
On Improving Write Performance in PCM Databases

Vishesh Garg Abhimanyu Singh Jayant R. Haritsa

Technical Report
TR-2015-01

Database Systems Lab
Supercomputer Education and Research Centre

Indian Institute of Science
Bangalore 560012, India

http://dsl.serc.iisc.ernet.in

Abstract

Phase Change Memory (PCM) is a new non-volatile memory technology that is comparable to
traditional DRAM with regard to read latency, and markedly superior with regard to storage density
and idle power consumption. Due to these desirable characteristics, PCM is expected to play a
significant role in the next generation of computing systems. However, it also has limitations in the
form of expensive writes and limited write endurance. Accordingly, recent research has investigated
how database engines may be redesigned to suit DBMS deployments on the new technology.

In this paper, we address the pragmatic goal of minimally altering current implementations of
database operators to make them PCM-conscious, the objective being to facilitate an easy transition
to the new technology. Specifically, we target the implementations of the “workhorse” database
operators: sort, hash join and group-by, and rework them to substantively improve the write per-
formance without compromising on execution times. Concurrently, we provide simple but effective
estimators of the writes incurred by the new techniques, and these estimators are leveraged for
integration with the query optimizer.

Our new techniques are evaluated on TPC-H benchmark queries with regard to the following
metrics: number of writes, response times and wear distribution. The experimental results indicate
that the PCM-conscious operators collectively reduce the number of writes by a factor of 2 to 3,
while concurrently improving the query response times by about 20% to 30%. When combined
with the appropriate plan choices, the improvements are even higher. In essence, our algorithms
provide both short-term and long-term benefits. These outcomes augur well for database engines
that wish to leverage the impending transition to PCM-based computing.

1 Introduction
Phase Change Memory (PCM) is a recently developed non-volatile memory technology, constructed
from chalcogenide glass material, that stores data by switching between amorphous (binary 0) and
crystalline (binary 1) states. Broadly speaking, it is expected to provide an attractive combination of the
best features of conventional disks (persistence, capacity) and of DRAM (access speed). For instance,
it is about 2 to 4 times denser than DRAM, while providing a DRAM-comparable read latency. On
the other hand, it consumes much less energy than magnetic hard disks while providing substantively
smaller write latency. Due to this suite of desirable features, PCM technology is expected to play a
prominent role in the next generation of computing systems, either augmenting or replacing current
components in the memory hierarchy [13, 20, 10].

A limitation of PCM, however, is that there is a significant difference between the read and write
behaviors in terms of energy, latency and bandwidth. A PCM write, for example, consumes 6 times
more energy than a read. Further, PCM has limited write endurance since a memory cell becomes
unusable after the number of writes to the cell exceeds a threshold determined by the underlying glass
material. Consequently, several database researchers have, in recent times, focused their attention on
devising new implementations of the core database operators that are adapted to the idiosyncrasies of
the PCM environment (e.g. [5, 17]).

Architectural Model
The prior database work has primarily focused on computing architectures wherein either (a) PCM
completely replaces the DRAM memory [5]; or (b) PCM and DRAM co-exist side-by-side and are
independently controlled by the software [17]. We hereafter refer to these options as PCM RAM and
DRAM SOFT, respectively.

2

Figure 1: PCM-based Architectural Options [5]

However, a third option that is gaining favor in the architecture community, and also mooted in [5]
from the database perspective, is where the PCM is augmented with a small hardware-managed DRAM
buffer [13]. In this model, which we refer to as DRAM HARD, the address space of the application
maps to PCM, and the DRAM buffer can simply be visualized as yet another level of the existing cache
hierarchy. For ease of comparison, these various configurations are pictorially shown in Figure 1.

There are several practical advantages of the DRAM HARD configuration: First, the write latency
drawback of PCM RAM can be largely concealed by the intermediate DRAM buffer [13]. Second,
existing applications can be used as is but still manage to take advantage of both the DRAM and the
PCM. This is in stark contrast to the DRAM SOFT model which requires incorporating additional
machinery, either in the program or in the OS, to distinguish between data mapped to DRAM and to
PCM – for example, by having separate address space mappings for the different memories.

Our Work
In this paper, we propose minimalist reworkings, that are tuned to the DRAM HARD model, of current
implementations of database operators. In particular, we focus on the “workhorse” operators: sort, hash
join and group-by. The proposed modifications are not only easy to implement but are attractive from
the performance perspective also, simultaneously reducing both PCM writes and query response times.
The new implementations are evaluated on Multi2sim [15], a state-of-the-art architectural simulator,
after incorporating major extensions to support modelling of the DRAM HARD configuration. Their
performance is evaluated on complete TPC-H benchmark queries. This is a noteworthy point since
earlier studies of PCM databases had only considered operator performance in isolation. But, it is
possible that optimizing a specific operator may turn out to be detrimental to downstream operators that
follow it in the query execution plan. For instance, the proposal in [5] to keep leaf nodes unsorted in B+

indexes – while this saves on writes, it is detrimental to the running times of subsequent operators that
leverage index ordering – for instance, join filters. Finally, we include the metric of wear distribution
in our evaluation to ensure that the reduction in writes is not achieved at the cost of skew in wear-out
of PCM cells.

Our simulation results indicate that the customized implementations collectively offer substantive

3

benefits with regard to PCM writes – the number is typically brought down by a factor of two to three.
Concurrently, the query response times are also brought down by about 20–30 percent. As a sample
case in point, for TPC-H Query 19, savings of 64% in PCM writes are achieved with a concomitant
32% reduction in CPU cycles.

Fully leveraging the new implementations requires integration with the query optimizer, an issue that
has been largely overlooked in the prior literature. We take a first step here by providing simple but
effective statistical estimators for the number of writes incurred by the new operators, and incorporating
these estimators in the query optimizer’s cost model. Sample results demonstrating that the resultant
plan choices provide substantively improved performance are provided in our experimental study.

Overall, the above outcomes augur well for the impending migration of database engines to PCM-
based computing platforms.

Organization
The remainder of this paper is organized as follows: We define the problem framework in Section 2.
The design of the new PCM-conscious database operators, and an analysis of their PCM writes, are
presented in Sections 3, 4 and 5. Our experimental framework and the simulation results are reported
in Sections 6 and 7, respectively. This is followed by a discussion in Section 8 on integration with the
query optimizer. The related literature is reviewed in Section 9. Finally, Section 10 summarizes our
conclusions and outlines future research avenues.

2 Problem Framework
In this section, we overview the problem framework, the assumptions made in our analysis, and the
notations used in the sequel.

We model the DRAM HARD memory organization shown in Figure 1 (c). The DRAM buffer is of
size D, and organized in a K-way set-associative manner, like the L1/L2 processor cache memories.
Moreover, its operation is identical to that of an inclusive cache in the memory hierarchy, that is, a new
DRAM line is fetched from PCM each time there is a DRAM miss. The last level cache in turn fetches
its data from the DRAM buffer.

We assume that the writes to PCM are in word-sized units (4B) and are incurred only when a data
block is evicted from DRAM to PCM. A data-comparison write (DCW) scheme [19] is used for the
writing of PCM memory blocks during eviction from DRAM – in this scheme, the memory controller
compares the existing PCM block to the newly evicted DRAM block, and selectively writes back only
the modified words. Further, N-Chance [7] is used as the DRAM eviction policy due to its preference
for evicting non-dirty entries, thereby saving on writes. The failure recovery mechanism for updates is
orthogonal to our work and is therefore not discussed in this paper.

As described above, the simulator implements a realistic DRAM buffer. However, in our write
analyses and estimators, we assume for tractability that there are no conflict misses in the DRAM. Thus,
for any operation dealing with data whose size is within the DRAM capacity, our analysis assumes no
evictions and consequently no writes. The experimental evaluation in Section 7.3 indicates the impact
of this assumption to be only marginal.

With regard to the operators, we use R to denote the input relation for the sort and group-by unary
operators. Whereas, for the binary hash join operator, R is used to denote the smaller relation, on which
the hash table is constructed, while S denotes the probing relation.

In this paper, we assume that all input relations are completely PCM-resident. Further, for presenta-
tion simplicity, we assume that the sort, hash join and group-by expressions are on singleton attributes

4

Table 1: Notations Used in Operator Analysis

Term Description

D DRAM size
K DRAM Associativity
NR,NS Row cardinalities of input relations R and S, respectively
LR, LS Tuple lengths of input relations R and S, respectively
P Pointer size
H Size of each hash table entry
A Size of aggregate field (for group-by operator)
N j,Ng Output tuple cardinalities of join and group-by operators, respectively
L j, Lg Output tuple lengths of join and group-by operators, respectively

– the extension to multiple attributes is straightforward.
A summary of the main notation used in the analysis of the following sections is provided in Table 1.

3 The Sort Operator
Sorting is among the most commonly used operations in database systems, forming the core of op-
erators such as merge join, order-by and some flavors of group-by. The process of sorting is quite
write-intensive since the commonly used in-memory sorting algorithms, such as quicksort, involve
considerable data movement. In the single pivot quicksort algorithm with n elements, the average num-
ber of swaps is of the order of 0.3nln(n) [18]. There are other algorithms such as selection sort which
involve much less data movement, but they incur quadratic time complexity in the number of elements
to be sorted, and are therefore unsuitable for large datasets.

The main advantage associated with the quicksort algorithm is that it has good average-case time
complexity and that it sorts the input data in-place. If the initial array is much larger than the DRAM
size, it would entail evictions from the DRAM during the swapping process of partitioning. These
evictions might lead to PCM writes if the evicted DRAM lines are dirty, which is likely since elements
are being swapped. If the resulting partition sizes continue to be larger than DRAM, partitioning them in
turn will again cause DRAM evictions and consequent writes. Clearly, this trend of writes will continue
in the recursion tree until the partition sizes become small enough to fit within DRAM. Thereafter, there
would be no further evictions during swapping and the remaining sorting process would finish inside
the DRAM itself.

From the above discussion, it is clear that it would be desirable for the sorting algorithm to converge
fast to partition sizes below DRAM size with fewer number of swaps. For uniformly-distributed data,
these requirements are satisfied by flashsort [11]. On the other hand, for data with skewed distribution,
we propose a variant of flashsort called multi-pivot flashsort. This algorithm adopts the pivot selection
feature of the quicksort algorithm into flashsort in order to tackle the skewness in data.

Both these algorithms are discussed in detail in the following sections.

3.1 Data with uniform distribution
The flashsort algorithm can potentially form DRAM-sized partitions in a single partitioning step with at
most NR swaps. The sorting is done in-place with a time complexity of O(NRlog2NR) with constant extra
space. The flashsort algorithm proceeds in three phases: Classification, Permutation and Short-range
Ordering. A brief description of each of these phases is as follows:

5

3.1.1 Classification phase

The classification phase divides the input data into equi-range partitions comprising of contiguous and
disjoint ranges. That is, if p partitions are required (where p is an input parameter), the difference
between the minimum and the maximum input values is divided by p. Subsequently, each tuple is
mapped to a partition depending on in which range the value of the sorting attribute of the tuple lies.
Specifically, a tuple with attribute value v is assigned to Partition(v), computed as

Partition(v) = 1 + b
(p − 1)(v − vmin)

vmax − vmin
c

where vmin and vmax are the smallest and largest attribute values in the array, respectively. The number
of tuples in each such partition is counted to derive the boundary information. We choose the number of
partitions p to be dc× NRLR

D e, where c ≥ 1 is a multiplier to cater to the space requirements of additional
data structures constructed during sorting. In our experience, setting c = 2 works well in practice.

3.1.2 Permutation phase

The Permutation phase moves the elements to their respective partitions by leveraging the information
obtained in the Classification phase. The elements are swapped in a cyclic manner to place each element
inside its partition boundary with a single write step per element.

3.1.3 Short-range Ordering phase

The resulting partitions, each having size less than D, are finally sorted in the Short-range Ordering
phase using quicksort. Note that, by virtue of their size, these partitions are not expected to incur any
evictions during the process of sorting.

PCM write analysis: Though the partition boundary counters are continuously updated during the
Classification phase, they are expected to incur very few PCM writes. This is because the updates are
all in quick succession, making it unlikely for the counters to be evicted from DRAM during the update
process. Next, while in the Permutation phase, there are no more than NRLR writes since each tuple
is written at most once while placing it inside its partition boundaries. Since each partition is within
the DRAM size, its Short-range Ordering phase will finish in the DRAM itself, and then there will be
another NRLR writes upon eventual eviction of sorted partitions to PCM.

Thus, the number of word-writes incurred by this algorithm is estimated by

Wsort uni f orm =
2NRLR

4
=

NRLR

2
(1)

3.2 Data with non-uniform distribution
In the case when the data is non-uniformly distributed, the equi-range partitioning used by flashsort fails
to produce equi-sized partitions. This is because the number of tuples in each range is now dependent
on the skew of the data. We therefore propose an alternative algorithm, called multi-pivot flashsort,
which uses multiple pivots instead to partition the input tuples. These pivots are randomly-chosen
from the input itself, in the same manner as conventional quicksort selects a single pivot to create two
partitions. The chosen pivots are subsequently leveraged to partition the input during sorting.

The modified phases of this alternative implementation of the flashsort algorithm, along with their
pseudo-codes, are described next.

6

3.2.1 Classification phase

In the Classification phase, we divide the input relation into p partitions, where p = dNRLR
D e, using

p − 1 random tuples as pivots. Since the pivots are picked at random, the hope is that each partition is
approximately of size D. These pivots are then copied to a separate location and sorted. Subsequently,
we scan through the array of tuples in the relation, counting the number of elements between each
consecutive pair of pivots. This is accomplished by carrying out, for each tuple in the array, a binary
search within the sorted list of pivots.

In spite of the random choice of pivot values, it is quite possible that some partitions may turn out to
be larger than the DRAM. We account for this possibility by conservatively creating a larger number
of initial partitions. Specifically, the number of partitions is p = dc × NRLR

D e, where c ≥ 1 is a design
parameter similar to the one used in the flashsort algorithm. Subsequently, we consider each pair of
adjoining partitions and coalesce them if their total size is within the DRAM size, after leaving some
space for bookkeeping information.

While the above heuristic approach is quite effective, it still does not guarantee that all the resul-
tant partitions will be less than DRAM size. The (hopefully few) cases of larger-sized partitions are
subsequently handled during the Short-range Ordering phase.

The pseudo-code for the Classification phase is outlined in Algorithm 1.

Algorithm 1 Classification Phase
array[] is the array of input tuples
c is a design parameter ≥ 1

1: p = dc × NRLR
D e

2: randIndex[] = generate p − 1 random indexes
3: pivot[] = array[randIndex];
4: sort(pivot[])
5: size[] = 0...0 . size of sub-arrays
6: partitionStart[] = 0...0 . starting offset of each partition
7: for i=1 to NR do
8: partition = getPartition(array[i])
9: size[partition]++

10: end for . Time complexity=NR × log2 p
11: cumulative = 0
12: for i=1 to p do
13: cumulative = cumulative + size[i]
14: partitionStart[i+1] = cumulative
15: end for . Time complexity=p
16: return partitionStart[]

3.2.2 Permutation phase

The Permutation phase uses the information gathered in the Classification phase to group tuples of the
same partition together. A slight difference from flashsort here is that the attribute value now needs to
be compared against the sorted list of pivots to determine the partition of the tuple. The pseudo-code
for the Permutation phase is shown in Algorithm 2. The maximum number of writes is bounded by
NRLR, corresponding to the worst case where every tuple has to be moved to its correct partition.

7

Algorithm 2 Permutation Phase
partitionStart[] is obtained from Classification Phase
nextUnresolvedIndex[] indicates the next position to be examined for each partition

1: nextUnresolvedIndex[] = partitionStart[]
2: for i=1 to NR do
3: curPartitionCorrect = getPartition(array[i])
4: if i between partitionStart[curPartitionCorrect] and partitionStart[curPartitionCorrect+1] then
5: nextUnresolvedIndex[curPartitionCorrect] = i+1
6: continue
7: else
8: firstCandidateLoc = i
9: presentCandidate = array[i]

10: flag = 1
11: while flag do
12: targetPartitionStart = nextUnresolvedIndex[curPartitionCorrect]
13: targetPartitionEnd = partitionStart[curPartitionCorrect + 1]
14: for k=targetPartitionStart to targetPartitionEnd do
15: nextPartitionCorrect = getPartition(array[i])
16: if k between partitionStart[nextPartitionCorrect] and
17: partitionStart[nextPartitionCorrect + 1] then
18: continue
19: else if k == firstCandidateLoc then
20: flag = 0 . Indicates it is a cycle
21: end if
22: swap(presentCandidate, array[k])
23: nextUnresolvedIndex[curPartitionCorrect] = k+1
24: curPartitionCorrect = nextPartitionCorrect
25: break
26: end for
27: end while
28: end if
29: end for . Time complexity=NR × log2 p

3.2.3 Short-range Ordering phase

Finally, each of the partitions are sorted separately using conventional quicksort to get the final PCM
sorted array. For partitions that turn out to be within the DRAM size, the Short-range Ordering phase is
completed using conventional quicksort. On the other hand, if some larger-sized partitions still remain,
we recursively apply the multi-pivot flashsort algorithm to sort them until all the resulting partitions
can fit inside DRAM and can be internally sorted.

Figure 2 visually displays the steps involved in the multi-pivot flashsort of an array of nine values.
First, in the Classification phase, 30 and 10 are randomly chosen as the pivots. These pivots divide
the input elements into 3 different ranges: (< 10), (≥ 10, < 30), (≥ 30). The count of elements in
each of these ranges is then determined by making a pass over the entire array – in the example shown,
three elements are present in each partition. Then, in the Permutation phase, the elements are moved
to within the boundaries of their respective partitions. Finally, in the Short-range Ordering phase, each
partition is separately sorted within the DRAM.

PCM write analysis: The analysis follows that of the flashsort algorithm. A negligible number of

8

Algorithm 3 Short-range Ordering Phase
1: for i=1 to p do
2: if size[p] < D then
3: quicksort (partition p)
4: else
5: multi-pivot flashsort (partition p)
6: end if
7: end for

12 3 33 30 11 10 7 32 8
(a) Classification Phase

7 3 8 12 11 10 30 32 33
(b) Permutation Phase

3 7 8 10 11 12 30 32 33
(c) Short-range Ordering Phase

Figure 2: Multi-Pivot Flashsort

writes would be incurred during the copying and sorting of the pivots. As mentioned, the writes during
Permutation phase would be below NRLR. The creation of additional partitions by choosing extra pivots,
and their subsequent coalescing, increases the likelihood that each partition is below DRAM size–akin
to that in flashsort. Therefore the total word-writes is again estimated to be

Wsort non uni f orm =
NRLR

2
(2)

4 The Hash Join Operator
Hash join is perhaps the most commonly used join algorithm in database systems. Here, a hash table is
built on the smaller relation, and tuples from the larger relation are used to probe for matching values
in the join column. Since we assume that all tables are completely PCM-resident, the join here does
not require any initial partitioning stage. Instead, we directly proceed to the join phase. Thus, during
the progress of hash join, writes will be incurred during the building of the hash table, and also during
the writing of the join results.

Each entry in the hash table consists of a pointer to the corresponding build tuple, and the hash value
for the join column. Due to the absence of prior knowledge about the distribution of join column values
for the build relation, the hash table is expanded dynamically according to the input. Typically, for each
insertion in a bucket, a new space is allocated, and connected to existing entries using a pointer. Thus,
such an approach incurs an additional pointer write each time a new entry is inserted.

Our first modification is to use a well-known technique of allocating space to hash buckets in units of
pages [9]. A page is of fixed size and contains a sequence of contiguous fixed-size hash-entries. When
a page overflows, a new page is allocated and linked to the overflowing page via a pointer. Thus, unlike
the conventional hash table wherein each pair of entries is connected using pointers, the interconnecting
pointer here is only at page granularity. Note that although open-addressing is another alternative for
avoiding pointers, probing for a join attribute value would have to search through the entire table each
time, since the inner table may contain multiple tuples with the same join attribute value.

A control bitmap is used to indicate whether each entry in a page is vacant or occupied, information
that is required during both insertion and search in the hash table. Each time a bucket runs out of space,
a new page is allocated to the bucket. Though such an approach may lead to space wastage when some
of the pages are not fully occupied, we save on the numerous pointer writes that are otherwise incurred

9

when space is allocated on a per-entry basis.
Secondly, we can reduce the writes incurred due to storing of the hash values in the hash table by

restricting the length of each hash value to just a single byte. In this manner, we trade-off precision for
fewer writes. If the hash function distributes the values in each bucket in a perfectly uniform manner, it
would be able to distinguish between 28 = 256 join column values in a bucket. This would be sufficient
if the number of distinct values mapping to each bucket turn out to be less than this value. Otherwise,
we would have to incur the penalty (in terms of latency) of reading the actual join column values from
PCM due to the possibility of false positives.

PCM write analysis: We ignore the writes incurred while initializing each hash table bucket since
they are negligible in comparison to inserting the actual entries. Assuming there are Epage entries per
page, there would now be one pointer for each Epage set of entries. Additionally, for each insertion, a
bit write would be incurred due to the bitmap update. The join tuples would also incur writes to the
tune of N j × L j. Thus, the total number of word-writes for hash join would be

Wh j =
NR × (H + P

Epage
+ 1

8) + N j × L j

4

Since in practice both P
Epage

and 1
8 are small as compared to H,

Wh j ≈
NR × H + N j × L j

4
(3)

5 The Group-By Operator
We now turn our attention to the group-by operator which typically forms the basis for aggregate func-
tion computations in SQL queries. Common methods for implementing group-by include sorting and
hashing – the specific choice of method depends both on the constraints associated with the oper-
ator expression itself, as well as on the downstream operators in the plan tree. We discuss below the
PCM-conscious modifications of both implementations, which share a common number of output tuple
writes, namely Ng × Lg.

5.1 Hash-Based Grouping
A hash table entry for group-by, as compared to the corresponding entry in hash join, has an additional
field containing the aggregate value. For each new tuple in the input array, a bucket index is obtained
after hashing the value of the column present in the group-by expression. Subsequently, a search is
made in the bucket indicated by the index. If a tuple matching the group-by column value is found,
the aggregate field value is updated; else, a new entry is created in the bucket. Thus, unlike hash join,
where each build tuple had its individual entry, here the grouped tuples share a common entry with an
aggregate field that is constantly updated over the course of the algorithm.

Since the hash table construction for group-by is identical to that of the hash join operator, the
PCM-related modifications described in Section 4 can be applied here as well. That is, we employ a
page-based hash table organization, and a reduced hash value size, to reduce the writes to PCM.

PCM write analysis: From the above discussion, it is easy to see that the total number of word-
writes incurred for the PCM-conscious hash-based group-by is given by

Wgb ht =
Ng × H + NR × A + Ng × Lg

4
(4)

10

5.2 Sort-Based Grouping
Sorting may be used for group-by when a fully ordered operator such as order by or merge join appears
downstream in the plan tree. Another use case is for queries with a distinct clause in the aggregate
expression, in order to identify the duplicates that have to be discarded from the aggregate.

Sorting-based group-by differs in a key aspect from sorting itself in that the sorted tuples do not have
to be written out. Instead, it is the aggregated tuples that are finally passed on to the next operator
in the plan tree. Hence, we can modify the flashsort algorithm of Section 3 to use pointers in both
the Permutation and Short-range Ordering phases, subsequently leveraging these pointers to perform
aggregation on the sorted tuples.

PCM write analysis: The full tuple writes of 2NRLR which were incurred in the flashsort scheme,
are now replaced by 2NR × P since pointers are used during both the Classification and Short-range
Ordering phases. Thus, the total number of word-writes for this algorithm for uniformly distributed
data would be

Wgb sort =
2NR × P + Ng × Lg

4
(5)

6 Simulation Testbed
This section details our experimental settings in terms of the hardware parameters, the database and
query workload, and the performance metrics on which we evaluated the PCM-conscious operator
implementations.

6.1 Architectural Platform
Since PCM memory is as yet not commercially available, we have taken recourse to a simulated hard-
ware environment to evaluate the impact of the PCM-conscious operators. For this purpose, we chose
Multi2sim [15], an open-source application-only1 simulator.

Table 2: Experimental Setup

Simulator Multi2sim-4.2 with added support for PCM
L1D cache (private) 32KB, 64B line, 4-way set-associative, 4 cycle latency, write-back, LRU
L1I cache (private) 32KB, 64B line, 4-way set-associative, 4 cycle latency, write-back, LRU
L2 cache (private) 256KB, 64B line, 4-way set-associative, 11 cycle latency, write-back, LRU
DRAM buffer (private) 4MB, 256B line, 8-way set-associative, 200 cycle latency, write-back, N-

Chance (N = 4)
Main Memory 2GB PCM, 4KB page, 1024 cycle read latency (per 256B line), 64 cycle write

latency (per 4B modified word)

We evaluated the algorithms on Multi2sim in cycle-accurate simulation mode. Since it does not have
native support for PCM, we made a major extension to its existing memory module to model PCM
memory. Specifically, the following enhancements were incorporated in the simulator to conduct our
experimental evaluation:

1Simulates only the application layer without the OS stack.

11

Hybrid Main Memory: The memory organization was extended such that the new configuration
consists of PCM with a hardware controlled DRAM buffer. The DRAM buffer acts as another level of
cache in the memory hierarchy, specifically between the L2 cache and the PCM.

New DRAM Replacement Policy: The DRAM is simulated as a set-associative write-back memory
with N-Chance as the eviction policy. As mentioned in [7], N was set to K

2 , where K is the cache
associativity, since this setting was found to provide good performance on multiple metrics – writes,
energy and latency.

Tracking DRAM-PCM Data: Like most other architectural simulators, Multi2sim does not explic-
itly track the data residing at the different levels of the memory hierarchy. It instead maintains only
a single buffer that indicates the latest data, as visible to the simulated program, for each memory lo-
cation. We therefore had to add separate data tracking functionality for the DRAM and PCM resident
data.

Data Comparison Write Scheme: The write-back mechanism of data from DRAM to PCM was
modelled on the DCW [19] scheme. Thus, for each evicted DRAM block, a comparison to the original
PCM resident data block was made, and writes were restricted to only those words where the data bits
differed. In our experiments, we measured writes at word (4B) granularity.

Asymmetric Read-Write Latencies: The timing simulation was modified to account for the higher
write latency of PCM as compared to a read.

Wear Distribution: Apart from the raw number of writes, a critical related metric for PCM algo-
rithms is their wear distribution. We therefore instrumented the Multi2sim code to track block level
wear distribution information. To achieve this, separate counters were created that tracked writes to
each PCM line (256B) during the query processing activity.

Intermediate Statistics: Multi2sim does not have support to track intermediate statistics during a
program run. We therefore provided additional inter-process communication capabilities in the tool so
that the simulated program could ask the simulator to dump statistics for each intermediate operator
during the execution of a query.

The specific configurations of the memory hierarchy (L1 Data, L1 Instruction, L2, DRAM Buffer,
PCM) used for evaluation in our experiments are enumerated in Table 2. These values are scaled-down
versions, w.r.t. number of lines, of the hardware simulation parameters used in [12] – the reason for
the scaling-down is to ensure that the simulator running times are not impractically long. However, we
have been careful to ensure that the ratios between the capacities of adjacent levels in the hierarchy are
maintained as per the original configurations in [12].

6.2 Database and Queries
For the data, we used the default 1GB database generated by the TPC-H [1] benchmark. This size
is certainly very small compared to the database sizes typically encountered in modern applications –
however, we again chose this reduced value to ensure viable simulation running times. Furthermore,
the database is significantly larger than the simulated DRAM (4MB), representative of most real-world
scenarios.

For simulating our suite of database operators – sort, hash join and group-by – we created a separate
library consisting of their native PostgreSQL [2] implementations. To this library, we added the PCM-
conscious versions described in the previous sections.

While we experimented with several of the TPC-H queries, results for three queries: Query 13
(Q13), Query 16 (Q16) and Query 19 (Q19), that cover a diverse spectrum of the experimental space,
are presented here. For each of the queries, we first identified the execution plan recommended by
the PostgreSQL query optimizer with the native operators, and then forcibly used the same execution
plan for their PCM-conscious replacements as well. This was done in order to maintain fairness in the

12

Index Scan / Filter

CUSTOMER

Sort

Seq. Scan / Filter

ORDERS

Merge Left Join

Group Aggregate

Hash Aggregate

Sort

(a) Q13

Seq. Scan / Filter

PARTSUPP

Hash

Seq. Scan / Filter

SUPPLIER

Hash Anti Join Hash

Seq. Scan / Filter

PART

Hash Join

Group Aggregate

Sort

(b) Q16

Index Scan / Filter

PART

Hash

Seq. Scan / Filter

LINEITEM

Hash Join

Aggregate

(c) Q19

Figure 3: Query execution plan trees

comparison of the PCM-oblivious and PCM-conscious algorithms, though it is possible that a better
plan is available for the PCM-conscious configuration – we return to this issue later in Section 8. The
execution plans associated with the three queries are shown in Figure 3.

6.3 Performance Metrics
We measured the following performance metrics for each of the queries:

PCM Writes: The total number of word (4B) updates that are applied to the PCM memory during the
query execution.

CPU Cycles: The total number of CPU cycles required to execute the query.

Wear Distribution: The frequency distribution of writes measured on a per-256B-block basis.

7 Experimental Results
Based on the above framework, we conducted a wide variety of experiments and present a representa-
tive set of results here. We begin by profiling the PCM writes and CPU cycles behavior of the native
and PCM-conscious executions for Q13, Q16 and Q19 – these results are shown in Figure 4. In addi-
tion to the standard TPC-H with uniform data distribution, we also show results for the sort operator
implementation on a skewed version of TPC-H, generated using a Zipfian distribution [4] with a skew
factor of Z = 1. In each of these figures, we provide both the total and the break-ups on a per-operator
basis, with GB and HJ labels denoting group-by and hash join operators, respectively.

Focusing our attention first on Q13 in Figure 4(a), we find that the bulk of the overall writes and
cycles are consumed by the sort operator. Comparing the performance of the Native (blue bar) and
PCM-conscious (green bar) implementations, we observe a very significant savings (53%) on writes,
and an appreciable decrease (20%) on cycles. For Q13 execution on skewed TPC-H, for which we used
the multi-pivot flashsort algorithm, the corresponding performance numbers (Figure 4(b)) are compar-
atively lesser. Specifically, savings of 44% and 14% are observed in writes and cycles, respectively.

Turning our attention to Q16 in Figure 4(c), we find that here it is the group-by operator that primarily
influences the overall writes performance, whereas the hash join determines the cycles behavior. Again,
there are substantial savings in both writes (40%) and cycles (30%) delivered by the PCM-conscious
approach.

13

(a) Q13 Performance

(b) Q13 Performance (skewed TPC-H)

(c) Q16 Performance

(d) Q19 Performance

Figure 4: Performance of TPC-H queries

14

Finally, moving on to Q19 in Figure 4(d), where hash join is essentially the only operator, the savings
are around 64% with regard to writes and 32% in cycles.

7.1 Operator-wise Analysis
We now analyse the savings due to each operator independently and show their correspondence to the
analyses in Sections 3–5 .

Sort. For Q13 execution on uniform TPC-H, as already mentioned, we observed savings of 53% in
writes and 20% in cycles. Similarly, on skewed TPC-H, these figures were 44% (writes) and 14%
(cycles). In the case of Q16, the data at the sorting stage was found to be much less than the DRAM
size. Hence, both the native and PCM-conscious executions used the standard sort routine, and as a
result, the cycles and writes for both implementations match exactly.

Hash Join. Each entry in the hash table consisted of a pointer to the build tuple and a hash value field.
New memory allocation to each bucket was done in units of pages, with each page holding up to 64
entries. A search for the matching join column began with the first tuple in the corresponding bucket,
and went on till the last tuple in that bucket, simultaneously writing out the join tuples for successful
matches. For Q16, we observed a 12% improvement in writes and 31% in cycles due to the PCM-
conscious hash join, as shown in Figure 4(c). The high savings in cycles was the result of the caching
effect due to page-wise allocation. These improvements were even higher with Q19 – specifically, 65%
writes and 32% cycles, as shown in Figure 4(d). The source of the enhancement was the 3 bytes of
writes saved due to single-byte hash values2, and additionally, the page-based aggregation of hash table
entries.

Group-By. In Q16, the aggregate operator in the group-by has an associated distinct clause. Thus,
our group-by algorithm utilized sort-based grouping to carry out the aggregation. Both the partitioning
and sorting were carried out through pointers, thereby reducing the writes significantly. Consequently,
we obtain savings of 74% in writes and 20% in cycles, as shown in Figure 4(c). When we consider
Q13, however, the grouping algorithm employed was hash-based. Here, the hash table consisted of
very few entries which led to the overhead of the page metadata construction overshadowing the savings
obtained in other aspects. Specifically, only marginal improvements of about 4% and 1% were obtained
for writes and cycles, as shown in Figure 4(a).

7.2 Lifetime Analysis
The above experiments have shown that PCM-conscious operators can certainly provide substantive
improvements in both writes and cycles. However, the question still remains as to whether these im-
provements have been purchased at the expense of longevity of the memory. That is, are the writes
skewed towards particular memory locations? To answer this, we show in Figure 5, the maximum
number of writes across all memory blocks for the three TPC-H queries (as mentioned earlier, we track
writes at the block-level–256 bytes–in our modified simulator). The x-axis displays the block numbers
in decreasing order of writes.

We observe here that the maximum number of writes is considerably more for the native systems as
compared to the PCM-conscious processing. This conclusively demonstrates that the improvement is
with regard to both average-case and worst-case behavior.

2The hash values of all entries within a bucket are placed contiguously.

15

(a) Q13

(b) Q16

(c) Q19

Figure 5: Queries wear distribution

16

7.3 Validating Write Estimators
We now move on to validating the estimators (presented in Sections 3 through 5) for the number of
writes incurred by the various database operators.

7.3.1 Sort

The size of the orders table is approximately 214 MB. The flashsort algorithm incurred writes of
110.6M. On the other hand, the writes for multi-pivot flashsort algorithm were 112.1M. Replacing the
values for NRLR with the table size in Equation 1, we get the writes as Wsort uni f orm = Wsort non uni f orm =

(214 × 106)/2 = 107M. Thus the estimate is close to the number of observed word-writes.

7.3.2 Hash Join

For the hash join in Q19, the values of NR, H, N j, L j are 0.2M, 5 bytes, 120 and 8 bytes, respectively.
Substituting the parameter values in Equation 3, the writes are given by: Wh j = (0.2 × 106 × 5 + 120 ×
8)/4 ≈ 0.25M which is close to the actual word-writes of 0.32M.

7.3.3 Group-By

The values of the parameters NR, LR, P, Ng and Lg for Q16 are 119056, 48 bytes, 4 bytes, 18341 and 48
bytes, respectively. The grouping algorithm used was sort-based grouping. Using Equation 5 results
in: Wgb sort = (2 × 119056 × 4 + 18341 × 48)/4 = 0.46M. This closely corresponds to the observed
word-writes of 0.36M.

A summary of the above results is provided in Table 3. It is clear that our estimators predict the write
cardinality with an acceptable degree of accuracy for the PCM-conscious implementations, making
them suitable for incorporation in the query optimizer.

Table 3: Validation of Write Estimators

Operator Estimated Word-Writes Observed Word-Writes Error Factor
(in millions) (e) (in millions) (o) (e−o

o)

Sort (uniform) 107 110.6 -0.03
Sort (non-uniform) 107 112.1 -0.05
Hash Join 0.25 0.32 -0.22
Group-By 0.46 0.36 0.27

8 Query Optimizer Integration
In the earlier sections, given a user query, the modified operator implementations were used for the
standard plan choice of the PostgreSQL optimizer. That is, while the execution engine was PCM-
conscious, the presence of PCM was completely opaque to the optimizer. However, given the read-
write asymmetry of PCM in terms of both latency and wear factor, it is possible that alternative plans,
capable of providing better performance profiles, may exist in the plan search space. To discover such
plans, the database query optimizer needs to incorporate PCM awareness in both the operator cost
models and the plan enumeration algorithms.

17

Current query optimizers typically choose plans using a latency-based costing mechanism. We revise
these models to account for the additional latency incurred during writes. Additionally, we introduce a
new metric of write cost in the operator cost model, representing the incurred writes for a plan in the
PCM environment, using the estimators described in Sections 3 to 5. We henceforth refer to the latency
cost and the write cost of a plan as LC and WC, respectively.

A new user-defined parameter, called the latency slack, is incorporated in the query optimizer. This
slack, denoted by λ, represents the maximum relative slowdown, compared to the LC-optimal query
plan, that is acceptable to the user in lieu of getting better write performance. Specifically, if the LC of
the LC-optimal execution plan Po is Co and the LC of an alternate plan Pi is Ci, the user is willing to
accept Pi as the final execution plan if Ci ≤ (1+λ)Co. The Pi with the least WC satisfying this equation
is considered the WC-optimal plan.

With the new metric in place, we need to revise the plan enumeration process during the planning
phase. This is because the native optimizer propagates only the LC-optimal (and interesting order)
plans through the internal nodes of the dynamic programming lattice, which may lead to pruning of
potential WC-optimal plans. On the other hand, propagating the entire list of sub-plans at each internal
node can end up in an exponential blow-up of the search space. As an intermediate option between
these two extremes, we use a heuristic propagation mechanism at each internal node, employing an
algorithmic parameter, local threshold λl (≥ λ). Specifically, let pi and po be a generic sub-plan and
the LC-optimal sub-plan at a node, respectively, with ci and co being their corresponding LC values.
Now, along with the LC-optimal and interesting order sub-plans, we also propagate pi with the least
WC that satisfies ci ≤ (1 + λl)co. We observed that setting λl = λ delivered reasonably good results in
this respect.

(a) Performance of Alternative Plans

Metric Opt(PCM-O) Opt(PCM-O) Opt(PCM-C) Opt(PCM-C)
Exec(PCM-O) Exec(PCM-C) Exec(PCM-C) Exec(PCM-O)

Mega Word-Writes 233.6 110.6 4.66 12.8
Giga Cycles 13.1 10.4 3.2 4.5

(b) Overall performance comparison

Figure 6: Integration with Query Optimization and Processing Engine

In light of these modifications, let us revisit Query Q13, for which the default plan was shown in
Figure 3(a). With just the revised latency costs (i.e. λ = 0), the optimizer identified a new execution
plan wherein the merge left-join between the customer and orders tables is replaced by a hash left-
join. The relative performance of these two alternatives with regard to PCM writes and CPU cycles
are shown in Figure 6(a). We observe here that there is a huge difference in both the query response
times as well as write overheads between the plans. Specifically, the alternative plan reduces the writes
by well over an order of magnitude! As we gradually increased the latency slack value, initially there
was no change in plans. However, when the slack was made as large as 5, the hash left-join gave way
to a nested-loop left-join, clearly indicating that the nested-loop join provides write savings only by

18

incurring a steep increase in latency cost.
To put matters into perspective, Figure 6(b) summarizes the relative performance benefits obtained

as the database layers are gradually made PCM-conscious (in the figure, the labels Opt and Exec refer
to Optimizer and Executor, respectively, while PCM-O and PCM-C refer to PCM-Oblivious and PCM-
Conscious, respectively). For the sake of completeness, we have also added results for the case when
the Optimizer is PCM-C but the Executor is PCM-O (last column). The results clearly indicate that
future query optimizers for PCM-based architectures need to incorporate PCM-Consciousness at both
the Optimizer and the Executor levels in order to obtain the best query performance.

9 Related Work
Over the past decade, there has been considerable PCM-related research activity on both the architec-
tural front and the various application domains, including database systems. A review of the literature
that is closely related to our work is presented here.

On the architectural side, buffer management strategies to reduce PCM latency and energy consump-
tion have been discussed in [10]. Wear levelling algorithms are proposed in [12] that rotate the lines
within a circular buffer each time a certain write threshold is reached. A randomized algorithm was
introduced to handle the case when the writes are spatially concentrated to enable wear levelling across
the entire PCM. Techniques to reduce writes by writing back only modified data to PCM upon eviction
from LLC/DRAM are presented in [13, 19, 10, 20]. In Flip-N-Write scheme [6], a modified data word
or its complement is stored depending on whose Hamming distance to the original word is less. As a
result, it restricts the maximum bit writes per word to B/2, where B is the number of bits in a word.

Turning our attention to the database front, for the PCM RAM memory model, write reduction
techniques for index construction and for hash join are proposed in [5]. They recommend keeping the
keys unsorted at the leaf nodes of the index. While this scheme saves on writes, the query response
times are adversely impacted due to the increased search times. Similarly, for partitioning during hash
join, a pointer based approach is proposed to avoid full tuple writes. Since we assume database to be
PCM-resident, this partitioning step is obviated in our algorithms. A predictive B+ tree is proposed in
[8] which pre-allocates node space based on current key distribution which helps in reducing write cost
due to node splits.

For the DRAM SOFT memory model, two classes of sort and join algorithms are presented in
[17]. The first class divides the input into “write-incurring” and “write-limited” segments. The write-
incurring part is completed in a single pass whereas the write-limited part is executed in multiple
iterations. In the second class of algorithms, the materialization of intermediate results is deferred until
the read cost (in terms of time) exceeds the write cost. Our work fundamentally differs from these ap-
proaches since in our DRAM HARD model, there is no explicit control over DRAM. This means that
we cannot selectively decide what to keep in DRAM at any point of time. It also implies that we may
ultimately end up obtaining much less DRAM space than originally anticipated, due to other programs
running in parallel on the system. As shown in Section 6, our algorithms have been designed such that
even with restricted memory availability, they perform better than conventional algorithms in terms of
writes.

At a more specific level, the sorting algorithms proposed in [17] employ a heap that may be constantly
updated during each pass. If the available DRAM happens to be less than the heap size, it is likely that
the updated entries will be repeatedly evicted, causing a large number of writes. Secondly, the join
algorithms proposed in [17] involve partitioning the data for the hash table to fit in DRAM. However,
since the results are written out simultaneously with the join process, and the result size can be as large
as the product of the join relation cardinalities, it is likely that the hash table will be evicted even after

19

partitioning.
Sorting algorithms for DRAM SOFT model are also discussed in [16]. They split the input range

into buckets such that each bucket can be sorted using DRAM. The bucket boundaries are determined
using hybrid histograms having both depth-bound and width-bound buckets, the bound being decided
depending upon which limit is hit later. The elements are then shuffled to group elements of the same
bucket together, followed by sorting of each bucket within the DRAM. The sorting methodology used
is quicksort or count-sort based on whether the bucket is depth-bound or width-bound respectively. A
major drawback with this approach is that there is a high likelihood of an error in the approximation
of the histogram, leading to DRAM overflow in some of the buckets. This would lead to additional
writes since the overflowing buckets need to be split into adequately small fragments. Besides, the
construction of the histogram itself may incur a number of writes.

Finally, there has also been quite some research on speeding up query execution in flash-resident
databases. For instance, incorporation of the flash read-write asymmetry within the query optimizer is
discussed in [3]. Their focus however is restricted to modifying the operator cost modelling to suit the
flash environment; the optimization process itself remaining largely unaltered. The use of a column
based layout has been advocated in [14] to avoid fetching of unnecessary attributes during scans. The
same layout is also leveraged for joins by fetching only the columns participating in the join, deferring
full tuple materialization to as late as possible in the plan tree. External merge sort is recommended for
data not fitting in the DRAM. These techniques, though applicable to a PCM setting, are orthogonal to
our work.

10 Conclusion
Designing database query execution algorithms for PCM platforms requires a change in perspective
from the traditional assumptions of symmetric read and write overheads. We presented here a variety
of minimally modified algorithms for the workhorse database operators: sort, hash join and group-by,
which were constructed with a view towards simultaneously reducing both the number of writes and the
response time. Through detailed experimentation on complete TPC-H benchmark queries, we showed
that substantial improvements on these metrics can be obtained as compared to their contemporary
PCM-oblivious counterparts. Collaterally, the PCM cell lifetimes are also greatly extended by the new
approaches.

Using our write estimators for uniformly distributed data, we presented a redesigned database opti-
mizer, thereby incorporating PCM-consciousness in all layers of the database engine. We also presented
initial results showing how this can influence plan choices, and improve the write performance by a sub-
stantial margin. While our experiments were conducted on a PCM simulator, the cycle-accurate nature
of the simulator makes it likely that similar performance will be exhibited in the real world as well.
In our future work, we would like to design write estimators that leverage the metadata statistics to
accurately predict writes for skewed data. Additionally, we wish to design multi-objective optimization
algorithms for query plan selection with provable performance guarantees.

Overall, the results of this paper augur well for an easy migration of current database engines to
leverage the benefits of tomorrow’s PCM-based computing platforms.

20

References
[1] http://www.tpc.org/tpch.

[2] http://www.postgresql.org.

[3] D. Bausch, I. Petrov, and A. Buchmann. Making cost-based query optimization asymmetry-aware.
In Proc. of the 8th Intl. Workshop on Data Management on New Hardware (DaMon), 2012.

[4] S. Chaudhuri and V. Narasayya. Program for TPC-D data generation with skew. Technical report,
ftp://ftp.research.microsoft.com/users/viveknar/tpcdskew, 2012.

[5] S. Chen, P. B. Gibbons, and S. Nath. Rethinking database algorithms for phase change memory.
In Proc. of 5th Biennial Conf. on Innovative Data Systems Research (CIDR), 2011.

[6] S. Cho and H. Lee. Flip-N-Write: A simple deterministic technique to improve PRAM write
performance, energy and endurance. In Proc. of 42nd Intl. Symp. on Microarchitecture (MICRO),
2009.

[7] A. Ferreira, M. Zhou, S. Bock, B. Childers, R. Melhem, and D. Mosse. Increasing PCM main
memory lifetime. In Proc. of 13th Conf. on Design, Automation and Test in Europe (DATE), 2010.

[8] W. Hu, G. Li, J. Ni, D. Sun, and K.-L. Tan. Bp-Tree: A predictive B+-Tree for reducing writes on
phase change memory. IEEE Transactions on Knowledge and Data Engineering (TKDE), 26(10),
2014.

[9] P.-A. Larson. Grouping and duplicate elimination: Benefits of early aggregation. Microsoft
Technical Report, 1997.

[10] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger. Architecting phase change memory as a scalable
dram alternative. In Proc. of 36th Intl. Symp. on Computer Architecture (ISCA), 2009.

[11] K.-D. Neubert. The flashsort1 algorithm. http://www.drdobbs.com/database/

the-flashsort1-algorithm/184410496, 1998.

[12] M. K. Qureshi, J. Karidis, M. Franceschini, V. Srinivasan, L. Lastras, and B. Abali. Enhancing
lifetime and security of PCM-based main memory with start-gap wear leveling. In Proc. of 42nd
Intl. Symp. on Microarchitecture (MICRO), 2009.

[13] M. K. Qureshi, V. Srinivasan, and J. A. Rivers. Scalable high performance main memory system
using phase-change memory technology. In Proc. of 36th Intl. Symp. on Computer Architecture
(ISCA), 2009.

[14] D. Tsirogiannis, S. Harizopoulos, M. A. Shah, J. L. Wiener, and G. Graefe. Query processing
techniques for solid state drives. In Proc. of 28th ACM SIGMOD Intl. Conf. on Management of
Data, pages 59–72, 2009.

[15] R. Ubal, B. Jang, P. Mistry, D. Schaa, and D. Kaeli. Multi2sim: A simulation framework for
CPU-GPU computing. In Proc. of 21st Intl. Conf. on Parallel Architectures and Compilation
Techniques (PACT), 2012.

[16] M. V. Vamsikrishna, Z. Su, and K.-L. Tan. A Write Efficient PCM-Aware Sort. In Proc. of 23rd
Intl. Conf. on Database and Expert Systems Applications (DEXA), 2012.

21

[17] S. D. Viglas. Write-limited sorts and joins for persistent memory. In Proc. of 40th Intl. Conf. on
Very Large Data Bases (VLDB), 2014.

[18] S. Wild and M. E. Nebel. Average case analysis of java 7’s dual pivot quicksort. In Proc. of 20th
European Symposium on Algorithms (ESA), 2012.

[19] B.-D. Yang, J.-E. Lee, J.-S. Kim, J. Cho, S.-Y. Lee, and B.-G. Yu. A low power phase-change
random access memory using a data-comparison write scheme. In Proc. of 2007 IEEE Intl. Symp.
on Circuits and Systems (ISCAS), 2007.

[20] P. Zhou, B. Zhao, J. Yang, and Y. Zhang. A durable and energy efficient main memory using
phase change memory technology. In Proc. of 36th Intl. Symp. on Computer Architecture (ISCA),
2009.

22

