
Hidden Query Extraction

Kapil Khurana Jayant Haritsa

Technical Report
TR-2020-01

Database Systems Lab
Dept. of Computational and Data Sciences

Indian Institute of Science
Bangalore 560012, India

http://dsl.cds.iisc.ac.in

Abstract

We investigate here the query reverse-engineering problem of unmasking SQL queries hidden
within database applications. As a first step in addressing this challenge, we present UNMASQUE,
an extraction algorithm that is capable of identifying a substantive class of complex hidden queries.
A special feature of our design is that the extraction is non-invasive w.r.t. the application, examin-
ing only the results obtained from its executions on databases derived with a combination of data
mutation and data generation techniques. Further, potent optimizations, such as database size re-
duction to a few rows, are incorporated to minimize the extraction overheads. A detailed evaluation
over benchmark databases demonstrates that UNMASQUE is capable of correctly and efficiently
extracting a broad spectrum of hidden queries.

1 Introduction
Over the past decade, query reverse-engineering (QRE) has evinced considerable interest from both
the database and programming language communities (e.g. [26, 22, 20, 19, 10, 4, 1, 14, 5, 24]). The
generic problem tackled in this stream of work is the following: Given a database instance Di and
a populated result Ri, identify a candidate SQL query Qc such that Qc(Di) = Ri. The motivation
for QRE stems from a variety of use-cases, including: (i) reconstruction of lost queries; (ii) query
formulation assistance for naive SQL users; (iii) enhancement of database usability through a slate
of instance-equivalent candidate queries; and (iv) explanation for unexpectedly missing tuples in the
result.

Impressive progress has been made on addressing the QRE problem, with potent tools such as
Talos[22], Regal[20] and Scythe[24] having been developed over the years. Notwithstanding, there
are intrinsic challenges underlying the problem framework: First, the choice of candidate query is or-
ganically dependent on the specific (Di,Ri) instance provided by the user, and can vary hugely based
on this initial sample. As an extreme case in point, if the result has only a single row, the generated
candidates are likely to be trivial queries, although the ideal answer may be an aggregation query. Sec-
ond, given the inherently exponential search space of alternatives, identifying and selecting among the
candidates is not easily amenable to efficient processing. Third, the precise values of filter predicates,
as well as advanced SQL constructs (e.g. LIMIT, LIKE), are fundamentally impossible to deduce since
the candidate query is constructed solely from the instance.

In this report, we consider a variant of the QRE problem, wherein a ground-truth query is additionally
available, but in a hidden form that is not easily accessible. For example, the original query may be
explicitly hidden in a black-box application executable. Moreover, encryption or obfuscation may have
been additionally incorporated to further protect the application logic. An alternative scenario is that the
application is visible but effectively opaque because it is comprised of hard-to-comprehend SQL (such
as those arising from machine-generated object-relational mappings), or poorly documented imperative
code that is not easily decipherable. Such “hidden-executable” situations could arise in the context of
legacy code, where the original source has been lost or misplaced over time (prominent instances of
such losses are recounted in [41]), or when third-party proprietary tools are part of the workflow, or if
the software has been inherited from external developers.

Formally, we introduce the hidden-query extraction (HQE) variant of QRE as follows: Given a
black-box application A containing a hidden SQL query QH , and a database instance Di on which
QH produces a populated resultRi, unmask QH to reveal the original query.

We leverage the presence of the hidden ground-truth to deliver a variety of advantages:

1

• The outcome now becomes independent of the initial (Di,Ri) instance.

• Since the application can be invoked repeatedly on different databases, efficient and focused
mechanisms can be designed to precisely identify the hidden query.

• It allows for capturing difficult SQL constructs (we show here how LIKE and LIMIT can be
extracted).

• As a collateral benefit, the unmasked query can serve as a definitive seed input to database us-
ability tools like Talos[22] which create an array of instance-equivalent queries.

• New use-cases become feasible – for instance, a security agency may wish to ascertain offline
the real intent of encrypted queries that were refused entry due to concerns about their origins.

At first glance it may appear that the existing QRE techniques could be used to provide a seed
query for HQE, followed by refinements to precisely identify the hidden query. However, as explained
later, this is not a viable approach, forcing us to design the extraction procedures from scratch. Our
experience in this effort is that HQE proves to be a challenging research problem due to factors such
as (a) acute dependencies between the various clauses of the hidden query, (b) possibility of schematic
renaming, and (c) result compression due to aggregation functions.

(a) Hidden Query (QH) (b) Extracted Query (QE) (c) Sample Regal Query

Figure 1: Hidden Query Extraction Example (TPC-H Q3)

UNMASQUE Algorithm
We take a first step towards addressing the HQE problem here by presenting UNMASQUE1, an al-
gorithm that uses a judicious combination of database mutation and synthetic database generation to
identify the hidden query QH . The extraction is completely non-invasive wrt the application code, ex-
amining only the results obtained from its executions on carefully constructed databases. As a result,
platform-independence is achieved wrt the underlying database engine.

Currently, UNMASQUE is capable of extracting a restricted but substantive class of SPJGAOL2

queries. As an exemplar, consider the hidden query shown in Figure 1a, which features all these
clauses and is based on Query 3 of the TPC-H benchmark.3 Our extracted equivalent, QE , is shown in
Figure 1b, clearly capturing all semantic aspects of the original query. Only syntactic differences, such
as a different grouping column order, remain in the extraction.

As a reference point, the candidate query produced by Regal+[20] for this scenario is shown in
Figure 1c. While the query tables and joins are detected correctly, there are significant discrepancies

1Unified Non-invasive MAchine for Sql QUery Extraction
2SELECT, PROJECT, JOIN, GROUPBY, AGGREGATION, ORDER, LIMIT
3The only modification is that the algebraic function in the SELECT clause on l extendedprice is curtailed to a simple

aggregation.

2

Figure 2: UNMASQUE Architecture

in the filters, grouping columns and aggregation functions. Moreover, the query is produced after
removing limit, order and UDF clauses and converting character and date type columns to integers
to suite their environment. Finally, producing even this limited outcome took considerable time and
resources.

Extraction Workflow
UNMASQUE operates according to the pipeline shown in Figure 2, where it unmasks the hidden query
elements in a structured manner. It starts with the FROM clause, continues on to the JOIN and FILTER

predicates, follows up with the PROJECTION and GROUP BY+AGGREGATION columns, and concludes
with the ORDER BY and LIMIT functions. The initial elements are extracted using database mutation
strategies, whereas the subsequent ones are extracted leveraging database generation techniques. Fur-
ther, while some of the elements are relatively easy to extract (e.g. FROM), there are others (e.g. GROUP

BY) that require carefully crafted methods for unambiguous identification. The final component in the
pipeline is the QUERY ASSEMBLER which puts together the different elements of QE and performs
canonification to ensure a standard output format.

Extraction Efficiency
To cater to extraction efficiency concerns, UNMASQUE incorporates a variety of optimizations. In
particular, it solves a conceptual problem of independent interest: Given a database instance D on
which a hidden query QH produces a populated result R, identify the smallest subset Dmin of D such
that the result of QH continues to be populated.

At first glance, it may appear that Dmin can be easily obtained using well-established provenance
techniques (e.g. [11]). However, due to the hidden nature of QH , these approaches are no longer
viable. Therefore, we design alternative strategies based on a combination of sampling and recursive
database partitioning to achieve the minimization objective.

The database minimization is applied immediately after the FROM clause has been identified, as
shown in Figure 2. And the reduction is always to the extent that the subsequent SPJ extraction is
carried out on miniscule databases containing just a handful of rows. In an analogous fashion, the
synthetic databases created for the GAOL extraction are also carefully designed to be very thinly pop-
ulated. Overall, these reductions make the post-minimization processing to be essentially independent
of database size.

3

Performance Evaluation
We have evaluated UNMASQUE’s behavior on a suite of complex decision-support queries, and on
imperative code sourced from blogging tools. The performance results of these experiments, conducted
on a vanilla PostgreSQL platform, indicate that UNMASQUE precisely identifies the hidden queries in
our workloads in a timely manner. As a case in point, the extraction of the example Q3 on a 100 GB
TPCH database was completed within 10 minutes. This performance is especially attractive considering
that a native execution of Q3 takes around 5 minutes on the same platform.

Organization
The rest of the report is organized as follows: In Section 2, a precise description of the HQE problem is
provided, along with the notations. The following sections – Sections 3 and 4 – present the components
of the UNMASQUE pipeline, which progressively reveal different facets of the hidden query. The
experimental framework and performance results are reported in Section 5. Finally, our conclusions
and future research avenues are summarized in Section 6.

2 Problem Framework
We assume that an application executable object file is provided, which contains either a single SQL
query or imperative logic that can be expressed in a single query. If there are multiple queries in the
application, we assume that each of them is invoked with a separate function call, and not batched
together, reducing to the single query scenario. This assumption is consistent with open source projects
such as Wilos [45], which contain code segments wherein each function implements the logic of a
single relational query.

If the hidden SQL query is present as-is in the executable, it can be trivially extracted using stan-
dard string extraction tools (e.g. Strings [34]). However, if there has been post-processing, such as
encryption or obfuscation, for protecting the application logic, this option is not feasible. An alterna-
tive strategy is to re-engineer the query from the execution plan at the database engine. However, this
knowledge is also often not accessible – for instance, the SQL Shield tool[42] blocks out plan visibility
in addition to obfuscating the query. Finally, if the query has been expressed in imperative code, then
neither approach is feasible for extraction.

Moving on to the database contents, there is no inherent restriction on column data types, but we
assume for simplicity, the common numeric (int, bigint and float with fixed precision), character (char,
varchar, text), date and boolean types. The database is freely accessible through its API, supporting
all standard DML and DDL operations, including creation of a test silo in the database for extraction
purposes.

2.1 Extractable Query Class
The QRE literature has primarily focused on constructing generic SPJGA queries that do not feature
non-equi-joins, nesting, disjunctions or UDFs. We share some of the restrictions but have been able to
extend the query extraction scope to include OL constructs. Further, we expect join graph to be a sub-
graph of schema graph. There are additional mild constraints on some of the constructs – for instance,
the LIMIT value must be at least 3, there are no filters on key attributes – and they are mentioned in
the relevant locations in the following sections. We hereafter refer to this class of supported queries

4

Symbol Meaning Symbol Meaning(wrt queryQE)

A Application TE Set of tables in query
F Application Executable CE Set of columns in TE
D Initial Database JGE Join graph
R Result of F on D JE Set of join predicates
T Set of all tables in D FE Set of filter predicates
QH Hidden Query PE Set of native projections with mapped result columns
QE Extracted Query AE Set of aggregations with mapped result columns
Dmin Reduced Database GE Set of group by columns
SG Schema Graph of database P̃E All projections, including aggregation columns

−→
OE Sequence of ordering result columns
lE limit value

Table 1: Notations

as Extractable Query Class (EQC). Our subsequent description of UNMASQUE on EQC uses the
sample TPC-H Query 3 of the Introduction (Figure 1a) as the running example.

Further, we assume a slightly simplified framework in the subsequent description – for instance, that
all keys are positive integer values – the extensions to the generic cases are provided at the end.

The notations used in our description of the extraction pipeline are summarized in Table 1. To
highlight its black-box nature, the application executable is denoted by F , while

−→
OE has a vector

symbol to indicate that the ordering columns form a sequence.

2.2 Overview of the Extraction Approach
At first glance, it may be surmised that existing QRE techniques can be used to seed the extraction pro-
cess. However, the candidate queries generated by these techniques may differ from the original query
in virtually all the constructs. Moreover, they do not provide the query constructs in a compartmental-
ized manner, making it infeasible to selectively pull out component clauses. Finally, their performance
does not easily scale to large databases – due to these reasons, we have approached the HQE problem
from first principles.

To set up the extraction process, we begin by creating a silo in the database that has the same table
schema as the original user database. Subsequently, all referential integrity constraints are dropped
from the silo tables, since the extraction process requires the ability to construct alternative database
scenarios that may not be compatible with the existing schema. We then create the following template
representation for the to-be extracted query QE:

Select (PE , AE) From TE Where JE ∧ FE
Group By GE Order By

−→
OE Limit lE;

and sequentially identify each of the constituent elements, as per the pipeline shown in Figure 2.
The initial segment of the pipeline is based on mutations of the original/reduced database and is

responsible for handling the SPJ features of the query which deliver the raw query results. The modules
in this segment require targeted changes to a specific table or column while keeping the rest of the
database intact.

In contrast, the second pipeline segment is based on the generation of carefully-crafted synthetic
databases. It caters to the GAOL query clauses, which are based on manipulation of the raw results. The
modules in this segment require generation of new data for all the query-related tables under various
row-cardinality and column-value constraints. We deliberately depart from the mutation approach here
since these constraints may not be satisfied by the original database instance.

We hereafter refer to these two segments as the Mutation Pipeline and the Generation Pipeline,
respectively, and present them in detail in the following sections.

5

3 Mutation Pipeline
The SPJ core of the query, corresponding to the FROM (TE), WHERE (FE , JE) and SELECT (PE)
clauses, is extracted in the Mutation Pipeline segment of UNMASQUE. Aggregation columns in the
SELECT clause are only identified as projections here, and subsequently refined to aggregations in the
Generation Pipeline.

3.1 From Clause
An easy way to identify whether a base table t is present in QH is the following: First, temporarily
rename t to temp. Then, execute F on this mutated schema and check whether it throws an error – if
yes, t is part of the query; if not, terminate the nascent query execution after a short timeout period. By
doing this check iteratively over all the tables in the schema, TE can be identified.

The above “execution-with-error” approach is very quick and easy to implement. However, it may
not always be feasible since either (i) the database engine may not be designed to issue such alerts, or
(ii) the application may handle the error internally and not propagate the message to the user. We have
therefore designed an alternative platform-agnostic approach that is based on the following observation:
Given our EQC, where only inner equi-joins are permitted, if any table in the FROM clause is empty,
the query result will also be empty. So, we take each candidate table t in turn, rename it to temp, then
create a new empty table t with the same schema as temp. Let this modified database be called Dmut.
Subsequently, F is run on Dmut and the result is observed – if empty, t belongs to TE . After that, table
t is dropped and temp is renamed to t – this transforms Dmut back to the initial database instance.

The above procedure for Q3 on the TPC-H schema produces

TE = {customer, lineitem, orders}.

Lemma: For a query Q ∈ EQC, UNMASQUE extracts the tables in the From clause precisely.

Proof. If an empty table t is in the From clause of the query Q, joining it with any other table produces
zero rows due to EQC’s restriction to inner equi-joins. By induction, all further joins would produce
zero rows and hence, the output would be empty. On the other hand, if t is not in the From clause, the
state of its contents would not affect the result of Q. Finally, the check for each table t is on a Dmut

instance that is identical to D except for the change in t, guaranteeing that any change in the result is
due to t being empty.

3.2 Database Minimization
For enterprise database applications, it is likely that D is huge, and therefore repeatedly executing F
on this large database during the extraction process may take an impractically long time. To tackle this
issue, before embarking on the SPJ extraction, we attempt to minimize the database as far as possible
while maintaining a populated result. Specifically, we address the following row-minimality problem:

Given a database instance D and an executable F producing a populated result on D, derive a
reduced database instance Dmin from D such that removing any row of any table in TE results in an
empty result.

With this definition of Dmin, we can prove the following strong observation:
Lemma 1: For theEQC of Section 2.1, there always exists aDmin wherein each table in TE contains

only a single row.

6

Figure 3: D1 for Q3

Proof. Firstly, since the final result is known to be populated, the intermediate result obtained after
the evaluation of the SPJ core of the query is also guaranteed to be non-empty. This is because the
subsequent GAOL elements only perform computations on the intermediate result but do not add to it.
Now, if we consider the provenance for each row ri in the intermediate result, there will be exactly one
row as input from each table in TE because: (i) if there is no row from table t, ri cannot be derived
because the inner equi-join (as assumed for the query class EQC) with table t will result in an empty
result; (ii) if there are k : (k > 1) rows from t, (k− 1) rows either do not satisfy one or more join/filter
predicates and can therefore be removed from the input, or they will produce a result of more than one
row since there is only a single instance of t in the query. In essence, a single-row R can be traced back
to a single-row per table in Dmin.

We hereafter refer to this single-row Dmin as D1– the reduction process employed to identify this
database is explained next.

Reducing D to D1

At first glance, it might appear trivial to identify a D1– simply pick any row from the R obtained on
D and compute its provenance using the well-established techniques in the literature (e.g. [11]) – the
identified source rows from TE constitute the single-row D1. However, these provenance techniques
are predicated on prior knowledge of the query, making them unviable in our case where the query is
hidden. Therefore, we implement the following iterative-reduction process instead: Pick a table t from
TE that contains more than one row, and divide it roughly into two halves. Run F on the first half, and
if the result is populated, retain only this first half. Otherwise, retain only the second half, which must,
by definition, have at least one result-generating row (as per Lemma 1). When eventually all the tables
in TE have been reduced to a single row by this process, we have achieved D1.

7

Figure 4: Induced schema graph and candidate Join-Graph for TPC-DS Q37

In principle, the tables in TE can be progressively halved in any order. However, note that after each
halving, F is executed to determine which half to retain, and therefore we would like to minimize the
time taken by these executions. Accordingly, we choose a policy of always halving the currently largest
table in the set. This is because this policy can be shown to require, in expectation, the least amount of
data processing to reach the D1 target.

To make the above concrete, a sample D1 for Q3 (created from an initial 100 GB instance) is shown
in Figure 3.

3.3 Join Predicates
To extract the join predicates of QH , we start with the original schema graph of the database. From
this graph, we create an (undirected) induced subgraph whose vertices are the key columns in TE , and
edges are the possible join edges between these columns. In the case of composite keys, each column
within the key is treated as a separate node.

After that, each connected component in the subgraph is converted to a corresponding cycle graph
(hereafter referred as a cycle) with same set of vertices. With slight abuse of notation, a graph with
two nodes and a single edge is also referred to as a cycle. The idea behind this step is the following:
Checking the presence of a connected component as one of the components of the join
graph, is equivalent to checking the corresponding cycle due to the inner-equi joins in EQC.
The resultant graph which is a collection of cycles is referred to as candidate join-graph.

If for each table t in the candidate join-graph, there is only one key column from t in the graph, and
only one edge is incident on that key column, then the candidate join-graph is itself the actual joingraph,
JGE, of the query. This is because for the queries in EQC, only inner equi-joins are allowed, and each
table should participate in the FROM clause through a key-join. Such special case happens to be with
our example query Q3.

However, the above special case may not always be applicable. To explain the procedure for arbi-
trary candidate join-graphs, we take another example, this time from the TPC-DS schema graph. In
particular, the induced subgraph and the associated candidate join-graph for TPC-DS Q37 are shown
in Figure 4. The nodes are labelled with shorthand notations to make the related figures compact and
readable.

Now for each candidate cycle (say CC) in the candidate join-graph, we check its existence in the
join graph. If the cycle is not present in the join graph, it is partitioned into the smaller cycles which are
recursively detected for their presence in the join graph. Algorithm 1 summarizes the whole procedure.
The supporting subroutines for Algorithm 1 are as follows:

Cut(C, e1, e2) Removes edges e1 and e2 from cycle C and returns the set of vertices in one of the
newly created components.

8

Figure 5: Checking cycle (u, v, y, x)

Negate(D1, K) In D1, values in all columns corresponding to vertices in K are replaced with the
corresponding negative values.

Partition(C, e1, e2) Removes edges e1 and e2 from cycle C and returns two cycle graphs correspond-
ing to the nodes in two newly created components. If any component contains a single node, then
that component is not returned.

The intuition behind for loop of algorithm 1 to check the presence of a cycle (with greater than 2
nodes) is the following: if the join graph does not contain a cycle C, at least two edges of C should be
absent from the join graph.

One such example is shown in Figure 5 where a populated result leads to breaking of the cycle
(u, v, y, x).

Also, Algorithm 1 ensures that, in each iteration, either a cycle is removed from G or it is partitioned
into two smaller cycles, thereby guaranteeing eventual termination of the algorithm.

With regard to Q3, the candidate graph contains only two connected components each with just a
single edge. One being (l orderkey, o orderkey) and the other being (o custkey, c custkey). Thus each
edge is checked for its presence and in this case, the candidate graph itself is the join graph as well.
For query Q3, the added join predicates are:

JE = {l orderkey = o orderkey, o custkey = c custkey}.

Lemma 2: For a hidden query QH ∈ EQC, UNMASQUE correctly extracts JGE , or equivalently,
JE .

Proof. It is easy see that when there is only one edge in the cycle, it will be correctly extracted as the
output after removing it will be empty iff this edge is present in the join graph. For the edges that belong
to bigger cycles, we prove the claim by contradiction. Consider an edge (u, v) that belongs to JGE but
UNMASQUE fails to extract it (i.e. a false negative). This implies that when the edge (u, v) is removed
by value negation (with any other edge) the result continues to be populated. This is not possible if
(u, v) ∈ JGE as one of the nodes from u and v is negated.

On the other hand, consider an edge (u, v) ∈ C that is not part of JGE but UNMASQUE extracts it
(i.e. a false positive). This implies that when the edge (u, v) is explicitly removed along with any other
edge (x, y) by value negation, the result becomes empty. As there is no other filter on key attributes and
(u, v) /∈ JGE , every other edge in C must belong to the join graph. Now due to inner-equi joins (u, v)
also belongs to the join graph as it can be inferred by other edges of cycle C, a contradiction.

Example extracted graph along with actual join graph is shown in Figure 6. Note that, there is an
extra edge (cs item sk, inv item sk) in the extracted graph. However, due to inner equi-joins, the two
join graphs are semantically equivalent as this edge can be inferred from (i item sk, inv item sk) and
(cs item sk, i item sk).

9

Figure 6: Actual and Extracted join Graphs

Algorithm 1: Getting Join Graph JGE

G← Candidate Join Graph(cycles), JGE ← phi
while There is at least one cycle in G do

C ← Any cycle from G
if C contains a single edge (v1, v2) then

K ← v1; D1
mut← Negate(D1, K)

If F (D1
mut) = φ then JGE ← JGE ∪ C

G← G / C
else

foreach pair of edges (e1, e2) ∈ C do
K = Cut(C, e1, e2)
D1
mut← Negate(D1, K)

if F (D1
mut) = φ then

Add e1, and e2 back to C
else

G← G ∪ Partition(C, e1, e2)
break //Go to the start of while loop

end
end
JGE ← JGE ∪ C; G← G / C

end
end

10

3.4 Filter Predicates
We start by assuming that all columns in CE are potential candidates for the filter predicates FE inQH .
Each of them is then checked in turn with the following procedure: First, we evaluate whether there is a
nullity-related predicate on the column. If an IS NULL predicate is not present, we investigate whether
there is an arithmetic predicate, and if yes, the filter value(s) for the predicate are identified. These steps
are explained below in detail.

3.4.1 Nullity Predicates

A column value can satisfy only one of the two nullity predicates – IS NULL and IS NOT NULL.
Thus, we create a mutated version of D1 to check for the existence of one or the other, as follows: For
a column t.A having NULL in D1, create a D1

mut instance by replacing the NULL with any other value
in the domain of t.A. If running F on this D1

mut gives an empty result, add “A IS NULL” to FE . On
the other hand, for an attribute t.A having any value other than NULL in D1, create a D1

mut instance by
replacing the value of t.A with NULL. If running F on this D1

mut gives an empty result, add “A IS NOT
NULL” to FE .

3.4.2 Numeric Predicates

For ease of presentation, we start by explaining the basic idea for integer columns. Let [imin, imax] be
the value range of column A’s integer domain. We start by assuming that there is a range predicate
l ≤ A ≤ r, where l and r need to be identified. Note that all the comparison operators (=, <,>
,≤,≥, between) can be represented in this generic format – for example, A < 25 can be written as
imin ≤ A ≤ 24.

Now, to check if there is a filter predicate on column A, we first create a D1
mut instance by replacing

the value of A with imin in D1, then run F and get the result – call it R1. We get another result – call
it R2 – by applying the same process with imax. Now, the existence of a filter predicate is determined
based on one of the four disjoint cases shown in Table 2.

Case R1 = φ R2 = φ Predicate Type Action Required

1 No No imin ≤ A ≤ imax No Action
2 Yes No l ≤ A ≤ imax Find l
3 No Yes imin ≤ A ≤ r Find r
4 Yes Yes l ≤ A ≤ r Find l and r

Table 2: Filter Predicate Cases

These cases hold because there is no other filter source (e.g. HAVING clause) in EQC. Now, if
the match is with Case 2 (resp. 3), we can use a binary-search-based approach over (imin, imax] (resp.
[imin, imax)), to identify the specific value of l (resp. r). However, a better strategy would be to utilize
the value of A already present in D1– if this value is a, the binary search needs to be done only over
(imin, a] for l and over [a, imax) for r. After this search completes, the associated predicate is added
to FE . Finally, it is trivial to see that Case 4 is a combination of Cases 2 and 3, and can therefore be
handled in a similar manner.

We can easily extend the integer approach to float data types operating with fixed precision, as fol-
lows: First find the integral bounds as per above, and then the fractional bounds with a second binary
search. For example, with li and ri as the integral bounds identified in the first step, and assuming a
precision of 2, we search l in ((li − 1).00, li.00] and r in [ri.00, ri.99) in the second step.

11

Date Columns Extracting predicates on date columns is identical to that of integers, with the min-
imum and maximum expressible dates in the database engine serving as the initial range, and days
as the difference unit. For example, after identifying filter of type A ≤ r on o orderdate, we ap-
ply binary search strategy in range [‘1994-12-31’, r], where ‘1994-12-31’ is the value of o orderdate
in D1 (Figure 3), and r is the greatest allowed date value in the database engine (for PostgreSQL,
r = 5874897AD). Note that the same strategy can be applied to other datetime type columns with the
corresponding change in the resolution of values.

Boolean Columns With a single row, a boolean column can have only one of True or False values.
Therefore, to identify a filter on boolean column t.A, we create a D1

mut by replacing its value in D1

with True (resp. False) if the current value in D1 is False (resp. True) and get the result. If the result
is empty, add “A = False” (resp. “A = True”) to FE .

3.4.3 Character Columns

The extraction procedure for character columns is more complex because strings can be of varying
length and the filters may contain wildcard characters (‘ ’ and ‘%’). To check for the existence of a
filter predicate, we create two different D1

mut instances by replacing the value of A initially with an
empty character and then with a single character – say ‘a’. The executable F is invoked on both these
instances and the result characteristics are noted.

We conclude that there is a filter predicate in operation iff the result is empty in one or both cases. To
prove the if part, it is easy to see that, given the absence of other filter sources in EQC, if the result is
empty in either of the cases, there must be some filter criteria on A. For the only if part, the result will
be populated for both the cases in only one extreme scenario – A like ‘%’, equivalent to no filter on A.

After confirming the existence of a filter predicate on A, we extract the specific predicate in two
steps. Before getting into the details, we define a term called Minimal Qualifying String (MQS). Given
a character/string expression val, its MQS is the string obtained by removing all occurrences of ‘%’
from val. For example, “UP ” is the MQS for ”%UP %”. Note that each character of MQS, with the
exception of wildcard ’ ’, must be present in the data string to satisfy the filter predicate.

Given the above formulation, the first step is to identify MQS using the actual value of A in D1,
denoted as the representative string, or rep str. The basic idea is to loop through all the characters of
rep str and determine whether it is present as an intrinsic character of the MQS or invoked through
the wildcards (‘ ’ or ‘%’). This is achieved by replacing, in turn, each character of rep str in D1 with
some other character, executing F on this mutated database, and checking whether the result is empty
– if yes, the replaced character is part of MQS; if no, this character was invoked through wildcards.
In this case, further action is taken to identify the correct wildcard character. The formal procedure is
detailed in Algorithm 2. Note that in case the character in rep str occurs more than once without any
intrinsic character in between, and only one of them is part of MQS, our procedure puts the rightmost
character in MQS.

Lemma: For a query in EQC, Algorithm 2 correctly identifies MQS for a filter predicate on
character attribute.

Proof. The correctness of the algorithm 2 can be established using contradiction for each of the possible
failed cases. For example, let us say a character ‘a’ belonged to MQS but the procedure fails to identify
it. This means that after removing ‘a’ from rep str, the result is still non-empty (the filter condition was
satisfied). This is possible when ‘a’ occurs more than once in rep str and there is at least one occurrence
which is part of the replacement for wildcard ‘%’. However, the procedure will keep removing ‘a’ until

12

Algorithm 2: Identifying Minimal Qualifying String MQS
Result: MQS
Input: Column A, rep str, D1

itr = 0; MQS = “”
while itr < len(rep str) do

temp = rep str
temp[itr] = c where c 6= rep str[itr]
D1
mut← D1 with A’s value replaced with temp

result = F (D1
mut)

if result = φ then
MQS.append(rep str[itr++])

else
temp.remove char at(itr)
D1
mut← D1 with A’s value replaced with temp

result = F (D1
mut)

if result = φ then
MQS.append(’ ’); itr++

else
rep str.remove char at(itr)

end
end

end

there is no occurrence left which is part of replacement for wildcard ‘%’. After that, removing ‘a’ will
lead the corresponding filter predicate to fail. If this is not the case, ‘a’ is not present in the MQS, a
contradiction. Similarly, the correctness for other cases can be proved.

After obtaining the MQS, we need to find the locations (if any) in the string where ‘%’ is to be
placed to get the actual filter value. This is achieved with the following simple linear procedure: For
each pair of consecutive characters in MQS, we insert a random character that is different from both
these characters. A populated result for F on this mutated database instance indicates the existence of
‘%’ between the two characters. The inserted character is removed after each iteration and we start with
the initial MQS for each successive pair of consecutive characters. This makes sure that we correctly
identify the locations of ‘%’ without exceeding the character length limit for A. For the example query
Q3, the predicate value for c mktsegment turns out to be the MQS itself, namely ‘BUILDING’.

At last, if both the nullity predicate IS NOT NULL and another filter predicate have been identified
on a column t.A, the nullity-related predicate is extraneous and hence removed from FE . Overall, for
query Q3, we identify the following filter predicates:

FE = { o orderdate ≤ date ‘1995-03-14’,
l shipdate ≥ date ‘1995-03-16’,
c mktsegment = ‘BUILDING’}

13

3.5 Projections
It is a common practice to assign a user-friendly name to the result columns using the AS construct.
In such a case, we need to map the result column to the corresponding projected column from the
database. As mentioned earlier, the PROJECTION EXTRACTOR module of UNMASQUE extracts
the set of all projected columns as native projections P̃E , some of which are subsequently refined
to aggregations (AE) in Generation Pipeline. The projected columns are extracted in two steps: (i)
Candidate Identification, and (ii) Pruning.

In the first step, UNMASQUE identifies the candidate set of projected columns for each result col-
umn. This is achieved by comparing the value in the result column to the values in D1. If the result
value matches multiple columns, the correct single match is identified in the pruning step. In the prun-
ing step, a D1

mut instance is created by mutating the values of candidate columns in D1 such that each
candidate column gets a unique value while satisfying the filter and join predicate(s). We begin by
assigning values to the columns with filter predicates on them. This operation will be different for
different data types, and we explain the procedure for numeric data types here. For all the numeric
columns with filter predicates, we first compute the set of non-overlapping ranges from the set of al-
lowed ranges in each such column. Then, for each column in this class, we assign a random value from
the corresponding unique range. The remaining columns are assigned values by traversing the sorted
set of all assigned values and picking a value that has not yet been utilized. Similar methods can be used
to assign values to columns of other types as well. For example, for character columns with filter predi-
cates, the wildcard characters are used to generate unique values. Then, F is executed and the projected
column is identified as the one whose value matches the result column value; this mapping is added to
P̃E . A problem, however, is that it may not always be possible to mutate D1 in the above manner. For
example, let the candidate columns be {A,B,C} with filter constraints {A = 2, B = 3, 2 ≤ C ≤ 3}.
In such cases, the candidates cannot be removed in one go, but instead have to be iteratively pruned one
by one. Further, if multiple candidates continue to remain due to matching filter or join predicates, any
one of the candidates can be selected. For example, if the filter constraints are {A = 3, B = 3, C = 3},
then any of A,B,C can be treated as a projected column. Finally, when the result column represents
count(*), it will not have a matching column. Such columns are added to P̃E with no mapping and are
subsequently characterized by the Aggregation 4.2 module.
Applying the above procedure to query Q3, we get:
P̃E = {”l orderkey: l orderkey”, ”revenue:l extendedprice”,
”o orderdate: o orderdate”, ”o shippriority:o shippriority”}.

4 Generation Pipeline
The GAOL part of the query, corresponding to the GROUP BY (GE), AGGREGATION (AE), ORDER

BY (
−→
OE) and LIMIT (lE) clauses, is extracted in the Generation Pipeline segment of UNMASQUE.

Here, synthetically generated miniscule databases are used for all the extractions, as described in the
remainder of this section.

4.1 Group By Columns
For each column t.A in CE (the set of columns in TE), we generate a database instance Dgen and
analyze F (Dgen) for the existence of t.A in the GROUP BY clause.

14

Assume for the moment that we have generated a Dgen such that the intermediate result produced
by the SPJ part of QH contains 3 rows satisfying the following condition: t.A has a common value in
exactly two rows, while all other columns have the same value in all three rows. Now, if the final result
contains 2 rows, it means that this grouping is only due to the two different values in t.A, making it part
of GE . This approach of such intermediate result generation is similar to those presented in [16, 23]

One may argue the need for minimum 3 rows in the intermediate result for such determination.
Clearly, by generating a single row in the intermediate result, no determination can be made about
grouping on the final result as no groups will be created. Now let us say, we generate a database
instance such that the intermediate result produced by SPJ part of QH has two rows. To check if
an attribute A belongs to group by clause, we need to generate a database satisfying the following
condition: A has same value in both the rows and each of the other columns has different values
for both the rows. This approach is feasible if only one column is there in the group by clause. In
case of multiple columns in group by clause, the columns already identified in group by clause may
be assigned values in two ways. If we assign two different values to such attributes, even if there is
grouping on A, the rows will not be merged due to other grouping column with two different values.
On the other hand, if we assign same values to such attributes, even if there is no grouping on A,
the rows will be merged due to other grouping column with same values. However, with three rows,
those other attributes being assigned a common value, do not affect the grouping. So we need at least
three rows to be present in the intermediate result. Now, if generate a 2 row database satisfying the
following condition: A has different values in both the rows and each of the other columns has same
value for both the rows, then presence of two rows in final output may indicate either grouping on A or
no grouping at all. This approach, however can be used with some additional checks. The reason for
using 3 row approach is that, in the first iteration, we can identify all the three case, (i) Group by on A,
(ii) No group by on A and (iii) No group by at all in the first iteration itself.

We do not explicitly check for columns with equality filter predicates. The reason being: when used
with any other column that can take two different values, these columns have no affect on grouping and
when used otherwise, the query is equivalent to an SPJA query which we handle separately at last.

Generating Dgen

We now explain how to produce the desired Dgen for checking the group-by membership of a generic
column t.A. In our description, assigning (p, q, r, ...) to t.A means assigning value p in the first row,
q in the second row, r in the third and so on. The database generation is performed differently for the
following two disjoint cases:

(Case 1) t.A /∈ JGE In this case, 3 rows are generated for table t and only one row in each of the
other tables in TE . For column t.A, any two different values p and q that satisfy all associated filter
predicates are assigned. If no filter exists, any two values from t.A’s domain are taken (e.g. p = 1 and
q = 2 for numeric). After that, we assign (p, p, q) to t.A.

For all other columns in t, such as t.X , a single value r that satisfies its associated filter predicates
(if any) is selected, and (r, r, r) is assigned to t.X . If there is no filter, any value from its domain (e.g.
r = 1 for numeric) is assigned. Finally, if t.X ∈ JGE , a fixed value of r = 1 is assigned (consistent
with the assumption of integral keys). A similar assignment policy is used for all columns belonging to
the remaining tables t′ in TE .

An example Dgen for checking the presence of o orderdate in GE is shown in Figure 7. Here, the
ORDERS table features 3 rows with p = ‘1995-03-13’ and q = ‘1995-03-14’, while the remaining tables,

15

LINEITEM and CUSTOMER, have single rows.

Figure 7: Dgen for Grouping on o orderdate (Q3)

(Case 2) t.A ∈ JGE Firstly, the assignment of values to t.A is similar to the policy followed above
for Case 1, the only difference being that p and q are assigned fixed values of 1 and 2, respectively.

Secondly, for all tables t′ having a column t′.B such that there is a path between t.A and t′.B in
JGE , two rows are generated with all such t′.B being assigned fixed values (1,2). All other columns
are assigned values just like for t′.X in Case 1, except that the assignment is now duplicated across the
two rows.

Finally, for all other tables, t′′, a single row is generated in exactly the same manner as that for t′.X
in Case 1.

An example Dgen for checking the presence of l orderkey in GE is shown in Figure 8. Here, there
are 3 rows for LINEITEM, 2 rows for ORDERS and 1 row for CUSTOMER.

Figure 8: Dgen for Grouping on l orderkey (Q3)

It is straightforward to see by inspection that, with our assumption of key-based inner equi-joins,
the above data generation procedure results in ensuring the desired conditions for the intermediate SPJ
result. Namely, that it will contain 3 rows with all columns having the same value across the 3 rows
except for the attribute under test which has two values across these rows.

16

After all attributes have been processed in the above manner, if GE turns out to be empty, we create
a Dgen with each table having two rows, each column in the join-graph assigned fixed values (1, 2),
and any two different values to all other columns while satisfying all filter predicates. Then, F is run
on this Dgen, and if the result contains just one row, we can conclude that the query has an ungrouped
aggregation.

Overall, the above procedure produces for Q3:
GE = {l orderkey, o shippriority, o orderdate}.

4.2 Aggregation Functions
We explain here the procedure for identifying aggregations (min(), max(), count(), sum(), avg()) on
numeric attributes. Similar methods can be used for textual/date attributes as well. Also, for ease of
presentation, we first assume that there is no aggregation with DISTINCT keyword – such cases are
explained in this section at last.

To identify an aggregation function on t.A (where A is a projected attribute that is not in GE),
our objective is to generate a database Dgen such that the final result cardinality is 1, and each of
the five possible aggregation functions on t.A results in a unique value, thereby allowing for correct
identification of the specific function. We call this the “target result”.

Now, for t.A, as we want min() and max() to be different, we need at least two different values. To
ensure unique values for all the aggregations in the final output, we employ the following approach.
Consider a pair of integers a and b such that a 6= 0 and a 6= b, and let k + 1 be the number of rows in
the intermediate result produced by the SPJ part of the query. Further, in this intermediate result, let
t.A = a in k rows and t.A = b in the remaining row, and k satisfy the following constraints:

k /∈

{
0, a− 1, b− 1,

a− b
a

,
1− b
a− 1

,
(a− 2)±

√
(a− 2)2 − 4(1− b)

2

}
(1)

These constraints on k have been derived by computing pairwise equivalences of the five aggregation
functions, and forbidding all the k values that result in equality. Now, additionally if we ensure that the
GE attributes are assigned common values in all the rows, the result of F will be the target result.

The reason that the target result is produced is (i) the result cardinality is 1 since there is a common
set of values for the GE attributes, and (ii) the constraints on k ensure unique aggregated output of all
the aggregated functions for t.A. Note that if there is a filter predicate with equality operator on t.A, we
have to take a common value which satisfies the corresponding filter predicate. In such a case, a = b
and k /∈ {0, (a-1)}. Here, multiple aggregations on t.A may be equivalent (e.g. min(), max(), avg()), so
we take any of the equivalent aggregation functions.

Generating Dgen

The data generation process to obtain the above intermediate result is similar to the Dgen generation of
GROUP BY (explained in Section 4.1), with the following changes:

• k + 1 rows are generated for table t, with t.A assigned value a in k rows and value b in the
remaining row.

• With respect to Case 2 (t.A ∈ JGE) in Section 4.1, the assignments of fixed values 1, 2 are
replaced with values a, b.

17

Figure 9: Dgen for Aggregation on l extendedprice (Q3)

To choose a and b, any two values that are consistent with the filter predicates (if any) on t.A can be
chosen. Further, the least positive integer satisfying Equation 1 is chosen as k. A sample Dgen to check
for aggregation on l extendedprice is shown in Figure 9. As there is no filter on this attribute, we set
a = 3 and b = 4 since these are the lowest positive values for which k = 1 is feasible.

After getting Dgen, we run F and the aggregation is identified by matching the result column value
(corresponding to t.A) with the corresponding unique values for the five aggregations. The identified
aggregation along with the mapping to the corresponding result column is added to AE .

At last, entries corresponding to all the aggregated attributes are removed from P̃E and inserted in
AE . Further, if there remains an unmapped output column in P̃E , it is removed and count(∗) is added
to AE . Whatever remains in P̃E now constitutes the native (i.e. unaggregated) PE .

With the above procedure, we finally obtain for Q3:
AE = {sum(l extendedprice):revenue}
PE = {”l orderkey:l orderkey”,

”o orderdate:o orderdate”,
”o shippriority:o shippriority”}

Extension to DISTINCT keyword

In case the aggregation can be present with DISTINCT keyword as well, the following cases may
happen as a result of identifying aggregation (without distinct) using above method:

Case1 - min() or max() aggregation is identified: In such a case, no action is required as min() or
max() produces exactly same result with/without unique.

Case2 - No aggregation is identified: In such a case, the aggregation on t.A is one of
sum(DISTINCT A), avg(DISTINCT A) or count(DISTINCT A). To identify the correct aggregation, we
generate the Dgen with t.A having values (p, p, q) such that p 6= q and (p+ q) /∈ 2, 4 to get value for all
three aggregated results unique.

Case3 - Aggregation other than min() or max() is identified: In such a case, the possible actual
aggregations on A are sum(DISTINCT A), avg(DISTINCT A), count(DISTINCT A) or the one identified
without distinct. In such a case, we generate databases to prune out this list one by one. for example,
let us say that sum (A) is the identified projection. To prune out one of sum(A) and sum(DISTINCT A),
we generate a Dgen instance with k = 2 and a 6= 0. Similarly, other candidates can be pruned out as

18

well. Note that in case of equivalent aggregations, anyone can be chosen.

Extension to non-Numeric Attributes

In case of non-numeric attribute A, we need to find existence of min() or max() only. In such a case,
we take k = 1 and take two different values a and b from the domain of A. The rest of the procedure
remains same.

4.3 Order By

We now move on to identifying the columns present in
−→
OE . As mentioned in Section 2, a special feature

of ORDER BY is that it is a sequence, and not a set unlike all the other clauses in the query.
A basic difficulty here is that the result of a query can be in a particular order either due to: (i) explicit

ORDER BY clause in the query or (ii) a particular plan choice (e.g. Index-based access or Sort-Merge
join). Given our black-box environment, it is fundamentally infeasible to differentiate the two cases.
However, as described below, our identification approach is such that: (a) it is unlikely to have plan-
induced orderings, and (b) even if there are such extraneous orderings, the query semantics will not be
altered.

For simplicity, we first assume here that count() /∈ AE and that no aggregated attribute features in
an equality predicate – the procedure to handle these cases is described in the section at last.

Order Extraction

We start with a candidate list comprised of the projected attributes in PE ∪ AE . From this list, the
attributes in

−→
OE are extracted sequentially starting from the leftmost index. The process stops when

either (i) all candidates have been included, or (ii) all functionally-independent attributes of GE have
been included in

−→
OE , or (iii) no sort order can be identified for the current index position.

To check for the existence of a column t.A (or its corresponding AS-renamed output column) at
position i, we create a pair of 2-row database instances – D2

same and D2
rev. In the former, the sort-order

of t.A is the same as that of all the other projected attributes, whereas in the latter, the sort-order of t.A
alone is reversed with respect to the other projected attributes. An example instance of this database
pair is shown for revenue (corresponding to sum(l extendedprice)) in Figure 10.

We use the following procedure to create D2
same: Firstly, for column t.A, assign a pair of values p

and q such that p < q, and they satisfy the filter predicate (if any) on t.A. If t.A ∈ JGE , assign fixed
values p = 1 and q = 2. Then, identify all attributes B ∈ JGE that are already present in

−→
OE . All

such columns, as well as columns corresponding to their connected components in JGE , are assigned
values (1, 1). The data generation for the remaining columns of all the tables is as follows: (i) Each
column with a path to t.A in JGE is assigned exactly the same values that are present in t.A. (ii)
Attributes currently present in

−→
OE are assigned a single value r satisfying their filter predicate (if any).

(iii) Attributes in equality filter predicates are assigned a single value r satisfying the equality condition.
(iii) For all other attributes, two values r and s are assigned such that r < s and both r and s satisfy the
associated filter predicate (if any).

The procedure for creating D2
rev is the same as above except that (q, p) is assigned to t.A so as to

reverse the order.
Database construction in the above manner ensures both the rows form individual groups, so aggre-

gated columns can be effectively treated as projections (except for count(), which requires a different
mechanism, explained at last).

19

Figure 10: D2
same and D2

rev for Ordering on revenue (Q3)

Thus, even if t.A is not a projected attribute, we can derive its ordering in the result by the ordering
of the other projected attributes. After generating D2

same and D2
rev, we run QH for both the instances

and analyze the results. If the values in t.A are sorted in the same order for both the results, t.A along
with its associated order, is added to

−→
OE at position i. The correctness for this step is explained as

follows:
Lemma 4: With the above procedure, if t.A is not the rightful column at position i in

−→
OE , and

another attribute B is actually the correct choice, then the values in t.A will not be sorted in the same
order in the two results.

Proof. Firstly, as each column in the existing identified
−→
OE is assigned the same value in both the rows,

they have no effect on the ordering induced by other attributes. Now, let us say that the next attribute in−→
OE is B (asc) but UNMASQUE extracts t.A. Now in the result corresponding to D2

same, the values in
t.A will also be sorted in ascending order. But in the result corresponding to D2

rev, the values in A will
be sorted in descending order (due to ascending order on B), a contradiction.

With the above procedure, we finally obtain for Q3:−→
OE = {revenue desc, o orderdate asc}

A closing note on the potential for spurious columns appearing in GE due to plan-induced ordering:
Since D2

same and D2
rev are extremely small in size, it is unlikely that the database engine will choose a

plan with sort-based operators – for instance, it would be reasonable to expect a sequential scan rather
than index access, and nested-loops join rather than sort-merge. In our experiments, we explicitly
verified that this was indeed the case.

20

Extension1: count(*) ∈ AE

In the case when count(*) ∈ AE , the two rows in each of the tables is not enough as the count() value
for both the groups will be one. In such case, we need an intermediate result (on which grouping will
be applied) with 3 rows such that two rows form one group and the third row forms another group.
Also, the values in the rows should be according to the order desired after grouping of the intermediate
result. So the data generation process is as follows:

To generate data for D2
rev, we first choose a table t with at least one attribute in group by clause that

can take two different values. For each attribute t.X in t, we take two different values (p and q) such that
p < q and assign values (p, p, q) to it. In case the attribute is a key attribute we take fixed values p = 1
and q = 2. In other cases, we take p and q satisfying the corresponding filter predicates (if any). For all
the other tables t′, we generate two rows with each attribute having two different values (p and q) such
that p < q. In case of key attributes, take p = 1andq = 2. In other cases, take p and q satisfying the
corresponding filter predicates (if any). Note that in the above procedure, if we encounter an attribute
with equality filter predicate, we take p = q = val where val satisfies the corresponding filter predicate.

Data generation for D2
same is similar as for D2

rev with the only change being the values of p and q are
now swapped. The further procedure of running F and analyzing the results is the same as explained
in order extraction part of the section. A sample D2

same and D2
rev database instance for a hypothetical

scenario where revenue is replaced by count(*) is shown in Figure 11.

Figure 11: D2
same and D2

rev for Ordering on count(*) (Hypothetical scenario:Q3)

21

Lastly, in case count(DISTINCT t.A) ∈AE , the data generation process is the similar with the change
that A is assigned values (p, q, p) in both the cases.

Extension2: t.A : (“t.A = val” ∈ FE ∧ (agg func(t.A) ∈ AE)

In case there is min(), max() or avg() aggregation on A, the attribute can be treated as natively projected
attribute because each group in the output will have exactly the same value for A. Now, if sum(t.A) ∈
AE , the data generation process is same as in Extension 1. Also note that, the aggregation case with
DISTINCT keyword is equivalent to non-aggregated projection.

4.4 Limit
If the query is an SPJA query, there is no need to extract lE since there can be only one row in any
populated result. But in the general SPJGAOL case, the only way to extract lE is to generate a database
instance such that F produces more than lE rows in the result R, subject to a maximum limit imposed
by the GROUP BY clause.

The number of different values a column can legitimately take is a function of multiple parameters
– data type, filter predicates, database engine, hardware platform, etc. Let n1, n2, n3, .. be the num-
ber of different values, after applying domain and filter restrictions, that the functionally-independent
attributes A1, A2, A3, .. in GE can respectively take. This means that there can be a maximum of
n1 ∗ n2 ∗ n3 ∗ ... = lmaxE groups in the result. Thus, lE values up to lmaxE can be extracted with this
approach.

To extract lE , UNMASQUE iteratively generates database instances such that the result-cardinality
follows a geometric progression starting with a rows and having common ratio r(> 1). We set a =
max (4,cardinality of R) to be consistent with our extraction requirement for GE which required a
permissible result cardinality of upto 3 rows. And r can be set to a convenient value that provides a
good tradeoff between the number of iterations (which will be high with small r) and the setup cost of
each iteration (which will be high with large r). In our experiments, r = 10 was used. This appears
reasonable given that the lE value is typically a small number in most applications – for instance, in
TPC-H, the maximum is 100, and in general, we do not expect the value to be more than a few hundreds
at most.

Generating Dgen for desired R cardinality

To get n rows in the result prior to the limit kicking in, we generate a database instance with each table
having n rows such that the functionally-independent attributes in GE have a unique permutation of
values in each row. Specifically, all the attributes appearing in JGE are assigned values (1, 2, 3, ..., n)
and the other attributes are assigned any value satisfying their filter predicates (if any). If the result
of applying F on this database contains m rows with m < n, then we can conclude that LIMIT is in
operation and equal to m.

With the above procedure, we finally obtain for Q3:
lE = 10

Extension to non-integral Key attributes
There are various applications (e.g. Wilos [45]) which use non-integral keys as identifier in the
database tables. We assume that the domain of each key attribute contains at least two different values.

22

To handle non-integral keys, the following changes are required:

In Mutation Pipeline, only the join predicate extraction module require changes. In this module,
instead of negating the values in one of the components, we choose two different fixed values (say
p and q) from the domain of the key attribute and assign p attributes in one component and q to the
attributes in the other component.

For every module in Generation Pipeline, we again take two different fixed values (say p and q) from
the domain of the key attribute. Then, all the assignments that use fixed value 1 are replaced with value
p and all the the assignments that use fixed value 2 are replaced with value q.

5 Experiments
Having described the functioning of the UNMASQUE tool, we now move on to empirically evaluating
its efficacy and its efficiency. Our experiments were conducted on a representative suite of twelve
SPJGAOL queries based on different queries of the TPC-H benchmark, with the primary changes
being the removal of nested queries and UDFs – the specific queries are listed in the Appendix, and
are similar in complexity to the Q3 running example. We hereafter refer to them by their associated
TPC-H query identifiers.

Each query was passed through a Cpp program that embedded the query in a separate executable.
These executables formed the input to UNMASQUE, which has been implemented in Python, and were
invoked on the TPC-H database, assuring a populated result.

UNMASQUE’s ability to non-invasively extract the above queries was assessed on a 100 GB version
of the TPC-H benchmark, and to profile its scaling capacity, also on a 1 TB environment. All the
experiments were hosted on a well-provisioned4 PostgreSQL 11 database platform.

We have also run UNMASQUE on (i) the TPC-DS benchmark with PostgreSQL and 100 GB
database version, and (ii) the TPC-H benchmark with SQL Shield encrypted queries on Microsoft
SQL Server [36]. The performance results were of a similar nature.

Correctness We compared the QE output by UNMASQUE on the above QH suite with the original
queries. Specifically, we verified, both manually and empirically with the automated Checker compo-
nent of the pipeline, that the extracted queries were semantically identical to their hidden sources.

Efficiency The total end-to-end time taken to extract each of the twelve queries on the 100 GB TPC-
H database instance is shown in the bar-chart of Figure 12. In addition, the breakup of the primary
pipeline contributors to the total time is also shown in the figure.

We first observe that the extraction times are practical for offline analysis environments, with all
extractions being completed within an hour. Secondly, there is a wide variation in the extraction times,
ranging from a few minutes (e.g. Q2) to almost an hour (e.g. Q5). The reason is the presence or absence
of the lineitem table in the query – this table is enormous in size (around 0.6 billion rows), occupying
about 75% of the database footprint, and therefore inherently incurring heavy processing costs.

Drilling down into the performance profile, we find that the first two modules of the UNMASQUE
pipeline, FROM clause (purple color) and MINIMIZER (blue color), take up the lion’s share of the ex-
traction time, the remaining modules (red color) collectively completing within a few seconds. For in-
stance, forQ5 which consumed around 51.15 minutes overall, FROM and MINIMIZER expended around

4Intel Xeon 2.3 GHz CPU, 128GB RAM, 3TB Disk, Ubuntu Linux

23

Figure 12: Hidden Query Extraction Time (TPC-H 100 GB)

13 minutes and 38 minutes, respectively, and only a paltry 9 seconds was taken by all other modules
combined.

The extreme skew is because these two modules operate on the original large database, whereas,
as described in Sections 3 and 4, the remaining modules work on miniscule mutations or synthetic
constructions that contain just a handful of rows. Interestingly, although the executable F was invoked
a few hundred times during the operation of these modules, the execution times in these invocations
was negligible due to the tiny database sizes.

Optimizations We now go on to show how even these initial time-consuming pipeline components
could be substantially improved with regard to their efficiency.

Firstly, the FROM clause implementation in the above experiments used the “execution-with-zero-
result” approach (Section 3.1) to identify the tables. However, if we choose the alternative “execution-
with-error” approach, the identification is completed in just a few seconds!

Secondly, instead of executing MINIMIZER on the entire original database, sampling methods that
are natively available in most database systems could be leveraged as a pre-processor to quickly reduce
the initial size. Specifically, we iteratively sample the large-sized tables, one-by-one in decreasing size
order, until a populated result is obtained. The sampling is done using the following SQL construct:

select * from table where random() < 0.SZ ;
which creates a random sample that is SZ percent relative to the original table size. An interesting op-
timization problem arises here – if SZ is set too low, the sampling may require several failed iterations
before producing a populated result. On the other hand, if SZ is set too large, unnecessary overheads
are incurred even if the sampling is successful on the first attempt. At the current time, we have found
a heuristic setting of SZ = 2% to consistently achieve both fast convergence (within two iterations) and
low overheads. In our future work, we intend to theoretically investigate the optimal tuning of the SZ
parameter.

The revised total execution times after incorporating the above two optimizations, are shown in
Figure 13, along with the module-wise breakups. We see here that all the queries are now successfully
identified in less than 10 minutes, substantially lower as compared to Figure 12. Further, the FROM

clause takes virtually no time, as expected, and is therefore included in the Other Modules category
(green color). And in the MINIMIZER, the preprocessing effort spent on sampling (maroon color) takes

24

Figure 13: Optimized Hidden Query Extraction Time (TPC-H 100GB)

Figure 14: Optimized Hidden Query Extraction Time (TPC-H 1 TB)

the majority of the time, but greatly speeds up the subsequent recursive partitioning (pink color).
An alternative testimonial to UNMASQUE’s efficiency is obtained when we compare the total ex-

traction times with their corresponding query response times. For all the queries in our workload, this
ratio was less than 1.5. As a case in point, a single execution of Q5 on the 100GB database took around
6.7 minutes, shown by the red dashed line in Figure 13, while the extraction time was just under 10
minutes.

Finally, as an aside, it may be surmised that popular database subsetting tools, such as Jailer [32]
or Condenser [43], could be invoked instead of the above sampling-based approach to constructively
achieve a populated result. However, this is not really the case due to the following reasons: Firstly,
these tools do not scale well to large databases – for instance, Jailer did not even complete on our 100
GB TPC-H database! Secondly, although they guarantee referential integrity, they cannot guarantee
that the subset will adhere to the filter predicates – due to the hidden nature of the query. So, even with
these tools, a trial-and-error approach would have to be implemented to obtain a populated result.

Scaling Profile To explicitly assess the ability of UNMASQUE to scale to larger databases, we also
conducted the same set of extraction experiments on a 1 TB instance of the TPC-H database. The
results of these experiments, which included all optimizations, are shown in Figure 14. We see here
that all extractions were completed in less than 25 minutes each, demonstrating that the growth of
overheads is sub-linear in the database size. In fact, a single query execution of Q5 on this database

25

Figure 15: Hidden Query Extraction Time (TPC-DS 100 GB)

took around 72 minutes, almost 3 times the query extraction time. Further, here too an SZ setting of 2
% proved to be a viable choice that provided fast convergence and low overheads.

TPC-DS Results for 100 GB The bar-chart in Figure 15 shows the time taken to extract 7 queries
sourced from TPC-DS benchmark (along with there identifier numbers) on a 100 GB database version.
The exact queries are listed in Appendix. We can see that all the queries were extracted within 4
minutes. It may surprise at first that the time taken in this case is lesser than the time for TPC-H queries
and also, the variation amongst queries is very less. The reason is that the table sizes in TPC-DS are
not that skewed as in TPC-H. So, no table in TPC-DS is as huge as lineitem table of TPC-H.

Imperative to SQL Translation We found that for Enki, 14 out of 17 and for blog 2 out of 2 com-
mands were extracted (except insert, update, etc.). Table 3 shows the SQL queries extracted w.r.t. the
commands. We have omitted five commands due to lack of space as those were simple table scans.
The queries corresponding to remaining three commands did not belong to EQC and only SPJ part
was extracted correctly for them. We manually verified that all the commands in table 3 were extracted
correctly.

We have included following applications for imperative to SQL translation:
1) Enki Blogging Application Enki [33] is an open source application, built with Ruby on Rails, with
over 800 stars on GitHub. Enki commands enable the author of the blog to navigate pages, posts, and
comments.
2) Blog: The Blog application is an example obtained from the Ruby on Rails website [39]. It im-
plements a command that retrieves all articles and a command that retrieves a specific article and its
associated comments.
The Enki and Blog servers receive HTTP requests, interact with the database accordingly, and respond
the client with an HTML page that contains the data retrieved. Enki uses a total of eight database tables
and Blog uses two database tables. We created a synthetic database of 10 MB size which gives non-
empty result for each of these commands. Along with UNMASQUE, we used Selenium [35] to send an
HTTP request and receive the results in HTML page from which the database results are automatically
extracted. We found that for Enki, 14 out of 17 and for blog 2 out of 2 commands were extracted
(except insert, update, etc.). Table 3 shows the SQL queries extracted w.r.t. the commands. We have
omitted five commands as those were simple table scans. The queries corresponding to remaining three
commands did not belong to EQC and only SPJ part was extracted correctly for them. We manually

26

Command Application Extracted SQL Complexity Time
get admin comments Enki Project, Join, OrderBy, Limit 1.2 sec
get admin pages Enki Project, OrderBy, Limit 1 sec
get admin pages id Enki Select, Project, Limit 1 sec
get admin posts Enki Project, Join, GroupBy, OrderBy, Limit 2.5 sec
get admin posts id Enki Select, Project, Limit 1 sec
get admin comments id Enki Select, Project, Limit 1 sec
get admin undo items Enki Project, Order by, Limit .5 sec
get latest posts Enki Select, Project, Join, Filter, GroupBy, Order By, Limit 1.5 sec
get user posts Enki Select, Project, Join, Filter, Group By, Order By, Limit 2.5 sec
get latest posts by tag Enki Select, Project, Join, Filter, GroupBy, OrderBy, Limit 2.5 sec
get article for id Blog Select, Project, join 1 sec

Table 3: Imperative to SQL Translation

verified that all the commands in table 3 were extracted correctly. As a sample instance, consider the
“get latest posts by tag” command, a snippet of which is outlined in Figure 16a. The corresponding
UNMASQUE output is shown in Figure 16b, and was produced in just 2.5 seconds.

(a) Imperative Function Code (snippet) (b) Extracted Query (cur timestamp is a constant)

Figure 16: Imperative to SQL Translation

6 Conclusions and Future Work
We introduced and investigated the problem of Hidden Query Extraction, which has a variety of real-
world use-cases. As the first step toward solving this problem, we presented the UNMASQUE algo-
rithm, which is based on a combination of database mutation and database generation pipelines. An
attractive feature of UNMASQUE is that it is completely non-invasive, facilitating its deployment in a
platform-independent manner.

UNMASQUE is capable of identifying a large class of hidden SPJGAOL queries, similar to those
present in the decision-support benchmarks. For the most part, the extraction pipeline works on minis-
cule databases designed to contain only a handful of rows. The effects of these optimizations were
visible in our experimental results which demonstrated that query extraction could be completed in
times comparable with normal query response times in spite of a large number of executable invoca-
tions.

A natural question to ask at this point is whether it appears feasible to extend the scope of our ex-
traction process to a broader range of common SQL constructs – for instance, outer-joins, disjunctions
and nested queries. As mentioned previously, none of these constructs are handled by the current set
of QRE tools. However, based on some preliminary investigation, it appears that outer-joins and dis-
junctions could eventually be extracted under some restrictions – for instance, the IN operator can be

27

handled if it is known that the database includes all constants that appear in the clause.
In our current work, we are attempting to extend the scope of EQC to include the Having clause on

groups, a common construct in real-world applications. Also, a mathematical analysis to help choose
the appropriate SZ setting for sampling. For the long-term, the extraction of nested queries and outer
joins poses a formidable challenge. More fundamentally, characterizing the extractive power of non-
invasive techniques is an open theoretical problem.

28

References
[1] A. Bonifati, R. Ciucanu and S. Staworko. Learning Join Queries from User Examples. ACM TODS,

40(4), 2016.

[2] B. Chandra. Automated Testing and Grading of SQL Queries. PhD Thesis, CSE, IIT Bombay, 2019.

[3] M. Chavan, R. Guravannavar, K. Ramachandra and S. Sudarshan. DBridge: A program Rewrite
Tool for Set-Oriented Query Execution. In Proc. of IEEE ICDE Conf., 2011.

[4] A. Cheung, A. Solar-Lezama and S. Madden. Optimizing Database-Backed Applications with
Query Synthesis. In Proc. of ACM PLDI Conf., 2013.

[5] P. da Silva. SQUARES : A SQL Synthesizer Using Query Reverse Engineering. Master’s The-
sis, Tecnico Lisboa, Nov 2019. web.ist.utl.pt/ist181151/81151-pedro-silva_
dissertacao.pdf

[6] R. DeMillo, R. Lipton and F. Sayward. Hints on Test Data Selection: Help for the Practicing
Programmer. Computer, 11(4), 1978.

[7] K. Emani, K. Ramachandra, S. Bhattacharya and S. Sudarshan. Extracting Equivalent SQL from
Imperative Code in Database Applications. In Proc. of ACM SIGMOD Conf., 2016.

[8] S. Gulwani. Automating string processing in spreadsheets using input-output examples. In Proc. of
ACM POPL Conf., 2011.

[9] R. Guravannavar, S. Sudarshan, A. Diwan and Ch. Babu. Which sort orders are interesting?. The
VLDB Journal 21, 2012.

[10] D. Kalashnikov, L. Lakshmanan and D. Srivastava. FastQRE: Fast Query Reverse Engineering.
In Proc. of ACM SIGMOD Conf., 2018.

[11] G. Karvounarakis, Z. Ives and V. Tannen. Querying Data Provenance. In Proc. of ACM SIGMOD
Conf., 2010.

[12] W. Kim. On Optimizing an SQL-like Nested Query ACM TODS, 7(3), 1982.

[13] H. Li, C. Chan and D. Maier. Query from Examples: An Iterative, Data-Driven Approach to
Query Construction. The VLDB Journal, 8(13), 2015.

[14] K. Panev and S. Michel. Reverse Engineering Top-k Database Queries with PALEO. In Proc. of
EDBT Conf., 2016.

[15] K. Ramachandra, K. Park, K. Emani, A. Halverson, C. Galindo-Legaria and C. Cunningham.
Froid: Optimization of Imperative Programs in a Relational Database. PVLDB, 11(4), 2017.

[16] S. Shah, S. Sudarshan, S. Kajbaje, S. Patidar, B. Gupta and D. Vira. Generating test data for killing
SQL mutants: A constraint-based approach. In Proc. of IEEE ICDE Conf., 2011.

[17] J. Shen and M. Rinard. Using Active Learning to Synthesize Models of Applications that Access
Databases. In Proc. of ACM PLDI Conf., 2019.

29

[18] Y. Shen, K. Chakrabarti, S. Chaudhuri, B. Ding and L. Novik. Discovering Queries based on
Example Tuples. In Proc. of ACM SIGMOD Conf., 2014.

[19] W. Tan, M. Zhang, H. Elmeleegy and D. Srivastava. Reverse Engineering Aggregation Queries.
PVLDB, 10(11), 2017.

[20] W. Tan, M. Zhang, H. Elmeleegy and D. Srivastava. REGAL+: Reverse Engineering SPJA
Queries. PVLDB, 11(12), 2018.

[21] Q. Tran, C. Chan and S. Parthasarathy. Query by Output. Technical Report, National Univ. of
Singapore, 2009.

[22] Q. Tran, C. Chan and S. Parthasarathy. Query Reverse Engineering. The VLDB Journal, 23(5),
2014.

[23] J. Tuya, M. Cabal and C. Riva. Full predicate coverage for testing SQL database queries. Software
Testing Verification and Reliability, 20(3), 2010.

[24] C. Wang, A.Cheung, R. Bodik. Synthesizing Highly Expressive SQL Queries from Input-Output
Examples. In Proc. of ACM PLDI Conf., 2017.

[25] W. Wong, B. Kao, D. Cheung, R. Li and S. Yiu. Secure query processing with data interoperability
in a cloud database environment. In Proc. of ACM SIGMOD Conf., 2014.

[26] M. Zhang, H. Elmeleegy, C. Procopiuc, and D. Srivastava. Reverse Engineering Complex Join
Queries. In Proc. of ACM SIGMOD Conf., 2013.

[27] S. Zhang and Y. Sun. Automatically Synthesizing SQL Queries from Input-Output Examples. In
Proc. of IEEE ASE, 2013.

[28] www.bleepingcomputer.com/news/security/massive-wave-of-mongodb-ransom-attacks-
makes-26-000-new-victims/

[29] www.cybersecurity-insiders.com/ransomware-hits-mysql-servers/

[30] www.hibernate.org

[31] www.imperva.com/blog/database-attacks-sql-obfuscation/

[32] Jailer: www.jailer.sourceforge.net/home.htm

[33] https://github.com/xaviershay/enki

[34] docs.microsoft.com/en-us/sysinternals/downloads/strings

[35] https://www.selenium.dev/

[36] www.microsoft.com/en-in/sql-server

[37] www.mysql.com/

[38] www.postgresql.org

[39] https://rubyonrails.org/

30

[40] www.red-gate.com/blog/database-devops/database-subsetting-wed-love-hear

[41] www.softwareheritage.org/mission/software-is-fragile

[42] www.sql-shield.com

[43] Condensor: www.tonic.ai/post/condenser-a-database-subsetting-tool/

[44] www.tpc.org

[45] Wilos: an orchestration process software. www.openhub.net/p/6390

31

Appendix

Experiment Queries 1 (Based on corresponding TPC-H queries)
Q1

Select l returnflag, l linestatus, sum(l quantity) as sum qty, sum(l extendedprice) as sum base price,
sum(l discount) as sum disc price, sum(l tax) as sum charge, avg(l quantity) as avg qty,
avg(l extendedprice) as avg price, avg(l discount) as avg disc, count(*) as count order
From lineitem
Where l shipdate ≤ date ‘1998-12-01’ - interval ‘71 days’
Group By l returnflag, l linestatus
Order by l returnflag, l linestatus;

Q2

Select s acctbal, s name, n name, p partkey, p mfgr, s address, s phone, s comment
From part, supplier, partsupp, nation, region
Where p partkey = ps partkey and s suppkey = ps suppkey and p size = 38 and p type like ‘%TIN’
and s nationkey = n nationkey and n regionkey = r regionkey and r name = ‘MIDDLE EAST’
Order by s acctbal desc, n name, s name, p partkey
Limit 100;

Q3

Select l orderkey, sum(l extendedprice) as revenue, o orderdate, o shippriority
From customer, orders, lineitem
Where c mktsegment = ‘BUILDING’ and c custkey = o custkey and l orderkey = o orderkey and
o orderdate < date ‘1995-03-15’ and l shipdate > date ‘1995-03-15’
Group By l orderkey, o orderdate, o shippriority
Order by revenue desc, o orderdate
Limit 10;

Q4

Selecto orderdate, o orderpriority, count(*) as order count
From orders
Where o orderdate ≥ date ‘1997-07-01’ and o orderdate < date ‘1997-07-01’ + interval ‘3’ month
Group By l orderkey, o orderdate, o orderpriority
Order by o orderpriority
Limit 10;

Q5

Select n name, sum(l extendedprice) as revenue
From customer, orders, lineitem, supplier, nation, region
Where c custkey = o custkey and l orderkey = o orderkey and l suppkey = s suppkey and
c nationkey = s nationkey and s nationkey = n nationkey and n regionkey = r regionkey and r name
= ‘MIDDLE EAST’ and o orderdate ≥ date ‘1994-01-01’ and o orderdate < date ‘1994-01-01’ +
interval ‘1’ year

32

Group By n name
Order by revenue desc
Limit 100;

Q6

Select l shipmode, sum(l extendedprice) as revenue
From lineitem
Where l shipdate ≥ date ‘1994-01-01’ and l shipdate < date ‘1994-01-01’ + interval ‘1’ year and
l quantity < 24
Group By l shipmode
Limit 100;

Q10

Select c name,, sum(l extendedprice) as revenue, c acctbal, n name, c address, c phone,
c comment
From customer, orders, lineitem, nation
Where c custkey = o custkey and l orderkey = o orderkey and o orderdate ≥ date ‘1994-01-01’ and
o orderdate < date ‘1994-01-01’ + interval ‘3’ month and l returnflag = ‘R’ and c nationkey =
n nationkey
Group By c name, c acctbal, c phone, n name, c address, c comment
Order by revenue desc
Limit 20;

Q11

Select ps COMMENT, sum(ps availqty) as value
From partsupp, supplier, nation
Where ps suppkey = s suppkey and s nationkey = n nationkey and n name = ‘ARGENTINA’
Group By ps COMMENT
Order by value desc
Limit 100;

Q16

Select p brand, p type, p size, count(ps suppkey) as supplier cnt
From partsupp, part
Where p partkey = ps partkey and p brand = ‘Brand#45’ and p type Like ‘SMALL PLATED%’ and
p size ≥ 4
Group By p brand, p type, p size
Order by supplier cnt desc, p brand, p type, p size;

Q17

Select AVG(l extendedprice) as avgTOTAL
From lineitem, part
Where p partkey = l partkey and p brand = ‘Brand#52’ and p container = ’LG CAN’;

Q18

33

Select c name, o orderdate, o totalprice, sum(l quantity)
From customer, orders, lineitem
Where c phone Like ‘27- %’ and c custkey = o custkey and o orderkey = l orderkey
Group By c name, o orderdate, o totalprice
Order by o orderdate, o totalprice desc
Limit 100;

Q21

Select s name, count(*) as numwait
From supplier, lineitem l1, orders, nation
Where s suppkey = l1.l suppkey and o orderkey = l1.l orderkey and o orderstatus = ‘F’ and
s nationkey = n nationkey and n name = ‘GERMANY’
Group By s name
Order by numwait desc, s name
Limit 100;

Experiment Queries 2 (Based on corresponding TPC-DS queries)
Q3

Select dt.d year ,item.i brand id as brand id ,item.i brand as brand ,sum(ss sales price) as sum agg
From date dim dt ,store sales ,item
Where dt.d date sk = store sales.ss sold date sk and store sales.ss item sk = item.i item sk and
item.i manufact id = 816 and dt.d moy=11
Group By dt.d year ,item.i brand ,item.i brand id
Order by dt.d year ,sum agg desc ,brand id
Limit 100 ;

Q37

Select i item id ,i item desc ,i current price
From item, inventory, date dim, catalog sales
Where i current price between 45 and 45 + 30 and inv item sk = i item sk and d date sk=inv date sk
and d date between date ’1999-02-21’ and date ’1999-04-23’ and i manufact id between 707 and
1000 and inv quantity on hand between 100 and 500 and cs item sk = i item sk
Group By i item id,i item desc,i current price
Order by i item id
Limit 100 ;

Q42

Select dt.d year ,item.i category id ,item.i category ,sum(ss ext sales price)
From date dim dt ,store sales ,item
Where dt.d date sk = store sales.ss sold date sk and store sales.ss item sk = item.i item sk and
item.i manager id = 1 and dt.d moy=11 and dt.d year=2002
Group By dt.d year ,item.i category id ,item.i category
Order by sum(ss ext sales price) desc,dt.d year ,item.i category id ,item.i category

34

Limit 100 ;

Q52

Select dt.d year ,item.i brand id as brand id ,item.i brand as brand ,sum(ss ext sales price) as
ext price
From date dim dt ,store sales ,item
Where dt.d date sk = store sales.ss sold date sk and store sales.ss item sk = item.i item sk and
item.i manager id = 1 and dt.d moy=12 and dt.d year=2002
Group By dt.d year ,item.i brand ,item.i brand id
Order by dt.d year ,ext price desc ,brand id
Limit 100 ;

Q55

Select item.i brand id as brand id ,item.i brand as brand
,sum(ss ext sales price) as ext price
From date dim dt ,store sales ,item
Where dt.d date sk = store sales.ss sold date sk and store sales.ss item sk = item.i item sk and
item.i manager id = 1 and dt.d moy=12 and dt.d year=2002
Group By dt.d year ,item.i brand ,item.i brand id
Order by ,ext price desc ,brand id
Limit 100 ;

Q82

Select i item id ,i item desc ,i current price
From item, inventory, date dim, store sales
Where i current price between 45 and 45 + 30 and inv item sk = i item sk and d date sk=inv date sk
and d date between date ’1999-07-09’ and date ’1999-09-09’ and i manufact id between 169 and
639 and inv quantity on hand between 100 and 500 and ss item sk = i item sk
Group By i item id,i item desc,i current price
Order by i item id
Limit 100 ;

Q96

Select count(*)
From store sales ,household demographics ,time dim, store
Where ss sold time sk = time dim.t time sk and ss hdemo sk =
household demographics.hd demo sk and ss store sk = s store sk and time dim.t hour = 8 and
time dim.t minute ≥ 30 and household demographics.hd dep count = 3 and store.s store name =
’ese’
Order by count(*)
Limit 100;

35

