A Concave Path to Low-overhead
Robust Query Processing

Srinivas Karthik ~ Jayant Haritsa ~ Sreyash Kenkre! = Vinayaka Pandit!

Technical Report
TR-2018-01

Database Systems Lab
Supercomputer Education and Research Centre

Indian Institute of Science
Bangalore 560012, India

http://dsl.cds.iisc.ac.in

1IBM Research, India

Abstract

To address the classical selectivity estimation problem in database systems, a radically dif-
ferent query processing technique called P1lanBouquet was proposed in [4]. In this approach,
the estimation process is completely abandoned and replaced instead with a calibrated selectivity
discovery mechanism. The beneficial outcome is that provable guarantees are obtained on worst-
case execution performance, thereby facilitating robust query processing. An improved version of
PlanBouquet, called SpillBound (SB), which significantly accelerates the selectivity discov-
ery process, and provides platform-independent performance guarantees, was recently presented in
[10].

A major limitation of SpillBound, however, is that its guarantees are predicated on expend-
ing enormous pre-processing efforts during query compilation, making it suitable only for canned
queries that are invoked repeatedly. In this paper, we address this limitation by leveraging the fact
that plan cost functions typically exhibit concave down behavior with regard to predicate selectivi-
ties. Specifically, we design FrugalSpillBound, which provably achieves extremely attractive
tradeoffs between the performance guarantees and the compilation overheads. For instance, relax-
ing the performance guarantee by a factor of two typically results in at least two orders of magnitude
reduction in the overheads. Further, when empirically evaluated on benchmark OLAP queries, the
decrease in overheads is even greater, often reaching three orders of magnitude. Therefore, in an
overall sense, FrugalSpillBound represents a substantive step forward with regard to achiev-
ing robust query processing for ad-hoc queries.

1 Introduction

The traditional approaches for optimizing declarative OLAP queries (e.g. [16, 6]) are contingent
on estimating a host of predicate selectivities in order to find the optimal execution plan. For in-
stance, even for the relatively simple TPC-H query shown in Figure 1, which lists the order dates for
cheap parts, as many as four selectivities have to be estimated, corresponding to the filter predicate
(p_retailprice < 1000), two join predicates (part X lineitem,orders X lineitem), and the projec-
tion predicate (o_orderdate).

select distinct o orderdate from lineitem, or-
ders, part

where p_partkey = |_partkey and o_orderkey
= |_orderkey

and p_retailprice < 1000

Figure 1: Example TPC-H Query

Unfortunately, in practice, these selectivity estimates are often significantly in error with respect to
the actual selectivities encountered during query execution — to the extent that orders of magnitude
errors have been routinely reported in the literature [1, 11, 12]. These estimation errors cumulatively
result in highly sub-optimal choices of execution plans, and corresponding blowups in query response
times. For instance, when Query 19 of the TPC-DS benchmark is executed on contemporary database
engines, the worst-case slowdown, relative to a hypothetical oracle that magically knows the correct
selectivities, can exceed a million! [4]

(0,1) (1,1)

I_orderkey)

SEL(o_orderkey

I¢i|C Py

1,0
(0.0) SEL(p_partkey = I_partkey) .0

Figure 2: SpillBound Execution on 2D ESS

SpillBound To address the above chronic problem, a radically different query processing technique,
called P1anBouquet, was proposed in [4]. In this approach, the highly brittle selectivity estima-
tion process is completely abandoned, and replaced instead with a calibrated discovery mechanism.
The beneficial outcome of the new construction is that provable guarantees are obtained on worst-case
performance, thereby facilitating robust query processing. An improved version of PlanBouquet,
called SpillBound (SB), which significantly accelerates the selectivity discovery process, and pro-
vides platform-independent performance guarantees, was recently presented in [10].

In the SB technique, a multi-dimensional Error-prone Selectivity Space (ESS) is constructed at query
compile-time, with each dimension corresponding to the selectivity of a specific error-prone predicate
appearing in the query, and ranging over (0, 1]. A sample 2D ESS is shown in Figure 2 for the ex-
ample query of Figure 1, where the two join predicates are viewed to be the problematic error-prone
selectivities.?

On this ESS space, a series of isocost contours, ZC; through ZC,,, are drawn — each isocost contour
ZC; has an associated optimizer estimated cost CC;, and represents the connected selectivity curve along
which the cost of the optimal plan is equal to CC;. Further, the contours are selected such that the cost of
the first contour ZC; corresponds to the minimum query cost C' at the origin of the space, and the cost
of each of the following contours is double that of the previous contour. Therefore, in Figure 2, there
are five hyperbolic contours, ZC; through ZCs, with their costs ranging from CC; = C'to CCs = 16C'.

The union of the plans appearing on all the contours constitutes the “plan bouquet” for the query
— accordingly, plans P; through P4 form the bouquet in Figure 2. Given this set, the SpillBound
algorithm operates as follows: Starting with the cheapest contour ZC;, a carefully chosen subset of
plans on each contour are sequentially executed with a time limit equal to the contour’s cost. Each plan
execution focuses on incrementally learning the selectivity of a specific error-prone predicate, based on
the amount of data processed by the plan within its allocated time budget. This process of contour-wise
plan execution ends when all the selectivities in the ESS have been fully discovered. Armed with this
complete knowledge, the genuine optimal plan is now identified and used to finally execute the query
to completion.

A special feature of SB, as compared to PlanBouquet, is that its contour plans are executed in
“spill-mode” during the discovery process. In this mode, operator pipelines within the execution plan
are selectively terminated at a chosen location, thereby ensuring that the assigned budget is maximally

ZFilter and projection predicates on base relations are often estimated accurately with ancillary index or histogram
structures.

utilized towards selectivity discovery along a particular dimension.

To make the SB methodology concrete, consider the case where the query happens to be actually
located at ¢*, in the intermediate region between contours ZC3 and ZC,, as shown in Figure 2. Assume
that the optimal plan for this location, F,-, would cost 7C' to process the query. In contrast, SB, which
is unaware of the true location, would invoke the following budgeted execution sequence:

P1|C, Py|2C, P3|2C, Ps|4C, Ps|AC, P15|8C, Py |7C

where the initial executions help to determine the location of ¢*, and the final P+ is the ideal plan
used to execute the query to completion. (For ease of visualization, the chosen subset of plans in each
contour are annotated using the ~ symbol in Figure 2).

In the above scenario, the cumulative execution cost incurred by SpillBoundis (C' + 2C + 2C +
4C + 4C + 8C + 7C') = 28C, whereas the oracular optimizer, which magically knows the ¢* location,
completes in 7C'. This results in a sub-optimality ratio for SpillBound of 28C/7C' = 4 for the ¢*
location.

The crucial and perhaps surprising outcome of the SB strategy is that the additional execution costs
entailed by its “trial-and-error” selectivity discovery exercise can be bounded relative to the optimal, ir-
respective of the query location in the space. Specifically, let us use Maximum Sub-Optimality (MSO),
as defined in [4], to capture the worst-case sub-optimality ratio of a query processing algorithm over
the entire selectivity space. Then, the MSO of SB is bounded by

MSOgp < D*>+3D (1)

where D is the dimensionality of the ESS, i.e. the expected number of error-prone predicates in the
input query. As a case in point, the sub-optimality of 4 in the ¢* example given in Figure 2, is well
within the bound of 10 guaranteed by Equation 1 for D = 2.

We hasten to add that, while at first glance, the MSO guarantee of Equation 1 may appear to be large
in absolute terms — e.g. the guarantee for a query with a 4D ESS is 28 — it should be viewed with the
perspective that the empirical MSO values obtained by contemporary database engines are typically in
the several hundreds to thousands, as highlighted in [4, 11].

Limitation of SpillBound Notwithstanding SpillBound’s unique benefits with regard to robust
query processing, a major limitation is that its MSO guarantees are predicated on expending enormous
pre-processing overheads during query compilation. Specifically, identifying the isocost contours in the
ESS, entails in principle, ©(r?) calls to the query optimizer, where 7 is the resolution (i.e. discretization
granularity) along each dimension of the ESS. So, for instance, if = 100, corresponding to selectivity
characterization at 1% intervals, and D is 4, a hundred million optimizer invocations have to be carried
out to identify the contours before SB can begin executing the query. As a consequence, SB is currently
suitable only for canned queries that are repeatedly invoked by the parent applications.

An obvious first step towards addressing the above issue is to utilize multi-core computing platforms
to leverage the intrinsic parallelism available in contour identification. However, this may not be suffi-
cient to fully address the strong exponential dependence on dimensionality. In our view, adapting the
SB methodology for ad-hoc queries requires, in addition to hardware support, algorithmic approaches
for substantive reduction of the compilation overheads — the design of such approaches forms the focus
of this paper.

Problem Formulation Specifically, we investigate the trade-off between the two key attributes of
the SB approach, namely, the compilation overheads and the MSO guarantee. The overhead of SB is

measured as the number of optimization calls made to the query optimizer in order to construct all the
isocost contours. Given an algorithmic approach aimed at reducing this compilation overheads, we use
7 (> 1) to denote its overheads reduction factor relative to the compilation overheads of SB. However,
bringing down the compilation overheads may result in a weaker MSO guarantee. We use 1 (> 1) to
denote this relaxation factor in the guarantee, relative to the MSO of SB. With this characterization, the
formal problem addressed in this paper is the following:

Given a user query () for which Spil1Bound provides an MSO guarantee M, and a user-permitted
relaxation factor n on this guarantee, design a query processing algorithm that maximizes y while
ensuring that the MSO guarantee remains within nM.

Algorithmic Reduction of the Overheads The MSO guarantees of SB are only predicated on the
standard assumption of monotonic behavior of plan cost functions with regard to ESS predicate selec-
tivities. In this paper, we leverage the stronger fact that plan cost functions typically exhibit a concave
down behavior in the ESS —i.e. they have monotonically non-increasing slopes.*> Given this behavior,
we design a modified algorithm, FrugalSpillBound (FSB), which provably achieves substantive
reductions in the compilation overheads at the cost of mild relaxation on the MSO guarantee. The good
news is that the tradeoff between 7 (the relaxation factor on the MSO guarantees) and ~y (the relative
reduction in compilation overheads) is extremely attractive — specifically,*

v = Q(TD/(Dlogn r)P=1) D >2

In other words, we deliver an initial regime that essentially provides an exponential improvement in -y
for a linear increase in 7.

More concretely, a sample instance of the i — ~y tradeoff is shown in the purple line of Figure 3,
obtained for a 4D ESS derived from Query 26 of the TPC-DS benchmark. In this figure, which graphs
a semi-log plot, the initial exponential overhead reduction regime is long enough that a two orders of
magnitude improvement in v is achieved with an n of 2. Further, when empirically evaluated, the
decrease in overheads is much greater — this is shown in the blue line of Figure 3, where nearly four
orders of magnitude improvement in + is achieved for = 2.

The concavity assumption directly leads to an elegant F'SB construction for the base case of one-
dimensional ESS. However, to handle the multi-dimensional scenario, we need to bring in additional
machinery, called bounded contour-covering sets (BCS), which serve as low-overhead replacements
for the original isocost contours. A BCS is a set of locations that collectively spatially dominate all
locations on the associated contour, and whose costs are within a bounded factor of the contour cost.
Efficient identification of the BCS is made possible thanks to the concavity assumption, and we gen-
erate BCS whose aggregate cardinality over the contours is exponentially smaller than the number of
locations in the ESS, resulting in the substantially decreased overheads.

Performance Results To demonstrate that the example 1 — y tradeoff for FSB shown in Figure 3 is
not an isolated instance, we have carried out similar evaluations on a representative set of OLAP queries
sourced from the TPC-DS benchmark, operating on the PostgreSQL engine. The query suite covers a
variety of ESS dimensionalities, going up to as many as 5 dimensions, and capturing environments that
are challenging from a robustness perspective. Our performance results indicate that a two orders of
magnitude theoretical reduction in overheads is routine with n = 2, while the empirical reduction in

3As explained in Section 2, a weaker form of concavity, called Axis-Parallel Concavity, is sufficient for our techniques
to hold.
“For the special case of D = 1, the reduction is given by v = r/ log, r, as explained in Section 3.

4

10°

Empiricai
- Theoretical
s 10* | .
T
©
[
c
=] 3
2 10°
=
©
o]
T o102 | !
®
@
+
2 10 3 1
o]
1 L L L
1 15 2 25 3

MSO Relaxation Factor n

Figure 3: FSB Tradeoff for 4D_Q26

overheads is typically an order of magnitude more than this guaranteed value, delivering a cumulative
benefit of more than three orders of magnitude. Therefore, in an overall sense, the new FSB approach
represents a substantive step towards practically achieving robust query processing for ad-hoc queries
with moderate ES S dimensionalities — this is especially so in conjunction with contemporary multi-core
architectures that exploit the inherent parallelism available in the ESS construction. So, for instance,
a 5D query which takes a few days even on a well-provisioned multi-core machine to complete the
10 billion optimizer calls required for constructing the entire ESS (at a resolution of 100), can now be
made ready for execution within a few minutes by FrugalSpillBound!

Organization The remainder of this paper is organized as follows: In Section 2, the background to
our robust query processing problem is provided, along with the assumptions and associated notations.
Then, the 1D version of FSB and the associated analysis are presented in Section 3. The reworking
of the FSB design for 2D ESS, via the new notion of bounded contour-covering sets, is carried out
in Section 4, and the extension to arbitrary dimensions is outlined in Section 5. The experimental
framework and performance results are enumerated in Section 6. Pragmatic deployment aspects and
the related literature are reviewed in Sections 7 and 8, respectively. Finally, our conclusions are
summarized in Section 9.

2 Background

In this background section, we review the key concepts, notations and assumptions underlying our
approach to robust query processing [4, 10].

2.1 Error-prone Selectivity Space (ESS)

Given an SQL query, any predicate whose selectivity is difficult to estimate accurately is referred to
as an error-prone predicate, or epp. For a query with D epps, the set of all epps is denoted by
EPP = {ej,...,ep}, where e; denotes the jt" epp. The selectivities of the D epps are mapped
to a D-dimensional space, with the selectivity of e; corresponding to the j* dimension. Since the
selectivity of each predicate ranges over (0, 1], a D-dimensional hypercube (0, 1]? results, henceforth

referred to as the error-prone selectivity space, or ESS. Note that each location ¢ € (0, 1]” in the ESS
represents a specific query instance where the epps happen to have the selectivities corresponding to
q. Accordingly, the selectivity value of ¢ on the jth dimension is denoted by ¢.j.

For tractability, the ESS is discretized at a fine-grained resolution r in each dimension. We refer
to the location corresponding to the minimum selectivity in each dimension as the origin of the ESS,
and the location at which the selectivity value in each dimension is maximum as the terminus. In
our framework, the origin and the terminus correspond to query locations with ¢.j = 1/r Vj and
q.j = 1V, respectively.

2.2 POSP Plans

The optimal plan for a generic selectivity location ¢ € ESS is denoted by F,, and the set of such optimal
plans over the complete ESS constitutes the Parametric Optimal Set of Plans (POSP) [8].> We denote
the cost of executing any plan P at a selectivity location ¢ € ESS by Cost(P,q). Thus, Cost(F,,q)
represents the optimal execution cost for the selectivity instance located at g. Further, we assume that
the query optimizer can identify the optimal query execution plan if the selectivities of all the epps are
correctly known.® For ease of presentation, we will hereafter use cost of a location to refer to the cost
of the optimal plan at that location.

2.3 Optimal Cost Surface (OCS)

The trajectory of the minimum cost plan through the entire D-dimensional ESS represents the Optimal
Cost Surface (OCS) — an example for a 2D ESS is shown in Figure 4, where the X and Y axes represent
the two join predicate selectivities, and the Z axis represents the cost of each location in this selectivity
space. The intersection of the isocost hyperplanes (ZC; through ZC5) with the OCS, which results in the
isocost contours, is also captured in Figure 4. In fact, the projected isocost contours shown in Figure 2
were constructed from a similar OCS.

oo xm

@)

~0n 00

,/ ’
/
00 —0—— : A,,
&
&
@
&

O_orderkey = |_orderkey

Figure 4: Optimal Cost Surface (OCS)

SLetter subscripts for plans denote locations, whereas numeric subscripts denote identifiers.
®For example, through the classical DP-based search of the plan enumeration space [16].

2.4 Maximum Sub-Optimality (MSO)

We now move on to the performance metrics proposed in [4] to quantify the robustness of query pro-
cessing. For this purpose, let g, denote the actual selectivities of the user query epps — note that this
location is unknown at compile-time, and needs to be explicitly discovered. As discussed in the In-
troduction, SpillBound carries out a sequence of budgeted plan executions, while discovering the
actual selectivities of g,. We denote this sequence by Seq, , with each element s; in the sequence being
a pair, (P;, w;) indicating that plan P, is executed with a maximum time budget of w;.

The sub-optimality of this plan sequence, relative to an oracle that magically knows the correct
location, and therefore uses the ideal plan F,_, is defined as:

qa >
> wi

siGSeqqa

SubOpt(S =" 2
WOPE) = Gost(Byr) @

leading to
MSO = Inax SubOpt(Seq,,) 3)

That is, the MSO represents the worst-case suboptimality that can occur with regard to plan perfor-
mance over the entire ESS space.

2.5 Plan Cost Monotonicity (PCM)

The notion of a location ¢; spatially dominating a location ¢, in the ESS plays a central role in our
robust query processing framework. Formally, given two distinct locations ¢, ¢y € ESS, ¢; spatially
dominates ¢y, denoted by ¢; > ¢o, if ¢1.j > ¢o.j forall j € {1,..., D}. Given spatial domination,
an essential assumption that allows SpillBound to systematically explore the ESS is that the cost
functions of the plans appearing in the ESS all obey Plan Cost Monotonicity (PCM). This constraint
on plan cost function (PCF) behavior may be stated as follows: For any pair of distinct locations
O, 9. € ESS, and for any plan P,

Qp ™ qc = COSt(Pv Qb) > COSt(Pv qc) (4)

That is, it encodes the intuitive notion that when more data is processed by a query, signified by the
larger selectivities for the predicates, the cost of the query processing also increases. In a nutshell,
spatial domination implies cost domination.

We augment the above assumption with a stricter condition in this paper, wherein not only are the
PCFs monotonic, but also exhibit a weak form of concavity in their cost trajectories, as explained next.

2.6 Acxis-Parallel Concavity (APC)

In a one-dimensional world, a plan cost function F, is said to be concave if, for any pair of locations
¢1,q2 in the 1D ESS, and any « € [0, 1],

Fp((1 = a)q1 + age) > (1 — a)Fp(q1) + aFp(ge)

Extending to the general case of D dimensions, a PCF F, is said to be axis-parallel concave (APC)
if the function is concave along every axis-parallel 1D segment of the ESS. That is, the above equation
is satisfied by any pair of locations ¢, g2 in the ESS that belong to a common 1D segment of the ESS
(i.e., Elj S.t. ql.k: = QQ.]{?,V/{J 7&])

For example, if e; and ey are the epps of a 2D ESS, then the APC requirement is that each PCF
should be concave along every vertical and horizontal line in the ESS.

Note that APC is a strictly weaker condition than complete concavity across all dimensions — that is,
all fully-concave functions automatically result in APC, but the reverse may not be true. An important
implication of APC of the PCFs is that it is easily provable that the corresponding OCS, which is the
infimum of the PCFs, also satisfies APC. Finally, for ease of presentation, in the remainder of this
paper, we will generically use concavity to mean APC.

Empirical Validation of APC

An immediate question that arises in the above context is whether the concavity assumptions on the
PCFs (and, by implication, the OCS) generally hold true in practice. For this purpose, we have car-
ried out extensive experimental evaluation with the TPC decision-support benchmarks operating on
contemporary database engines. The summary finding of this empirical evaluation, whose details are
presented later in Section 6, is that APC is consistently observed over almost the entire ESS.

As a sample instance, the axis-parallel projections of the 2D OCS presented in Figure 4, are com-
puted in Figures 5a and 5b for the Orders < Lineitem and Part 1 Lineitem join predicates,
respectively. These figures are graphed on a log-log scale and for ease of representation, capture only
the optimality region of each PCF. We observe here that the PCFs clearly exhibit concavity in their op-
timality regions with respect to selectivity. As a direct consequence, the OCS exhibits concavity over
the entire selectivity range, justifying the assumption on which our results are based. Moreover, given
current relational operator cost functions, a detailed rationale as to why PCF and OCS concavity is to
be expected, is discussed below.

Rationale of APC Let us now see the rationale behind why we can expect axis-parallel concave
behaviour of PCFs. Since a plan is a tree of operators, the individual operator cost behaviours are
as follows: Except for the sort operator, we observed that all the operators are having non-increasing
slope, piecewise linear or simply linear behaviour.

Starting with join operators, Hash Join and Merge Join (in case of already sorted inputs) costs O(s, +
sy) Where s,, s, represents the two input selectivities from its upstream operators. As we are interested
in 1D axis-parallel projections, wherein one of s, or s, is constant, we can expect the two operators to
behave linearly. Similar is the case with Nested Loop Join in which case it costs O(s, * s,). Shifting
the focus to scanning operators, Sequential Scan has constant cost, whereas Index Scan and Bitmap
Scan is linear. Finally, Sort operator has cost of the form O(s, log(s,)) which is superlinear. We can
expect axis-parallel concave behaviours of PCFs, based on the following observations:

1. From [10], for a given plan, we know that the total cost of a plan is sum of cost of its constituent
operators

2. In practice, contribution from Sort is very less compared to the total cost of a plan in industrial
strength benchmarks [5]

3. Point-wise sum of a set of concave functions is also a concave function

OCS concavity follows from the fact that OCS is a infimum of all POSP PCFs, and that infimum
of axis-parallel concave functions are also axis-parallel concave. Note that for the working of the
FrugalSpillBound algorithm, we just need OCS to be axis-parallel concave.

108 108

Plan | — Plan5 —
Plan 2 Plan 6

Plan 3 Plan7 —
Plan 4 —

0.01 01 1 0.01 0.1 1
Selectivity Selectivity

(a) Projection on X dimen-(b) Projection on Y dimen-
sion sion

Figure 5: Validation of Axis-Parallel Concavity

2.7 Compilation Overheads

As mentioned in the Introduction, we measure the query compilation overheads in terms of the number
of optimization calls made to the underlying database engine. With regard to this metric, the overheads
incurred by SB in constructing the ESS can be computed as follows: SB first computes the optimal
plans for all locations in the discretized ESS grid. This is carried out through repeated invocations
of the optimizer with different selectivity values and combinations. Then, the isocost contours are
drawn as connected curves on this discretized diagram. So, if we assume a grid resolution of 7 in each
dimension of the ESS, the total number of optimization calls required by this approach is 7.

Note, however, that we do not require the complete characterization of the ESS, but only the parts
related to the isocost contours, as shown in Figure 2. An optimized variant, called Nexus, was proposed
in [4] to implement this observation, and shown to make material reductions in the contour identification
overheads. However, we have not included Nexus in our current study for the following reasons: (1)
When a large number of contours are present in the ESS, which can happen if the cost at the ESS
terminus is much larger than at the origin, the net effort by Nexus in contour identification effectively
becomes close to complete enumeration. (2) If a lower bound on a query’s location in the ESS happens
to be known through domain knowledge, Spi 1 1Bound can take advantage by making the lower bound
to be the origin and thereby shrinking the ESS. However, the isocost contours would have to be redrawn
from scratch by Nexus. (3) To provide performance fairness to queries across the ESS, randomized
placement of contours was presented as a solution in [4]. In such cases, multiple sets of contours would
have to be identified by Nexus, and it may cumulatively turn out to be more expensive as compared
to complete enumeration. We have therefore chosen to instead simply assume that the entire ESS is
enumerated, and consequently r? is used as the baseline SB overheads in the sequel. Further, note that
FrugalSpillBound is not impacted by such deployment issues since its compile-time efforts are
carried out afresh at each ad-hoc query’s submission time.

Notation Summary: For easy reference, the notations used in the remainder of the paper are sum-
marized in Table 1.

3 Frugal SpillBound for 1D ESS

In this section, we consider the baseline case of a 1D ESS. The sample concave OCS function F,
shown in Figure 6, is used to aid the description. In this figure, the X-axis represents the selectivity

9

Table 1: NOTATIONS

Notation | Meaning

epp Error-prone predicate (its collec-

(EPP) tion)

ESS Error-prone selectivity space

D Number of dimensions in the ESS

r Grid resolution in each ESS di-
mension

e1,...,ep The D epps in the query

q € | A query location in the ESS

0,1)°

q.J Selectivity of ¢ in jth ESS dimen-
sion

P, Optimal Plan at ¢

Qa Actual query location in ESS

Cost(P, g|) Cost of plan P at location g

Ic; Isocost Contour 7

CC; Cost of an isocost contour ZC;

BCS; Bounded contour-covering set of
contour ZC;

i User-specified MSO relaxation
factor

0 Reduction factor wrt compilation
overheads

range for the lone epp and the Y-axis represents the OCS function. The Y-axis is discretized into
doubling-based isocost contours, ZC; through ZC,,, with CC; = 2i~!C. Note that, in the case of 1D
OCS, each of the contours correspond to a single selectivity location on the X-axis. We denote the
location corresponding to ZC; by ;. Further, ¢); = 1/r and @,,, = 1 correspond to the origin and
terminus locations, respectively.

1D SB We begin by reviewing how the SpillBound algorithm works on the above 1D ESS. Con-
ceptually, the algorithm has two phases, a compilation phase and an execution phase. During the
compilation phase, for each of the r uniformly spaced locations on the X-axis, the optimal plan at the
location and its cost are determined. Using the cost information from the r locations, the precise lo-
cation of (); is identified for = = 1,...,m. The set of optimal plans at the (); locations is called the
“bouquet of plans”. During the execution phase, this bouquet of plans is sequentially executed, starting
from the cheapest isocost contour, with a budget equal to the associated contour cost. The process ends
when a plan reaches completion within its allocated budget. As proved in [4], this budgeted sequence
of plan executions guarantees achieves an MSO of 4 with a compilation overhead of r optimizer calls.

We now move on to presenting the 1D FSB algorithm, which also has compilation and execution
phases, as described below.

10

{ —>

s i P o
QG G Q% Qs Om

Selectivity

Figure 6: Concave OCS

3.1 Compilation Phase

The main idea in the compilation phase of F'SB is to do away with SB’s approach of precisely identify-
ing the location of the ();s. Instead, for each);, we identify a proxy location, §;, such that the cost of
the optimal plan at ¢; is in the range [F(Q;), nF(Q;)]. The compilation phase consists of identifying
these proxy locations ¢;s via a sequence of calibrated jumps in the selectivity space, as described next.

Discovering the proxy for (),

Since (), is known, we set ¢; = ();. The search for ¢, starts from ¢;. We now perform a sequence
of jumps in the selectivity space until we land exactly at ()5 or overshoot it for the first time. Further,
each jump is calibrated such that the cost of g, is guaranteed to be in the range [F(Q)2), nF(Q2)], as
described below.

First Jump Identify the optimal plan P; at ¢;, and compute its slope, s(g1) at ¢;.” The slope is
calculated through plan recosting® of F;, at a selectivity location in the close neighborhood of §;.

Our first estimate for G», denoted by ¢2 (refer to Figure 6), is the location that is expected to have 7
times the cost of F(g;) when extrapolated by a tangent line with a slope of s(g), i.e,

(@) +5(q) - (2 — @)

- =)
Fla) !
By rearranging, we get
o, (n=1) - F(@)
o =q1 + Py
2 s(@) (©6)
G=aq+J

where .J! represents the first jump towards g, relative to the starting location, §;. The following lemma
immediately follows from the concavity of the PCF.

"The slope at any location in F is > 0 due to PCM.
8This feature enables costing of an abstract plan for a query, and is around a hundred times faster than optimizer
calls [5].

11

Lemma 3.1 The cost condition F(q3) < n - F(q:) is satisfied at ;.
We next show that the jump J! is such that the selectivity of ¢4 is at least) times the selectivity at ;.
Lemma 3.2 The selectivity of q3 is at least 1 times the selectivity at ¢, i.e, q; > N1
Proof 1 Let the tangent of F at ¢, be expressed as
Fl@)=s(@) g+ 0<qg<1,d =0
Here, ¢ > 0 to ensure non-negative cost at ¢ = 0. We get
F(G) =s(G) q+¢
- Fla) =s(@) g +¢
Rearranging the above two equations, we get
ns(a@) -G+ nd = s(@) gy +¢
. (=1
& =G + W
gy > Md
Depending upon the cost at the first jump’s landing location, i.e. at ¢4, there can be two cases:
1. Cost Overshoot, i.e, F(q3) > F(Q2): In this case, we have identified a proxy location for @,
whose cost is at most 7.5 (Q)2) (by Lemma 3.1).

2. Cost Undershoot, i.e., F(q3) < F(Q2): In this case, the above-mentioned jump scheme is re-
peated with ¢; as the starting location. That is, we jump to ¢35, with the jump length being J? =

(n — 1)F(g)

s(3)
cost of »’s previous location is less than F(Q)2), Lemma 3.1 guarantees that F(Gz) < nF(Q2).

. This process is repeated until we reach ¢», signalled by F(g2) > F((Q)2). Since the

3.1.1 Implementation of Proxy Discovery

The compilation phase of FSB for the 1D scenario is detailed in Algorithm 1. Here, the entire search
from §; to ¢, is captured as a generic Explore subroutine, with three arguments: seed, the starting
location, t_cost, the cost at the terminal location, and r_factor, the relaxation factor wrt t_cost.

The proxy location ¢; for (); is obtained starting with the proxy location ¢;_;. This is done by calling
the Explore subroutine, with seed as ¢;_1, target cost of CC;, and relaxation factor of 7. The argument
that bounded the relative cost of ¢, w.r.t. the cost of (), can be repeated to show that the cost of §; is
at most nF(Q;) fori = 2,...,m — 1. Finally, the output of the algorithm is a set of proxy locations,
ProxyContourLocs = {Q; U {75 G:} U Qo }.

3.1.2 Bounded Compilation Overheads

Theorem 3.3 The compilation overheads reduction, vy, of 1D FSB is at least .
og, T

Proof 2 From Lemma 3.2, the maximum number of jumps is required when the selectivity estimation
at each jump is exactly 1 times the selectivity of the previous location. Therefore, the total number of
query optimizer calls is bounded as follows.

Total Optimization calls < log, % <log,r
1

Thus, the compilation overheads come down from 1 to log, 1.

12

Algorithm 1 1D FrugalSpillBound ()

Compilation Phase:
set Q1 = 1/rand Q,, = 1;
setk = 2;
set ProxyContourLocs = {Q1, Q. };
set g1 = Q13
while £ < m — 1 do
dr = Explore(gx.—1, CCx, 1);
Add g, to ProxyContourLocs;
k++;
end while

A i

_
@Y

—
[u——

: function Explore(seed, t_cost, r_factor);
: compute cost = F(seed) (using optimizer call);
: while cost < t_cost do

compute slope at seed (using plan recosting);
cost

—_— = =
:I}UJN

—_
|9,

next_jump = (r_factor — 1) - ;
slope

ﬁ
a

seed + = next_jump;
cost = F(seed);

: end while

: return seed;

: end function

DN = =

\]
—_

: Execution Phase:
: for ¢ in ProxyContourLocs do
Execute optimal plan P, with budget F(q);
if P, completes execution then
Return query result;
else
Terminate P, and discard partial results;
end if
: end for

NN NI NN NN
LReIxN A2

3.2 Execution Phase

The execution phase of FSB, as shown in Algorithm 1, is the same as that of SB with the plan bouquet
now consisting of the optimal plans at the proxy locations in ProxyContourLocs. Therefore, the
analysis needs to simply take into account that the cost of a proxy location ¢; is at most 7 times the cost
of ;. Thus we have the following theorem for maintaining the 1 constraint.

Theorem 3.4 The MSO relaxation of 1D FSB is at most 1.
Proof 3 The bounded cost of each proxy location ensures that the sequence of execution costs for the

“bouquet of plans” for 1D FSB is C,2nC,4nC, ... (as opposed to C,2C,4C, ... for SB). Since the
MSO of SB is 4, it follows that the MSO of 1D F SB is bounded by 4.

13

4 Frugal SpillBound for 2D ESS

In this section, we present the extension of 1D FSB to the 2D case. For ease of exposition, we refer to
the two epps as x and y, respectively.

In the 1D ESS, each contour was a single point. However, in 2D, it is a continuous 1D curve as
shown in Figure 7. Therefore, the step of identifying the proxy locations for ();s has to be generalized
S0 as to cover an isocost contour ZC; with an appropriate set of proxy locations. We achieve this by
finding a bounded contour-covering set (BCS) of locations for each contour ZC;. The definition of
these sets and the process for identifying them is presented next.

4.1 Bounded Contour-covering Set (BCS)

The BCS for a contour is defined as the minimal set of locations such that every location in the contour
is spatially dominated by at least one location in this set. Further, the cost of each location in BCS is
required to be within an 7 factor of the contour cost. We denote the BCS of contour ZC; by BC'S;.
Formally, BC'S; is a minimal set that needs to satisfy the following condition:

Vq € IC;,3 ¢' € BC'S; such that
q = ¢'and Cost(Py,q') <nCC; (7)

For the example contour ZC; shown in Figure 7, a candidate BC'S; is {¢1, ¢2, c3} which covers the
entire contiguous region of the contour. As a case in point, the covering location ¢, fully covers the
optimality segments of Py and Ps, as well as parts of P; and Py, in ZC;.

1/r,1) (1,1)

Sel-y

(1/r,1/r) Sel-x @1/m

Figure 7: Covering Contour

4.2 Compilation Phase

We now present a computationally efficient method to find a BCS for an isocost contour in the 2D
ESS. To generalize the 1D method, we carry out jumps in the selectivity space along both the x and
y dimensions. These jumps are designed to be axis-parallel and we leverage APC in their analysis.
Further, the jumps in the two dimensions are in opposite directions — forward in one, and reverse in the
other. The term “reverse” refers to the fact that the jumps are performed in the decreasing selectivity
direction.

14

Assume that the search steps in the x dimension are reverse jumps. This means that for each jump,
the selectivity of the next location in the x dimension is decreased by a constant factor. On the other
hand, in the y dimension, the jumps are forward, and at each step, the Explore (seed,t_cost,r_factor)
subroutine is invoked to decide the next location.

4.2.1 Algorithm Description

We present the algorithm by describing the process of constructing BC'S; for the isocost contour ZC;
shown in Figure 7. For ease of presentation, we refer to Figure 8 which overlays the construction of
BC'S; on top of contour ZC,;. The main idea is to carry out a sequence of interleaved search steps that
alternatively explore the x and y dimensions.

The algorithm starts from the location ¢y = (1,1/r) as the seed. We search for a location, u;, on
y = 1/r line whose cost is in the range [CC;, /7CC;]. A sequence of reverse jumps from cq with /7
factor decrease in selectivity is carried out until we reach u;. The Explore subroutine is now invoked
along the increasing y dimension with w; as the seed location, terminating cost ,/7CC;, and relaxation
factor /7). Let the location returned be ¢y, and by the construction of Explore, we know that its cost is
in the range [,/7CC;, 7CC;]. Now, starting from c;, a sequence of reverse jumps, again with , /1) decrease
in selectivity, are carried out till we reach a location u, whose cost is in the range [CC;, \/ﬁCCi]. This
is followed by a call to Explore with uy as the seed and the same settings as before for the other
arguments. The returned location is now co. This interleaved process of reverse jumps along the z
dimension and forward jumps along the y dimension, is repeated until the process hits the boundary
of the ESS. Let us say that the process ends at location ¢;. Then, the set BC'S; = {ci,...,c;} is
returned as the BCS of contour ZC; (k = 4 for the example contour in Figure 8). This description of
the compilation phase of 2D FSB is codified in Algorithm 2.

1/r,1) [¢%))

Sel-y

|
I
I
I
; i
i
P AN
Py i
IC 1uq | co

a/n 170 P wym

Figure 8: Covering Set Identification

4.2.2 Proof of Correctness

In order to show that every location in the contour is spatially dominated by a location in the bounded
contour-covering set, we need to first prove that reverse jumps allow us to find u;s, whose cost is in
the range [CC;, \/7CC;]. Note that this is true if each reverse jump results in a relative cost decrease of
at most /7. To prove this, fix a covering location ¢y, and let F,, denote the restriction of OCS to the

honzontal hne assing through c;. Then,
Lemma 4.1 The reverse jump from a location q along the x direction by a factor /1 results in a

relative cost decrease of at most \/n, i.e., Fap(ﬁ? q.y) > Faplq-z,q.y)/ /7 -

15

Proof 4 We know from APC that F,, is concave. Let ¢’ denote the location (q.x/\/7,q.y). Consider
the line passing through (', parallel to the X-axis, and tangent to OCS. Let ¢ be its Y-intercept and
s be its slope. Note that ¢ > 0 to ensure non-negative cost near the origin. As F,, is concave and
increasing, this line overestimates the cost at q. Thus,

Fap(@) < s-(qx)+(

- e 5)

q.T /
< Vn (s (—=)+ c)
V(s (\/ﬁ)
— SiFuld) ®)
where the second and third inequalities are implied by n > 1 and ¢ > 0. The last equality follows from
the fact that the line passes through ¢ .

Lemma 4.2 Every location in ZC; is dominated by at least one location in BC'S; .

Proof 5 Consider any point q in ZC;. By construction we know that there exist ¢, € BC'S; s.t. cx.y <
qy < cri1.y. We will show that ¢, € BC'S; is a dominating location for q by proving q.x <
Cr+1.-x. Consider the location uy1 whose x coordinate is the same as that of cy1. This means that (a)
Uk11.T = Cpy1.T, and (b) up1.y = cx.y. Since the cost of location uy. 1 is greater than or equal to the
cost of location q, and uy1.y < q.y by PCM, it implies that uy1.x > q.x. Therefore, q is dominated
by ciy1.

4.2.3 Bounded Computational Overheads

2
Lemma 4.3 The overheads reduction, y, of 2D FSB is at least S .
4-m-log,r

Proof 6 Let us first look at the number of optimization calls required per contour for 2D F SB. We know
that the exploration of cys and uys move unidirectionally along the y-axis (1/r to 1) and z-axis (1 to
1/r), respectively. Furthermore, we have earlier shown that each jump results in a relative increase
(or decrease) in selectivity of at least \/n. Thus, by geometric progression, we can infer the following:

Opt. calls per Contour = Opt. calls for cis + Opt. calls for uys
<log mr+log mr
= 2log N
=4-log,r

€))

Since there are m contours in the ESS, we conclude that there are 4-m-log, 1 optimization calls across

all contours for 2D F SB, as compared to r* for 2D SB. Thus, - is at least ———————.
4-m-log,r

4.3 Execution Phase

In the execution-phase, we run the original 2D SB algorithm treating the BCS identified for every
contour as the effective contour. In particular, in every BC'S;, starting from the least cost BCS, plans
corresponding to locations in BC'S; are executed as per the 2D SB algorithm for a contour. This
contour-wise execution of plans is continued until the actual selectivities of both the epps are learned.
Finally, the optimal plan is executed to compute the query results for the user.

16

Algorithm 2 2D FrugalSpillBound Algorithm ()

1: Compilation Phase:
2: Set: qeur = (1/1r,1/7);
3: Set: B = /n;
4: while contours are remaining do
5. /*Let IC; denote current contour and CC; be its cost™/
6: while geyp.z > T and geyr.y < 1do
7: Find u; with cost in [CCj, /3 - CC;], by z-axis reverse jumps;
8: Qeur-T = U;i.X;
9: Call Explore(u;, 3 - CC;, 3) along y-axis to find ¢;;
10: qeur-Y = Ci Y,
11: end while
12: Union of all ¢;s forms the bounded contour-covering set, BC'S;;

13: /* Move to next contour */
14: end while

15: Execution Phase:
16: Run the original 2D Spi11Bound algorithm on the plans corresponding to BC'S;, of every contour ZC;;

4.3.1 Maintaining the 7 constraint

Theorem 4.4 The MSO relaxation of 2D FSB is at most 1.

Proof 7 We know that the cost of any location in BC'S; is at most nCC;. Furthermore, the execution-
phase runs the 2D SB algorithm on the BCS of every contour. Thus, every execution in 2D FSB is
performed with a budget of) times its corresponding contour cost. Hence, the overall cost of 2D FSB
is at most 1 times that of 2D SB, which increases the MSO by at most 1.

The analysis of the 2D Spil1Bound algorithm in [10] relied on two crucial properties: Half-Space
Pruning (HSP) and Contour Density Independent Execution (CDIE). HSP says that a single spill-mode
execution of a plan is sufficient to divide the ESS into two disjoint half-spaces and obtain evidence
that ¢, does not lie in one of the two half-spaces (i.e. one of the half-spaces gets pruned). On the other
hand, the CDIE property implies that the number of executions required per contour is independent of
the number of plans on the contour and is bounded by D. Both the HSP and CDI Execution properties
continue to hold for 2D F SB also, and this is formally proved below.

4.3.2 Half-Space Pruning and Contour Density Independent Execution

As mentioned before, SB is predicated on two building blocks namely: a) Half-Space Pruning (HSP),
and b) Contour Density Independent (CDI) executions (Section 3 of [10]). With regard to identi-
fying the set of plans to be executed and which epp to spill on, SB and FrugalSpillBound
employ the same procedure and this observation is sufficient to establish the CDI property of
FrugalSpillBound. We now show that HSP is also satisfied.

The half-space pruning property is achieved by leveraging the notion of “spilling”, whereby operator
pipelines are prematurely terminated at chosen locations in the plan tree, in conjunction with run-time
monitoring of operator selectivities. The following lemma ([10]) is sufficient to prove the half-space
pruning property.

17

Lemma 4.5 Consider a location q € ESS and a plan P, which is optimal at q. Let e; be the epp
identified to spill for P,. When P, is executed with budget Cost(FP,,q) and spilling on e;, then we
either learn (a) the exact selectivity of ej, or (b) that q,.j > q.J.

The proof idea is that total cost of a plan tree is essentially sum cost of its individual operator nodes. ¢;
is selected such that its upstream operators are error-free from selectivity estimates. The proof of the
lemma follows because of the following reasons: a) due to spilling, e;’s downstream operators are not
executed, b) cost of e;’s upstream operators are accurately known and accounted in C'ost(P,, ¢), and c)
Cost(P,, q) also additionally accounts for ¢.j selectivity of e;.

In SB, at any point in time, if a location ¢ is being explored, it is always ensured that the selectiv-
ity value of ¢ along non-epp dimensions is set to their selectivity at ¢,. However, when we replace
a continuous isocost contour with a discrete covering set, as in the case of FrugalSpillBound,
this may not always be sufficient. However, it is true that, when a location ¢ is explored in
FrugalSpillBound, for a non-epp dimension j, we ensure that q.; > ¢,.7. This is sufficient
to show that the proof of Lemma 4.5 applies to FrugalSpillBound as well.

4.3.3 Contour Covering Set identification

In the original SpillBound (SB) algorithm, once a selectivity is completely learnt for an epp, the
original ESS gets projected on the selectivity value of the learnt dimension. This process of reducing
the dimensioanlity of the ESS by 1 continues as and when an epp get completely learnt, until the actual
selectivity of all the epps are discovered.

The isocost contours in the SB are continuous whereas the contour covering sets are discrete sets.
Therefore, the update to the effective ESS by projecting the current ES S onto the selectivity of the learnt
dimension needs to be done carefully in the case of FrugalSpillBound. The sensitive situation is
when the learnt selectivity value is such that, there is no location in the covering set whose value on the
learnt dimension is exactly equal to the learnt value. For example, in Figure 8, say that FSB learns the
complete or actual selectivity in the Y -dimension first, whose value is strictly in between us.y and c3.y,
1e. us.y < qq..y < c3.y. In this case, we have to take care to ensure that, we project the 2D ESS onto
the line y = c3.y to ensure that there is a valid starting locations for the 1D search along x dimension.
This notion also extends naturally when we are doing projections in the multi-dimensional case.

5 Multi-Dimensional FSB

In this section, we show how to extend 2D F SB to higher dimensions, and present Multi-D F SB for this
purpose. The number of potential epp in a canonical OLAP query is usually large — for instance, we
have observed as many as 12 for some TPC-DS queries. If all these epps were made part of the ESS,
it would result in an impractically large search space that cannot be explored efficiently. Therefore,
before describing the Multi-D FSB algorithm, we first explain how it is usually feasible to construct a
low-dimensional ESS from the initial large set, through a pre-processing step, without impacting the
MSO guarantees of the query.

5.1 Constructing Low-Dimensional ESS

Our Dimension Reduction preprocessor, DimRed, aims to prune the initial exhaustively enumerated
set of ESS dimensions to a much smaller relevant set of dimensions. We only summarize the approach
here due to space constraints — the complete details are available in [15].

18

The key idea in DimRed is to associate an impact factor with each potential epp. Given an epp
e, its impact factor is defined as the worst case relative inflation in the cost of POSP plans when the
selectivity of e is varied from 1/r to 1, while keeping the selectivities of other predicates fixed. Now
consider a predicate e with impact factor f. If we drop e from the EPP, the induced ESS can be sub-
optimal by a factor (1 4+ f) w.r.t. the ESS that contains e. Therefore, we consider the epps in the
increasing order of their impact factors, and incrementally keep dropping them while the net benefit of
the reduced dimensionality on the MSO guarantee is more than the net sub-optimality incurred by the
dropped predicates. The final set of retained predicates constitutes the relevant ESS for the Multi-D
F'SB.

We hasten to add that, as shown in [15], the impact factor of an epp can be computed efficiently, and
this extends to the entire reduction algorithm. For instance, the dimensionality of TPC-DS Q91 was
reduced by DimRed from 12 to 5 in around 15 seconds.

5.2 Multi-D Algorithm

The Multi-D FSB algorithm is run on the set of dimensions retained after the above pre-processing
step. These retained epps are ordered in decreasing value of their impact factors, i.e, e; has the highest
impact factor and ep, the lowest. The basic idea behind the generalization to Multi-D FSB is to recur-
sively call 2D FSB for the last two dimensions (i.e, those with lowest impact factors), while carefully
freezing the values for the remaining D — 2 dimensions. Specifically, the value for each of these D — 2
dimensions is initially set to 1/r, and then iteratively increased by a factor 3 = {/7. After the values
are frozen, then the 2D F SB algorithm searches for a 2D contour whose cost is 372 times the contour’s
cost, and covers it with an increased factor of 32. The value for 3 is chosen such that the resultant MSO
increases by atmost an 7 factor. The pseudocode for Multi-D FSB is presented in Algorithm 3.

5.3 Proof of Correctness

We shall begin with introducing the notion of a sub-contour, denoted by ZC|#, for any contour ZC. It is
defined to be the set of locations that belong to intersection of hyperplane H and ZC, and then projected
on the dimensions £ C EPP. Note that any location ¢ € ZC|% would be a |E| dimensional location.
Furthermore, a sub-contour, ZC;, |2, covers another sub-contour ZC,, |4, if 3 a location ¢ € ZC;,|#
s.t. ¢ dominates® some location of ZC;, |%. In words, there should not exist a location in ZC;, |2 which
dominates some location in ZC;, |2. Furthermore, for any location ¢ € ESS, we use ¢|g to denote
the projection of ¢ on dimensions E. Notation [n],n € Z* is used represent the set of integers from
{1,---,n}. Finally, we can also represent a location ¢ € ESS by its direct sum of its hyperplanes,
¢1|[p—2) and q2| p—1,p for some ¢1, g» € ESS. Denoting the direct sum by o, then

q = Q1‘[D72] ° q2|p-1,0 &
qj=q.5,j €[D—2landq.j = ¢2.j,7 € {D —1,D}

Lemma 5.1 For some two locations q1,q2 € ZC and q2|[D-2] = q1|[D_2}, the 2D contour obtained by

intersecting the hyperplane qi|p—2) with ZC, covers the one obtained by intersecting IC with qs|[p—a).

. q - q -
That is, sub-contour IC|D1|_[L1’ L covers IC\D2|_[L1’ o

Proof 8 For sake of contradiction, let us say that sub-contour IC \g'_“f_g] does not cover IC |q5|_[ﬁ)_D2].

Further, this means there exist a 2D location ¢, € IC ng‘j’fﬁ which dominates some 2D location,

By domination, we mean strict domination

19

Algorithm 3 Multi-D FrugalSpillBound (1)

1: Compilation Phase:
2. Set: Geur = (%7 T 7?);
3: Set: 8= {/n;

4: while contours are remaining do

5: for geur-1 = 15 geur-1 < 15 qeur-1 = Bgeur.1 do
6

7

8

/*Loop for each of the dimensions from 1 to D — 2 ¥/
fOI‘ QCur-(D - 2) - %; QCur-(D - 2) S 1; QCur-(D - 2) = 6QCur-(D - 2) dO
/*Freeze dimensions 1, ..., D-2, vary D and D-1 */

9: dmin = 9maz = Gcur;
10: Gmaz-(D — 1) = Gmaz-D = 1;
11: Qmin'(D - 1) = Gmin-D = %;
12: /*Qmin/ Qmaz are origin/terminus of D, D-1 2D space */
13: if Cost(gmin) < CCx and Cost(¢maz) > CCx then
14: Call 2D FSB with a cost factor of ()2, to cover the (3)P~2 - CCy cost 2D contour
15: end if
16: end for
17: /*End of for loops for each of the dimensions from 1 to D — 2 */
18: end for

19: /* Move to next contour */
20: end while

21: Execution Phase:
22: Run the multi-D SB algorithm on the plans corresponding to BC'S;, of every contour ZC;;

qy € IC|%|_[?7_5]. Since qa|p—2) > q1|[p—2), we can conclude

qs ‘= Q2|[D—2] % QQ

~¢1 = q1|p—21 0 ¢}

By PCM, there is a contradiction that qi, q> belong to the same contour and have same cost.

(10)

Lemma 5.2 Consider two distinct contours IC1,ZC5 s.t. CCy = (B)D =2 % CCy, and two hyperplanes
defined by D — 2 dimensional locations, q and qz where qg.j = [% q.j, ¥Vj € [D — 2|. Then, the
2D contour obtained by intersecting qg hyperplane with ZCy, covers the one obtained by intersecting q

hyperplane with ZCy. That is, sub-contour ICi, |7, ;, covers IC;,|%,_, .

Proof 9 For sake of contradiction, let us say that sub-contour IC;,|?_, ;, does not cover IC;,|%_| p.
Further, this means there exist a 2D location q; € ZC;, |qD_1 p Which dominates some 2D location,

g € IC,, ‘,’:,/3_17 p- We know that location q' € IC, where q¢' := q o qy. This means that cost of location
¢’ is equal to CCy. Since qy + q), cost of location ¢, where ¢} = q o ¢5, is strictly less than CCy. By
concavity, then the cost of location g, q’ﬂ := g © @y, has cost strictly less than CC,. This contradicts

the fact that q5 € ICo, and thus having cost equal to CC,.

Lemma 5.3 Let BC'S; be the bounded contour-covering set output for contour ZC; using Multi-D F SB,

then

1. every location in ZC; is dominated by some location in BC'S;

20

2. cost of the dominating location (found in part 1) in BC'S; is at most) - CCy

Proof 10 . Consider a location q € ZC;. The proof goes by eventually constructing a location
dom € BC'S;, which dominates q. We know that each of {qeur-1," -+ , qeur-(D — 2)} in Algo-
rithm 3, is iteratively increased from 1/r — 1, with a step size of B. Thus, it is easy to see that
there exist a q.,, such that

QCUT’ j
B

In other words, q.., dominates q when projected on its first D — 2 dimensions. and thus we set
dom.j = Qeur-j Vj € [D —2|. Let q3 be D dimensional location such that qs.j = Geur.j/B. Then,

q — ql[p—
Lemma 5.1 shows that sub-contour ZC,| gﬁjf) covers IC;| D“fl . Furthermore from Lemma 5.2,

< Q-j S QCur-j VJ € [D - 2]

we know that sub-contour ZC;, |tgin1\ 577 covers IC, |‘f§ﬂ’f;§1 where CC;, = (3)P~2%CC;. From 2D

FSB, we know that every location in ZC;, is covered by the covering set. This implies that there
exist an assignment of values for (dom.(D — 1), dom.(D)) s.t. dom dominates q.

2. Since we are covering the (3)P~2 - CC; contour, with an cost inflation factor of at most [
Leveraging the proof of Lemma 4.2, we conclude that any location in BC'S; has at most n) - CC;
cost.

Next, let us bound the number of optimization calls required by multi-D F SB algorithm per contour.

Lemma 5.4 The number of optimization calls per contour, for an MSO relaxation of n, is upper
bounded by 2 (D xlog, (r))" !

Proof 11 We know from Lemma 4.3 that total number of optimization calls for 2D FSB is 2 * logs(r).

However, the 2D algorithm is executed (log ﬂ(r))D ~2 times. Equivalently the factor can be rewritten as,

(%)D’% or {DP~? x (log, (r))P~?}. Thus, optimization calls per contour is upper bounded by

2% (D xlog, (r))”~.

Theorem 5.5 The compile-time overheads reduction, vy, of Multi-D FSB is at least r” /(2 - m - (D -
log,, r)P1.

Theorem 5.6 MSO relaxation of Multi-D ¥ SB is at most).

Proof 12 Same as 2D proof.

6 Experimental Evaluation

In this section, we profile the 7y — n performance of
FrugalSpillBound (FSB) on a representative set of complex OLAP queries, using SB’S
performance as the reference baseline. The experimental framework, which is similar to that of [4], is
described first, followed by an analysis of the results.

21

6.1 Database and System Framework

Our test workload is comprised of 21 complex and representative SPJ queries from the TPC-DS bench-
mark, operating at the base size of 100 GB.!° The number of relations in the query suite vary from 4 to
10, and a spectrum of join-graph geometries are modeled, including chain, star, branch, etc. Further,
we wish to maximize the range of cost values, and hence the number of effective dimensions and con-
tours in the ESS, in order to create the most challenging environments for robustness. This is achieved
through an index-rich physical schema that creates indexes on all the attribute columns appearing in the
queries.

With the above setup, the initial number of ESS dimensions, comprising of all filter and join predi-
cates, ranged from 5 to 12 dimensions across the queries. Subsequently, after executing the Dimension
Reduction algorithm discussed in Section 5.1, the effective dimensionality came down to a span of 3 to
5 dimensions. As might be expected, the surviving effective dimensions only feature join predicates,
since the filter predicates were all either accurately estimated by the attribute histograms, or had low
MSO impact factors and were therefore eliminated by DimRed.

To succinctly characterize the queries, the nomenclature aD_Qb is employed, where a specifies the
number of epps, and b the query number in the TPC-DS benchmark. For example, 3D_Q15 indicates
TPC-DS Query 15 with three of its predicates considered to be error-prone.

The database engine used in our experiments is a modified version of the PostgreSQL 9.4 [14] engine,
with the primary additions being: (a) Selectivity Injection, required to generate the ESS for SB and the
bounded contour-covering set for FSB; (b) Abstract Plan Execution, required to instruct the execution
engine to execute a particular plan; (c) Plan Recosting, required to cost an abstract plan to a query; and
(d) Time-limited execution, required to implement the calibrated sequence of executions with associated
time budgets.

6.2 Empirical Validation of APC

We begin with an experimental validation of the Axis-Parallel Concavity (APC) assumption that un-
derlies our entire construction of FSB. For this purpose, we obtained the cost functions of the POSP
(Parametric Optimal Set of Plans) plans over the ESS using the selectivity injection feature for all the
queries considered in our evaluation. Then, we verified, for each cost function, whether its slope was
monotonically non-increasing with selectivity for every 1D projection of the function. Representative
results of this evaluation, reflecting 120-plus plans sourced from our suite of benchmark queries, are
tabulated in Table 2, for both the constituent PCFs and the aggregate OCS.

In the table, a cell corresponding to OCS (or PCF), under Average, captures the % of locations in
ESS satisfying the assumption averaged over OCSs (or PCFs) in a query along different projections.
Supporting metrics such as Median, Minimum and Maximum are also enumerated to provide a sense
of the overall distribution. Note that our F'SB approach requires concavity only on the OCS, and the
vast majority (> 95%) of locations in the ESS satisfy this slope constraint. Moreover, the median
value being 100% for most queries indicates that the majority of OCSs and PCFs do not violate the
assumption at all. Further, even the rare violations that surfaced were found to be artifacts of rounding
errors, cost-modeling errors, and occasional PCM violations due to the PostgreSQL query optimizer
not being entirely cost-based.

9From a conceptual perspective, the FSB approach is generically applicable to the entire benchmark — however, our
current prototype implementation is restricted to SPJ queries, making it infeasible to evaluate the full benchmark at this
time.

22

Table 2: % LOCATIONS IN ESS SATISFYING APC

Query Average| Median | Min Max
OIS | per |00 |0 | 100 | 100
D6 | per |00 |10 | 100 | 100
DT | per | ona | 100 |44 | 100
D06 | por 597 100|935 | 100
D0 | per | 995 | io0 | 752 | 100
DI | per 100 |00 | 100 | 100
DY | per | oas | o6s | 712 | 100
DO | per |00 |10 | o84 | 100

6.3 Theoretical Characterization of v — 7

103

1021 ‘..AA...‘.

101_

3D Q37
30 Q73
3D Q67 {
3D_Q63 |
3D Q53
3D Q89
3D Q40
3D Q15
3D Q96
3D Q36
D Q27
4D_Q26 1
4D Q62 -
4D Q074
5D Qo1 |
30 Q21 |
30 Q22
5D QL9 |
5D_Q84 {
5D Q18
4D Q99

Query Number

Figure 9: Theoretical Overheads Reduction (1 = 2)

Using the formula derived in Theorem 5.5, we evaluated the ~ value for our suite of benchmark
queries with 7 set to 2, and these results are shown in Figure 9 on a log scale. We observe here
a consistent decrease by more than two orders of magnitude for FSB, i.e. v >= 100, over all the
queries. Further, and importantly, the decrease shows a trend of being magnified with dimensionality.
For instance, the overheads decrease by a factor of almost 400 for the five-dimensional 5D _Q84.

6.4 Empirical Characterization of v — n

We now turn our attention to assessing the empirical reduction in compilation overheads achieved by
F SB for the above database environment — these results are captured in Figure 10. We see here that for
most of the queries, the savings are over three orders of magnitude. Furthermore, quite a few of the
4D and 5D queries even reach four orders of magnitude reduction — in fact, the overheads saving for
5D_QO91 is by a factor of almost 40000! When the effective dimensionality and the number of contours
is moderate, as in the case of the initial three 3D queries in Figure 10, the savings become saturated at

23

10°

adh
1041 aasa

aa
103 AAAA....

1024

101_

Figure 10: Empirical Overheads Reduction (n = 2)

around 2.5 orders of magnitude since the overheads reach a low value in absolute terms itself, of the
order of a few thousand optimization calls. However, if either the dimensionality and/or the contour
density is high, then greater savings become feasible.

The reasons for the considerable gap between the theoretical and empirical values include the fol-
lowing:

e Our conservative formulation in Lemma 3.2 for the distances covered by the forward jumps in
FSB. These jumps are based on the slope of the optimal plan function at the corresponding loca-
tion, but the lengths of the jumps in practice are considerably more due to the concave trajectory.
For instance, we found that with 5D_Q84, around 60 percent of the jump lengths exceeded 1.5
times the guaranteed value, while about 20 percent were more than twice the guaranteed value.

e Our conservative assumption that all covering contours start from 1/r and work their way upto
the maximum selectivity of 1. In practice, however, the contour traversals could be much shorter.
As a case in point, we found that with 5D_Q84, around 80 percent of the underlying 2D contour
explorations were skipped based on the cost condition check in line 13 of Algorithm 3.

6.5 Validation of MSO Relaxation Property

1.8

1.6

Ne aad
a

1.4+ ale

1.2 aad

1.0

Figure 11: Empirical MSO Ratio (= 2)

24

105

5D_Q19
104 | 40_Q27]
Qs —
10% |
¥
102 } 1
10! } 1
1 . . .
1 1.5 2 25 3

n

Figure 12: ¥SB Tradeoff (Theoretical)

A legitimate concern about FSB could be that while it guarantees maintenance of the 7 constraint in
the theoretical framework, the MSO relaxation may exceed 7 in the empirical evaluation. To assess this
possibility, we explicitly evaluated the empirical MSO ratio, 7., incurred by FSB relative to SB. This
was accomplished by exhaustively considering each and every location in the ESS to be ¢,, and then
evaluating the sub-optimalities incurred for these locations by SB and FSB. Finally, the maximum of
these values was taken to represent the empirical MSO of each algorithm.

Contrary to our fears, the 7, values of FSB are always within the 77 (= 2) factor as shown in Figure 11.
In fact, the 7, factors are within 1.5 for all queries. The main reason for the low 7). values in practice is
due to the aggressive half-space pruning at each contour, and especially at the final contour.

6.6 Dependency of v on 7

Thus far, we have analyzed the F SB results for the specific 7 setting of 2. We now move on to evaluating
the v behavior for different settings of 7. This tradeoff is captured in Figure 12 for 7 values ranging
over [1, 3] for three different queries — Q15, Q27 and Q19 — with ESS dimensionalities of 3, 4 and 5,
respectively.

We see here an initial exponential increase in overheads reduction while going fromn = 1ton = 2,
but this increase subsequently tapers off for larger values of 7). For instance, with 3D_Q15, the number
of optimization calls decreases steeply from 10° to 7010 when 7 is increased from 1 to 2, and then goes
down marginally to 2950 calls when 7 is further increased to 3. The plateauing of the improvement
with increasing 7) is because a certain minimum number of optimization calls is required for the basic
functioning of the F'SB algorithm.

6.7 Wall-Clock Time Experiments

All the experiments thus far assessed the v — 7 profile in the abstract world of optimizer cost values.
We now present an actual execution experiment, where the end-to-end real-time performance (i.e. wall-
clock times) was explicitly measured for the FSB and SB algorithms. Our representative example is
based on TPC-DS Q19 featuring 5 error-prone predicates.

As mentioned previously, the task of identifying the contours is inherently amenable to parallelism.
Even after exploiting this feature on a 64-core workstation platform, SB took a few days to identify
all the contours for 5D_Q19. In marked contrast, a parallel version of the BCS identification in FSB,
which utilizes the fact that there are (D x logn(%))D ~2 independently-explorable 2D segments per

25

contour, completed the identification within /0 minutes (for n = 2).

After building the ESS, SB took around 20 mins to complete its query execution incurring a sub-
optimality of 4.8. On the other hand, F SB completed in around 26 mins, resulting in a sub-optimality
of 6.2. The drilled-down information of plan executions for every contour with FSB can be seen in
Table 3.

Table 3: FSB EXECUTION ON TPC-DS QUERY 19

Contotire; eo es3 N e Time
no. (sec.)
1 - p1 - D2 D3 54.1

(100)

[N}

Pa - D5 122.5
P4 - - - 182.1
@

w

Ds - 251.4
= 357.8
- - - D5 - 509.9
D6 - - - - 789.2
®

SR ENE™
]

P 10516

(66)

s - 1562
99

So, overall, SB took days to create the ESS and execute this instance of Q19, whereas FSB required
only (10 minutes + 26 minutes) = 36 minutes to complete the entire query processing. This means
that even if the supposedly ad-hoc query eventually turns out to be a canned query, it would take more
than 500 successive invocations before SB begins to outperform FSB.

We conducted additional experiments to establish the practicality of the F'SB approach. Specifically,
on a representative set of queries, we profiled FSB for its memory usage, CPU usage, and end-to-end
latency. The memory usage is also a function of the server’s database configuration, which was set with
the PostgreSQL tuning tool [13]. The results, presented in Table 4, demonstrate that FSB’s resource
requirements are reasonable and easily justified by the substantive performance benefits it delivers.

Table 4: RESOURCE USAGE (100 GB)

Query | Memory CPU Latency
Usage Times (mins)
(MB) (mins)
3D_Q15 | 360 1.4 28.1
3D_Q96 | 220 1.3 17.8
4D_Q7 | 489 1.2 23
4D_Q26 | 490 1.5 12.6
4D_Q27 | 464 1.8 30.5
5D_Q19 | 1000 11 36
5D_Q84 | 348 2.8 10.1
5D_Q91 | 828 1.3 4.3

26

7 Deployment Aspects

Over the preceding sections, we have conducted a theoretical characterization and empirical evaluation
of the FrugalSpillBound algorithm. We now discuss some pragmatic aspects of its usage in real-
world contexts. Most of these issues have already been previously discussed in [10], in the context
of the SpillBound algorithm, and we therefore only summarize the salient points here for easy
reference.

First, we have implicitly assumed a perfect cost model in our study, but this is rarely the case in
practice. However, if we were to be assured that the cost modeling errors, while non-zero, are bounded
within a ¢ error factor, then the MSO guarantees in this paper will carry through modulo an inflation by
a factor of (1 + §)2. For instance, § = 0.3 is reported in [1].

Second, it is important to note that Spil1Bound and FrugalSpillBound are not substitutes for
conventional query optimizers, but are intended to complementarily co-exist with the traditional setup.
We currently leave it to the user’s discretion about the specific approach to employ for a given query
instance — however, we have also begun exploring the use of machine learning techniques to make this
determination.

Finally, both Spil1Boundand FrugalSpillBound are intrusive in that they require changes in
the core engine to support the various functionalities such as plan spilling and monitoring of operator
selectivities. However, our experience with PostgreSQL is that these facilities can be incorporated
relatively easily. As an aside, the BCS approach that we presented here to achieve a tradeoff between
guarantees and overheads, can also be used in conjunction with the original P1anBouquet algorithm,
which operates purely with API functionality.

8 Related Work

In the prior robust query processing literature, as discussed below, there have been two strands of work
— the first delivering savings on optimization overheads, and the other primarily addressing the query
execution performance. In this context, FrugalSpillBound appears a unique proposition since it
offers an attractive tradeoff between these two competing and complementary aspects.

Compilation Overheads The primary work in this area has been in the context of Parametric Query
Optimization (PQO), where the objective is to have precomputed the appropriate plans for freshly
submitted queries. In [9], the selectivity space was decomposed into polytopes that approximate plan-
optimality regions, based on the geometric heuristic that “If all vertices of a polytope have the same
optimal plan, then the plan is also optimal within the entire polytope”. However, this assumption, as
well as the presence of regular boundaries for the optimality regions, were later shown in [7] to be
largely violated in industrial-strength settings.

Instead of trying to characterize the entire selectivity space in advance, [3] took an alternative ap-
proach of reducing the PQO overheads by restricting attention to the query workload that is actually
submitted to the system, and thereby progressively and efficiently explore the parameter space. In our
setting, however, since we are apriori unaware of the query location, the BCS is constructed in a manner
that is agnostic to this location.

More recently, [5] identified a geometric property, referred to as Bounded Cost Growth (BCQ), that
typically holds on plan cost functions. It leveraged this property to ensure bounded sub-optimalities of
the PQO choices, relative to the ideal plan at the query location. In BCG, the relative increase of plan
costs is modeled as a low-order polynomial function of the relative increase in plan selectivities. In

27

fact, using the identity function for this polynomial is itself found to be generally satisfactory. Our use
of concavity is similar to BCG in that, when the polynomial is the identity function, it is shown below
that any PCF that satisfies APC also satisfies BCG.

8.1 BCG
Let us now see BCG’s definition formally. For any PCF F,:

Folaxqj) < fla)*Fy(qj) Vie{l,...,D},Va>1 (11)

where f(«) is an increasing function and F, (q) represents the cost of the corresponding plan at location
q. In words, for any plan, if the selectivity is increased in any one of the dimensions by a factor o > 1,
then the cost of the plan also increases by a factor at most f(«). Moreover, they also claim that
f(a) = « would suffice in practice. As in the case of our axis-parallel concave assumption, they also
show that if BCG holds true for POSP plans then it is also true for PIC.

8.2 Concavity implies BCG

Let us consider a PCF F,,, if F,, is axis-parallel concave, then we will show that the PCF also satisfies the
BCG assumption when f(«) = «. For this, we just need to show the implication over an 1D projection,
which then easily generalizes for the generic scenario. Consider a location ¢, whose projection on
dimension j (i.e., g.j) has slope m on F,. Thus the tangent at g.j can be expressed as a line of the form
F,(q.j) = m * q.j + c. However, ¢ > 0 for the function value to be non-negative for ¢.j = 0. Hence,
Folaxqj) <m(axqj)+c<ax(mqj+c)=axFyq))

Query Execution The P1anBouquet approach [4], based on selectivity discovery instead of esti-
mation, provided for the first time, guarantees on the worst-case execution performance. However, its
bounds were a function of not only the query, but also the optimizer’s behavioral profile over the under-
lying database platform. SpillBound materially extended PlanBouquet by providing platform-
independent guarantees through incorporating plan spilling and selectivity monitoring mechanisms in
the database engine. Moreover, its empirical performance was markedly superior to PlanBouquet,
thanks to an aggressive half-space pruning of the ESS in the discovery process, and bounding the
number of plan executions required to move from one contour to the next.

Both PlanBouquet and SpillBound fall under the umbrella of plan-switching approaches.
They may therefore appear very similar to run-time heuristic re-optimization techniques such as
POP [12] and Rio [2]. A detailed comparison to POP, Rio and related literature wrt selectivity esti-
mation issues was provided in [4]. The key difference is in the provision of performance guarantees.
Further, the heuristic techniques use the optimizers plan choice as the starting point, and reoptimize
at run-time if the estimates are found to be significantly in error. In contrast, PlanBouquet and
SpillBound always start executing plans from the origin of the selectivity space, ensuring both re-
peatability of the query execution strategy as well as controlled switching overheads.

9 Conclusions

The recently proposed SpillBound and PlanBouquet query processing techniques incorporate
a selectivity discovery process as opposed to the traditional estimation approach. This leads to the
much-needed MSO performance guarantees, an essential ingredient of robust query processing. On

28

the downside, however, these techniques are suitable only for canned queries due to the enormous
compilation overheads that are required before query execution can be initiated.

In this paper, we address the above limitation by designing FrugalSpillBound whose com-
pilation overheads are exponentially lower than those of SpillBound. Our construction of
FrugalSpillBound is based on two basic principles: (a) leveraging the axis-parallel concave be-
havior exhibited by the PCFs and OCS with respect to predicate selectivities in the ESS; (b) substituting
the original isocost contours with contour-covering sets that are much smaller in size but whose costs
are controlled to within a bounded factor of the original contour.

Our theoretical analysis demonstrates that the n — 7y tradeoff is extremely attractive, delivering expo-
nential improvements in 7y for linear relaxations in 7. Further, the empirical improvements, evaluated
on TPC-DS queries, are even higher, by more than an order of magnitude. So, in an overall sense,
FrugalSpillBound takes an important step towards successfully extending the benefits of MSO
guarantees to ad-hoc queries.

In our future work, we intend to investigate the existence of alternative geometric constraints on cost
function behavior — for example, a bounded rate of change — and how to leverage such constraints for
improving the MSO guarantees and/or compilation overheads.

References

[1] Is query optimization a solved problem? http://wp.sigmod.org/?p=1075, 2014.
[2] S. Babu, P. Bizarro, and D. DeWitt. Proactive re-optimization. In ACM SIGMOD Conf., 2005.

[3] P. Bizarro, N. Bruno, and D. DeWitt. Progressive parametric query optimization. /[EEE TKDE,
21(4), 20009.

[4] A. Dutt and J. Haritsa. Plan bouquets: A fragrant approach to robust query processing. ACM
TODS, 41(11), 2016.

[5] A. Dutt, V. Narasayya, and S. Chaudhuri. Leveraging re-costing for online optimization of pa-
rameterized queries with guarantees. In ACM SIGMOD Conf., 2017.

[6] G. Goetz. The cascades framework for query optimization. /EEE Data Eng. Bull., 18(3), 1995.

[7] D. Harish, P. Darera, and J. Haritsa. Identifying robust plans through plan diagram reduction.
PVLDB, 1(1), 2008.

[8] A. Hulgeri and S. Sudarshan. Parametric query optimization for linear and piecewise linear cost
functions. In VLDB Conf., 2002.

[9] A. Hulgeri and S. Sudarshan. Anipqo: Almost non-intrusive parametric query optimization for
nonlinear cost functions. In VLDB Conf., 2003.

[10] S. Karthik, J. Haritsa, S. Kenkre, and V. Pandit. Platform-independent robust query processing.
In IEEE ICDE Conf-, 2016.

[11] V. Leis, A. Gubichev, A. Mirchev, P. Boncz, A. Kemper, and T. Neumann. How good are query
optimizers, really? PVLDB, 9(3), 2015.

[12] V. Markl, V. Raman, D. Simmen, G. Lohman, H. Pirahesh, and M. Cilimdzic. Robust query
processing through progressive optimization. In ACM SIGMOD Conf., 2004.

29

[13] PGTune. https://pgtune.leopard.in.ua/.
[14] PostgreSQL. http://www.postgresgl.org/docs/9.4/static/release.html.

[15] S. Purandare. Dimensionality reduction techniques for bouquet-based approaches. Master’s The-
sis, Database System Lab, IISc, 2018, http://dsl.cds.iisc.ac.in/publications/
thesis/sanket.pdf.

[16] P. Selinger, M. Astrahan, D. Chamberlin, R. Lorie, and T. Price. Access path selection in a
relational database management system. In ACM SIGMOD Conf., 1979.

30

