = o_custkey
and | _orderkey = o_orderkey
and | _suppkey = s_suppkey
and c_nationkey = s_nati onkey
and s_nationkey = n_nati onkey
and n_regi onkey = r_regi onkey
and r_nanme = 'ASI A
and o_orderdate >= ’'1994-01-0Y
and o_orderdate < ’1995-01-01
and c_acctbal :varies
and s.acctbal :varies
group by
n_name
order by
revenue desc

Figure 10: QT5-2D

35

sel ect
0_year,
sun(case
when nation = 'BRAZIL' then vol une
else O
end) / sun{vol une)
from
(
sel ect
YEAR(o0_orderdate) as o_year
| _extendedprice = (1 - | _discount) as vol une,
n2.n_nane as nation
from
part,
supplier,
['ineitem
or ders,
cust oner,
nati on nil,
nation n2,
regi on
wher e
p_partkey = | _partkey
and s_suppkey = | _suppkey
and | _orderkey = o_orderkey
and o_custkey = c_custkey
and c_nationkey = nl.n_nationkey
and nl.n_regi onkey = r_regi onkey
and r_nanme = ' AMERI CA
and s_nati onkey = n2.n_nati onkey
and p_type = ' ECONOW ANODI ZED STEEL’
and s.acctbal :varies
and |_extendedprice :varies
) as all_nations
group by
0_year
order by
0_year

Figure 11: QT8 - 2D

36

sel ect
c_cust key,
c_nane,
sun(l _extendedprice = (1 - | _discount)) as revenue,
c_acct bal,
n_nane,
c_address,
c_phone,
c_conment
from
cust omer,
orders,
l'ineitem
nation
wher e
c_custkey = o_custkey
and | _orderkey = o_orderkey
and o_orderdate >= ’'1993-10-01’
and o_orderdate < ’1994-01-01
and c_nationkey = n_nati onkey
and c_acctbal :varies
and |_extendedprice :varies
group by
c_cust key,
C_nane,
c_acct bal,
c_phone,
n_nane,
c_address,
c_conment
order by
revenue desc

Figure 12: QT10- 2D

37

sel ect
0_year,
sun(case
when nation = 'BRAZIL' then vol une
else O
end) / sun{vol une)
from
(
sel ect
YEAR(o0_orderdate) as o_year
| _extendedprice = (1 - | _discount) as vol une,
n2.n_nane as nation
from
part,
supplier,
['ineitem
or ders,
cust oner,
nati on nil,
nation n2,
regi on
wher e
p_partkey = | _partkey
and s_suppkey = | _suppkey
and | _orderkey = o_orderkey
and o_custkey = c_custkey
and c_nationkey = nl.n_nationkey
and nl.n_regi onkey = r_regi onkey
and r_nanme = ' AMERI CA
and s_nati onkey = n2.n_nati onkey
and p_type = ' ECONOW ANODI ZED STEEL’
and s_acctbal :varies
and |_extendedprice :varies
and o_totalprice :varies
) as all _nations
group by
0_year
order by
0_year

Figure 13: QT8 - 3D

38

sel ect
c_cust key,
Cc_nane,
sun(l _extendedprice = (1 - | _discount)) as revenue,
c_acct bal,
n_nane,
c_address,
c_phone,
c_conment
from
cust omer,
or ders,
l'ineitem
nation
wher e
c_custkey = o_custkey
and | _orderkey = o_orderkey
and c_nationkey = n_nati onkey
and c_acctbal :varies
and o_totalprice :varies
and |_extendedprice :varies
group by
c_cust key,
c_nane,
c_acct bal,
c_phone,
n_nane,
c_address,
c_conment
order by
revenue desc

Figure 14: QT10- 3D

39

sel ect
0_year,
sun(case
when nation = 'BRAZIL' then vol une
else O
end) / sun{vol une)
from
(
sel ect
YEAR(o0_orderdate) as o_year
| _extendedprice = (1 - | _discount) as vol une,
n2.n_nane as nation
from
part,
supplier,
['ineitem
or ders,
cust oner,
nati on nil,
nation n2,
regi on
wher e
p_partkey = | _partkey
and s_suppkey = | _suppkey
and | _orderkey = o_orderkey
and o_custkey = c_custkey
and c_nationkey = nl.n_nationkey
and nl.n_regi onkey = r_regi onkey
and r_nanme = ' AMERI CA
and s_nati onkey = n2.n_nati onkey
and p_type = ' ECONOW ANODI ZED STEEL’
and s.acctbal :varies
and |_extendedprice :varies
and o_totalprice :varies
and c_acctbal :varies
) as all _nations
group by
0_year
order by
0_year

Figure 15: QT8 - 4D

40

B.2 TPC-DS Query Templates

sel ect
I _itemid,
avg(ss_quantity) as aggl,
avg(ss_list_price) as agg2,
avg(ss_coupon_ant) as agg3,
avg(ss_sal es_price) as agg4

from
store_sal es, custoner_denographi cs,
date_dim item pronotion

wher e
ss_sold date sk = d _date_sk
and ss_itemsk =i _itemsk

and ss_cdeno_sk
and ss_prono_sk

cd _deno_sk
p_prono_sk

and cd_gender =’'M and cd_marital _status ='S
and cd_education_status = ' Col | ege’
and (p_channel _email ='N or p_channel _event = "N

and d_year = 2000
and sssalesprice :varies
and i_current_price :varies
group by
i _itemid
order by
I _itemid
[imt 100;

Figure 16: DSQT7

41

sel ect
I _itemid,
ca_country,
ca_state,
ca_county,
avg(cs_quantity) aggl,
avg(cs_list_price) aggz,
avg(cs_coupon_ant) agg3,
avg(cs_sal es_price) agg4,
avg(cs_net _profit) agg5,
avg(c_birth_year) agg6,
avg(cdl. cd_dep_count) agg7
from
cat al og_sal es,
cust oner _denogr aphi cs cdl,
cust oner _denogr aphi cs cd2,

cust oner,
cust oner _addr ess,
date_di m
item
wher e
cs_sold date sk = d date_ sk
and cs_itemsk =i _itemsk
and cs_bill _cdenpo_sk = cdl.cd _denp_sk
and cs_bill _custonmer_sk = c_custoner_sk
and cdl.cd _gender ="'F
and cdl.cd _education_status = ' Unknown’

and c¢c_current _cdeno_sk = cd2.cd _deno_sk
and c_current _addr_sk = ca_address_sk
and ¢_birth_nmonth in (3,11,9,5,8,10)
and d_year = 2000
and ca_state in ("NC, AK ,"PA |"AK ,"CA ," VA", W)
and cslist_price :varies
and i_current_price :varies
group by
I _item.id,
ca_country,
ca_state,
ca_county
order by
ca_country,
ca_state,
ca_county

Figure 17: DSQT18
42

sel ect
I _item.id, avg(cs_quantity) as aggl,
avg(cs_list_price) as agg2,
avg(cs_coupon_ant) as agg3,
avg(cs_sal es_price) as agg4

from
cat al og_sal es, custoner _denographi cs,
date_dim item pronotion

wher e
cs_sold date sk = d date_ sk
and cs_itemsk = i_itemsk
and cs_bill _cdeno_sk = cd_deno_sk
and cs_prono_sk = p_prono_sk
and cd_gender ="M and cd_marital _status = 'S
and cd_education_status = ' Col | ege’
and (p_channel _email = 'N or p_channel _event = "N

and d_year = 2000
and cslist_price :varies
and i_current_price :varies
group by
i _itemid
order by
I _item.id;

Figure 18: DSQT26

43

