
Characterizing Peak Power Behavior of Database
Engines

Mayuresh Kunjir Puneet Birwa Jayant R. Haritsa

Technical Report
TR-2012-01

Database Systems Lab
Supercomputer Education and Research Centre

Indian Institute of Science
Bangalore 560012, India

http://dsl.serc.iisc.ernet.in

Abstract

Database engines often consume significant power during query processing activities, motivat-
ing researchers to investigate the redesign of their internals to minimize these overheads. While the
prior literature has dealt exclusively with average power considerations, our focus here is on peak
power consumption. We begin by profiling the peak power behavior of a representative suite of
popular commercial database engines in benchmark query processing environments, and demon-
strate that their consumption can often be substantial. Then, we develop a pipeline-based model of
query execution plans that lends itself to accurately estimating peak power consumption, suggest-
ing its gainful employment in server design and capacity planning. More potently, given a space of
competing plan choices, it could help identify plans with attractive tradeoffs between peak-power
and time-efficiency considerations, and we present sample instances of such tradeoffs. Finally, we
discuss extensions of our modeling approach to inductive pipelines and multi-query workloads.

1 Introduction
In recent times, addressing the power consumption incurred by computational hardware and software
has become an active area of research, fueled by technological advances, environmental concerns and
mobility considerations. As a case in point, database engines, a key component of many enterprise
information systems, have been found to be major power consumers during their complex data process-
ing activities. This led the 2008 Claremont report on database research directions to declare “designing
power-aware DBMSs that limit energy costs without sacrificing scalability” as an important research
area [1].

In assessing power utilization, there are two aspects – average power and peak power – that are of
interest. Average power consumption impacts concerns such as long-term energy expenses and design
of heat dissipation systems. Peak power consumption, on the other hand, is of relevance in server
design, capacity planning, and prevention of overheating surges. In particular, it is mentioned in [6]
that “since cooling and power supplies are designed to accommodate peak consumption, reducing this
overhead mitigates power and cooling limitations”.

The prior literature on power consumption in database engines (covered in Section 7) has exclusively
focused on average power considerations (e.g. [23, 19]). In this paper, we turn our attention to profiling,
modeling and mitigating the peak power characteristics of database engines. While generic hardware
mechanisms, such as voltage scaling [5], have been developed to manage peak power usage, they may
not be compatible with the specific functional and performance expectations of the software packages
executing on the system. Therefore it is important to investigate avenues for explicitly making database
engines power-aware such that they work well even when constrained by a peak power budget.

Significant new challenges confront us when characterizing peak power behavior, as compared to
average power models – in particular, we have to now (a) explicitly account for the parallelism of
operators, as peak power represents the maximum aggregate consumption of concurrent operations;
and (b) capture bursty or short-term phenomena during the course of a query’s execution.

Peak Power Characteristics. We begin our study by profiling, on a well-provisioned workstation,
the peak power behavior of a representative set of three state-of-the-art commercial database engines
on query workloads sourced from the TPC-DS data warehousing benchmark [27]. Our experiments
demonstrate that the power consumption incurred by such query processing can often take up a sub-
stantial fraction of the machine’s dynamic power range, even when the queries are executed in isolation.

2

Further, there are often significant differences in the peak power consumption of the various engines –
as a case in point, for Query 8 of the benchmark, two of the engines utilize around 30 watts of peak
power, whereas the third engine consumes over 70 watts! This heavy usage lasts for a short initial burst
of about 9 seconds, as shown in Figure 1(a), which tracks the engine’s power consumption over the
query’s 16 minute lifetime. Its source can be traced back to the “pipeline” (sequence of concurrently
executing plan operators) segment highlighted in the execution plan tree shown in Figure 1(b).

Regression Model. Motivated by the above empirical observations, we investigate whether it is feasible
to a priori estimate the peak power consumption of a query. In particular, we look into whether this
estimation could be carried out solely using information provided by the query execution plan, without
requiring any run-time inputs. The challenge here, as mentioned earlier, is that multiple operators may
be executing in parallel, especially on today’s multi-core computing platforms, and we need to capture
their aggregate power utilization. Further, in pipelined plans, power consumption of an operator is
dependent on the maximum rate at which upstream operators are funneling data into the pipeline.
Based on these observations, we have developed a model wherein a query plan is first segmented into
pipelines, using techniques developed previously for SQL execution progress indicators [3, 10]. For
each of these pipelines, we apply a mathematical function that takes as input the rates and sizes of the
data flowing through the pipeline operators, and outputs an estimate of the peak power consumption.
The function has been developed through fitting step-wise linear regression models [21, 22] on a set
of training examples, which are carefully chosen with a view to minimizing the number of samples
required to achieve the desired accuracy. Our evaluation indicates that, when the plan statistics are
accurately estimated in the database system, this power model, albeit high-level, is typically able to
estimate the peak power within ± 15% of the consumption encountered at run-time. Therefore, it
appears to be a useful tool for incorporation in the design workbench of database servers.

Query Plan Selection. Modern database engines typically choose query execution plans with the
objective of minimizing the estimated query execution time, and to our knowledge, peak power consid-
erations are currently not directly taken into account. In this scenario, it is entirely possible that peak
power-efficient plans may be discarded in favor of time-efficient plans. A potentially potent application
of the above-mentioned model is that it can help to quantify the peak power-efficiency of the various
plan alternatives considered by the optimizer, thereby supporting making weighted choices between
peak power and response time considerations. Our exploratory experiments in this regard, using candi-
dates sourced from a parametric-optimal set of plans (POSP) [9], discovered, for some queries, plans
that reduced the peak power by around 20 to 40 watts. This is a significant reduction given the 80 W
dynamic power range of our testbed machine. Further, these improvements were obtained even while
confining our attention to only the subset of plans whose running times were within a factor of two of
the optimizer’s original time-efficient choice.

Black Box Environment. An important point to note here is that we are not privy to the internals of the
commercial database systems. Therefore, our study has treated these systems as “black boxes”, utilizing
only their API functions. This means that our attribution of plan operator activity to the temporal power
behavior in the training examples is perforce a coarse association. However, vendor design groups with
access to engine internals could establish the correspondence more precisely, leading to improved peak
power estimates. Further, it would be feasible to consider power-efficient replacement plans directly
from the native plan search space, rather than our restricted POSP space.

Contributions. In summary, we demonstrate a first-cut proof-of-concept in this report that a viable

3

(a) Temporal Power Behavior

(b) Execution Plan

Figure 1: Power profile of TPC-DS Query 8

4

methodology can be developed for predicting the peak power consumption incurred by complex query
processing on current database engines. Further, that opportunities exist to identify alternative query
execution plans providing attractive tradeoffs with regard to peak power and response time. We also
show that these plans are different than those identified for average power efficiency, highlighting the
need for considering afresh the peak power problem. To the best of our knowledge, these results rep-
resent the first peak power characterization of database query processing, taking another step towards
the ultimate objective of designing “green” database systems.

We hasten to add that all of the above comes, of course, with the implicit assumption that query
processing is indeed the primary source of peak power consumption in database engines, as compared
to other heavy-duty activities (e.g. nightly backup).

Organization. The rest of this report is organized as follows: In Section 2, we profile the peak power
performance of commercial database engines on the TPC-DS benchmark. The pipeline-based model
for identifying power-hungry segments of query execution plans is presented in Section 3. The robust-
ness of model to changes in data and system environments is covered in Section 4. Then, in Section 5,
we demonstrate instances wherein power-hungry plan choices can be replaced by comparatively power-
efficient plans without incurring an excessive increase in execution times. Interesting modeling exten-
sions are discussed in Section 6, while related literature is reviewed in Section 7. Finally, in Section 8,
we summarize our conclusions.

2 Peak Power Profiles
In this section, we profile the peak power behavior of three popular commercial relational DBMS, oper-
ating in the TPC-DS benchmark environment. These engines are anonymously referred to as EngineA
, EngineB and EngineC in the sequel.

2.1 Experimental Environment
Our experiments are conducted on a Sun Ultra 24 workstation configured with an Intel Core 2 Extreme
Quad Core 3 GHz processor, 8 GB RAM, four 300 GB SAS hard disks (15K RPM), and running the 64-
bit Windows Vista Business operating system. A Scale 1 (100 GB) version of the TPC-DS benchmark
is used to populate the database.

2.1.1 Query Workload

From the 99 SQL queries that comprise the TPC-DS benchmark, we present results here for an illus-
trative subset of 16 queries. Their choice was motivated by the categorization in [15], wherein queries
are classified based on their coverage of fact and dimension tables in the data warehouse schema. The
classification is as follows:

Query Category Number
Dimension Tables only 6
Single fact table 54
Multiple fact tables with sub-query joins 22
Multiple fact tables with sub-query unions 17

5

Our chosen queries include one from the first category (Q41), nine from the second (Q8, Q16, Q24,
Q57, Q59, Q61, Q82, Q88, Q98), three from the third (Q58, Q64, Q83), and three from the fourth (Q49,
Q66, Q76). These queries cover a wide spectrum of SQL features ranging from Aggregate functions to
CASE statements.

2.1.2 Memory Management

For each database engine, the assigned memory is set to the same value, namely 6 GB of the 8 GB
physical memory installed in the machine. Further, each query execution is carried out under “cold-
cache” conditions. This environment is ensured by (a) restarting the database engine’s server process to
clean up the DBMS buffer pool, and (b) sequentially scanning a large unrelated table from the database
to wipe out the operating system’s cached contents, prior to executing the query.

2.1.3 Power Measurement

To measure power usage, we created a setup similar to those used in several prior studies [14, 15,
17, 19]. Specifically, a digital power meter (Brand Electronics model 20-1850/CI [24]) with a 1 W
measurement resolution, 3 kHz sampling frequency and 1 Hz logging frequency is employed in our ex-
periments. The meter is directly connected between the electrical mains and the database workstation,
and therefore measures the workstation’s overall power consumption. The power values are transmit-
ted through an interface cable to a separate monitor machine on which they are logged and processed,
thereby ensuring the measurement apparatus does not modulate the monitored system.

In order to obtain the active (or dynamic) power usage corresponding to database query execution,
we subtracted the ambient power consumption of the system in its idle state from the measured values.
For our configuration, the ambient power was around 145 W, and the saturation power value was close
to 225 W, corresponding to an active range of roughly 80 W. All measurements reported here are with
respect to this range. Finally, each experiment was run with multiple independent executions to ensure
confidence in the observed values.

2.2 Experimental Results
Under the ambit of the above experimental framework, we evaluated the peak power values obtained
on the three database engines over each of the sixteen TPC-DS queries featured in our workload. These
results are presented in Figure 2(a), where EngineA is represented by blue upward diagonals, EngineB
by green horizontal bars, and EngineC, by red downward diagonals. To provide the complete pic-
ture, we also show the average power values and the query execution times in Figures 2(b) and 2(c),
respectively.

We first observe in Figure 2(a) that for all three engines, there exist queries spanning the various
categories that exercise the underlying computational platform through a substantial range of the 80
W dynamic peak power limit. For example, with EngineA, about half-a-dozen queries (e.g. Q16) use
more than 40 W, while about four do so on EngineB (e.g. Q83). Turning to EngineC, we find that it
has the maximum number of power “skyscrapers”, with queries such as Q8 taking in excess of 60 W.
Further, there are some queries, with Q41 and Q59 being prime examples, wherein all three engines
incur high power requirements.

6

(a) Peak Power (b) Average Power

(c) Execution Time (d) Power versus Time

Figure 2: Power and Time Performance on TPC-DS Queries

Interestingly, with both Q8 and Q64, the average power consumption (Figure 2(b)) is roughly similar
across the three engines, but their peak power behavior (Figure 2(a)) is very different. This clearly
demonstrates that peak power behavior cannot be easily correlated with average power characteristics,
and several such instances are present in our experiments.

The above results make it vividly evident that there is a material need to study and address the
peak power consumption of database engines. We now turn our attention to juxtaposing the power
and time efficiencies of the various engines. The results are shown in Figure 2(d), where the peak
power is plotted against the query execution time. We observe here that EngineC displays the most
extreme behavior with large execution times for some queries and high peak power values for some
others. In comparison, EngineB has the best performance, mostly located near the origin, indicative
of simultaneously providing good time and power efficiency. Finally, the performance of EngineA
displays weaknesses similar to those of EngineC.

3 Modeling Peak Power
In this section, we move on to proposing a peak power estimator algorithm for query execution plans.
While the approach itself is optimizer-agnostic, for ease of presentation we restrict our attention to
modeling EngineC in the sequel. Our algorithm is based on a regression model developed from a
carefully chosen set of training examples (the selection process is described in Section 3.3), with the

7

algorithmic inputs solely based on information available in the plan descriptions provided by current
optimizers. We hasten to add an important caveat here: In order to separate the estimation errors that
may arise due to inaccurate optimizer estimates, as opposed to our own modeling errors, we assume
for the results presented in this paper that the correct values for all plan parameters, such as operator
input and output cardinalities, are available in the training samples (these correct values are determined
through explicit execution of the sample queries). While this assumption is obviously untenable in
practice, our objective here is to assess the intrinsic quality of our estimation model.

Average power can be easily estimated by aggregating the energy consumption estimates of each
individual operator in the plan tree and dividing by the expected execution time. Peak power, on the
other hand, poses the difficulty of having to account for the concurrent execution of a contiguous
sequence of operators, commonly referred to as “pipelines”. In order to identify the pipelines present
in a plan tree, we leverage the prior work on SQL execution progress indicators [3, 10]. Using the
algorithm presented in [3], the pipeline segmentation of the optimizer plan for benchmark query Q59
of TPC-DS is shown in Figure 3(a) – here, there are 8 pipelines, PL1 through PL8, and a partial order
of the execution of these pipelines is enforced by their terminal “blocking” operators (e.g. PL4 cannot
begin until PL3 is complete). Further, our analysis of EngineC suggests that it executes pipelines in an
essentially serial manner, i.e. there is no inter-pipeline concurrency.

In Figure 3(a), the power figures in black rectangles on the various pipelines are the estimates from
our model, and the peak power prediction for the entire execution plan is simply the maximum of these
estimates – in this case, it would be 57.1 W. On the other hand, the power figures in red parallelograms
are the actual consumption of some of the pipelines at run-time, as determined from the temporal log of
the power behavior during execution, shown in Figure 3(b). (The pipeline-to-log attribution procedure
is discussed later in Section 3.5.)

We next explain the methodology by which the peak power consumption of an individual pipeline is
estimated.

3.1 Pipeline Modeling
Each pipeline contains (i) a set of driver nodes, comprised of the operators providing inputs to the
pipeline; (ii) a tree of intermediate nodes; and (iii) a single terminal node consisting of a blocking op-
erator. (A physical operator is termed blocking if it doesn’t produce any output until it has consumed
at least one of its inputs completely.) An example pipeline, ePL, which features in EngineC’s plans for
both Q8 and Q59 (PL4), is highlighted in Figure 4. This pipeline is driven by a Clustered Index
Scan operator and is terminated by a Hash Aggregate operator, with Hash Match Join and
Hash Partial Aggregate being the intermediate nodes. Since the build input of the intermedi-
ate Hash Match Join operator is itself blocking, this input is associated with a different pipeline
that has to complete before ePL’s execution can commence.

In order to generate a rich diversity of pipelines, we considered queries arising not only in TPC-DS,
but also in its historical precursor, the TPC-H benchmark [28]. At first glance, it might seem that we
could have extended this approach even further to include other benchmarks, such as the TPC-C OLTP
benchmark [26]. The reason for discounting OLTP queries is that they (a) usually do not offer a large
search space for the optimizer in terms of plan alternatives, and (b) often do not run long enough to be
meaningfully observed and analyzed. In contrast, the OLAP benchmarks are characterized by complex
queries that execute over long time periods before reaching completion.

From the base 99 TPC-DS and 22 TPC-H benchmark queries, we created a variety of parametrized

8

(a) Pipeline-segmented and Power-annotated Execution Plan

(b) Temporal Power Behavior

Figure 3: Power Profile for TPC-DS Query 59

9

Figure 4: Example Pipeline (ePL)

TPC-DS TPC-H
Total number of Execution Plans 585 116
Total number of Pipelines 5765 711
Number of Structurally-distinct Pipelines 419 109
Number of Power-distinct pipelines 247 84
Average Length of Pipeline 8 operators 5 operators

Table 1: Pipeline Analysis of Query Execution Plans

query templates, the parameters being the predicate selectivities of a few relations appearing in the
query (e.g. for Q59, the parameters were ss sales price < $1 and d quarter seq < $2). The values
of the parametrized attributes were then varied over their domains to obtain, from the optimizer, the
associated parametric optimal set of plans (POSP) [9] – the details of this plan generation procedure
are presented in Section 5 and are also available in [16].

We then collected statistics on the kinds of pipelines present in these plans. The results are shown
in Table 1, where we see that for the 585 different execution plans generated with TPC-DS, the total
number of pipelines appearing in the plans is large – 5765 in all. However, most of these pipelines are
structurally identical and only 419 distinct pipelines were observed. Further, when operators that are
known to be power-insignificant (e.g., Compute Scalar and Parallelism) were eliminated, the
number came down further to 247. For ease of presentation, we will hereafter refer to this set as the
“power-distinct pipelines”. In the case of TPC-H, we found 84 power-distinct pipelines from the 116
plans, with about half of these pipelines present in the TPC-DS workload as well. The average “length”
of the power-distinct pipelines, measured in terms of their number of constituent operators, was 8 for
TPC-DS and 5 for TPC-H, suggesting that the pipelines in the TPC-DS workload are more complex,
as might be expected given the richness of its schema, data distributions and queries.

We see from the above that since the set of power-distinct pipelines is not unduly large, it should
be feasible, in principle, for optimizer development teams to a priori model most or all of the operator
pipelines appearing in their execution plans. This would facilitate integration of pipeline power models
with the existing operator cost models in these systems. A related point to note here is that modeling at
pipeline granularity captures both intra-operator parallelism and inter-operator parallelism.

10

3.2 Model Parameters
We now discuss our choice of regression model parameters. For ease of presentation, a distinction is
made between two types of pipelines: (a) Leaf Pipelines, wherein at least one of the driver nodes to
the pipeline is a leaf node in the query plan, usually corresponding to a base relation, and (b) Internal
Pipelines, wherein all inputs are from intermediate relations, which may be hosted on disk or are fully
memory-resident.

3.2.1 Leaf Pipelines

We incorporate two kinds of parameters in leaf pipelines: Rate Parameters and Size Parameters, dis-
cussed below.

Rate Parameters. Since the pipelines are fed data by driver nodes, the rate at which the input arrives
is a critical parameter. Specifically, a scan or index operation on a disk-based relation is estimated to
produce data at a rate equal to the size of the retrieved data divided by the time for transferring this data
from the disk. That is, for a driver node D, the rate is computed as

RateD =
InputD

DiskT imeD
(1)

where InputD denotes the size of data (in bytes) retrieved from disk by D and DiskT ime is the disk
transfer time (in seconds). While the runtime value of InputD is directly available from the API of
EngineC, the same is not true for DiskT ime – therefore, since access to the system internals is also
not feasible, the optimizer’s estimate for DiskT ime is used instead in our study.

Now, given a pipeline PL, the rates of the downstream operators in PL are derived using the formula
shown in Equation 2. Here, N is a generic downstream node in the pipeline, SubtreePLN is the subtree
of pipeline PL rooted at node N , DriverPL is the set of driver nodes in pipeline PL, SourcePLN is the
set of nodes in the pipeline PL that directly provide inputs to node N , and Outputi denotes the size of
data output by node i.

Let DriverN = SubtreePLN ∩DriverPL

Then RateN =

∑
i∈SourcePLN

Outputi

maxx∈DriverN DiskT imex
(2)

The reason for the max operator in the denominator is that it selects the slowest driver among the
pipeline’s driver nodes, incorporating the assumption that the whole pipeline can only run as fast as its
slowest driver. Intuitively, our approach is to model the rates of downstream nodes as the ratios of the
amount of data they process to the time taken for generating the data at the head of the pipeline.

Size Parameters. In addition to data rates, we may also need to consider the sizes of the incoming
and/or outgoing data for some operators in the pipeline. As a case in point, the size of the hash table for
the Hash Match Join operator is proportional to the build input size, and therefore needs to be reflected
in the model. Similarly, for the Hash Aggregate operator, which utilizes memory proportional to the
number of output groups, the output data size is a model parameter. In our study, the runtime values
for all these parameters are obtained from the API of EngineC.

11

Parameter Description
R1 Input rate for Clustered Index Scan
R2 Input rate for Hash Match Join
R3 Input rate for Hash Partial Aggregate
R4 Input rate for Hash Aggregate
B2 Size of build input to Hash Match Join
O3 Output Size of Hash Partial Aggregate
O4 Output Size of Hash Aggregate

Table 2: Candidate Parameters for ePL

3.2.2 Internal Pipelines

Turning our attention to internal pipelines, the driver nodes here are the blocking terminal nodes of
other pipelines. There are two possibilities that arise:

• One or more of the driver nodes writes its data to disk, and the internal pipeline then reads this
information from disk. This scenario can be treated in the same manner as leaf pipelines, using
only the disk-based driver nodes in Equation 2.

• Alternatively, the outputs produced by all the driver nodes are small enough to be fully memory
resident, resulting in the pipeline reading its entire input data directly from memory. This scenario
is more complicated since current optimizers typically do not provide memory costs for operators.
Therefore, we have taken the workaround of using purely size-based model parameters for such
pipelines – specifically, the input size to each pipeline operator. Note that, as a consequence, the
modeling of these pipelines needs to be carried out separately.

Parameter Example. Consider again the ePL pipeline shown in Figure 4. This is a leaf pipeline
consisting of a scan, a hash join and two hash-based aggregates. For this pipeline, the associated
set of candidate regression model parameters are enumerated in Table 2, and shown in the operator
annotations of Figure 4. Specifically, each operator has an associated input data rate; in addition, the
hash join has an input data size, while the two aggregates have output sizes, amounting to 7 parameters
overall.

3.3 Generating Training Instances
Given the above modeling paradigm with the multiplicity of parameters, each covering a substantial
range of values, it might appear at first glance that a computationally impractical number of training
instances may be required to accurately model a pipeline’s peak power behavior. However, using the
methodology described next, our experience has been that even complex pipelines, running to double-
digit number of operators, can be accurately modeled with a modest number of samples, typically in the
range of 20 to 30. Overall, modeling the entire set of 247 power-distinct pipelines could be completed
in less than three months on a single state-of-the-art workstation.

In our methodology, the first step is to decide how many samples to take. While this obviously
depends on what kind of samples are subsequently chosen, an upper bound can be estimated assuming a

12

simple random sampling of the parameter space. Specifically, given a set of desired statistical indicators
(p-value, number of predictors, squared multiple correlation, and statistical power level), a sample size
requirement can be calculated using the method presented in [4]. As a case in point, using standard
values for the indicators, such as p-value of 5 percent and statistical power level of 80 percent, the
number of suggested samples for ePL is about 40.

We now optimize on the above sample requirement by using the targeted Latin Hypercube Sampling
(LHS) technique [12] instead of simple random sampling. The LHS approach is guaranteed to be
representative of the real variability in the underlying model space, and requires that the range of each
pipeline variable be partitioned into equi-probable strata, with the number of partitions being equal to
the sample size. This partitioning information can be derived from the statistics and histograms that are
typically available in database system catalogs.

Since it is expected that LHS will require fewer samples than random sampling [11], we incremen-
tally carry out the sampling using LHS, stopping as soon as the desired statistical power for the model
is reached. Using this strategy with ePL, we were able to achieve satisfactory results with only 26
samples.

Note that LHS merely indicates the desired values of the pipeline parameters in each sample. But
ensuring these values is a non-trivial task since, due to our black-box environment, it is not feasible
to instrument the system internals. Therefore, our mechanisms to influence the parameter values are
perforce indirect – specifically, by varying the database schema and queries. The situation is further
complicated by the dependencies existing between the various parameters (e.g. the various rates in a
pipeline are correlated). Therefore the process for creating the LHS samples has to be carefully planned.
An example query instance containing the ePL pipeline is shown in Figure 5. For modeling ePL, we
used the following strategies to generate the training instances:

• The size of the scanned relation was altered to vary R1. (Change location marked as R1 in
Figure 5.)

• The selectivities of the probe and build inputs were altered to vary R2 and B2, in the process
having a follow-on impact on the values of R3 and R4. (Change locations marked as R2 and B2

in Figure 5.)

• The join conditions were altered to vary R3 without affecting R2 and R1. (Change location
marked as R3 in Figure 5.)

• Various aggregates were added or modified to vary O3, O4 and R4 without affecting R3. (Change
location marked as O3 in Figure 5.)

3.4 Regression Model
Finally, to characterize peak power behavior on the training instances, we use stepwise multi-linear
regression models. This approach is recommended when there are several candidate explanatory vari-
ables with dependencies, and no pre-defined theory on which to base the model selection [21, 22]. A
beneficial side-effect is that over-fitting of the model on the training data is also reduced in the stepwise
approach.

13

Figure 5: A training query instance containing ePL

Figure 6: Regression Model on ePL

We used the XLSTAT statistical software [29] to fit the training data to a stepwise regression
model. As a case in point, we optimized and executed the 26 sample queries for ePL, and
from the associated query plans and executions, created the training data for all seven parameters
(R1, R2, R3, R4, B2, O3, O4) along with the observed peak power values. The final model, shown in
Equation 3, retains only four parameters: R1, R3, R4, O3 (which is to be expected given the underlying
parameter dependencies):

PeakPower(ePL) = 1.25× 10−6 R1 + 7.75× 10−6 R3

+ 3.67× 10−6 R4 − 6.00× 10−10 O3

(3)

A graph of the observed peak power values, against the fitted values from Equation 3, is drawn in
Figure 6, with the dashed line signifying the ideal model. It is evident that all the training examples fall
fairly close to the ideal, the overall co-efficient of variation of the RMS error being only 0.13.

Power Bounds. While the above peak power model has a reasonable fit for generic database envi-
ronments, we have empirically observed on our database platform that the peak power taken by any
pipeline is lower bounded by around 10W when the input rates are low, and upper bounded by 80W
when the inputs are very large and the system resources are fully saturated. Therefore, we add these
bounds to our peak power estimator in Equation 3.

Modeling Accuracy. As mentioned earlier, ePL features in the optimizer plans for TPC-DS queries

14

Q8 and Q59. The model’s prediction quality on ePL in these test cases is shown in Table 3, where we
see that the predicted values are in the neighborhood of the observed values.

Query Peak Power
Number Predicted (W) Observed (W)
Q8 10.7 13
Q59 57.1 65

Table 3: Modeling Quality on ePL

3.5 Results for Complete Plans
Thus far, we discussed individual pipelines. We now move on to evaluating prediction quality on
complete query plans. Reverting our attention to Figure 3(a), corresponding to Q59, the predicted peak
power value is shown for each pipeline. We intended to also measure the actual values for all these
pipelines, but it proved infeasible for those that were of sub-second duration since our power meter
only operates at a one-second granularity. Further, due to our black-box environment, in order to assess
the peak power consumed by a pipeline, we had to manually look through the temporal power log and
approximately identify the time segment of its execution. Owing to the complexity of the query plans,
it was not always easy to make an accurate association between the temporal power log and the pipeline
execution periods. However, these problems were circumvented for two pipelines PL4 and PL7, which
are driven by fifteen-minute scans on the 40GB-sized STORE SALES relation, and their observed values
are shown in the red parallelograms of Figure 3(a). As can be seen, the predicted values, 57.1 W and
11.2 W, are in the ballpark of the observed values, 65 W and 13 W, respectively.

To generalize the above example, we show in Table 4 the summary set of prediction results for all
the TPC-DS queries in Figure 2(a) on which EngineC consumed significant peak power – specifically,
in excess of 30 W. In this table, we note that the predictions are consistently within ± 15 percent of the
observed values, indicating that the model is sufficiently accurate for the intended applications. Further,
as mentioned earlier, if access to the engine internals were available, we expect that the accuracy could
be improved even further.

TPC-DS Peak Power Relative
Query Predicted (W) Observed (W) Error
Q8 74.0 72.0 +3%
Q24 53.4 58.0 -8%
Q41 78.8 74.0 +6%
Q57 34.9 38.0 -8%
Q59 57.1 65.0 -12%
Q82 38.8 36.0 +8%

Table 4: Predictions on Power-Intensive TPC-DS Queries

15

Figure 7: Complex Pipeline cPL

4 Robustness of models
In the previous section, we illustrated how a constructive inferencing methodology for estimating peak
power consumption could be set up through a pipeline-segmented modeling and training approach. We
now discuss the robustness of this strategy to a variety of changes in the database system environment.

4.1 Complex Pipelines
The sizes of the pipelines in the plans considered thus far feature between 1 to 10 operators, and this
range covers the vast majority of pipelines found in the TPC-DS query plans. However, we have
also encountered a few instances of significantly more complex pipelines – a sample instance, cPL,
consisting of 15 operators is shown in Figure 7, where an initial hash-join is followed by a sequence
of five nested-loop joins. This pipeline appears in EngineC’s plans for TPC-DS queries Q17 and Q25,
and in our rate-and-size based modeling framework, has an associated 14 parameters.

In spite of its apparent complexity, training this pipeline did not turn out to be an arduous task. The
initial estimate of sample size based on random sampling was 68, but on using LHS-based samples, a
statistical power of 0.99 was achieved with only 20 instances, and the entire training was completed
in around 6 hours. The final regression model obtained for cPL was the following, with just two
parameters retained:

PeakPower(cPL) = 11.1 + 1.05× 10−5 R3 + 1.02× 10−6 I5 (4)

Table 5 quantitatively demonstrates that this model accurately captures the peak power consumed by

16

cPL during the execution of the two test queries. An interesting point to note here is that the size of
a pipeline does not necessarily translate to proportional peak power – cPL, for instance, only expends
around 10 W. In general, our experience has been that most long pipelines consume only a modest
amount of peak power. The reason can be attributed to these long pipelines typically appearing near
the root of the plan tree. As a consequence, a significant part of the base data encountered at the leaves
may have been already filtered before it reaches them. With small data inputs, these pipelines typically
run only for short durations without consuming much resources.

Query Peak Power
Number Predicted (W) Observed (W)
Q17 11.12 10
Q25 11.11 11

Table 5: Modeling Quality on cPL

4.2 System Robustness
Since our pipeline-based modeling is based on inference, it may appear, at first glance to be vulnerable
to changes in system configurations. To assess the impact of these changes, we attempted porting the
model across different system configurations. Our experience was that changes in disk and memory
configurations did not materially affect the peak power behavior; processor configuration changes, on
the other hand, necessitated model retraining in some cases. To quantitatively showcase these observa-
tions, we present here the impact of each of these changes on three query plans P1, P2 and P3 associated
with Q59.

Effect of hard-disks. Our training server contained four 300 GB/ 15000 RPM SAS hard disks. We
replaced them with four 750 GB/ 7200 RPM SAS hard disks. The peak power consumption of our test
query plans remained unchanged across these two configurations, as shown by Table 6.

Effect of main memory. Here we reduced the main memory allocated to the database engine from 6
GB to 1 GB, but again, there was no appreciable effect on peak power behavior, as shown in Table 7.

Effect of degree of parallelism. Although EngineC by default uses all the processor cores present in
the system, the maximum degree of intra-operator parallelism can be throttled through a configuration
parameter. Specifically, on our quad-core machine, we forced it to use 1, 2 and 4 cores in three sets of
experiments, respectively. Table 8 suggests that the change in the degree of parallelism (DOP) affects
the peak power consumption significantly for P1 and P3, while P2 remains unaffected. This is due

Query Plan Peak Power for Peak Power for
300 GB/ 15000 RPM (W) 750 GB/ 7200 RPM (W)

P1 60 62
P2 45 45
P3 65 64

Table 6: Effect of Changing Hard-disks on Peak Power

17

Query Plan Peak Power for Peak Power for
6 GB (W) 1 GB (W)

P1 60 61
P2 45 44
P3 65 63

Table 7: Effect of Changing Main Memory on Peak Power

Query Plan Peak Power for Peak Power for Peak Power for
DOP=1 (W) DOP=2 (W) DOP=4 (W)

P1 38 50 60
P2 45 44 45
P3 38 48 65

Table 8: Effect of Changing Degree of Parallelism on Peak Power

to the use of a Partial Hash Aggregate operator by P1 and P3 which heavily exploits intra-
operator parallelism. These experiments highlight the need for model retraining across environments
with differential parallelism.

Effect of processor. Finally, we evaluated the effect on peak power consumption of a change in the
base processor itelf. Specifically, we compared two systems: (i) the Intel quad-core Sun Ultra 24
workstation discussed thus far, and (ii) an AMD dual-core Sun Ultra 20 workstation.

The peak power values are again different for P1 and P3 for the two processors running at their
default DOP, as can be seen from the first and third column of Table 9. But if we reduce the degree of
parallelism in the Ultra 24 workstation from 4 to 2, the peak power values thus obtained are comparable
to those obtained on the Ultra 20 workstation. This suggests that if we have a model trained for various
DOPs on a multi-core processor, they can be applied to alternative systems natively sporting these
configurations without requiring retraining.

Query Plan Peak Power for Peak Power for Peak Power for
U-24 Quad core (W) U-24 Dual core (W) U-20 Dual core (W)

P1 60 50 48
P2 45 44 46
P3 65 48 47

Table 9: Effect of Changing CPU on Peak Power

4.3 Database Robustness
Finally, we have also evaluated the robustness of our models to large-scale changes in the database
size. The important point to note here is that, unlike energy, peak power is, to the first degree of
approximation, independent of the data size – it is affected by the data rate, not the quantity. Our

18

experiments also indicate that pipeline peak power typically plateaus after a threshold amount of data,
and our models, which were trained on 100 GB data, reflect this behavior.

We also experimentally confirmed the portability of the models built on TPC-DS to TPC-H, which is
materially different in its schema, data distribution and query suite. We used a TPC-H database of size
10 GB to test the models. Table 10 shows the results on 5 test queries each containing different peak
power pipelines. It can be observed that the model predictions are within ±15% for the new schema
also, thus confirming their robustness.

TPC-H Peak Power Relative
Query Predicted (W) Observed (W) Error
Test1 17.0 19.0 -10%
Test2 21.5 20.0 +8%
Test3 24.7 25.0 -1%
Test4 20.4 24.0 -15%
Test5 30.4 35.0 -13%

Table 10: Predictions on TPC-H Queries

5 Power-Efficient Execution Plans
The results of the previous sections highlighted that database queries often trigger high-power bursts
of energy consumption during the course of their executions. We now turn our attention to investi-
gating how these peak power characteristics could be improved. One approach is to utilize standard
power-reduction techniques such as, for example, “dynamic voltage scaling” [5]. A complementary and
database-centric approach that we investigate here is to assess whether the peak power profile could be
improved through a change of query execution plans. That is, while modern database systems typically
choose the fastest executing plan, we wish to gauge whether there exist alternative plans that are more
desirable from a peak-power perspective, while retaining an acceptable level of time-efficiency.

Explicitly evaluating the above approach on a database engine is predicated on the engine’s support
for the execution of user-specified plans, which we term as “foreign plan execution” (FPE). Fortunately,
EngineC, which exhibited the most extreme behavior in the experiments of Section 2, natively provides
the FPE facility through its API, and we use this facility for all the results presented in this section.

Generating Alternative Plans. A related issue is the search space for alternative plans. While going
through the optimizer’s entire search space would provide the maximum coverage, this is obviously
impractical from a computational perspective. Further, most of these plans are likely to be much worse
on their time-efficiency, making them unviable alternatives. Finally, current query optimizers typically
do not directly support the enumeration of alternative plans through their APIs, and it is therefore not
straightforward to identify any such plan, let alone the entire search space.

To address the above issue, we take the following approach instead: We first convert the TPC-DS
queries into parametrized query templates. The parametrization is on the selectivities of a subset of
the base relations participating in the query, and are implemented through the incorporation of addi-
tional range predicates. This approach is also used in Section 3.1 to collect statistics on pipelines.
An example query template, QT59, derived from Q59, is shown in Figure 8, where the selectivities

19

of the STORE SALES and DATE DIM tables are varied through their sales price and d quarter seq
attributes, respectively (the associated predicates are shown in bold-face).

Figure 8: Query Template 59

On this query template, we produce a “plan diagram” [16], which is a color-coded pictorial enumer-
ation of the plan choices of the optimizer over the selectivity space defined by the template. That is,
the plan diagram is a visual representation of the parametric optimal set of plans (POSP) [9]. As a case
in point, the 2D plan diagram corresponding to the QT59 template is shown in Figure 9, drawn at a
resolution of 100*100. This picture features 47 different plans, P1 through P47, with P1 (red color)
occupying the largest region of the space, amounting to 24 percent.

Note that the set of POSP plans is (a) relatively very small as compared to the exponentially large
search space, and (b) likely to have a reasonable time-efficiency compared to the optimizer’s choice
since each member is itself optimal at some region of the space.

20

Figure 9: Plan diagram of QT59

Fortunately again, it is feasible with EngineC to provide the original TPC-DS query as input, along
with any of the POSP plans corresponding to the associated template, and the optimizer automatically
modifies the template plan to match the query instance. For example, when plans generated from the
QT59 plan diagram are supplied to the optimizer along with query Q59, these plans are automatically
modified to be consistent with the query. Using this facility, we can deterministically identify a quality
set of candidate alternative plans for the query. Of course, the specific set of candidates is a function of
the template that we have constructed, but a more comprehensive coverage could easily be achieved by
generating a number of templates and taking the union of their POSP plan sets.

Peak-power efficient plan for Query 59. In Figure 10, we show a graph of peak power against
execution time for Q59 with a suite of representative alternative plans Palt1, Palt2, Palt3, Palt4 from the
POSP set. Observe that there is one plan: Palt2 (green triangle) whose peak power, 45 W, is significantly
lower than the 65 W consumed by the optimizer’s original plan choice Popt (red square). Interestingly,
in this case, Palt2 also happens to be more time-efficient than Popt – however, we hasten to add that
this is a serendipitous improvement arising out of weaknesses in the optimizer’s cost model, and not a
conscious outcome of our replacement technique.

At this juncture, the following question may be plausibly raised: Is successfully pursuing the objec-
tive of reducing peak power, predicated on incurring a substantial increase in the total energy consump-
tion? We explicitly evaluated this issue for the above scenario, and found that the energy consumption
of both Popt and Palt2 is approximately the same (≈ 70kJ). On the other hand, if we compare the av-
erage power consumptions of the two plans, Palt2 is profligate by a huge margin. These results clearly
highlight the fact that optimizing for average power [23], and optimizing for peak power, can result in
markedly different recommendations with regard to plan choices.

The operator tree of the peak power-efficient plan Palt2 is shown in Figure 11(a), segmented into
pipelines and annotated with predicted peak power values. The associated temporal power log is pro-
vided in Figure 11(b). From these figures, it can be seen that the model accurately predicts the peak
power consumption of the two power-hungry pipelines: PL5 and PL8 (46.3 W for 45 W, 33.2 W for
35 W). It is therefore capable of correctly suggesting that Popt be replaced with Palt2.

Comparing Popt and Palt2, we find that they have significant structural differences – in particular,
the initial join sequence DATE DIM on (DATE DIM on STORE SALES) is reordered to (DATE DIM on

21

Figure 10: Peak Power against Execution Time for Query 59

DATE DIM) on STORE SALES, resulting in a major revamp of the pipeline structure in the plan. Specifi-
cally, the total number of pipelines increases from 8 to 10, and apart from the first 3 pipelines, no other
pipeline is common between the plans.

Peak-power efficient plan for Query 65. Another example query for which power-and-time efficient
replacements can be identified is Query 65. This is quantitatively shown in the peak-power versus
execution-time tradeoff captured in Figure 12 for a representative set of alternative plans. We see here
that there are plans available, such as Palt2 (green triangle), which reduce the peak power consumption
substantially (by about 35 W) while incurring a time penalty of around 80%. Given the conventional
wisdom in the database community that a plan cost within twice (i.e. 100 percent) of the optimal is
often acceptable in practice [20], it appears that Palt2 could be a plausible replacement choice from
a holistic perspective. Finally, we also measured the increase in energy consumption, and found that
it was up by around 30%, perhaps an acceptable tradeoff in light of the significant decrease in peak
power.

5.1 Power Diagrams
We had introduced in [25] the notion of “plan diagrams” to represent visualizations of the plan
choices made by query optimizers over an input parameter space, whose dimensions could comprise of
database, query and system-related features. In analogous fashion, we introduce the notion of “power
diagrams” here to represent visualizations of peak power performance over a parameter space. Con-
sider, for example, the parameterized version of TPC-DS Q59 given in Figure 8, where the selectivities
of the STORE SALES and DATE DIM tables are varied. A quantitative 3D power diagram showing the
peak power consumption as a function of the query location in this selectivity space is presented in
Figure 13. Here, the red color corresponds to the power consumption of the optimizer’s time-optimal
choices, whereas the green color corresponds to the best power performance at each location from
among our search space of alternative plans. We notice that at some selectivity locations it is indeed
possible to obtain a significant reduction of the peak power consumption. For example, at (25%, 75%),
the replacement plan reduced the peak power from 66 to 23 W, a reduction of over 40 W. Further, the
number of distinct plans reduces from the original 10 to 4 in the power-efficient diagram, indicating
that a few power-efficient plans can cover the vast majority of the selectivity space.

22

(a) Pipeline-segmented and Power-annotated Plan

(b) Temporal Power Behavior

Figure 11: Peak-power efficient Plan Palt2 for Query 59

23

Figure 12: Peak Power versus Execution Time for Query 65

Figure 13: Peak power diagram for QT59

Note that these improvements are conservative since the search space is POSP-limited – if access to
the complete search space were available, plans with even better power profiles may be identified.

6 Modeling Extensions
In the previous sections, we have presented the basic mechanisms for profiling and utilizing peak power
behavior. We now discuss a variety of ways in which this framework could be extended to enhance these
capabilities.

24

6.1 Inductive Modeling
A new pipeline may often turn out to be an extension of a previously modeled pipeline. For example,
we may encounter a pipeline with n + 1 hash-joins after having previously modeled the n hash-joins
scenario. In this situation, it would be beneficial if the existing model could be incrementally extended
to handle the additional join operator. A preliminary assessment of this issue has yielded promising
results for hash-join sequences, as explained next.

Figure 14: Base Pipeline with 2 Hash-Joins

We initially analyzed a pipeline with a sequence of two hash joins terminated by a sort operation
(shown in Figure 14), coming up with the following model, where B2 is build input size of second hash
join and R2 is its input data rate:

PeakPower2 = 23.7 + 1.8× 10−6 B2 + 4.0× 10−5 R2 (5)

This model was then generalized to the case of n+1 (n ≥ 2) hash-joins through the recurrence shown
in Equation 6 (using PP as shorthand for PeakPower):

PPn+1 = K × PPn + αn+1 + βn+1 ×Bn+1 + γn+1 ×Rn+2 (6)

where Bn+1 denotes the build input size of the additional hash join, Rn+2 denotes the output data rate
of the hash join, identically equivalent to the input data rate of the blocking sort operator, αn+1, βn+1

and γn+1 being the associated parameter coefficients; PPn denotes the peak power of the same pipeline
with n hash joins; and K reflects the “back-pressure” impact of the additional join on the upstream
operators. Note that the number of training instances constructed for these inductive equations are
reduced as compared to those required for the corresponding native “developed-from-scratch” model
since now the equation is predefined and only the values of the coefficients have to be identified. As a
case in point, the number of training samples required for all the inductive hash-join pipelines comes
down to 11, as compared to the 16 used by the native models for comparable accuracy.

With this approach, the following equations were developed for pipelines containing 3, 4 and 5
hash-joins, respectively:

PP3 = −71.2 + 0.05PP2 + 5.7× 10−6B3 (7)
PP4 = −46.2 + 0.33PP3 + 5.4× 10−6B4 (8)
PP5 = 7.65 + 0.49PP4 + 1.3× 10−7B5 (9)

The prediction quality of each of these recurrence-based models is shown in Table 11, for a variety
of test-cases. We observe from the results that the relative error is always within ± 15%. Further, for
reference purposes, the accuracy of the associated native model is also given in Table 11, and we see
that the two predictive models provide comparable performance.

25

Test Inductive Observed Peak Native
Query Prediction (W) Power (W) Prediction (W)

3 Hash Join Pipeline
Test1 48 42 34.8
Test2 45.3 47 42.6
Test3 12.6 12 11.8

4 Hash Join Pipeline
Test4 53 50 46.1
Test5 13 10 13

5 Hash Join Pipeline
Test6 57 61 53.7
Test7 20 18 17.3
Test8 40 47 43.2

Table 11: Inductive Modeling Accuracy

Compact Inductive Models

We can leverage the ideas of the previous section one step further by taking a closer look at the re-
currence, and realizing that the build size of the new hash join and its output data rate are correlated.
Therefore, the data rate alone may prove sufficient to express the behavior of the new join. With this
observation, we modified the recurrence to that shown in Equation 10,

PPn+1 = K × PPn + Cn+1 +An+1 ×Rn+2 (10)

where Rn+2 denotes the output data rate of the additional hash join, Cn+1 and An+1 being the associ-
ated parameter coefficients; other terms remaining the same. With the new expression, the number of
training instances came down to just 7, as compared to the 11 used by the full-blown inductive model.

The following new equations were developed for pipelines containing 3, 4 and 5 hash-joins, respec-
tively:

PP3 = −26.2 + 0.71PP2 + 8.3× 10−4R4 (11)
PP4 = 2.3 + 0.71PP3 + 9.3× 10−4R5 (12)
PP5 = 26.7 + 0.71PP4 + 2.0× 10−4R6 (13)

These “compact” inductive models maintain comparable accuracy to the full-blown versions as can be
observed from the results in Table 12, where their performance is characterized over the same suite of
test queries used in Table 11.

6.2 Multi-query Workloads
So far, we considered the TPC-DS queries to be executing one at a time, in isolation. In practice, how-
ever, there may be multiple queries that are concurrently executing and exercising the system resources.
Therefore, an interesting research problem is to investigate how the single-query models could be ex-
tended to accurately capture multi-query environments, based on which database administrators could
employ admission-control or load-control strategies to ensure that the desired peak-power threshold is
not breached.

26

Test Query Inductive Prediction (W) Observed Peak Power (W)
3 Hash Join Pipeline

Test1 36 42
Test2 53 47
Test3 10 12

4 Hash Join Pipeline
Test4 49.7 50
Test5 10 10

5 Hash Join Pipeline
Test6 60.8 61
Test7 16.3 18
Test8 40 47

Table 12: Accuracy of Compact Inductive Models

This policy needs an estimate of the peak power for each constituent query and also the location of
the peak during its execution timeline. Our peak power model is capable of identifying the pipeline
drawing the maximum peak power in a given query. If we integrate this knowledge with the time (cost)
estimates given by the optimizers, we can roughly identify the location of the peak power consumption
in the query’s timeline. This model can then be used for appropriately scheduling the queries.

To assess the above, we carried out exploratory experiments with two concurrent queries. A few
results for the case when the query pairs are “data-disjoint”, that is, they do not share any inputs, are
presented in Table 13. These results indicate that the peak power of the combined workload can be
approximated by merely taking the maximum of the independent peak powers of the two queries. This
matches with our expectation since only a single pipeline is in execution at any given time in EngineC,
independent of the number of concurrent queries.

Workload Peak Power Peak Power Peak Power
Queries of First Query of Second Query of Workload

(W) (W) (W)
(Q8, Q24) 72 58 76
(Q58, Q59) 46 63 55
(Q41, Q58) 74 58 75
(Q41, Q82) 74 36 78
(Q24, Q57) 58 38 56

Table 13: Observed Peak Powers for Multi-query Workloads with No Data Sharing

On the other hand, if the two queries happen to share a portion of their inputs, then some leaf
pipelines may behave like memory-resident internal pipelines due to one query bringing into memory
the inputs required by the other. In this scenario, it is hard to know in advance the temporal sequencing
between interacting pipelines, especially if they commence at staggered time instants. Since we are
limited to being outside the database engine, instead of trying to predict the peak power itself, we
tried to establish empirical bounds on its values, corresponding to best-case and worst-case scenarios,

27

respectively. In the best-case, when no pipeline is memory-resident, the peak power predictions can
be made using the maximum-power heuristic given above, and this value can be used as the lower
bound. On the other hand, the worst case corresponds to when all input-sharing pipelines are modeled
as memory-resident internal pipelines instead of leaf pipelines, and the peak power prediction for this
scenario is used as the upper bound.

Our experiments indicate that the actual consumption for various temporally random combinations of
the query pair, always fell within the estimated range. In particular, to explicitly simulate the worst case,
we evaluated query workloads wherein two instances of the same query were started simultaneously
and run concurrently. As a case in point, when the workload consisted of two concurrent instances of
Q59, the observed peak power was 70 W, while the range predicted by our model is [57 W, 70 W]. A
more detailed analysis of how the range could be interpolated to make accurate predictions for specific
data-sharing regimes is left for future work.

6.3 Guidelines
In closing, we highlight a few observations that may be of benefit to database system developers and
administrators with regard to tuning their systems for meeting peak power budgets.

We have found that CPU-intensive operations typically draw more instantaneous power than disk-
based operations – for example, pipelines involving CPU-intensive operators such as Hash Match
Join and Aggregate are found to draw high peak powers, whereas the pipelines dominated by oper-
ators such as Nested Loops Join and Clustered Index Scan consume lower peak power.
Therefore, whenever the associated response-time penalties are acceptable, a simple heuristic of avoid-
ing hash-based operators may be employed to lower the peak power consumption.

As mentioned earlier in this section, our models are also useful in capping peak power for multi-
query workloads. This is feasible because our model, based on serial execution of pipelines, is able
to predict not only the peak power incurred by each constituent query but also estimate the location of
the peak power burst during the workload’s overall timeline. Database administrators can exploit this
information to re-schedule the queries to maintain the peak power under a threshold value.

Finally, our experience has been that most long pipelines consume only a modest amount of peak
power – that is, short pipelines tend to be the peak power culprits in query plans. This is perhaps due
to long pipelines typically appearing near the root of the plan tree – consequently, a significant part of
the base data encountered at the leaves may have been already filtered before it reaches these pipelines.
With small data inputs that are consumed rapidly, it is not feasible to sustain the data rates required
to drive these pipelines upto their maximum power consumption, and therefore their effects are are
not prominent in the power log. From a training perspective, this suggests focusing attention on short
pipelines if the training budget is limited.

7 Related Work
During the last few years, the redesign of database engines to gain efficiency on energy-related issues
has been increasingly viewed as a promising approach. For example, software developers are chal-
lenged in [7] to develop energy-efficient databases through reworking optimization choices, scheduling
algorithms, physical database designs and database update techniques. These thoughts are echoed in
the insightful views of [8] wherein experimental evidence is provided to demonstrate that current query

28

optimizers may not choose energy-efficient plans. Energy-aware enhancements through leveraging
system-wide tuning knobs and query optimizer parameters are suggested, and the need for rethinking
database algorithms and policies is emphatically made.

There has also been work on modifying the database query optimizer to choose more energy efficient
query plans. Interestingly, the first such attempt was in [2], almost two decades ago. Here, the goal
was to increase the effective battery life of mobile computers by selecting energy-efficient query plans,
using a energy predictor model developed from optimizer cost estimates and system parameters. Since
a client-server framework was assumed, their emphasis was on optimizing the network throughput and
overall energy consumption. More recently, plan-based energy management schemes for memory-
resident databases on banked memory architectures were proposed in [13]. Here, query execution
plans are explicitly augmented with turn on/off instructions for individual memory banks, and these
plans are then restructed and regrouped to gain energy efficiency. A simulation-based study of the
scheme provided promising results but these observations are yet to be validated on real systems.

The study of average power behavior in database query optimizers presented recently in [23], is
perhaps the closest to our current work. Here, opportunities for power savings in current database
optimizers are initially highlighted. Then, the query optimizer is modified to take power costs explicitly
into account with an average consumption power model developed on the lines of PostgreSQL’s cost
model. Their results indicate that it is possible to identify execution plans with attractive tradeoffs
between average-power and time-efficiency.

In a concurrent research study, a thorough investigation of both hardware and software knobs to im-
prove energy efficiency on PostgreSQL and a commercial database engine, was presented in [19]. Since
they evaluated the power consumed by the complete system, which was significantly larger than the dy-
namic consumption incurred solely through query processing, their experimental results suggested that
going with the time-optimal configuration or plan usually resulted in the best power efficiency also.
However, given the strong ongoing efforts by the hardware and OS communities to reduce the idle
power consumption, it is likely that we will soon encounter situations wherein the dynamic power
consumed by query processing can become a significant factor, and our work is predicated on this
eventuality. The potential for using software mechanisms to cap peak power consumption of database
systems was also highlighted in [19], and our study attempts to quantitatively substantiate these views
on industrial-strength platforms.

In a parallel effort to ours, modeling of peak power using regression techniques was also recently
attempted in [18]. However, their model has been evaluated only with simple selection queries on single
relations and therefore does not reflect the effect of pipelines or rate-based parameters. In contrast, our
work has been carried out in industrial-strength benchmark environments.

8 Conclusions
We have investigated here, for the first time, the peak power behavior of modern database engines while
processing complex SQL queries. Our “black box” study of a representative set of commercial database
engines on the TPC-DS benchmark shows that the peak power consumption could be quite significant,
covering the entire dynamic range of the underlying computing platform, which in our case was 80
watts. The results also bear testimony that the peak power behavior could be considerably different to
the corresponding average power behavior, highlighting the need for studying these metrics separately.

We proposed a pipeline-based model for predicting the peak power consumed by query execution

29

plans, developed through step-wise linear regression over training instances that were carefully chosen
using the targeted and efficient LHS sampling scheme. Since access to the system internals was not
available, these instances were indirectly created through variations in the database schema and queries.
Our initial experimental results indicate that the model, which only uses generic plan-based parameters
as inputs, is reasonably accurate in its predictions, with an error of less than 15%. Further, we also
indicated how pipeline modeling could be inductively carried out as an extension of prior models,
incurring far less overheads as compared to ab initio development.

We also demonstrated that while current optimizers typically choose the most time-efficient plan,
often alternatives exist that are significantly more peak-power-efficient without unduly compromising
the query running time and the overall energy. Further, the notion of “power diagrams” was introduced
and it was shown that power-efficient plans covering large selectivity spaces could be identified from
the POSP set. These observations serve to encourage the design of query optimizers that organically
include power characteristics as a selection metric during their exploration of the plan space. In our
future work, we intend to integrate and implement these ideas within the PostgreSQL engine.

9 Acknowledgements
This work was supported in part by grants from Microsoft Research and Dept. of Science & Technology,
Govt. of India. We thank Prof. Matthew Jacob for his advice on the experimental methodology and the
LHS sampling approach. We also gratefully acknowledge the assistance of Mahesh Bale and Bhavana
Ganji in the implementation and experiments.

References
[1] R. Agrawal et al, “The Claremont report on database research”, SIGMOD Record, 37(3), 2008.

[2] R. Alonso and S. Ganguly, “Energy Efficient Query Optimization.”, Tech. Report, Matsushita Info Tech
Lab, 1992.

[3] S. Chaudhuri, V. Narasayya and R. Ramamurthy, “Estimating progress of execution for SQL queries”,
Proc. of SIGMOD 2004.

[4] J. Cohen, “Statistical power analysis for behavioral sciences (2nd edition)”, Lawrence Earlbaum Associates
1988.

[5] E. Elnozahy, M. Kistler and R. Rajamony, “Energy-efficient server clusters”, Proc. of PACS 2002.

[6] W. Felter, K. Rajamani, T. Keller and C. Rusu, “A performance-conserving approach for reducing peak
power consumption in server systems”, Proc. of ICS 2005.

[7] G. Graefe, “Database servers tailored to improve energy efficiency”, Proc. of SETMDM 2008.

[8] S. Harizopoulos, M. Shah, J. Meza and P. Ranganathan, “Energy Efficiency: The new holy grail of data
management systems research.”, Proc. of CIDR 2009.

[9] A. Hulgeri and S. Sudarshan, “Parametric query optimization for linear and piecewise linear cost func-
tions”, Proc. of VLDB 2002.

[10] G. Luo, J. Naughton, C. Ellmann and M. Watzke, “Toward a progress indicator for database queries”,
Proc. of SIGMOD Conf., 2004.

30

[11] A. Matala, “Sample Size Requirement for Monte Carlo simulations using Latin Hypercube Sampling”,
Mat-2.4108, Helsinki Univ. of Techology, 2008.

[12] M. McKay, R. Beckman and W. Conover, “A comparison of three methods for selecting values of input
variables in the analysis of output from a computer code”, Technometrics 1979.

[13] J. Pisharath, A. Choudhary and M. Kandemir, “Reducing energy consumption of queries in memory-
resident database systems”, Proc. of CASES 2004.

[14] M. Poess and R. Nambiar, “Energy cost, the key challenge of today’s data centers: a power consumption
analysis of TPC-C results”, PVLDB, 1(2), 2008.

[15] M. Poess, R. Nambiar and D. Walrath, “Why you should run TPC-DS: a workload analysis”, Proc. of
VLDB Conf., 2007.

[16] N. Reddy and J. Haritsa, “Analyzing plan diagrams of database query optimizers”, Proc. of VLDB Conf.,
2005.

[17] S. Rivoire, M. Shah, P. Ranganathan and C. Kozyrakis, “JouleSort: a balanced energy-efficiency bench-
mark”, Proc. of SIGMOD Conf., 2007.

[18] M. Rodriguez-Martinez, H. Valdivia, J. Seguel and M. Greer, “Estimating Power/Energy Consumption in
Database Servers”, Procedia Computer Science, Vol. 6, 2011.

[19] D. Tsirogiannis, S. Harizopoulos and M. Shah, “Analyzing the energy efficiency of a database server”,
Proc. of SIGMOD Conf., 2010.

[20] F. Waas and C. Galindo-Legaria, “Counting, enumerating, and sampling of execution plans in a cost-based
query optimizer”, Proc. of SIGMOD Conf., 2000.

[21] L. Wasserman, “All of Statistics”, Springer 2004.

[22] S. Weisberg, “Applied Linear Regression”, Wiley 1985.

[23] Z. Xu, Y. Tu and X. Wang, “Exploring power-performance tradeoffs in database systems”, Proc. of ICDE
Conf., 2010.

[24] “Brand Electronics Power Meters”. http://www.brandelectronics.com/meters.html

[25] “Picasso Database Query Optimizer Visualizer”. http://dsl.serc.iisc.ernet.in/
projects/PICASSO/

[26] “TPC-C Transaction Processing Benchmark”. http://www.tpc.org/tpcc

[27] “TPC-DS Decision Support Benchmark”. http://www.tpc.org/tpcds

[28] “TPC-H Decision Support Benchmark”. http://www.tpc.org/tpch

[29] “XLSTAT Statistical Analysis Software”. http://www.xlstat.com/

31

