Platform-independent Robust Query Processing

Srinivas Karthik ~ Jayant Haritsa ~ Sreyash Kenkre! = Vinayaka Pandit!

Technical Report
TR-2015-02

Database Systems Lab
Supercomputer Education and Research Centre
Indian Institute of Science

Bangalore 560012, India

http://dsl.serc.iisc.ernet.in

1IBM Research, India

Abstract

To address the classical selectivity estimation problem in databases, a radically different ap-
proach called P1anBouquet was recently proposed in [3], wherein the estimation process is com-
pletely abandoned and replaced with a calibrated discovery mechanism. The beneficial outcome of
this new construction is that, for the first time, provable guarantees are obtained on worst-case
performance, thereby facilitating robust query processing.

The PlanBouquet formulation suffers, however, from a systemic drawback — the perfor-
mance bound is a function of not only the query, but also the optimizer’s behavioral profile over
the underlying database platform. As a result, there are adverse consequences: (i) the bound value
becomes highly variable, depending on the specifics of the current operating environment, and (ii)
it becomes infeasible to compute the value without substantial investments in preprocessing over-
heads.

In this paper, we present SpillBound, a new query processing algorithm that retains the core
strength of the P1anBougquet discovery process, but reduces the bound dependency to only the
query. Specifically, SpillBound delivers a worst-case multiplicative bound of D? + 3D, where
D is simply the number of error-prone predicates in the user query. Consequently, the bound value
becomes independent of the optimizer and the database platform, and the guarantee can be issued
just by inspecting the query, without incurring any additional computational effort.

We go on to prove that Spil1Bound is within an O(D) factor of the best possible determin-
istic selectivity discovery algorithm in its class. Further, a detailed empirical evaluation over the
standard TPC-H and TPC-DS benchmarks indicates that Spill1Bound provides markedly supe-
rior worst-case performance as compared to P1lanBouquet in practice. Therefore, in an overall
sense, SpillBound offers a substantive step forward in the quest for robust query processing.

1 Introduction

A long-standing problem plaguing database systems is that the predicate selectivity estimates used
for optimizing declarative SQL queries are often significantly in error [10, 9]. This results in highly
sub-optimal choices of execution plans, and corresponding blowups in query response times. The rea-
sons for such substantial deviations are well documented [15], and include outdated statistics, coarse
summaries, attribute-value independence (AVI) assumptions, complex user-defined predicates, and er-
ror propagations in the query execution tree. It is therefore of immediate practical relevance to design
query processing techniques that limit the deleterious impact of these errors, and thereby provide robust
query processing.

We use the notion of Maximum Sub-Optimality (MSO), introduced in [3], as a measure of the robust-
ness provided by a query processing technique to errors in selectivity estimation. Specifically, given a
query, the MSO of the processing algorithm is the worst-case ratio, over the entire selectivity space, of
its execution cost with respect to the optimal cost incurred by an oracular system that magically knows
the correct selectivities. It has been empirically determined that MSOs can reach very large values on
current database engines [3] — for instance, with Query 19 of the TPC-DS benchmark, it goes as high
as a million!?> More importantly, worrisomely large sub-optimalities are not rare — for the same Q19,
the sub-optimalities for as many as 40% of the locations in the selectivity space were higher than 1000.

As explained in [3], most of the previous approaches to robust query processing (e.g. [10, 1, 12, 8]),
including the influential POP and Rio frameworks, are based on heuristics that are not amenable to
bounded guarantees on the MSO measure. A notable exception to this trend is the P1anBouquet
algorithm, recently proposed in [3], which provides, for the first time, a provable MSO guarantee.

2 Assuming that estimation errors can range over the entire selectivity space.

Here, the selectivities are not estimated, but instead, systematically discovered at run-time through a
calibrated sequence of cost-limited executions from a carefully chosen set of plans, called the “plan
bouquet”. The search space for the bouquet plans is the Parametric Optimal Set of Plans (POSP) [6]
over the selectivity space. The P1anBouquet technique guarantees M SO < 4 x |PlanBouquet|. 3

1.1 PlanBouquet

We describe the working of PlanBouquet with the help of the example query EQ shown in Fig-
ure 1, which enumerates orders for cheap parts costing less than 1000. To process this query, cur-
rent database engines typically estimate three selectivities, corresponding to the two join predicates
(part x lineitem) and (lineitem X orders), and the filter predicate (p_retailprice < 1000). While it
is conceivable that the filter selectivity may be estimated reliably, it is often difficult to ensure similarly
accurate estimates for the join predicates. We refer to such predicates as error-prone predicates, or epp
in short (shown bold-faced in Figure 1).

select * from lineitem, orders, part where
p_partkey = 1_partkey and o_orderkey = 1_orderkey
and p_retailprice < 1000

Figure 1: Example Query (EQ)

Example Execution

Given the above query, P1anBouquet constructs a two-dimensional space corresponding to the epps,
covering their entire selectivity range ([0, 1] * [0, 1]), as shown in Figure 2(a).* A location (z,y) in the
2D space corresponds to a scenario in which the selectivities of (part x lineitem) and (lineitem x
orders) are x and y, respectively. Further, associated with each location in the space are the optimal
plan for the location and its execution cost. On this selectivity space, a series of iso-cost contours, ZC,
through ZC,,, are drawn — each iso-cost contour ZC; has an associated cost CC;, and represents the
connected selectivity curve along which the cost of the optimal plan(s), as determined by the optimizer,
is equal to CC;. Further, the contours are selected such that the cost of the first contour ZC; corresponds
to the minimum query cost C' at the origin of the space, and in the following intermediate contours, the
cost of each contour is double that of the previous contour. That is, CC; = 2= for 1 < i < m. The
last contour’s cost, CCy, is capped to the maximum query execution cost at the top-right corner of the
space.

As a case in point, in Figure 2(a), there are five hyperbolic-shaped contours, ZC; through ZC3, with
their costs ranging from C' to 16C'. Each contour has a set of optimal plans covering disjoint segments
of the contour — for instance, contour ZC5 is covered by plans P, P5 and P;.

The union of the optimal plans appearing on all the contours constitutes the “plan bouquet” — so,
in Figure 2(a), plans P, through P, form the bouquet. Given this set, the P1anBouquet algorithm
operates as follows: Starting with the cheapest contour ZC, the plans on each contour are sequentially
executed with a time limit equal to the contour’s budget.® If a plan fully completes its execution within
the assigned time limit, then the results are returned to the user, and the algorithm finishes. Otherwise,

3 A more precise bound is given later in this section.
“4Please view the diagrams from a color copy to ensure clarity of contents.
SWe assume a perfect cost model, an issue discussed later in this section.

A
=}

=
~—~

zcspec(l,1) (@1) (L1)
v Region-2

rieey)

orderkey)

I orde:

1

|
=
B |
@ | Region-3
I=
= S,
et o
% % N P 10
ZC3|40 2 ZC3|4C
Ic,|C -Pl :
(0,00 SEL(p =] partkey) (1,00 (0.0) SEL(p =] partkey) (1,0)
(a) Selectivity Discovery (b) Pruned Regions - ZC3

Figure 2: P1anBouquet and SpillBound

as soon as the time limit of the ongoing execution expires, the plan is forcibly terminated and the
partially computed results (if any) are discarded. It then moves on to the next plan in the contour and
starts all over again. In the event that the entire set of plans in a contour have been tried out without
any reaching completion, it jumps to the next contour and the cycle repeats.

The basic idea underlying P1anBouquet is that it can be shown, under certain mild assumptions,
that the first time the (unknown) query location falls within the hypograph of a contour, the execution
of some plan on the contour is guaranteed to complete the query within the assigned budget. ¢ By
hypograph we mean the search region below the contour curve (after extending, if need be, the corner
points of the contour to meet the axes of the search space). A pictorial view is shown in Figure 2(b),
which focuses on contour ZC3 — here, the hypograph of ZCj is the Region-1 marked with red dots.

Now consider the case where the query is located at ¢, in the intermediate region between contours
ZC3 and ZC,, as shown in Figure 2(a). To process this query, P1anBouquet would invoke the fol-
lowing budgeted execution sequence:

P |C, B|2C, P3|2C, P,|2C, P5|AC, . .., Pio|AC, P11|8C, Py5|8C

with the execution of the final P;5 plan completing the query.

Performance Guarantees

By sequencing the plan executions and their time limits in the calibrated manner described above, the
overheads entailed by this “trial-and-error” exercise can be bounded, irrespective of the query location
in the space. In particular, it is shown that M SO < 4 x p, where p is the plan cardinality on the
“maximum density” contour. The density of a contour refers to the number of plans present on it — for
instance, in Figure 2(a), the maximum density contour is ZC3 which features 6 plans.

6All points in the ESS fall within the hypograph of at least one contour, and the algorithm is therefore guaranteed to
complete the query.

Limitations

The PlanBouquet formulation, while breaking new ground, suffers from a systemic drawback — the
specific value of p, and therefore the bound, is a function of not only the query, but also the optimizer’s
behavioral profile over the underlying database platform (including data contents, physical schema,
hardware configuration, etc.). As a result, there are adverse consequences: (i) The bound value be-
comes highly variable, depending on the specifics of the current operating environment — for instance,
with TPC-DS Query 25, PlanBougquet’s MSO guarantee of 24 under PostgreSQL shot up, under
an identical computing environment, to 36 for a commercial engine, due to the change in p; (i1) It be-
comes infeasible to compute the value without substantial investments in preprocessing overheads; and
(ii1) Ensuring a bound that is small enough to be of practical value, is contingent on the heuristic of
“anorexic reduction” [5] holding true.

1.2 SpillBound

The goal of our work is to develop a robust query processing approach that offers an MSO bound
which is solely query-dependent, irrespective of the underlying database platform. That is, we desire a
“structural bound” instead of a “behavioral bound”. In this paper, we present a new query processing
algorithm, called SpillBound, that materially achieves this objective. Specifically, it delivers an
MSO bound that is only a function of D, the number of predicates in the query that are prone to
selectivity estimation errors. Moreover, the dependency is in the form of a low-order polynomial, with
MSO expressed as (D? + 3D). Consequently, the bound value becomes:

1. independent of the underlying database platform.’
2. known upfront by merely inspecting the query, and not incurring any preprocessing overhead.
3. indifferent to the anorexic reduction heuristic.

4. certifiably low in value for practical values of D.

Example Execution

SpillBound shares the core contour-wise discovery approach of P1lanBougquet, but its execution
strategy differs markedly. Specifically, it achieves a significant reduction in the cost of the sequence of
budgeted executions employed during the selectivity discovery process. For instance, in the example
scenario of Figure 2(a), the sequence of budgeted executions correspond to the plans highlighted in
blue:

P|C, P,|2C, P3|2C, P5|AC, Ps|AC, Pps|8C

with Py again completing the query. Note that the reduced executions result in cost savings of more
than 50% over P1anBouquet. The advantages offered by Spi11Bound are achieved by the follow-

"Under the assumption that D remains constant across the platforms.

ing key properties — Half-space Pruning and Contour Density Independent execution — of the algorithm.

Half-space Pruning

PlanBouquet’s hypograph-based pruning of the selectivity discovery space is extended to a much
stronger half-space-based pruning. This is vividly highlighted in Figure 2(b), where the half-space
corresponding to Region-2 is pruned by the (budget-limited) execution of Fs, while the half-space
corresponding to Region-3 is pruned by the (budget-limited) execution of Fs. Note that Region-2 and
Region-3 together subsume the entire Region-1 that is covered by P1anBouquet when it crosses ZCs.
Our half-space pruning property is achieved by leveraging the notion of “spilling”, whereby operator
pipelines are prematurely terminated at chosen locations in the plan tree, in conjunction with run-time
monitoring of operator selectivities.

Contour Density Independent Execution

In the example scenario, while advancing through the various contours in the discovery process,
SpillBound executes at most two plans on each contour. In general, when there are D error-prone
predicates in the user query, SpillBound is guaranteed to make a quantum progress in its discovery
process, based on cost-budgeted execution of at most D carefully chosen plans on the contour. Here,
a quantum progress refers to a step in which the algorithm either (a) jumps to the next contour, or (b)
fully learns the selectivity of some epp (thus reducing the effective number of epps).

Specifically, in each contour, for each dimension, one plan is chosen to be executed in spill-mode
(therefore at most D in the contour). The plan chosen for spill-mode execution is the one that provides
the maximal guaranteed learning of the selectivity along that dimension. In our example, P and P are
the two plans chosen for contour ZC3 along the X and Y dimensions, respectively.

1.3 Performance Results

A natural question to ask is whether there might exist some alternative selectivity discovery algorithm,
based on half-space pruning, that could provide a much better MSO than Spil1Bound. In this regard,
we theoretically show that no deterministic technique in this class can provide an MSO less than D.
This result establishes that the Spil1Bound guarantee is no worse than a factor O(D) in comparison
to the best possible algorithm in its class.

The bounds delivered by P1anBouquet and SpillBound are, in principle, uncomparable, due
to the inherently different nature of their parametric dependencies. However, in order to assess whether
the platform-independent feature of Spil1Bound is procured through a deterioration of the numerical
bound, we have carried out a detailed experimental evaluation of both the approaches on standard
benchmark queries, operating on the PostgreSQL engine. Moreover, we have empirically evaluated the
MSO obtained for each query through an exhaustive enumeration of the selectivity space.

Our experiments indicate that for the most part, SpillBound provides similar guarantees to
PlanBouquet, and occasionally, much tighter bounds. As a case in point, for TPC-DS Query 91
with 4 error-prone predicates, the MSO bound is 52.8 with P1lanBouquet, but comes down to 28
with SpillBound. More pertinently, the empirical MSO of SpillBound is significantly better
than that of P1lanBouquet for all the queries. For instance, the empirical MSO for Q91 decreases
drastically from P1anBouquet’s 34 to just 7 for SpillBound.

Caveats

While arbitrary selectivity estimation errors are permitted in our study, we have assumed the optimizer’s
cost model to be perfect — that is, only optimizer costs are used in the evaluations, and not actual run
times. While this assumption is certainly not valid in practice, improving the model quality is, in
principle, an orthogonal problem to that of cardinality estimation errors. Dealing with imprecise cost
models, and other such practical deployment considerations, are discussed in Section 7.

We hasten to also add that SpillBound is not a substitute for a conventional query optimizer. In-
stead, it is intended to complementarily co-exist with the traditional setup, leaving to the user’s discre-
tion, the specific approach to employ for a query instance. When small estimation errors are expected,
the native optimizer could be sufficient, but if larger errors are anticipated, SpillBound is likely to
be the preferred choice.

Organization

The remainder of this paper is organized as follows: In Section 2, a precise description of the robust ex-
ecution problem is provided, along with the associated notations. The building blocks of Spi11Bound
are presented in Section 3. The Spi1l1Bound algorithm and the proof of its MSO bound are presented
in Section 4. The lower bound analysis is carried out in Section 5, while the experimental framework
and performance results are enumerated in Section 6. Pragmatic deployment aspects are discussed in
Section 7, and the related literature is reviewed in Section 8. Finally, our conclusions are summarized
in Section 9.

2 Problem Framework

In this section, we present the key concepts, notations, and the formal problem definition. For ease
of presentation, we assume that the error-prone selectivity predicates (epps) for a given user query are
known apriori, and defer the issue of identifying these epps to Section 7.

2.1 Error-prone Selectivity Space (ESS)

Consider a query with D epps. The set of all epps is denoted by EPP = {e, ..., ep} where e; denotes
the jth epp. The selectivities of the DD epps are mapped to a D-dimensional space, with the selectivity
of e; corresponding to the jth dimension. Since the selectivity of each predicate ranges over [0, 1], a
D-dimensional hypercube [0, 1]? results, henceforth referred to as the error-prone selectivity space, or
ESS. In practice, an appropriately discretized grid version of [0, 1]” is considered as the ESS. Note
that each location ¢ € [0,1]” in the ESS represents a specific instance where the epps of the user
query happen to have selectivities corresponding to gq. Accordingly, the selectivity value on the jth
dimension is denoted by g.j. We call the location at which the selectivity value in each dimension is 1,
i.e, q.7 = 1,Vy, as the terminus.

The notion of a location ¢q; dominating a location ¢, in the ESS plays a central role in our framework.
Formally, given two distinct locations ¢, g2 € ESS, ¢; dominates ¢», denoted by ¢; > ¢o,1f ¢1.7 > ¢2.J
forall j € 1,..., D. In an analogous fashion, other relations, such as 3, <, and 4 can be defined to
capture relative positions of pairs of locations.

2.2 Search Space for Robust Query Processing

We assume that the query optimizer can identify the optimal query execution plan if the selectivities
of all the epps are correctly known.® Therefore, given an input query and its epps, the optimal plans
for all locations in the ESS grid can be identified through repeated invocations of the optimizer with
different epp values. The optimal plan for a generic selectivity location g € ESS is denoted by F,, and
the set of such optimal plans over the complete ESS constitutes the Parametric Optimal Set of Plans
(POSP) [6].°

We denote the cost of executing an arbitrary plan P at a selectivity location ¢ € ESS by
Cost(P,q). Thus, Cost(P,,q) represents the optimal execution cost for the selectivity instance lo-
cated at ¢. In this framework, our search space for robust query processing is simply the set of tuples
< q, P,,Cost(P,,q) > corresponding to all locations ¢ € ESS.

Throughout the paper, we adopt the convention of using ¢, to denote the actual selectivities of the user
query epps — note that this location is unknown at compile-time, and needs to be explicitly discovered.
For traditional optimizers, we use ¢. to denote the estimated selectivity location based on which the
execution plan P, is chosen to execute the query. However, this characterization is not applicable to
plan switching approaches like P1anBouquet and SpillBound because they explore a sequence
of locations during their discovery process. So, we denote the deterministic sequence pursued for a
query instance corresponding to ¢, by Seq,, .

2.3 Maximum Sub-Optimality (MSO) [3]

We now present the performance metrics proposed in [3] to quantify the robustness of query processing.

A traditional query optimizer will first estimate ¢., and then use P, to execute a query which may
actually be located at ¢,. The sub-optimality of this plan choice, relative to an oracle that magically
knows the correct location, and therefore uses the ideal plan P, , is defined as:

Cost(P,., qa)

SubOpt(ge, qa) = Cost(P,q0)
da > 1Q

6]

The quantity SubOpt(q., q,) ranges over [1, o).
With this characterization of a specific (g., ¢,) combination, the maximum sub-optimality that can
potentially arise over the entire ESS is given by

MSO = max (SubOpt(qe, qa)) 2)

(ge,qa)E€ESS

Further, assuming that all ¢,’s are equally likely, the average sub-optimality (ASO) is given by:
> SubOpt(ge, qa)
€ESS
>l

¢a €ESS

ASO =%

3)

The above definition for a traditional optimizer can be generalized to selectivity discovery algorithms
like P1anBouquet and SpillBound. Specifically, suppose the discovery algorithm is currently

8For example, through the classical DP-based search of the plan space [14].
9Letter subscripts for plans denote locations, whereas numeric subscripts denote identifiers.

exploring a location ¢ € Seq, — it will choose P, as the plan and C'ost(F,, q) as the associated budget.
Extending this to the whole sequence, the analogue of Equation 1 is defined as follows:

> Cost(P,,q)

qGSeqqa

SubOpt(S W) = 4
Uu p (eqqa7q) COSt(Pqua) ()
leading to the following MSO and ASO equivalent definitions:
MSO = qr(,,%%é(s SubOpt(Seq,,, qa) (5)
> SubOpt(Seq,,; qa)
ASO — qa CESS 6)

>l

¢a €ESS

2.4 Problem Definition

With the above framework, the problem of robust query processing is defined as follows:

For a given input query () with its EPP, and the search space consisting of tuples
< q,P,,Cost(P,,q) > for all ¢ € ESS, develop a query processing approach that minimizes the
MSO guarantee.

As in [3], the primary assumptions made in this paper that allow for systematic construction and
exploration of the ESS are those of plan cost monotonicity (PCM) and selectivity independence (SI).
PCM may be stated as: For any two locations ¢, g. € ESS, and for any plan P,

@ = q. = Cost(P,q,) > Cost(P,q.) (7

That is, it encodes the intuitive notion that when more data is processed by a query, signified by the
larger selectivities for the predicates, the cost of the query processing also increases. On the other hand,
SI assumes that the selectivities of the epps are all independent — while this is a common assumption
in much of the query optimization literature, it often does not hold in practice. In our future work, we
intend to look into extending SpillBound to handle the more general case of dependent selectivities.

2.5 Geometric View and Notations

We now present a geometric view of the discovery space and some important notations. Consider the
special case of a query with two epps, resulting in an ESS with X and Y dimensions. Now, incorporate
a third Z dimension to capture the cost of the POSP plans on the ESS, i.e, for ¢ € ESS, the value of
the Z-axis is Cost(F,,q). This 3D surface, which captures the cost of the POSP plans on the ESS,
is called the Optimal Cost Surface (OCS). Associated with each point on the OCS is the POSP plan
for the underlying location in the ESS. A sample OCS corresponding to the example query EQ in the
Introduction is shown in Figure 3, which provides a perspective view of this surface. In this figure, the
optimality region of each POSP plan is denoted by a unique color. So, for example, the region with
blue points corresponds to those locations where the “blue plan” is the optimal plan.!”

Discretization of OCS: Let C,,;, and C,,,, denote the minimum and maximum costs on the OCS,
corresponding to the origin and the terminus of the 3D space, respectively (an outcome of the PCM

10Since Figure 3 is only a perspective view of the OCS, it does not capture all the POSP plans.

E
c E— IC,
(Z) ¢
0 —-4 a
s IC,
i — ; Ic,
(0,0 i
o_orderkey = I_orderkey (0.1) p__partke‘l = | partkeY
) — X)
Figure 3: 3D Cost Surface on ESS
assumption). We define m = Hogg(g’”?z)] + 1 hyperplanes that are parallel to the XY plane as

follows. The first hyperplane is drawn at C,,,;,. Fori = 2,...,m — 1, the /" hyperplane is drawn at
Conin - 271, The last hyperplane is drawn at C,,,,. These hyperplanes correspond to the m isocost
contours ZCy, ... ZC,,. The isocost contour ZC; is essentially the 2D curve obtained by intersecting the
OCS with the i hyperplane. We denote the cost of ZC; by CC;. The set of plans that are on the 2D
curve of ZC; are referred to as PL;. For example, in Figure 3, PL, includes the purple and maroon plans
(in addition to plans that are not visible in this perspective). The hypograph of an isocost contour ZC;
is the set of all locations ¢ € ESS such that Cost(P,, q) < CC;.

The above geometric intuition and the formal notations readily extend to the general case of D epps,
and these notations are summarized in Table 1 for easy reference.

Notation Meaning

epp (EPP) Error-prone predicate (its collection)
ESS Error-prone selectivity space

D Number of dimensions of ESS
€1,...,€D The D epps in the query

q € [0,1]" A location in the ESS space

q.J Selectivity of ¢ in the jth dimension of ESS
P, Optimal Plan at ¢ € ESS

Qa Actual run-time selectivity
Cost(P,q) Cost of plan P at location ¢

Ic; Isocost Contour ¢

CC; Cost of an isocost contour ZC;

PL; Set of plans on contour ZC;

Table 1: Notations

10

3 Building Blocks of SpillBound

The platform-independent nature of the MSO bound of the Spi11Bound is enabled by the key proper-
ties of half-space pruning and contour density independent execution. In this section, we present these
two building blocks of our approach.

3.1 Half-space Pruning

Half-space pruning is the ability to prune half-spaces from the search space based on a single cost-
budgeted execution of a contour plan. We now present how half-space pruning is achieved by executing
query plans in spilling mode. While the use of spilling to accelerate selectivity discovery had been
mooted in [3], they did not consider its exploitation for obtaining guaranteed search properties.

We use spilling as the mechanism for modifying the execution of a selected plan — the objective
here is to utilize the assigned execution budget to extract increased selectivity information of a specific
epp. Since spilling requires modification of plan executions, we shall first describe the query execution
model.

3.1.1 Execution Model

We assume the demand driven iterator model, commonly seen in database engines, for the execution
of operators in the plan tree [4]. Specifically, the execution takes place in a bottom up fashion with the
base relations at the leaves of the tree.

In conventional database query processing, the execution of a query plan can be partitioned into a
sequence of pipelines [2]. Intuitively, a pipeline can be defined as the maximal concurrently executing
subtree of the execution plan. The entire execution plan can therefore be viewed as an ordering on its
constituent pipelines. We assume that only one pipeline is executed at a time in the database system,
i.e, there is no inter-pipeline concurrency — this appears to be the case in current engines. To make
these notions concrete, consider the plan tree shown in Figure 4 — here, the constituent pipelines are
highlighted with ovals, and are executed in the sequence { L1, Lo, L3, L4}.

Finally, we assume a standard plan costing model that estimates the individual costs of the internal
nodes, and then aggregates the costs of all internal nodes to represent the estimated cost of the complete
plan tree.

3.1.2 Spilling Mode of Execution

We now discuss how to execute plans in spilling mode. For expository convenience, given an internal
node of the plan tree, we refer to the set of nodes that are in the subtree rooted at the node as its upstream
nodes, and the set of nodes on its path to the root as its downstream nodes.

Suppose we are interested in learning about the selectivity of an epp e;. Let the internal node
corresponding to e; in plan P be N;. The key observation here is that the execution cost incurred on
N;’s downstream nodes in P is not useful for learning about NV;’s selectivity. So, discarding the output
of IV; without forwarding to its downstream nodes, and devoting the entire budget to the subtree rooted
at IV;, helps to use the budget effectively to learn e;’s selectivity. Specifically, given plan P with cost
budget B, and epp ¢; chosen for spilling, the spill-mode execution of P is simply the following: Create
a modified plan comprised of only the subtree of P rooted at /V;, and execute it with cost budget B.

Since a plan could consist of multiple epps (red coloured nodes in Figure 4), the sequence of spill
node choices should be made carefully to ensure guaranteed learning on the selectivity of the chosen
node — this procedure is described next.

11

-.)

/

] Nested Loop Joir V1o

Group Aggregate Np

=

/
\ N1

ndex Scan]

NH[Seq. Scan] [I

1

T

-Date Dim

Catalog.gales

Bltmap Scan Ny

___Custome
Demograp

ﬁics

.....

Figure 4: Execution Plan Tree of TPC-DS Query 26

12

3.1.3 Spill Node Identification

Given a plan and an ordering of the pipelines in the plan, we consider an ordering of epps based on the
following two rules:

Inter-Pipeline Ordering: Order the epps as per the execution order of their respective pipelines;
in Figure 4, since L, is ordered after L, the epp nodes N3 and N, are ordered after Ng and Ny.

Intra-Pipeline Ordering: Order the epps by their upstream-downstream relationship, i.e., if an
epp node NV, is downstream of another epp node N, within the same pipeline, then NV, is ordered
after Vy; in the example, N3 is ordered after V.

It is easy to see that the above rules produce a total-ordering on the epps in a plan — in Figure 4, it
1s Nyg, Ng, N4, N3. Given this ordering, we always choose to spill on the node corresponding to the
first epp in the total-order. The selectivity of a spilled epp node is fully learnt when the corresponding
execution goes to completion within its assigned budget. When this happens, we remove the epp from
EPP and it is no longer considered as a candidate for spilling in the rest of the discovery process.

As a result of this procedure, note that the selectivities of all predicates located upstream of the
currently spilling epp will be known exactly — either because they were never epps, or because they
have already been fully learnt in the ongoing discovery process. Therefore, their cost estimates are
accurate, leading to the following half-space pruning property.

Lemma 3.1 Consider a location q € ESS and the corresponding contour plan F,. Let epp e; be
selected by the spill node identification mechanism. When P, is executed with budget Cost(P,, q) and
spilling on e;, then we either learn (a) the exact selectivity of e;, or (b) that q,.j > q.J.

Proof 1 For an internal node N of a plan tree, we use N.cost to refer to the execution cost of
the node. Let N; denote the internal node corresponding to e; in plan P,. Partition the internal
nodes of P, into the following: Upstream(N;), {N;}, and Residual(N;), where Upstream(N,)
denotes the set of internal nodes of P, that appear before node N; in the execution order, while
Residual(N;) contains all the nodes in the plan tree excluding Upstream(N;) and {N;}. Therefore,

Cost(P,, q) = > N.cost + Nj.cost + > N.cost. The value of the first term in
NeUpstream(Nj) NeResidual(N;)

the summation is known with certainty because Upstream(N;) does not contain any epp. Further, the
quantity N;.cost is computed assuming that the selectivity of N; is q.j. Since the output of N; is dis-
carded and not passed to downstream nodes, the nodes in Residual(N;) incur zero cost. Thus, when
P, is executed in spill-mode, the budget is sufficiently large to either learn the exact selectivity of e; (if
the spill-mode execution goes to completion) or to conclude that q,.) is greater than q.j.

Remark. During the entire discovery process of SpillBound, only contour plans are considered
for spill-mode executions. Moreover, when we mention the spill-mode execution of a particular plan
on a contour, it implicitly means that the budget assigned is equal to the cost of the contour. For ease of
exposition, if the epp chosen to spill on is e; for a plan P, we shall hereafter highlight this information
with the notation P7.

3.2 Contour Density Independent Execution

We now show how the half-space pruning property can be exploited to achieve the contour density
independent (CDI) execution property of the SpillBound algorithm. For this purpose, we employ

13

the term “quantum progress” to refer to a step in which the algorithm either jumps to the next contour,
or fully discovers the selectivity of some epp. Informally, the CDI property ensures that each quan-
tum progress in the discovery process is achieved by expending no more than |[EPP| number of plan
executions.

For ease of understanding, we present here the technique for the special case of two epps referred to
by X and Y, deferring the generalization for D epps to the next section.

©,1) (1,1)
P;(nax : Pg
P¥nax : Pg

=X ax-X; Ainax-Y

SEL (Y)

G0 SEL (X) (1,0}

Figure 5: Choice of Contour Crossing Plans

Consider the 2D ESS shown in Figure 5, and assume that we are currently exploring contour ZCj.
The two plans for spill-mode execution in this contour are identified as follows: We first identify the
subset of plans on the contour that spill on X using the spill node identification algorithm — these plans
are identified as P35, P7, P§ in Figure 5. The next step is to enumerate the subset of locations on the
contour where these X -spilling plans are optimal. From this subset, we identify the location with the
maximum X coordinate, referred to as ¢, ..., and its corresponding contour plan, which is denoted as
Py .. The P plan is the one chosen to learn the selectivity of X — in Figure 5, this choice is Fy.

mazx*

By repeating the same process for the Y dimension, we identify the location ¢/, ..., and plan PY . for
learning the selectivity of Y — in Figure 5, the plan choice is ;. Note that the location (¢Z,,.-%, ¢%,.-Y)
is guaranteed to be either on or beyond the ZC3 contour.

The following lemma shows that the above plan identification procedure satisfies the CDI property.

Lemma 3.2 In contour ZC,, if plans Py, and PY . are executed in spill-mode, and both do not reach

max

completion, then Cost(P,,,q,) > CCs, triggering a jump to the next contour ZC,. ;.

Proof 2 Since the executions of both Py, . and PY . do not reach completion, we infer that q,,..T <

Go-x and ¢¥,,..y < qu.y. Therefore, q, strictly dominates the location (¢, ,,-T, % ..-y) whose cost, by
PCM, is greater than CC;. Thus Cost(P,,, ¢,) > CCi.

4 SpillBound Algorithm

In this section, we present our new robust query processing algorithm, Spil1Bound, which leverages
the properties of half-space pruning and CDI execution. We begin by introducing an important notation:

14

Our search for the actual query location, ¢,, begins at the origin, and with each spill-mode execution
of a contour plan, we monotonically move closer towards the actual location. The running selectivity
location, as progressively learnt by Spill1Bound, is denoted by ¢.

For ease of exposition, we first present a version, called 2D-Spi11Bound, for the special case of
two epps, and then extend the algorithm to the general case of several epps.

4.1 The 2D-SpillBound Algorithm

To provide a geometric insight into the working of 2D-Spil1lBound, we will refer to the two epps,
e; and eg, as X and Y, respectively. 2D-SpillBound explores the doubling isocost contours

1Cy,...,1IC,,, starting with the minimum cost contour ZC;. During the exploration of a contour, two
plans P7 and PY are identified, as described in Section 3.2, and executed in spill-mode. The order

of execution between these two plans can be chosen arbitrarily, and the selectivity information learnt
through their execution is used to update the running location ¢,.,,,. This process continues until one of
the spill-mode executions reaches completion, which implies that the selectivity of the corresponding
epp has been completely learnt.

Without loss of generality, assume that the learnt selectivity is X. At this stage, we know that g, lies
on the line X = ¢,.z. Further, the discovery problem is reduced to the 1D case, which has a unique
characteristic — each isocost contour of the new ESS (i.e. line X = ¢,.z) contains only one plan, and this
plan alone needs to be executed to cross the contour, until eventually some plan finishes its execution
within the assigned budget. In this special 1D scenario, there is no operational difference between
PlanBouquet and 2D-Spil1lBound, so we simply invoke the standard P1anBouquet with only
the Y epp, starting from the contour currently being explored. Note that plans are not executed in spill-
mode in this terminal 1D phase because spilling in the 1D case weakens the bound. This is because,
if the plans are executed in spilling mode also in the final 1D phase, this would just lead to learning of
the actual selectivity of the left epp. Also since the tuples could be spilled out of the execution plan
tree (and not returned to the user), one more execution of a plan at ¢, needs to be executed in non-spill
mode (regular mode). Thus leading to a bound of one more than what is provided by Theorem 4.2 (this
also applies to multidimensional scenario).

4.1.1 Execution Trace

An illustration of the execution of 2D-SpillBound on TPC-DS Query 91 with two epps is shown
in Figure 6. In this example, the join predicate Catalog Sales X Date Dim, denoted by X, and the join
predicate Customer X Customer Address, denoted by Y, are the two epps (both selectivities are shown
on a log scale).

We observe here that there are six doubling isocost contours ZCq, . ..,ZCs. The execution trace of
2D-SpillBound (blue line) corresponds to the selectivity scenario where the user’s query is located
at ¢, = (0.04,0.1).

On each contour, the plans executed by 2D-SpillBound in spill-mode are marked in blue — for
example, on ZCs, plan Py is executed in spill-mode for the epp Y. Further, upon each execution of a
plan, an axis-parallel line is drawn from the previous ¢, to the newly discovered ¢, leading to the
Manhattan profile shown in Figure 6. For example, when plan F; is executed in spill-mode for X, the
Grun, moves from (2E-4,6E-4) to (8E-4,6E-4). To make the execution sequence unambiguously clear,
the trace joining successive ¢, 1s also annotated with the plan execution responsible for the move —
to highlight the spill-mode execution, we use p; to denote the spilled execution of F;. So, for instance,
the move from (2E-4,6E-4) to (8E-4,6E-4) is annotated with pyg.

15

(0,1)

08 1
02 +
005 +
g
e
[¢]
@
& 001
S
&
o 363
B
[%7]
8E4 T
e b qrunmovement
ICy
} } } } } }
©,0) P2 264 8E-4 3E3 0.01 0.05 02 08 (1,0)

SEL (X) :log-scale

Figure 6: Execution trace for TPC-DS Query 91

With the above framework, it is now easy to see that the algorithm executes the sequence
D2, P4, D6, P75 P10, P11, Which culminates in the discovery of the actual selectivity of the Y epp. Af-
ter this, the 1D P1anBouquet takes over and the selectivity of X is learnt by executing P;; and Py
in regular (non-spill) mode.

This example trace of 2D-Spil1Bound exemplifies how the benefits of half-space pruning and
CDI execution are realized. It is important to note that 2D-SpillBound may execute a few plans
twice — for example, plan P;; —once in spill-mode (i.e., p11) and once as part of the 1D P1lanBouquet
exploration phase. In fact, this notion of repeating a plan execution during the search process substan-
tially contributes to the MSO bound in the general case of D epps.

4.1.2 Performance Bounds

Consider the situation where ¢, is located in the region between ZCy, and ZCj, 1, or is directly on ZCy 1.
Then, the 2D-Spil1Bound algorithm explores the contours from 1 to k£ + 1 before discovering q,.
In this process,

Lemma 4.1 The 2D-SpillBound algorithm ensures that at most two plans are executed from each
of the contours ZCy, . .., ZCy1, except for one contour in which at most three plans are executed.

Proof 3 Let the exact selectivity of one of the epps be learnt in contour ZCj, where 1 < h < k + 1.
From CDI execution, we know that 2D—Spil1Bound ensures that at most two plans are executed
in each of the contours ICy,--- ,ZCy. Subsequently, P1lanBouquet begins operating from contour
ICy, resulting in three plans being executed in ZCy, and one plan each in contours ZCp1 through

IChya.

16

We now analyze the worst-case cost incurred by 2D-Spil1lBound. For this, we assume that the
contour with three plan executions is the costliest contour ZCy 1. Since the ratio of costs between two
consecutive contours is 2, the total cost incurred by 2D-Spi11Bound is bounded as follows:

TotalCost < 2%CCy+ ...+ 2% CCx + 3 % CCxyq
= 2%CCi+...+2%2"1xce, +3%28xCCy
2%CCy (1+...+2%) + 2% xcey
2% CCy (271 — 1) + 28 x CCy
282 4 CCy + 2F % CC4
= 5x2"xcC, (8)

IN

From the PCM assumption, we know that the cost for an oracle algorithm (that apriori knows the
location of ¢,) is lower bounded by CCy. By definition, CC, = 2k=1 4 CC,. Hence,
5% 2% % CCy

MSO< =" =1
90 e, — ©

leading to the theorem:

Theorem 4.2 The MSO bound of 2D-SpillBound for queries with two error-prone predicates is
bounded by 10.

Remark: Note that even for a p value as low as 3, the MSO bound of 2D-Spi11Bound is better than
the 4 x 3 = 12 offered by P1anBouquet.

4.2 Extending to Higher Dimensions

We now present SpillBound, the generalization of the 2D-SpillBound algorithm to handle D
error-prone predicates ey, ...,ep. Before doing so, we hasten to add that the EPP set, as mentioned
earlier, is constantly updated during the execution, and epps are removed from this set as and when
their selectivities become fully learnt.

The primary generalization that needs to be achieved is to select, prior to exploration of a contour
ZC;, the best set (wrt selectivity learning) of |[EPP| plans that satisfy the half-space pruning property and
ensure complete coverage of the contour. To do so, similar to the 2D case, the plan P? corresponding
to e; € EPP is identified as follows: Among the contour locations for which the corresponding plan
spills on e;, the location with the maximum value on the jth coordinate is chosen, and the contour
plan at the chosen location is assigned to be P/ . In essence, among all plans that could provide a
guaranteed learning of e;’s selectivity through spill-mode execution, the plan that provides the highest
guaranteed learning is chosen.

A subtle but important point to note here is that, during the exploration of ZC;, the identity of P,
may change as the contour processing progresses. This is because some of the plans that were assigned
to spill on other epps, may switch to spilling on e; due to their original epps being completely learnt
during the ongoing exploration. Accordingly, we term the first execution of a PJ _ in contour ZC; as a
fresh execution, and subsequent executions on the same epp as repeat executions.

Finally, it is possible that a specific epp may have no plan on ZC; on which it can be spilled —
this situation is handled by simply skipping the epp. The complete pseudocode for SpillBound is
presented in Algorithm 1 — here, Spill-Mode-Execution(P?,,,.e;,CC;) refers to the execution of plan
P .. spilling on e; with budget CC;.

With the above construction, the following lemma can be proved in a manner analogous to that of
Lemma 3.2:

ax’

17

Algorithm 1 The SpillBound Algorithm
Init: i=1, EPP = {ey,...,ep};

while : < m do > for each contour
if |EPP| = 1 then > only one epp left
Run PlanBouquet to discover the selectivity of the remaining epp starting from the present
contour;
Exit;
end if

Run the spill node identification procedure on each plan in the contour ZCj, i.e, plans in PL;, and
use this information to choose plan P? . for each epp e;;
exec-complete = false;
for each epp ¢; do
exec-complete = Spill—Mode-Execution(R{m,ej,CCi);
Update ¢,.,,,.j based on selectivity learnt for e;;
if exec-complete then
/*1earnt the actual selectivity for e;*/
Remove e; from the set EPP;
Break;
end if
end for
if ! exec-complete then
i =1+1; /* Jump to next contour */
end if
Update ESS based on learnt selectivities;
end while

Lemma 4.3 In contour ZC;, if no plan in the set { P}, |le; € EPP} reaches completion when executed
in spill-mode, then Cost(P,,, q,) > CCs, triggering a jump to the next contour ZC;_;.

4.2.1 Performance Bounds

We now present proof of how the MSO bound is obtained for Spil1Bound. In the worst-case analysis
of 2D-SpillBound, the exploration cost of every intermediate contour is bounded by twice the cost
of the contour. Whereas the exploration cost of the last contour (i.e., ZCj. 1) is bounded by three times
the contour cost because of the possible execution of a third plan during the P1anBouquet phase.
We now present how this effect is accounted for in the general case.

Repeat Executions: As explained before, the identity of plan P/ may dynamically change during
the exploration of a contour ZC;, resulting in repeat executions. If this phenomenon occurs, the new
P .. plan would have to be executed to ensure compliance with Lemma 4.3. We observe that each
repeat execution of an epp is preceded by an event of fully learning the selectivity of some other epp,

leading to the following lemma:

Lemma 4.4 The SpillBound algorithm executes at most D fresh executions in each contour, and
D(D —1)

the total number of repeat executions across contours is bounded by 5

18

Proof 4 Consider any contour ZC; for 1 < i < k—+1. Note that the number of possible fresh executions
on contour ZC; is bounded by D (in fact, it is equal to |EPP| when the algorithm enters the contour ZC;).

As mentioned earlier, a repeat execution in a contour can happen only when the exact selectivity of
one of the epps is learnt on the contour. Let us say that when the exact selectivity of a epp is learnt,
it marks the beginning of a new phase. If |EPP| is the number of error-prone predicates just before the
beginning of a phase, it is easy to see that there are at most |EPP| — 1 repeat executions within the phase.

Further, in each phase the size of EPP decreases by 1. Therefore, total number of repeat executions is

bounded by Y71 = 220 m

Suppose that the actual selectivity location g, is located in the range (ZCy,ZCyy1|. Then, the
SpillBound algorithm explores the contours from 1 to k + 1 before discovering ¢,. Thus, the
total cost incurred by the SpillBound algorithm is essentially the sum of costs from fresh and re-
peat executions in each of the contours ZC; through ZCy,,. Further, the worst-case cost incurred by
SpillBound is when all the repeat executions happen at the costliest contour, ZC,,. Hence, the
total cost of the SpillBound algorithm is given by

k+1 D1

;(#fresh executions(ZC;)) * CC; + % % CCyiq (10)

Since the number of fresh executions on any contour is bounded by D), we obtain the following
theorem:

Theorem 4.5 The MSO bound of the Spi11Bound algorithm for any query with D error-prone pred-
icates is bounded by D? + 3D.

Proof S By substituting the values for no. of fresh executions in each contour by D in equation 10, the
total cost for the SpillBound is

k+1
DD -1
S D x (Z CCl) + % * CCk+1
=1

k
D(D+1)
=D x CC;) + ——— = xCC
(;) 9 k+1 (11)
D(D + 1) * 2kcc,
2

=Dx(CCy +...+2"1cey) +

D(D + 1) * 2kcc,
2

= Dx (28 — 1)cey +

The cost for an oracle algorithm that a priori knows the correct location of q, is lower bounded by
2k=1ccy. Hence,

D % (28 — 1)0C, + 2+ree
2k-1CC, (12)

<2D+ D(D+1)=D?+3D

MSO <

Remark: Note that the plan located at the end of the principal diagonal in the ESS hypercube is
guaranteed to ensure the termination of the 2D-SpillBound and SpillBound algorithms for any
q. € ESS.

19

4.3 Cost Modeling Errors

Thus far, we had assumed that the cost model was perfect but in practice, this is certainly not the case.
However, if the modeling errors were to be unbounded, it appears hard to ensure robustness since, in
principle, the estimated cost of any plan could be arbitrarily different to the actual cost encountered
at run-time. Thus, in a “unbounded estimation errors, bounded modeling errors” framework wherein
the modeling errors are non-zero but bounded specifically, the estimated cost of any plan, given correct
selectivity inputs, is known to be within a § error factor of the actual cost. That is, Cegtimated € [(l}r 5 (14

actual

d)]. Our construction is lent credence to by the recent work of [17], wherein static cost model tuning
was explored in the context of PostgreSQL they were able to achieve an average ¢ value of around 0.4
for the TPC-H suite of queries. This is then amenable to robustness analysis and leads to following
result.

Theorem 4.6 If the cost-modeling errors are limited to error-factor § with regard to the actual cost,
the bouquet algorithm ensures that:

MSObounded,modeling,error S MSOperfect,model * (1 + 5)2 (13)

when 0 = 0.4, corresponding to the average in [17], the MSO increases by at most a factor of 2.

5 Lower Bound

In this section, we present a lower bound on the MSO for a class of deterministic half-space pruning
algorithms denoted by £. Consider an algorithm A € £. Half-space pruning means the following:
A can select an epp j and a plan P, and execute it in such a manner that the selectivity of e; can be
partly/completely learnt. Let PredCost(P, e;, {) denote the budget required by an execution of plan P,
that allows A to conclude that g,.j > ¢. For a given epp e;, we let CompPredCost(P, e;) denote the
minimum budget required by A to learn the selectivity of e; completely, using P. Thus an execution of
P with budget B to learn e; allows A to conclude that

1. ¢,.j exceeds /, so that CompPredCost(P,e;) > PredCost(P,e;, ().

2. qq.j is at most ¢, so that CompPredCost(P,e;) < PredCost(P,e;,(); in this case, g,.j is
learned completely.

Note that not all plans P can be used to learn e;; in this case PredCost(P, e;, V) is oo, for any ¢ > 0.
A spill-mode execution is one of the mechanisms for realizing half-space pruning in practice.

Given a query with an unknown selectivity ¢,, the goal of A is to execute the query to completion.
For this, the actions and outcomes of a generic step of .4 can be one of the following: (i) a plan P is
executed to completion incurring Cost(P, q,), (ii) a plan P is executed with budget B and it infers that
q ¥ qq for all ¢ € ESS with Cost(P, ¢) < B, (iii) a plan P is executed with budget PredCost(P,e;, (),
for selectivity 7, and learns that (a) g,.5 > ¢ or (b) infer ¢,.; exactly.

An example of an algorithm that has the capability of executing only (i) and (i1) is P1anBouquet,
while SpillBound is an example of an algorithm that has the capability of executing (i), (ii) and (iii).
Thus the limitations of the algorithms in £ apply to P1lanBouquet and SpillBound. An example
of an algorithm that has the capability of executing only (i) above is that of the native optimizer.

Notion of Separation: For a given q € ESS, we let A(q) denote the sequence of steps taken by A,
when the unknown point g, is g. A convenient way of describing .A(q,), i.e. the execution of A, is by

20

keeping track of the regions of the ESS where ¢, is likely to be. At any step of its execution, if the action
performed by A is hypograph pruning (action (ii)) or half space pruning (action (iii)), then it rejects
certain locations in the ESS as possible ¢, locations. At the completion of step ¢, we let W,/ be the set
of locations of the ESS which are not pruned by A, and let 7% be the total number of steps performed
by A(g,). Thus Wg* = ESS, and we describe .A(q,) to be the sequence Wi, Wi ... Wi . Hence
we can view the execution of A as a sequence of steps in which locations of the ESS are separated out
from the unknown ¢,, until the query is successfully executed. Note that .4 need not explicitly maintain
the W, it is simply a means of describing the execution of A.

We say that A(q,) separates q1,q2 € ESS if at some step ¢ in its execution, ¢; € W/, go & W/,
while g1, g were both in W,*,. More generally, for two disjoint subsets of the ESS, U; and Us, we say
that A(q,) separates the set U; U Uy into Uy and U, if there is a step ¢ such that U; U Uy C W, but
Uy C W/ and Uy N W/ = ¢ (i.e. U; is a subset of W}, while U, is disjoint from W,).

Consequence of Deterministic Behavior: The algorithms we consider are deterministic. Thus the
action of A at a step is determined completely by the actions and outcomes of previous steps. A formal
way to capture this is as follows. Let ¢; and ¢ be two points of the ESS. Let ¢ be the largest number
such that go € W', and ¢’ be the largest number such that ¢; € W/, Since W' = W > = ESS, these
points exist. At min(t,t'), and W = W® fori = 0,1,...,t. We are now ready to prove the lower
bound.

Theorem 5.1 For any algorithm A € £ and D > 2, there exists a D-dimensional ESS where the MSO
of A is at least D.

Construction of ESS: Suppose the MSO of A is strictly less than). We construct a special D-
dimensional search space on which the contradiction is shown. It is constructed with the help of a set
of locations V' = {qi,...,qp} given by ¢;.j = 1/D if j = i, else ¢;.j = 1. Further, our construction is
such that the ESS will have exactly D plans P, P, ..., Pp. The cost structure is as follows:

Cost(P;,q) = D %q.iVq € ESS
Cost(P;,q.j) = D xq.jVq € ESS,eppJj

Thus the POSP plan at g; is F; and has a cost of 1. For a two dimensional ESS and a cost c, the iso-
cost curves correspond to L shaped objects, consisting of two segments, blue and red, as shown in the
figure 7. The blue segments consist of all points ¢ with g.z = ¢/2, and ¢.y > ¢/2. Similarly, the red
segments consist of all points ¢ with ¢.y = ¢/2, and q.x > ¢/2. The points ¢; and g, correspond to
(1/2,1) and (1, 1/2) respectively.

We verify the PCM property as follows. For a plan P, if g1 =< ¢, then ¢1.j < ¢2.7; then
Cost(Pj,q1) = D xq1.j < D xqy.j < Cost(P;,q). Note that we have allowed equality in the
definition of the PCM for ease of exposition. We explain the proof with this relaxed version of the
PCM, and in the last part of this section we show a modification to the costs that allows the same proof
to work for the strict version of the PCM property.

Claim 5.1 Let q, € V. Let V1, V5 be such that Vi N\Vy = ¢ and Vi U Vo = V3 C V. If A separates V3
into Vi and Vs, then either |Vi| = 1 or |V, = 1.

If the claim is false, then .A(g,) splits V5 into V; and V5 each of size at least two. Let ¢;,, ¢;, and ¢;,, g;,

be the locations in V; and V; respectively. Then A separates ¢;,, ¢;, from ¢, ¢;, in the same step. By
the conditions on A, at least one of the following must have happened.

21

s}
=
I
(1,1/2)

Sel —Y

Iso-cost contour

(0,0) Sel — X (1,0)

Figure 7: ESS for Theorem 5.1

1. A explores a location ¢ and concludes that ¢;,, ¢;, both < ¢, while ¢;,, ¢;, A ¢ (or vice-versa,
in which case interchange the roles of V; and V5). By construction of V, if ¢;,, ¢;, both < ¢,
then ¢ has to be such thatg.j = 1Vj € 1,..., D, i.e, ¢ = 1. But, this implies that ¢;,, q;, = ¢
(contradiction).

2. A identifies an epp j, a plan P and budget B such that ¢;,.j, ¢;,.7 are learned, while ¢;,.7, g;,.J
cannot be learned within budget B. Since i; # i», the budget utilized for learning the selectivities
is at least D. Since g, € V/, its POSP cost is 1. So, the MSO of A is at least D (contradicting the
assumption that MSO is less than D).

This proves the above claim. From the above, we see that to split V3, A needs a cost of at least 1. We
are now ready to prove the Theorem 5.1.

Proof 6 (of Theorem 5.1) Suppose A € £ has an MSO less than D. The POSP plan at q; € V is P,
and it incurs a cost of 1 to execute. The cost of executing P; at g; € V, where j # i is D. Since the
MSO of A is less than D, the final step of A(q;) cannot be the same for two different g;, q;. Thus the
execution of A(q;) and A(q;) differs and A separates q; and q;. Choose q, arbitrarily from Vo, =V
and execute A. Consider the step in which A separates V; the first time. Suppose q, is separated from
Vi = Vo \ {q1} in this step. Then choose q, arbitrarily from Vy, and execute A(q,) again. Since A is
deterministic, A(q) and A(q,) are identical till Vyy is first separated. Thus, it will first separate Vi, and
then Vy. Suppose it separates qo from Vo = Vi \ {q2}. Choose q, arbitrarily from Vs, and execute A(q,)
again. It will first separate V, then Vi, and then V,. Suppose it separates qs from V3 = Vo \ {g3}-
Choose q, arbitrarily from V3 and repeat this process inductively. Say qp is left at the starting of Dth
step, then q, = qp, A separates each of Vi, V1, ..., Vp_1 in different steps, and finally complete q,
successfully. As each separation step needs a cost of at least 1, and a cost of at least 1 to execute q,, A
pays a cost of at least D for q, = qp. But, the cost of Pp at qp is 1. Thus, the MSO of A is at least D,
which contradicts our assumption.

We thus have the following corollary.

Corollary 5.2 For D > 2, there exists an ESS, where any deterministic half-space pruning based
algorithm has an MSO of at least D

22

Dealing with strict PCM: The strict PCM property is as follows: if ¢; and ¢, are two points of
the ESS such that ¢; < g0, then for all plans P, Cost(P,q;) < Cost(P,qs). The cost function we
constructed above does not satisfy this property. However, the following cost functions follow the strict

PCM property. The plans are Py, ..., Pp as before. Their cost structure is now as follows.
Cost(P,q) = Dx*xq.i+ (5Zq.j Vq € ESS
J#i

Cost(P;,q.j) = D=xq.jVq € ESS,epp j

In the above 9 is a very small positive constant whose exact value is chosen based on what we are
trying to prove. Note that since the cost function is a sum of increasing linear terms, the full function is
an increasing linear function.

Claim 5.2 The above cost function Cost(.,.) obey the strict PCM property.

Proof 7 Let q; and q; be points in the ESS such that ¢; < qs. Since the cost function corresponding to
any plan P; are increasing, we have

D(qi)+0Y qij < D(g2i)+30) qo.j

J#i J#i
So that
D(gzi — q1.1) + 5Z(Q2~j —q.j) = 0
J#i
Since q1 < qo, the above is a sum of non-negative terms. Since the relation is strict, there is at least one
kinl,..., D, suchthat q..k < q2.k, the above sum is strictly greater than zero.

Note that Cost(P;,q;) =1+ 0(D — 1), and Cost(P;,q;) = D + §(D — 2+ 1/D). We then modify
the above theorem as follows.

Theorem 5.3 For any algorithm A € £ and € > 0, for every D, there is a D-dimensional ESS where
the MSO of A is at least D — e.

To prove the above theorem, we note the following. Let U C V, and ¢; € U be such that A separates
¢; from U \ {¢;}. Then either A discovers a point ¢ such that ¢; < ¢ while it does not dominate any
point of U or vice versa. This means that ¢ dominates some point of V. So the cost of executing a plan
at ¢ is at least 1 + §(D — 1) which exceeds 1. Thus, to separate any two points of 1/, a cost of at least 1
is required.

Now suppose A has an MSO of at most D — ¢ for some ¢ > 0. Take § = z7—. Then it is easy to
verify that Cost(P;, q;)/Cost(P;, ¢;) exceeds D — ¢. So, the final step of A(g;) cannot be the same for
two different ¢;, g;. We now proceed on similar lines to the proof of Theorem 5.1.

6 Experimental Evaluation

As mentioned earlier, the bounds delivered by P1lanBouquet and SpillBound are not directly
comparable, due to the inherently different nature of their dependencies on the p and D parameters,
respectively. However, we need to assess whether the platform-independent feature of SpillBound
is procured at the expense of a deterioration in the numerical bounds. Accordingly, we present in this
section an evaluation of SpillBound on a representative set of complex OLAP queries, and com-
pare its worst-case performance (MSO) with P1anBouquet. The experimental framework, which is
similar to that used in [3], is described first, followed by an analysis of the results.

23

6.1 Database and System Framework

Our test workload is comprised of representative SPJ queries from the TPC-DS and TPC-H bench-
marks operating at their base sizes of 100GB and 1GB, respectively. The number of relations in these
queries range from 4 to 10, and a spectrum of join-graph geometries are modeled, including chain, star,
branch, etc. The number of epps range from 2 to 6, all corresponding to join predicates, giving rise
to challenging multi-dimensional ESS spaces. We will now present the results for TPC-DS queries and
TPC-H queries.

To succinctly characterize the queries, the nomenclature z D _y_()z is employed, where x specifies the
number of epps, y the benchmark (H or DS) and 2 the query number in the benchmark. For example,
3D_DS_Q15 indicates Query 15 of TPC-DS benchmark with three of its join predicates considered to
be error-prone .

The database engine used in our experiments is a modified version of the PostgreSQL 8.4 [13] engine,
with the primary changes being the incorporation of spilling and time-limited execution of plans. Due
to the intrusive nature of spilling, we have not shown experimental results on commercial database
engines.

The MSO guarantee for P1anBouquet on the original ESS typically turns out to be very high due
to the large values of p. Therefore, as in [3], we conduct the experiments for P1anBouquet only
after carrying out the anorexic reduction transformation [5], using the default A = 20% replacement
threshold — we use prpp to refer to this reduced value.

In the remainder of this section, for ease of exposition, we use the abbreviations PB and SB to refer
to PlanBouquet and SpillBound, respectively. Further, we use MSO, (MSO guarantee) and
MSO. (MSO empirical) to distinguish between the MSO guarantee and the empirically evaluated MSO
obtained on our suite of queries.

6.2 Comparison of MSO guarantees (MSO,)

A summary comparison of MSO,, for PB and SB over almost a dozen TPC-DS and TPC-H queries of
varying dimensionality is shown in Figure 8 — for PB, they are computed as 4(1 + \)prgp, whereas for
SB, they are computed as D? + 3D.

We observe here that in a few instances, specifically 4D_DS_Q26 and 4D_DS_Q91, SB’s guaran-
tee is noticeably fighter than that of PB — for instance, the values are 28 and 52.8, respectively, for
4D_DS_Q91. In the remaining queries, the bound quality is roughly similar between the two algo-
rithms with only marginal differences. Therefore, contrary to our fears, the MSO guarantee has not
suffered due to incorporating platform independence.

6.3 Variation of MSO Guarantee with Dimensionality

In our next experiment, we investigated the behavior of MSO, as a function of ESS dimensionality for
a given query. We present results here for an example TPC-DS query, namely Query 91, wherein the
number of epps were varied from 2 upto 6. The results are presented in Figure 9. We observe here that
while SB is marginally worse at the lowest dimensionality of 2, it becomes appreciably better than PB
with increasing dimensionality — in fact, at 6D, the values are 96 and 54 for PB and SB, respectively.

6.4 Comparison of Empirical MSO (MSO,)

The previous experiments focused on characterizing the MSO bounds. We now move on to evaluating
the empirical MSO, MSO,, incurred by the two algorithms. There are two reasons that it is important to

24

100

- T T r 100
== o g
80f 1 8-
- 60} S 0l
o - 7 7 om
2 1 B
a0} _ N 1 R
‘e rrEr 5
7 Wz W iz W B b2 B B2
© L, BEEEEEE T 0 7 ~:-:-:Z
xR RAA AR AARA
2 B W) B 6 i W b B)
A % R B R B B B B B |
o4 5 52 I B W B2 & 2 W &2 %
BB D O o O D D D B D 0— R p N
\O\.\‘ \O\.\‘ \O\S‘ \O\S‘ \O\S‘ \O\S‘ \O“\ O, \O“\ \O“\ \O‘r (3& (\)}y (\)& (\)}y
TR TRy T MR TR, R, TR TRy T, TR R, 0 0 % 0
(a) TPC-DS (b) TPC-H

Figure 8: Comparison of MSO guarantees (MSO,)

100

= PB ez sB

80

60

MSQ,q

* 0593

40

20

o) 50006009506050695

2
?
%
D

4

M\

wlii

D

° 2

u

Figure 9: Variation of MSO, with Dimensionality (DS_Q91)

carry out this exercise: Firstly, to evaluate the looseness of the bounds. Secondly, to evaluate whether
PB, although having weaker bounds in theory, provides better performance in practice, as compared to
SB.

The assessment was accomplished by explicitly and exhaustively considering each and every location
in the ESS to be q,, and then evaluating the sub-optimality incurred for this location by PB and SB.
Finally, the maximum of these values was taken to represent the MSO, of the algorithm.

The MSO., results are shown in Figure 10 for the entire suite of test queries. Our first observation
is that the empirical performance of SB is far better than the corresponding bound values shown in
Figure 8. In contrast, while PB also shows improvement, it is not as dramatic. For instance, considering
6D_DS_Q18, PB reduces its MSO from 57.6 to 35.2, whereas SB reduces from 54 to just 16.

The second observation is that the gap between SB and PB is accentuated here, with SB performing
substantially better over a larger set of queries. For instance, consider query SD_DS_Q29, where the
MSOQO, values for PB and SB were 52.8 and 40, respectively — the corresponding empirical values are
42.3 and 15.1 in Figure 10.

Finally, even for a query like 4D_DS_Q7, where PB had a marginally better bound (24 for PB and 28
for SB in Figure 8), we find that it is now SB which is found to be superior in practice (16.1 for PB and
13.9 for SB in Figure 10).

25

50

=3 PB

ZZ72 sB

40}

o 301

50

40-

930~

2 . EfE . B 2
20 Pl
LIl R B

g I111R 1 1N
LEHEEELEELE
R R R R R R R

A]

% B o B B o B B B B B

\O{ \O\f \O‘S \Of \O‘S \O\f \Of \o\ \o\? \o{\ \o€
O‘;\f Q% [2)N Oec‘ Oe) 0\9\) O{g vag 0(5.7 O,o 09\)

(a) TPC-DS

(b) TPC-H

Figure 10: Comparison of Empirical MSO (MSO,)

6.5 Analysis of Looseness of SB’s MSO,

We now profile the execution of the queries to investigate the significant gap between SB’s MSO,
and MSO, values. Recall that the analysis (Section 4.2.1) bounded the cost of repeat executions by
attributing all of them to the last contour, i.e., ZCj 1. Moreover, the number of fresh executions in all
the contours, including ZCy. 1, was assumed to be D. This results in the execution cost over ZCj 4
being the dominant contributor to MSO,. To quantitatively assess this contribution, we present in
Tables 2 and 3 the drilled-down information of: (i) the number of fresh executions of plans on ZCy 1,
and (ii) the number of repeat executions of plans on ZC,. For each of these factors, we present
both the theoretical and empirical values. Note that the specific g, locations used for obtaining these
numbers corresponds to the locations where the MSO was empirically observed.

Armed with the statistics of Tables 2 and 3, we conclude that the main reasons for the gap are the
following: Firstly, while the number of repeat executions in contour ZCy. 1, as per the analysis, is
D(D — 1)/2, the empirical count is far fewer — in fact there are no repeat executions in queries such as
3D_DS_Q96, 4D DS _Q7, 4D_DS_Q27, 4D_DS_Q91 and 5D_DS_Q19. While it is possible that repeat
executions did occur in the earlier lower cost contours, their collective contributions to sub-optimality
are not significant.

Secondly, by the time the execution reaches the ZCj,, contour, it is likely that the selectivities of
some of the epps have already been learnt. The bound however assumes that all selectivities are learnt
only in the last contour. As a case in point, for SD_DS_Q19, the selectivities of three of the five epps
had been learnt prior to reaching the last contour. In fact the number of epps left in contour ZCy.y; is
equal to the number of fresh executions in ZCj, .

6.6 Average-case Performance (ASO)

Apart from MSO, we also evaluated the average sub-optimality (ASO), as defined in Equation 6, of
PB and SB over the entire ESS for all the test queries. These results are shown in Figure 11. Again,
we observe that, just as in the case of MSO, SB provides either similar performance, or much better,
especially at higher dimensions, as compared to PB.

It can be seen that as the number of dimensions increases, the average case performance of SB is
much better than PB. Thus, our approach offers significant benefits over P1lanBouquet both in terms
of worst-case and average-case behavior.

26

Query Fresh Repeat
Executions in Executions in
IChin IChin
Bound| Empirical| Bound| Empirical
3D_DS_Q15 3 2 3 1
3ID.DS_ Q9% | 3 2 3 0
4D_DS_Q7 4 3 6 0
4D_DS_Q26| 4 4 6 4
4D DS Q27| 4 4 6 0
4D_DS_Q91 4 3 6 0
5D.DS. Q19| 5 2 10 0
5D.DS_Q29| 5 4 10 2
5D DS Q84| 5 3 10 1
6D DS Q18| 6 4 15 1
6D_DS_Q91 6 6 15 7

Table 2: TPC-DS: Sub-optimality Contribution of /Cl, 4

Query Fresh Repeat
Executions in Executions in
IChia IChia
Bound| Empirical| Bound| Empirical
3D_H_Q5 3 2 3 1
3D_H Q7 3 2 3 1
4D_H_Q8 4 3 6 2
5D_H_Q7 5 3 10 2

Table 3: TPC-H: Sub-optimality Contribution of /Cj, 4

6.7 Sub-Optimality Distribution

In our final analysis, we profile the distribution of sub-optimality over the ESS. That is, a histogram
characterization of the number of locations with regard to various sub-optimality ranges. A sample
histogram, corresponding to query 4D_DS_Q91, is shown in Figure 12, with sub-optimality ranges of
width 5. We observe here that for over 90% of the ESS locations, the SO of SB is less than 5. Whereas
this performance is achieved for only 35% of the locations using PB. Similar patterns were observed
for the other queries as well, and these results indicate that from both global and local perspectives, SB
has desirable performance characteristics as compared to PB.

We present the results for query 4D_DS_Q91. For this query, the sub-optimality of SB for over 90%
of the locations was less than 5. In comparison, the sub-optimality was less than 5 for only 35% of
the locations in case PB. In Figure 12, we show the % of locations that have different range of sub-
optimality over the entire ESS. We would like to highlight that similar patterns were observed for other
test queries as well.

7 Deployment Aspects

Over the preceding sections, we have conducted a theoretical characterization and empirical evaluation
of the SpillBound algorithm. We now discuss some pragmatic aspects of its usage in real-world

27

25 25

S8 EE PB
20t 20
15| OB 5 15
o _ B o)
2 2
100 5 R B 10
B2 b2 r . B B
=0 B R B B B 2 Lz
s EEERBI ERI BB
B B B B R B E B R B
i B B E E BB EEE B i
B D D B O O D B D DD 5 ® » S
O“\ N Od‘ ~ O\S‘ \O\S‘ \O\S‘ ~ O\Y N O\.'v‘ O N, N Od‘ N O“\ 0/)((\)}y (\)/y (\)A,
\C’{; \096 NN \oea‘ \O@) \os\) \O‘,g \O‘)& \06'7 \O"@ \Og(0 [N 0o °N
(a) TPCDS (b) TPCH

Figure 11: Comparison of ASO performance

=S PB EzZz4 sB

»
3

B

Noow

iy

5-10

15-20 =>20

1

Z
7
Z
é Z
E

:%

10-15
Sub-optimality

Figure 12: Sub-optimality Distribution (4D_DS_Q91)

contexts. Most of these issues have already been previously discussed in [3], in the context of the
PlanBouquet algorithm, and we summarize the salient points here for easy reference.

First, our assumption of a perfect cost model. If we were to be assured that the cost modeling errors,
while non-zero, are bounded within a § error factor, then the MSO guarantees in this paper will carry
through modulo an inflation by a factor of (1 + §). That is, the MSO guarantee of SpillBound
would be (D? 4+ 3D)(1 + §)? as mentioned in Section 4.3.

Second, with regard to identification of the epps that constitute the ESS, we could leverage applica-
tion domain knowledge and query logs to make this selection, or simply be conservative and assign all
uncertain predicates to be epps.

Third, the construction of the contours in the ESS is certainly a computationally intensive task since
it is predicated on repeated calls to the optimizer, and the overheads increase exponentially with ESS
dimensionality. However, for canned queries, it may be feasible to carry out an offline enumeration;
alternatively, when a multiplicity of hardware is available, the contour constructions can be carried out
in parallel since they do not have any dependence on each other.

Fourth, while PlanBouquet can directly work off the API of existing query optimizers,
SpillBound is intrusive since it requires changes in the core engine to support plan spilling and
monitoring of operator selectivities. However, our experience with PostgreSQL is that these facilities
can be incorporated relatively easily — the full implementation required only a few hundred lines of
code.

At first glance, our move to half-space pruning algorithms (which is currently intrusive, since half-
space pruning is achieved through spilling) may appear surprising given that hypograph-pruning based
approaches are preferable from an implementation perspective due to their non-invasive nature. How-

28

ever, we show in Appendix A, dependency on p is an organic characteristic of the entire class of
hypograph-pruning algorithms — we are therefore forced to consider half-space pruning approaches in
our quest to be platform-independent, since achieving half-space pruning while being non-invasive is
currently not known.

Finally, while P1anBouquet is dependent on the highly variable parameter p, it is possible that
p itself 1s a weak function of D. Therefore, when D becomes really large, SpillBound’s quadratic
dependency on D may make its bounds weaker than those of PlanBouquet. However, our experi-
ence suggests that this transition does not happen for the D settings that are typically seen in current
applications.

8 Related Work

Our work materially extends the P1anBouquet approach presented in [3], which is the first work to
provide worst-case guarantees for query processing performance. As already highlighted, the primary
new contribution is the provision of a structural bound with SpillBound, whereas PlanBouquet
delivered a behavioral bound. Further, the performance characteristics of Spil1lBound are substan-
tively superior to those of P1anBouquet, as illustrated in the experimental study.

A detailed comparison to the prior literature on selectivity estimation issues is provided in [3]. For
completeness, we summarize the salient features here. The prior work can be classified into the follow-
ing three categories:

Improving Estimation Accuracy: A comprehensive survey on the standard estimation techniques is
available in [7]. Typically, histograms are used in current systems for storing statistical summaries of
attribute value distributions, and their use is based on untenable assumptions such as Attribute Value
Independence (AVI). Recently [16] took a step towards removing the independence assumption, but
their work is restricted to handling two-dimensional histograms, and is inefficient for databases subject
to frequent updates.

Bounding Estimation Error Impact: Techniques to minimize the adverse impact of errors in selec-
tivity estimations are proposed in [11]. However, they do not address of recovering from large errors,
which are quite common in practice, and also do not provide any guarantees.

Plan-switching Approaches: Plan-switching techniques have been considered for over two decades,
and include influential systems such as POP [10] and Rio [1]. The key difference of SpillBound
and P1lanBouquet with regard to this prior work is the provision of performance guarantees. Further,
they use the optimizer’s plan choice as the starting point, and re-optimize at run-time if the estimates
are found to be significantly in error. In contrast, Spil1Bound (and PlanBougquet) always start ex-
ecuting plans from the origin of the selectivity space, ensuring both repeatability of the query execution
strategy as well as controlled switching overheads.

9 Conclusions and Future Work

We presented SpillBound, a query processing algorithm that delivers a worst-case performance
guarantee dependent solely on the dimensionality of the selectivity space (D? + 3D). This substantive
improvement over P1anBouquet is achieved through a potent pair of conceptual enhancements: half-
space pruning of the ESS thanks to a spill-based execution model, and bounded number of executions
for jumping from one contour to the next. The new approach facilitates porting of the bound across
database platforms, easy knowledge of the bound value, low magnitudes of the bound, and indifference
to the efficacy of the anorexic reduction heuristic. Further, our experimental evaluation on complex

29

high-dimensional OLAP queries demonstrated that SpillBound provides competitive guarantees to
its P1anBouquet counterpart, while the empirical performance is significantly superior.

In our future work, we intend to look into developing automated assistants for guiding users in
deciding whether to use the native query optimizer or SpillBound for executing their queries. We
also plan to work on extending SpillBound to handle the case of dependent predicate selectivities.
Finally, we wish to leverage the empirical observation that plan cost functions are typically concave
across the selectivity space, to further tighten the MSO guarantees of SpillBound.

References

[1] S. Babu, P. Bizarro, and D. DeWitt. Proactive re-optimization. In ACM SIGMOD Conf., 2005.

[2] S.Chaudhuri, V. Narasayya, and R. Ramamurthy. Estimating progress of execution for sql queries.
In ACM SIGMOD Conf., 2004.

[3] A. Dutt and J. Haritsa. Plan bouquets: Query processing without selectivity estimation. In ACM
SIGMOD Conf., 2014.

[4] G. Graefe. Query evaluation techniques for large databases. ACM Computing Surveys, 1993.

[5] D. Harish, P. Darera, and J. Haritsa. On the production of anorexic plan diagrams. In VLDB Conf.,
2007.

[6] A. Hulgeri and S. Sudarshan. Parametric query optimization for linear and piecewise linear cost
functions. In VLDB Conf., 2002.

[7] Y. Ioannidis. The history of histograms (abridged). In VLDB Conf., 2003.

[8] N. Kabra and D. DeWitt. Efficient mid-query re-optimization of sub-optimal query execution
plans. In ACM SIGMOD Conf., 1998.

[9] V. Leis, A. Gubichev, A. Mirchev, P. Boncz, A. Kemper, and T. Neumann. How good are query
optimizers, really? In VLDB Conf., 2016.

[10] V. Markl, V. Raman, D. Simmen, G. Lohman, H. Pirahesh, and M. Cilimdzic. Robust query
processing through progressive optimization. In ACM SIGMOD Conf-, 2004.

[11] G. Moerkotte, T. Neumann, and G. Steidl. Preventing bad plans by bounding the impact of
cardinality estimation errors. PVLDB, 2(1), 2009.

[12] T. Neumann and C. Galindo-Legaria. Taking the edge off cardinality estimation errors using
incremental execution. In BTW, 2013.

[13] PostgreSQL. http://www.postgresqgl.org/docs/8.4/static/release.html.

[14] P. Selinger, M. Astrahan, D. Chamberlin, R. Lorie, and T. Price. Access path selection in a
relational database management system. In ACM SIGMOD Conf., 1979.

[15] M. Stillger, G. Lohman, V. Markl, and M. Kandil. LEO - DB2’s learning optimizer. In VLDB
Conf., 2001.

30

[16] K. Tzoumas, A. Deshpande, and C. Jensen. Efficiently adapting graphical models for selectivity
estimation. VLDB Journal, 22(1), 2013.

[17] Wentao Wu, Yun Chi, Shenghuo Zhu, Junichi Tatemura, Hakan Hacigumus, and Jeffrey F
Naughton. Predicting query execution time: Are optimizer cost models really unusable? In

IEEE ICDE Conf., 2013.

31

Appendix

A PlanBouquet’s MSO Dependency on p

In this section we prove lower bounds on the MSO for the class of Hypograph-Pruning Algorithms
such as P1lanBouquet. The input to the algorithms is as given in Section 2.4, 1.e, they have access to
the query (), the D epps, and the knowledge of POSP plans in the ESS. Let us denote the set of POSP
plans by P. For a plan P € P, the algorithm can pre-compute and store the set of all the locations in the
ESS for which P is the optimal plan, denoted by S(P). Further, the algorithm may even pre-compute
and store the C'ost(P, q) for all ¢ € S(P).

The hypograph-pruning algorithms considered in this section are of the following type. They explore
a sequence of (P, B) pairs where P € P is executed with a execution cost budget of B. If the plan
execution reaches completion within the budget 5, then, the exact selectivity location g, is discovered.
Otherwise, the algorithm can only infer that ¢, Z ¢ for all ¢ € S(P) such that Cost(P,q) < B. Let us
denote the ith pair explored by the algorithm as (P;, B;). We say that an hypograph-pruning algorithm
is deterministic, if, the pair explored in the (k + 1)st step is determined solely by the sequence of
(P;, B;) pairs, i = 1,..., k. The aggregate cost of the execution cost budgets of the sequence of pairs
explored by the algorithm before termination is taken to be its overall execution cost. It is easy to
see that the P1anBouquet falls into this class and considers only the (P;, B;) pairs on the doubling
isocost contours.

We refer to the location in the ESS where all the epps have selectivity of 1 by 1 and the location
where all the epps have selectivity 0 by 0. We denote the set of all deterministic hypograph-pruning
algorithms by H P and denote an algorithm in this set by .A. In the rest of the section, we abuse the
notation Seq, introduced in Section 2.3 to instead refer to the sequence of (plan, budget) pairs explored
by an algorithm when ¢, = ¢. The following claim is true for any A € HP.

Claim A.1 Let q; and g3 be two selectivity locations of ESS. Let the sequence of (P;, B;) pairs that
any A € HP explores to discover q1 and qy be denoted by Seq,, and Seq,, respectively. Then either

Seq,, is a prefix of Seq,, or Seq, is a prefix of Seq,,.

Proof 8 Let Seq, = {(P1, B1), ..., (P, Br)} be the sequence explored by A when q, = 1. Let Seq,
be the sequence that A explores when q, = q € ESS. Consider the first step of A in the two cases of
qo = 1 and q, = q. Since the information it has is same in the beginning, both the sequences explore
the same pair (Py, By). Inductively, if both the sequences have not discovered 1 and q respectively at
the end of ith step, then, the information they have at the end of ith step is exactly same and hence,
their next steps are same. Further, at any point, if the sequence discovers 1, then, it is also guaranteed
to discover q since 1 > q (due to PCM). This establishes that either both of them discovered via the
same sequence or q is discovered via strict prefix of Seq,. Therefore, both Seq,, and Seq,, are prefixes
of Seq,. So, one of them must be a prefix of the other.

We would like to highlight that the above claim is indeed satisfied by P1anBouquet. The above
claim implies that, for a given input, every deterministic hypograph-pruning algorithm is completely
characterized by its sequence Seqj,.

For a given input ESS and corresponding P and the cost of POSP plans at all the locations, we let p
denote the maximum number of plans of same cost.

Theorem A.1 There exists an ESS and corresponding POSP profile P for which the MSO of any
algorithm A € HP is at least p.

32

Proof 9 We consider the following ESS with associated P plans with special cost structures as follows:

1. It has a special isocost contour IC with the maximum number of POSP plans PL =
{P1, Py,...,P,}. The cost IC is denoted by CC.

2. Consider any potential plan P ¢ PL. For all locations q below ZC, Cost(P, q) is at most 1; for
all locations q, on or above ZC, Cost(P, q) is at least pCC. We would like to clarify that, here, P,
is used to only indicate a POSP plan and not to be confused with the notation of (P;, B;) pair for
denoting ith step of an algorithm.

3. For each of the plans P, € PL, Cost(P;,q) > pCC if ¢ € ZC. Further, for every location q on
ZC for which P; is not the POSP plan, Cost(P;, q) is at least pCC. For a location q below IC,
Cost(P;,q) is at most 1.

It can be checked that the above cost structure over the entire set of plans satisfies the PCM property.
Suppose o < p is the MSO of A on the above ESS. Since the plans P; fori = 1,..., p are distinct,
there are p distinct locations qi, @, . . ., q, on ZC, such that the POSP plan for q; is P;. From the ESS
properties, if any location q; is discovered using a plan P which is different from the POSP plan P,
then its overall execution cost is at least pCC. Since the POSP cost at q; is CC, the MSO is at least p,
which contradicts the assumption that o < p. Thus, to discover each q;, A executes the corresponding
POSP plan P; with a budget CC. Thus this budget is insufficient for discovering any other q; for j # 1.
Therefore, we can conclude that each of the locations q; are discovered at different steps of Seq 4. Let
qi. be the location that is discovered last in the sequence Seq 4, among the locations {qi, ... ,q,}, ie,
the sequence for qi contains the sequence for other q;s as prefix. But, to discover each of the q;s, a
separate cost CC has to be incurred. Thus, the sequence for q; has to incur a cost of at least pCC before
discovering qy. Since the POSP plan Py has cost CC, A has an MSO of at least p, contradicting our
assumption.

B Execution Times for a TPC-DS Query

We conducted an experiment wherein query response times were explicitly measured at run-time for
both native optimizer and SpillBound. For this we have chosen TPC-DS query 96 for which there
are three error-prone predicates from the tables store_sales (denoted by SS), time_dim (denoted by
TD), household_demographics (denoted by HD), and store (denoted by ST). The error-prone (join)
predicates are SS x HD, SS x TD, and SS x ST. The actual selectivity location, ¢q,, is (10%, 2%,13%)
and the optimal plan took 760 seconds to complete the query. However, the native optimizer incurred a
sub-optimality of 19.5 for its estimated selectivities.

For the same query, Table 4 shows in detail the sequence of plan executions and the selectivity
learnt by Spi11Bound at the end of every contour. The three columns SS—HD, SS—TD, and SS—ST
correspond to the epps, SS x HD, SS x TD, and SS x ST, respectively. The selectivity information
learnt in each contour is indicated by boldfaced font. The table also shows that for each execution, the
plan employed, and the overheads accumulated so far. A plan P executed in spilling mode is indicated
with a p (small cap).

The execution sequence comprises of partial execution of plans spanning eight contours and seven
distinct plans. The execution sequence ends with the full execution of plan P;; by returning query
results to the user. Note that no more than 3 plans are executed on any of the contours.

The total time incurred by the execution is 5903 seconds and the empirical MSO is 7.7 compared to
19.5 for native optimizer.

33

Contour || SS—HD SS—TD SS—ST Time (sec)
no. (plan) (plan) (plan)

1 0.01(py) | O 0.008 (p2) | 23

2 0.07 (pg) | 0.004 (p7) | 0.3 (p2) 123

3 0.1 (ps) 0.01 (p7) | 1(p2) 411

4 0.3 (ps) 0.05 (p7) | 3 (p2) 960

5 0.7(ps) |01(p) |3 1388

6 1.5 (pe) 0.2 (p12) 3 1940

7 3 (ps) 0.4 (p12) | 5(p2) 3593

8 10 (p21) 2 (p17) 13 (P17) | 5903

Table 4: SpillBound execution on TPC-DS Query 96

34

