Data Generation using Join Constraints

Anupam Sanghi Shadab Ahmed Prashik Rawale Jayant R. Haritsa

Technical Report TR-2022-01
 (August 2022)

Database Systems Lab
Dept. of Computational and Data Sciences Indian Institute of Science Bangalore 560012, India https://dsl.cds.iisc.ac.in

Abstract

Adequately testing a database engine requires synthesizing data that resembles the client data processing environments. Contemporary data regenerators use declarative formalisms for constructing synthetic data. In particular, they specify operator output volumes through row cardinality constraints. However, thus far, adherence to these volumetric constraints has been limited in the scope of operators handled. For instance, none of the frameworks provide a solution that supports cardinality constraints with Select-Project-Join (SPJ) operators. This project aims to provide a comprehensive solution for such constraints involving SPJ operators.

1 Introduction

RDBMS vendors often require synthetic data to capture the data processing scenarios on the client-side effectively. This need arises for use cases such as testing DBMS and database applications, benchmarking, etc.

In the past decade, several frameworks $[1,2,3,4]$ have been proposed that focus on workload-aware data regeneration using constraints derived from the execution of client query workloads, as described next.

Workload-Aware Data Regeneration

Consider a sample client scenario where we have the database schema and an example query as shown in Fig. 1(a) and Fig. 1(b), respectively. Suppose that we get the execution plan for this query, by running the query at the client deployment, as shown in Fig. 1(c). Note that the edges in the plan tree are annotated with the number of rows flowing from one operator to the other. We refer to this plan as an Annotated Query Plan (AQP). The set of row-cardinality constraints (CCs) derived from this AQP is listed in Fig. 1(d).

The focus of the workload-aware data regeneration is to ensure volumetric similarity. That is, on running the client query workload on the synthetic database produced at the vendor site, the AQPs obtained are very similar to the ones fetched from the client site. In other words, the synthetic data should adhere to the CCs obtained with respect to the input client AQPs.

Cardinality Constraint. A CC dictates that the output of a given relational expression over the generated database should feature a specified number of rows. For Select-Project-Join (SPJ) query formulations, the canonical constraint representation is:

$$
\begin{equation*}
\left|\pi_{\mathbb{P}}\left(\sigma_{f}\left(T_{1} \bowtie T_{2} \bowtie \ldots T_{N}\right)\right)\right|=k \tag{1}
\end{equation*}
$$

where k is the number of rows that are output after applying the complete relational expression, i.e., the output cardinality, \mathbb{P} represents the set of attributes on which projection is applied (PAS), and f represents the filter conditions on the inner join of relations $T_{1}, T_{2}, \ldots, T_{N}$.

Background

The workload-aware data regeneration frameworks in the literature do not provide a comprehensive solution that handles CCs with SPJ operators. For instance, [2, 1, 4] model filter constraints using a linear programming (LP) based approach at its core. However, they lack the support for the projection
FROM Register R, Student S
WHERE R.SRNo = S.SRNo
and Year = '2021' and Age >= 25
GROUP BY Age

(a) Schema

```
SELECT Age,Average(Score)
```

```
SELECT Age,Average(Score)
```

(b) SQL Query

(c) Annotated Query Plan

(d) Cardinality Constraints

Figure 1: Example AQP and CCs
operator. Likewise, [3] models filter and projection constraints in the LP; but due to being limited to a single relation, it does not support the join operator.

A critical shortcoming of the prior work is the lack of modeling the join constraints accurately. Unlike filter predicates that specify the constants/value-ranges that are permissible for the constrained columns, modeling join predicates require constructing dependence with respect to the join columns such that the generated tables obey the required join output cardinality. With large number of input constraints, this problem gets even more challenging.

A way to handle joins was used in [1, 4], where they constructed the denormalized tables first and then extracting the original tables from it. Specifically, for each table T to be constructed, a corresponding view V_{T} is synthesized first. This view captures the denormalized equivalent of T (excluding the key columns). These views allow rewriting the join expression on a single view. Therefore, processing on views help in generating correlations that are compatible with the various join cardinality in the input. For example, the views constructed with respect to the two tables in Figure 1(a) are as follows:

$$
\begin{gathered}
V_{R}(\text { Course, Year, Score, Age, Scholarship, GPA }), \\
V_{S}(\text { Age, Scholarship, GPA })
\end{gathered}
$$

Further, the first two CCs from Figure 1(d) can now be rewritten as:

$$
\left.\begin{array}{c}
\left|\left(\sigma_{\text {Age } \geq 25 \wedge Y \text { ear }=21}\left(V_{R}\right)\right)\right|=3000 \\
\mid \pi_{\text {Age }}\left(\sigma_{\text {Age } \geq 25 \wedge Y \text { ear }}=21\right.
\end{array}\left(V_{R}\right)\right) \mid=10
$$

Using these views, filters on each view can be handled independently using the single table algorithm. However, the challenge then lies in extracting the original tables back from their denormalized versions. This is because these views need to obey referential integrity ${ }^{1}$. For example, the value-combinations for Age, Scholarship, GPA in V_{R} should be a subset of V_{S} in order to replace the borrowed columns with the appropriate foreign-key value. In [1, 4], due to the lack of consideration of projection operation, adding only a few spurious tuples in the referenced table was sufficient to ensure referential integrity. This resulted in minor errors in satisfying the CCs. However, this approach cannot be used in presence of projection because each value-combination with respect to the borrowed columns need to be represented in the referenced table. Therefore, the LP formulation and the subsequent data generation from the solution need to explicitly model constraints to ensure referential integrity.

[^0]
Our Contribution

In this work, we provide a comprehensive solution to handle the SPJ-cardinality constraints. Specifically, we use techniques proposed in PiGen [3] to model filter and projection conditions. These conditions were used in [3] to form individual LPs for each of the participating relations. Further, we also exploit the aforementioned denormalization strategy. A marked contrast is the way we model join conditions into the solution pipeline. We construct a unified LP for the linked (through referential constraints) tables. This LP models the referential constraints to ensure that the number of distinct valuecombinations generated, with respect to the borrowed columns, in various intervals of the Foreign-Key table (referencing) view is upper bounded by the corresponding interval in the (referenced) PrimaryKey table. Further, our Key Curation module ensure that the key values picked are such that the corresponding tuples in the dimension table have the prescribed number of distinct value-combinations for borrowed columns.

Additionally, our solution leverages the concept of dynamic regeneration [4], and constructs Database Summary, that ensures data can be generated on-demand during query processing while satisfying the input CCs. Therefore, no materialized table is required in the entire testing pipeline. Further, the time and space overheads incurred in constructing the summary is independent of the size of the table to be constructed and, in our evaluations, requires only a few 100 KBs of storage.

A detailed evaluation on a workload derived from the standard TPC-DS decision support benchmark has been conducted. The results demonstrates that the proposed solution accurately and efficiently models the SPJ CCs. As a case in point, for a workload of over 20 queries, leading to $\sim 130 \mathrm{CCs}$, the generated data satisfied all the CCs with perfect accuracy. Moreover, the entire summary production pipeline completed within viable time and space overheads.

2 Framework

In this section, we summarize the problem statement, the underlying assumptions, the output delivered, and a tabulation of the notations used in this chapter.

2.1 Problem Statement

Given an SPJ query-workload \mathcal{W}, with its corresponding set of AQPs \mathcal{Q}, derived from an original database with schema \mathcal{S} and statistical metadata \mathcal{M}, the objective is to generate a synthetic database \mathcal{D} such that it conforms to \mathcal{S} and \mathcal{Q}. That is, the AQPs obtained from the original database match, wrt the cardinality annotations, the AQPs obtained on \mathcal{D}.

2.2 Assumptions

We assume that \mathcal{W} comprises of only PK-FK joins. Further, we assume that the filters and projections are applied only on non-key columns. Again, we assume that \mathcal{Q} is collectively feasible. Finally, for brevity, we present the ideas using tables with columns having float data type; the extension to other data types is straightforward.

2.3 Output

Given $\mathcal{S}, \mathcal{M}, \mathcal{W}$ and \mathcal{Q}, Hydra outputs a collection of database summaries \mathbb{S}. Each summary $s^{\mathcal{D}} \in \mathbb{S}$ can be used to deterministically produce the associated database \mathcal{D}. The databases produced are such
that: (a) all of them conform to \mathcal{S}, and (b) for each query in \mathcal{W}, its corresponding AQP in \mathcal{Q} matches with the AQP obtained on at least one output database instance.

2.4 Notations

The main acronyms and key notations used in this chapter are summarized in Tables 1 and Table 2, respectively.

Table 1: Acronyms

Acronym	Meaning
AQP	Annotated Query Plan
CC	Cardinality Constraint
SPJ	Select Project Join
PAS	Projection Attribute Set
FB	Filter Block
RB	Refined Block
ARB	Aligned Refined Block
CPB	Constituent Projection Block
PSD	Projection Subspace Division
NoPB	No Projection on a Subset of Borrowed Columns
PB	Projection on a Subset of Borrowed Columns

Table 2: Notations
(a) Database Related

Symbol	Meaning
\mathcal{S}	Database Schema
$G_{\mathcal{S}}$	Schema Graph
\mathcal{D}	Output Database
T	Output Table
$s^{\mathcal{D}}$	Summary of \mathcal{D}
F	Fact Table
D	Dimension Table
V_{T}	View wrt T
\mathbb{B}	Borrowed Attribute-Set

(c) Block Related

Symbol	Meaning
r^{T}	RB wrt V_{T}
a^{T}	ARB wrt V_{T}
p^{T}	CPB wrt V_{T}
$x\left(a^{T}\right)$	variable for $\left\|a^{T}\right\|$
$y\left(p^{T}\right)$	variable for $\left\|p^{T}\right\|$

(b) Workload Related

Symbol	Meaning
q	Query
\mathcal{W}	Query Workload
\mathcal{Q}	Set of AQPs
c	A c
f	Filter Predicate
\mathbb{A}	PAS
l	Output row card. after filter
k	Output row card. after projection

(d) Relation/Function Related

Symbol	Meaning
$U(T)$	Set of attributes in T
$d o m()$.	Domain of the input parameter
M	A relation btw CCs and ARBs
L	A relation btw CPBs and ARBs
H	A relation btw ARBs wrt V_{F} and V_{D}
J	A relation btw CPBs wrt V_{F} and V_{D}

3 Design Principles

Figure 2: Join Solution Pipeline
The solution pipeline is illustrated in Figure 2. The green boxes illustrate the modules added/updated to handle joins. We briefly discuss each of the core modules in this section. For ease of exposition, we use the fact and dimension table terminology from data warehousing to refer to the tables having FK and the corresponding PK, respectively. Further, the notations F and D are used to denote a fact table and dimension table, respectively.

3.1 Denormalization

Inspired from DataSynth, we also construct views, where the view V_{T} for a table T is its denormalized equivalent (excluding key columns). Each column in a view is stored as a structure comprising of two fields: \{Column Name, Column Path\}. The Column Path is stored as an array of the foreign key columns involved in the query. Each view is associated with a view name and an array of the column structures. To populate this array, first a schema graph $G_{\mathcal{S}}$ is constructed. Here, a vertex is made corresponding to each table in the database. For each PK-FK dependency, a directed edge is added from the FK table to PK table. The edge is annotated with the participating columns of both the relations. Note that, since two relations can have multiple PK-FK dependencies, there can be multiple directed edges between tables. We assume $G_{\mathcal{S}}$ to be a DAG, which is common in real-world databases and is reflected in the benchmarks too.

Once $G_{\mathcal{S}}$ is constructed, we traverse it in reverse topological order. For each edge (F.fk,D.pk) in the order, the columns in view V_{D} are added to V_{F}. For each such column A, the Column Path of $V_{D} . A$, prepended with $F . f k$, is inserted as the Column Path for $V_{F} . A$.

The join expression in a CC c, consists of series of PK-FK columns that participate in the joins in the subtree rooted at the AQP node corresponding to c. It is easy to see that this PK-FK column series can
be uniquely mapped to a path in $G_{\mathcal{S}}$. The view V_{T} corresponding to the source vertex in this path will have columns from all the tables included in the path. Also, it is easy to see that the filter and projection operation on a join expression can be equivalently written on V_{T}. Hence, in this way, each CC can be written as a filter and projection operation on a single view.

For our running example, the Views that are constructed are as follows:

$$
V_{R e g}(\text { Age }, \text { Scholarship, GP A, Course }, \text { Year, Score }), \quad V_{S t d}(\text { Age, Scholarship, GPA) }
$$

Further, the aforementioned CCs from our running example, can be rewritten on the views $V_{\text {Reg }}$ and $V_{S t d}$ as follows:

$$
\begin{array}{ll}
c_{1}:\left|\pi_{G P A}\left(\sigma_{\text {Age }<20 \wedge G P A<6}\left(V_{\text {Reg }}\right)\right)\right|=2 & c_{2}:\left|\pi_{G P A}\left(\sigma_{A g e \geq 20 \vee G P A<6}\left(V_{\text {Reg }}\right)\right)\right|=4 \\
c_{3}:\left|\sigma_{\text {Age }<20 \wedge G P A<6}\left(V_{\text {Reg }}\right)\right|=15000 & c_{4}:\left|\sigma_{\text {Age } 2020 \vee G P A<6}\left(V_{\text {Reg }}\right)\right|=250000 \\
\left.c_{5}: \mid \sigma_{\text {Age }<20 \wedge G P A<6}\left(V_{\text {Std }}\right)\right) \mid=2000 & \left.c_{6}: \mid \sigma_{\text {Age } e 20 \vee G P A<6}\left(V_{S t d}\right)\right) \mid=42000 \\
c_{7}:\left|V_{\text {Reg }}\right|=370000 & c_{8}:\left|V_{\text {Std }}\right|=50000
\end{array}
$$

As described earlier, referential integrity has to be ensured in the data that is generated. Let us first describe referential integrity in the view semantics.

Theorem 1. Two tables F and D, with F having an $F K$ column referencing table D, satisfy a referential integrity dependency, iff the corresponding views V_{F} and V_{D} obey the following condition:

$$
\pi_{\mathbb{B}}\left(V_{F}\right) \subseteq \pi_{\mathbb{B}}\left(V_{D}\right)
$$

where \mathbb{B} is the set of columns in V_{D} borrowed by V_{F}.

3.2 Workload Decomposition

In the previous chapter, a pair of constraints were defined to be overlapping if their PASs partially intersect and their filters overlap. To handle this, we had an additional workload decomposition module that splits the input workload into sub-workloads such that each of them is free from these overlapping projection conflicts.

We have extended this case of overlapping projections to include the projection conflicts that surface in the presence of joins. For example, a pair of queries q_{1}, q_{2} on a dimension table D, with PASs \mathbb{A}_{1} and \mathbb{A}_{2} respectively, induce a conflict if (a) the PASs $\mathbb{A}_{1}, \mathbb{A}_{2} \subseteq D$, and partially overlap with each other, and (b) the filters in q_{1} and q_{2} intersect. We discuss the details of all the conflicts in Section 4. These conflicts are additionally used by the workload decomposition module to do the workload split.

3.3 Data Space Partitioning

Region Partitioning and Symmetric Refinement. To model the filter predicates associated with the input workload, the data space of each view is logically partitioned into a set of blocks. Each block satisfies the condition that every data point in it satisfies the same subset of filter predicates. To do this partitioning, we leverage the region partitioning technique discussed in [4], which partitions the data space into the minimum number of filter-blocks (FBs).

To handle various projection subspaces (corresponding to the different PASs in the input queries) independently, a Symmetric Refinement strategy is adopted (discussed in PiGen [3]). Specifically, it refines an FB into a set of disjoint refined blocks (RBs) such that each resultant RB exhibits translation symmetry along each applicable projection subspace.

Figure 3: Partitioning of Reg and Std Views

To make the above concrete, the partitioning of data space of $V_{\text {Reg }}$ is shown in Figure 3(a). For ease of presentation, we show only the two dimensions that participate in the example queries. In this figure, the filter predicates are represented using regions delineated with colored solid-line boundaries. When region partitioning is applied on this scenario, it produces the three disjoint FBs: $r_{1}^{R e g}, r_{2}^{R e g}, r_{3}^{R e g}$, whose domains are depicted with dashed-line boundaries. For our running example, the resultant blocks are already symmetric. The partitioning with respect to $V_{S t d}$ is also shown in Figure 3(b). Here, we have additionally added a constraint shown by blue solid-line to add complexity in the example.

Align Refinement. To obtain the original tables from their denormalized equivalents, the views need to obey referential integrity. As discussed in Theorem 1, the referential integrity constraint between fact table view V_{F} and dimension table view V_{D} is expressed as follows:

$$
\pi_{\mathbb{B}}\left(V_{F}\right) \subseteq \pi_{\mathbb{B}}\left(V_{D}\right)
$$

To add referential constraints, for a $C C c$ with PAS \mathbb{A} (where $\mathbb{A} \subseteq \mathbb{B}$) applicable on $V_{\text {Reg }}$, its constituent RBs need to be aligned with each other along \mathbb{A}. By align we mean that the domain of RBs along \mathbb{A} are either identical or disjoint. The blocks obtained after refinement are called Aligned Refined Blocks (ARBs). For example, $r_{2}^{R e g}$ in Figure 3(a) is split into $a_{2 a}^{R e g}$ and $a_{2 b}^{R e g}$ to ensure alignment with $a_{1}^{R e g}$, as shown in Figure 4(a). (The other RBs happen to be already aligned, so their equivalent ARBs are unaltered).

Further, we also need to ensure that each RB in V_{D} is either completely contained or disjoint from the domain of each ARB in V_{F}. Therefore, we also do a refinement of RBs in V_{D} as part of this module and produce ARBs that ensure alignment with V_{F}. For example, $r_{2}^{S t d}$ and $r_{3}^{S t d}$ in Figure 3(b) are split into $a_{2 a}^{S t d}, a_{2 b}^{S t d}$ and $a_{3 a}^{S t d}, a_{3 b}^{S t d}$ respectively, as shown in Figure 4(b). We discuss the details of this module in Section 5.

Projection Subspace Division. This technique divides each projection subspace into a set of constituent projection blocks (CPBs), as per PiGen. For our running example, the CPBs obtained for $V_{\text {Reg }}$

Figure 4: Align Refinement
are as follows:

$$
\begin{array}{ll}
p_{1}^{R e g}=\pi_{G P A}\left(a_{1}^{\text {Reg }}\right) \cap \pi_{G P A}\left(a_{2 b}^{\text {Reg }}\right), & p_{2}^{\text {Reg }}=\pi_{G P A}\left(a_{1}^{\text {Reg }}\right) \backslash \pi_{G P A}\left(a_{2 b}^{\text {Reg }}\right) \\
p_{3}^{R e g}=\pi_{G P A}\left(a_{2 b}^{\text {Reg }}\right) \backslash \pi_{G P A}\left(a_{1}^{\text {Reg }}\right), & p_{4}^{R e g}=\pi_{G P A}\left(a_{2 a}^{\text {Reg }}\right)
\end{array}
$$

Further, the CPBs obtained for $V_{S t d}$ are as follows:

$$
\begin{array}{ll}
p_{1}^{S t d}=\pi_{G P A}\left(a_{1}^{S t d}\right) \cap \pi_{G P A}\left(a_{3 b}^{S t d}\right), & p_{2}^{S t d}=\pi_{G P A}\left(a_{1}^{S t d}\right) \backslash \pi_{G P A}\left(a_{3 b}^{S t d}\right) \\
p_{3}^{S t d}=\pi_{G P A}\left(a_{1}^{S t d}\right) \cap \pi_{G P A}\left(a_{2 b}^{S t d}\right), & p_{4}^{S t d}=\pi_{G P A}\left(a_{1}^{S t d}\right) \backslash \pi_{G P A}\left(a_{2 b}^{S t d}\right) \\
p_{5}^{S t d}=\pi_{G P A}\left(a_{3 b}^{S t d}\right) \backslash \pi_{G P A}\left(a_{1}^{S t d}\right), & p_{6}^{S t d}=\pi_{G P A}\left(a_{2 b}^{S t d}\right) \backslash \pi_{G P A}\left(a_{1}^{S t d}\right) \\
p_{7}^{S t d}=\pi_{G P A}\left(a_{2 a}^{S t d}\right), & p_{8}^{S t d}=\pi_{G P A}\left(a_{3 a}^{S t d}\right)
\end{array}
$$

3.4 LP Formulation

After the above processing is completed for each view, we formulate a unified LP for the linked (through referential constraints) tables. The LP is constructed using variables representing the cardinalities of ARBs and CPBs. Specifically, Filter Constraints and Projection Constraints are modeled for each view in the same way as proposed in the previous chapter. For modeling Referential Constraints we also do a Block Mapping where the ARBs and CPBs of V_{F} are mapped to those of V_{D}. The referential constraints ensure that for each block in V_{F} the number of distinct values along borrowed columns is upper bounded by the number of distinct values in the corresponding blocks in V_{D}. Once this is ensured, the exact subset property is ensured in the final Key Curation stage.

3.5 Summary Construction

Using the LP solution, we first build a summary data structure for each view that contains all the relevant information for extracting the corresponding base relation. Specifically, from the view summary the base relation summary is obtained by replacing the borrowed columns with the appropriate FK column. The process to do this is described next.

Figure 5: Sample Summary

Key Range Curation. This final stage is responsible for the curation of FK values in F. Specifically, for each ARB a^{F} in V_{F}, to construct its equivalent in F, a range of FK values is assigned to it. This assignment is done using a range of PK values associated to a set of blocks in V_{D}, such that:

1. The chosen V_{D} blocks are contained within the boundaries of a^{F} after projecting along \mathbb{B}.
2. The tuples associated with the selected PK values have the desired number of distinct values along the PAS prescribed by the projection applied on a^{F}.

In this way, we get the summary for each table, which is used for dynamic data regeneration. A sample summary is shown in Figure 5. To appreciate the summary in entirety, we also show the other columns in the Std table schema. Therefore, we can see that the distinct row counts along different projection subspaces are represented similar to the discussion in the previous chapter. Additionally, we show the FK column in Reg table summary having the range of RollNo values to be included.

4 Workload Decomposition

As discussed in the previous section, the case of conflicting projection constraints is handled by splitting the workload into sub-workloads such that each sub-workload is free from such conflicts. In addition to the characterization of such overlapping projections in case of single table queries (as per PiGen), we have extended the class of overlapping projections to include the cases that appear in presence of joins. These additional cases of projection conflicts can be categorized based on the nature of referential dependencies as follows:
$1 F: 1 D$. Assume a pair of queries q_{1} and q_{2} having common fact (F) and dimension (D) tables, and the PASs applicable are \mathbb{A}_{1} and \mathbb{A}_{2} respectively, where $\mathbb{A}_{1} \neq \mathbb{A}_{2}$. Further, the filter conditions in the queries intersect. In this case, q_{1} and q_{2} are conflicting if $\mathbb{A}_{1}, \mathbb{A}_{2} \subseteq D$. The conflict arises because there
is an implied projection dependency between F and D with respect to $\mathbb{A}_{1} \cup \mathbb{A}_{2}$ as well. Therefore, F is subjected to projection constraints along $\mathbb{A}_{1} \cup \mathbb{A}_{2}, \mathbb{A}_{1}$ and \mathbb{A}_{2}, which are overlapping.
multi- $F: 1 D$. Assume a pair of queries q_{1}, q_{2} with PASs \mathbb{A}_{1} and \mathbb{A}_{2}. Further, both the queries involve a dimension table D such that the filters along D in the queries are overlapping. Now, if $\mathbb{A}_{1}, \mathbb{A}_{2} \subseteq D$ and partially overlap with each other, then it is a straightforward case of overlapping constraints on D. Therefore, q_{1} and q_{2} form a conflicting pair of queries.
$1 F$: multi- D. Assume a query q involving fact table F and dimension tables D_{1} and D_{2}. Further, the PAS \mathbb{A} applied on q is such that $\mathbb{A} \subseteq D_{1} \cup D_{2}$ and $\mathbb{A} \nsubseteq D_{1}, \mathbb{A} \nsubseteq D_{1}$. To ensure referential integrity, projection constraints on F along $\mathbb{A} \cap D_{1}$ and $\mathbb{A} \cap D_{2}$ are required. Both these constraints conflict with the preexisting projection constraint along \mathbb{A}.
The conflicts in the $1 F: 1 D$ and multi- $F: 1 D$ category can be handled by splitting the workload into sub-workloads. Specifically, we construct a graph with each query being a vertex and adding an edge between two queries if there is conflict between them. Now, if we run vertex coloring algorithm on the graph, the subset of queries having the same color assigned form a sub-workload.

Unlike the previous two conflicts which were inter-query, the third case of $1 F: 1 D$ type conflict is intra-query. A workaround to handle these queries is to generate all distinct tuples along $\mathbb{A} \cap D_{1}$ for filter compliant region of the dataspace in D_{1}, and along $\mathbb{A} \cap D_{2}$ in D_{2}. Subsequently, for F, the requisite number of distinct rows along \mathbb{A} are generated by curating FKs from D_{1}, D_{2}. This is always possible since the distinct row cardinality along \mathbb{A} in F can at most be the product of the distinct cardinality along $\mathbb{A} \cap D_{1}$ in D_{1} and the distinct cardinality along $\mathbb{A} \cap D_{2}$ in D_{2}. Due to the distinct rows generation in D_{1} and D_{2}, any other query with overlapping filters on D_{1} (or D_{2}) will lead to a conflict. Again, we use workload decomposition to take care of these conflicts.

5 Align Refinement

To apply referential constraints on the various blocks of the fact table and dimension table views, we need to ensure that the blocks are well aligned. We next discuss the alignment process separately for the fact and dimension tables.

5.1 Fact Table Refinement

We know that the CPBs related to the same CC c need to be assigned disjointed set of values, even if their domains overlap. Therefore, for solution tractability, as a first step, we ensure that for the CPBs that are related to the same constraint c featuring PAS \mathbb{A}, have either identical or disjointed domains. This helps to divide the domain of \mathbb{A}, for a constraint c, into a set of intervals such that each constituent CPB is associated with an interval.

This CPB to interval mapping is done by ensuring that any two RBs related to the same CC with PAS \mathbb{A} are aligned with each other along \mathbb{A}. That is, they are either identical or disjoint with each other along the subspace spanned by \mathbb{A}. Specifically, two blocks r_{1}^{F}, r_{2}^{F} are considered aligned with each other if either $\operatorname{dom}\left(\pi_{\mathbb{A}}\left(r_{1}^{F}\right)\right)=\operatorname{dom}\left(\pi_{\mathbb{A}}\left(r_{2}^{F}\right)\right)$ or $\operatorname{dom}\left(\pi_{\mathbb{A}}\left(r_{1}^{F}\right)\right) \cap \operatorname{dom}\left(\pi_{\mathbb{A}}\left(r_{2}^{F}\right)\right)=\emptyset$.

The Align Refinement module for a fact table view V_{F} takes the RBs for the view as input and refines them such that the resultant blocks are mutually aligned. A block in V_{F} obtained after refinement is called an Aligned Refined Block (ARB) and is denoted as a^{F}. In Figure 3(a), we saw $r_{1}^{R e g}$ and $r_{2}^{R e g}$ participate in a common constraint comprising of projection along $G P A$, and are not aligned along
$G P A$. As a result, $r_{2}^{R e g}$ is split in $a_{2 a}^{R e g}$ and $a_{2 b}^{R e g}$, as shown in Figure 4(a) after which alignment is preserved. Further we can see that the red constraint is associated with a single interval $I_{1}: G P A \leq 6$ and the green constraint is associated with two intervals $I_{1}: G P A \leq 6$ and $I_{2}: G P A \geq 6$.

The algorithm for performing this refinement iterates over each pair of RBs $\left(r_{1}^{F}, r_{2}^{F}\right)$ related to the same CC with PAS \mathbb{A}, and outputs four (if non-empty domains) blocks, the domains of which are represented as follows:

$$
\begin{array}{r}
\operatorname{dom}\left(\pi_{U(F) \backslash \mathbb{A}}\left(r_{1}^{F}\right)\right) \times\left(\operatorname{dom}\left(\pi_{\mathbb{A}}\left(r_{1}^{F}\right)\right) \backslash \operatorname{dom}\left(\pi_{\mathbb{A}}\left(r_{2}^{F}\right)\right)\right), \\
\operatorname{dom}\left(\pi_{U(F) \backslash \mathbb{A}}\left(r_{2}^{F}\right)\right) \times\left(\operatorname{dom}\left(\pi_{\mathbb{A}}\left(r_{2}^{F}\right)\right) \backslash \operatorname{dom}\left(\pi_{\mathbb{A}}\left(r_{1}^{F}\right)\right)\right), \\
\operatorname{dom}\left(\pi_{U(F) \backslash \mathbb{A}}\left(r_{1}^{F}\right)\right) \times\left(\operatorname{dom}\left(\pi_{\mathbb{A}}\left(r_{1}^{F}\right)\right) \cap \operatorname{dom}\left(\pi_{\mathbb{A}}\left(r_{2}^{F}\right)\right)\right), \\
\operatorname{dom}\left(\pi_{U(F) \backslash \mathbb{A}}\left(r_{2}^{F}\right)\right) \times\left(\operatorname{dom}\left(\pi_{\mathbb{A}}\left(r_{1}^{F}\right)\right) \cap \operatorname{dom}\left(\pi_{\mathbb{A}}\left(r_{2}^{F}\right)\right)\right)
\end{array}
$$

5.2 Dimension Table Refinement

Each ARB a^{F} along fact table view has to be given values for the borrowed columns that appear in the dimension table and are within its domain boundary. For this, we do a refinement of the RBs in dimension table as well so that each resultant block is either completely contained in the domain of a block a^{F} (along \mathbb{B}) or is disjoint from it.

The Align Refinement module for a dimension table view V_{D} takes the RBs for the view as input and refines them such that the resultant blocks are mutually aligned. A block in V_{D} obtained after refinement is also called an aligned refined block (ARB) and is denoted as a^{D}. In Figure 3(b), the RBs $r_{2}^{S t d}$ and $r_{3}^{S t d}$ partially overlap with the blocks $a_{2 a}^{R e g}$ and $a_{2 b}^{R e g}$ (from Figure 4(a)) along the 2-D space (GPA, Age). Therefore, we split these blocks into $a_{2 a}^{S t d}, a_{2 b}^{S t d}, a_{3 a}^{S t d}$, and $a_{3 b}^{S t d}$ ARBs, as shown in Figure 4(b).

The algorithm for performing this refinement iterates over each $\mathrm{RB} r^{D}$ one by one. For an r^{D}, each ARB a^{F} in V_{F} is compared along \mathbb{B}, and if $\operatorname{dom}\left(\pi_{\mathbb{B}}\left(a^{F}\right)\right)$, $\operatorname{dom}\left(r^{D}\right)$ partially overlap, then r^{D} is broken into two blocks, the domains of which are represented as follows:

$$
\operatorname{dom}\left(r^{D}\right) \backslash \operatorname{dom}\left(\pi_{\mathbb{B}}\left(a^{F}\right)\right), \quad \operatorname{dom}\left(r^{D}\right) \cap \operatorname{dom}\left(\pi_{\mathbb{B}}\left(a^{F}\right)\right)
$$

6 Block Mappings

To ensure referential integrity, we need to establish a mapping between the ARBs and CPBs in V_{F} and V_{D}. We define these mappings first.

6.1 Aligned Refined Blocks Mapping

$\operatorname{An} \operatorname{ARB} a^{F}$ is related to an $\operatorname{ARB} a^{D}$ by a relation H iff the domain of a^{D} is contained into domain of a^{F} along the borrowed columns \mathbb{B}. That is:

$$
\left(a^{F}, a^{D}\right) \in H \Longleftrightarrow \operatorname{dom}\left(a^{D}\right) \subseteq \operatorname{dom}\left(\pi_{\mathbb{B}}\left(a^{F}\right)\right)
$$

For our running example, the ARB mapping is given as follows:

$$
H=\left\{\left(a_{1}^{\text {Reg }}, a_{1}^{\text {Std }}\right),\left(a_{2 b}^{\text {Reg }}, a_{2 b}^{\text {Std }}\right),\left(a_{2 b}^{\text {Reg }}, a_{3 b}^{\text {Std }}\right),\left(a_{2 a}^{\text {Reg }}, a_{2 a}^{\text {Std }}\right),\left(a_{2 a}^{\text {Reg }}, a_{3 a}^{\text {Std }}\right),\left(a_{3}^{\text {Reg }}, a_{4}^{\text {Std }}\right)\right\}
$$

6.2 Constituent Projection Blocks Mapping

A CPB p^{F} is related to a CPB p^{D} by a relation J iff for each ARB a^{F} associated with p^{F}, there is an ARB a^{D} associated with p^{D}, such that, the domain of a^{D} is contained in the domain of a^{F}. That is:

$$
\left(p^{F}, p^{D}\right) \in J \Longleftrightarrow \forall a^{F} \text { s.t. } p^{F} L a^{F}, \exists a^{D} \text { s.t. }\left(p^{D} L a^{D}\right) \wedge\left(a^{F} H a^{D}\right)
$$

Essentially all the CPBs in D that are related to a CPB p^{F} through J together form its domain. For our running example, the CPB mapping is given as follows:

$$
\begin{aligned}
J=\{ & \left(p_{1}^{\text {Reg }}, p_{1}^{S t d}\right),\left(p_{1}^{\text {Reg }}, p_{3}^{S t d}\right),\left(p_{2}^{\text {Reg }}, p_{1}^{S t d}\right),\left(p_{2}^{\text {Reg }}, p_{2}^{S t d}\right),\left(p_{2}^{\text {Reg }}, p_{3}^{S t d}\right),\left(p_{2}^{\text {Reg }}, p_{4}^{\text {Std }}\right), \\
& \left.\left(p_{3}^{\text {Reg }}, p_{1}^{S t d}\right),\left(p_{3}^{\text {Reg }}, p_{3}^{S t d}\right),\left(p_{3}^{\text {Reg }}, p_{5}^{\text {Std }}\right),\left(p_{3}^{\text {Reg }}, p_{6}^{\text {Std }}\right),\left(p_{4}^{\text {Reg }}, p_{7}^{\text {Std }}\right),\left(p_{4}^{\text {Reg }}, p_{8}^{\text {Std }}\right)\right\}
\end{aligned}
$$

7 Referential Constraints

The referential constraints are imposed on the ARBs and CPBs depending on the nature of projections applied. Therefore, we first classify ARBs into two main categories:

No Projection on a Subset of Borrowed Columns (NoPB) If an ARB a^{F} in V_{F} is either not subjected to a projection constraint, or the projection is along PAS \mathbb{A} such that $\mathbb{A} \nsubseteq \mathbb{B}$, then a^{F} is included in the $N o P B$ category. For example, $a_{3}^{R e g}$ is not subjected to any projection along the borrowed columns. Therefore, it belongs to the NoPB category.

Projection on a Subset of Borrowed Columns (PB) If an ARB a^{F} in V_{F} is subjected to a projection constraint with PAS \mathbb{A} such that $\mathbb{A} \subseteq \mathbb{B}$, then we call a^{F} to be in the $P B$ category. For example, $a_{1}^{R e g}, a_{2 a}^{R e g}, a_{2 b}^{R e g}$ are all subjected to projection constraint along $G P A$ borrowed column. Therefore, these ARBs belong to the PB category.

7.1 NoPB Blocks

If there is a projection constraint applied on a block a^{F} along a PAS \mathbb{A}, which is not a proper subset of \mathbb{B}, then this means that there is at least one attribute in \mathbb{A} that was present in the original schema of the fact table F itself. In this case, we replace the PAS from \mathbb{A} to $\mathbb{A} \cap U(F)$, where $U(F)$ are the set of attributes in F. By ensuring distinctness for a subset of \mathbb{A}, we automatically get distinctness for \mathbb{A} as well.

After the above pre-processing, each block a^{F} in the NoPB category has no projection constraint along any attribute of \mathbb{B}. Therefore, we can generate any single value along \mathbb{B} that lies in the domain boundary of the block. In other words, we can pick any value from the ARBs in V_{D} that are related to a^{F} by relation H. To do this, we need to ensure that if a^{F} is populated then at least one related ARB a^{D} is also populated. This is ensured by the following constraint:

$$
\begin{equation*}
\left|a^{F}\right| \leq|F| \sum_{a^{D}:\left(a^{F}, a^{D}\right) \in H}\left|a^{D}\right| \tag{2}
\end{equation*}
$$

Here $|F|$ is a trivial upper bound on a^{F}.

7.2 PB Blocks

Consider a block a^{F} on which a constraint with $\operatorname{PAS} \mathbb{A}$, such that $\mathbb{A} \subseteq \mathbb{B}$, is applied. The distinct cardinality relationship has to be ensured at two levels for a^{F} - (a) Constituent CPBs level, and (b) Constraint level, stemming from the interdependence of the ARBs. Specifically, the following constraints are applied:

CPB Bound. For a CPB p^{F}, its cardinality is upper bounded the summation of the CPBs in D that form its domain. That is:

$$
\begin{equation*}
\left|p^{F}\right| \leq \sum_{p^{D}:\left(p^{F}, p^{D}\right) \in J}\left|p^{D}\right| \tag{3}
\end{equation*}
$$

Constraint Interval Bound. For each interval I obtained wrt a CC c (after Align Refinement), the sum of the cardinalities of the CPBs wrt V_{F} that are associated with c, and have domain as I, is upper bounded by the sum of the cardinalities of the CPBs wrt V_{D}, which are related to any of the aforementioned CPB wrt V_{F}, using J. That is,

$$
\begin{equation*}
\sum_{p^{F}: \operatorname{dom}\left(p^{F}\right)=I \wedge\left(p^{F}, c\right) \in M o L}\left|p^{F}\right| \leq \sum_{p^{D}:\left(p^{F}, p^{D}\right) \in J \wedge \operatorname{dom}\left(p^{F}\right)=I \wedge\left(p^{F}, c\right) \in M o L}\left|p^{D}\right| \tag{4}
\end{equation*}
$$

7.3 LP Constraints

The LP has variables with respect to each ARB and CPB in both the fact table and dimension table views. Specifically, for a CPB p, we have a corresponding variable $y(p)$ denoting $|p|$, and for each ARB a, we have a corresponding variable $x(a)$ denoting $|a|$. Therefore, replacing these cardinality expressions (in Equations 2, 3, and 4) with the corresponding variables, we get the referential constraints. The filter and projection constraints are modeled as discussed in PiGen.

For our running example, following are the LP constraints for the two example AQPs:

Filter Constraints

$$
\begin{aligned}
x\left(a_{1}^{\text {Reg }}\right) & =15000 \\
x\left(a_{1}^{\text {Reg }}\right)+x\left(a_{2 a}^{\text {Reg }}\right)+x\left(a_{2 b}^{\text {Reg }}\right) & =250000 \\
x\left(a_{1}^{\text {Reg }}\right)+x\left(a_{2 a}^{\text {Reg }}\right)+x\left(a_{2 b}^{\text {Reg }}\right)+x\left(a_{3}^{\text {Reg }}\right) & =370000 \\
x\left(a_{1}^{S t d}\right) & =2000 \\
x\left(a_{1}^{S t d}\right)+x\left(a_{2 a}^{S t d}\right)+x\left(a_{2 b}^{S t d}\right)+x\left(a_{3 a}^{S t d}\right)+x\left(a_{3 b}^{S t d}\right) & =42000 \\
x\left(a_{1}^{S t d}\right)+x\left(a_{2 a}^{S t d}\right)+x\left(a_{2 b}^{S t d}\right)+x\left(a_{3 a}^{S t d}\right)+x\left(a_{3 b}^{S t d}\right)+x\left(a_{4}^{S t d}\right) & =50000
\end{aligned}
$$

Projection Constraints

$$
\begin{array}{r}
y\left(p_{1}^{\text {Reg }}\right)+y\left(p_{2}^{\text {Reg }}\right)=2 \\
y\left(p_{1}^{\text {Reg }}\right)+y\left(p_{2}^{\text {Reg }}\right)+y\left(p_{3}^{\text {Reg }}\right)+y\left(p_{4}^{\text {Reg }}\right)=5
\end{array}
$$

Referential Constraints

[NoPB]

$$
x\left(a_{3}^{R e g}\right) \leq 370000 x\left(a_{4}^{S t d}\right)
$$

[PB - CPB Bound]

$$
\begin{aligned}
& y\left(p_{1}^{\text {Reg }}\right) \leq y\left(p_{1}^{S t d}\right)+y\left(p_{3}^{S t d}\right) \\
& y\left(p_{2}^{\text {Reg }}\right) \leq y\left(p_{1}^{S t d}\right)+y\left(p_{2}^{S t d}\right)+y\left(p_{3}^{S t d}\right)+y\left(p_{4}^{S t d}\right) \\
& y\left(p_{3}^{\text {Reg }}\right) \leq y\left(p_{1}^{S t d}\right)+y\left(p_{3}^{S t d}\right)+y\left(p_{5}^{S t d}\right)+y\left(p_{6}^{S t d}\right) \\
& y\left(p_{4}^{\text {Reg }}\right) \leq y\left(p_{7}^{S t d}\right)+y\left(p_{8}^{S t d}\right)
\end{aligned}
$$

[PB - Constraint Interval Bound]

$$
\begin{gathered}
y\left(p_{1}^{\text {Reg }}\right)+y\left(p_{2}^{\text {Reg }}\right)+y\left(p_{3}^{\text {Reg }}\right) \leq y\left(p_{1}^{S t d}\right)+y\left(p_{2}^{S t d}\right)+y\left(p_{3}^{S t d}\right)+y\left(p_{4}^{S t d}\right)+y\left(p_{5}^{S t d}\right)+y\left(p_{6}^{S t d}\right) \\
y\left(p_{4}^{\text {Reg }}\right) \leq y\left(p_{7}^{S t d}\right)+y\left(p_{8}^{S t d}\right)
\end{gathered}
$$

In addition to these constraints, we also add the sanity constraints as discussed in PiGen. One possible solution to the LP is as follows:
[Reg ARBs]:

$$
x\left(a_{1}^{\text {Reg }}\right)=15000, x\left(a_{2 a}^{\text {Reg }}\right)=120000, x\left(a_{2 b}^{\text {Reg }}\right)=115000, x\left(a_{3}^{\text {Reg }}\right)=120000
$$

$$
\begin{gathered}
x\left(a_{1}^{S t d}\right)=2000, x\left(a_{2 a}^{S t d}\right)=10000, x\left(a_{2 b}^{S t d}\right)=10000 \\
x\left(a_{3 a}^{S t d}\right)=10000, x\left(a_{3 b}^{S t d}\right)=10000, x\left(a_{4}^{S t d}\right)=8000
\end{gathered}
$$
\]

y\left(p_{1}^{R e g}\right)=2, y\left(p_{2}^{R e g}\right)=0, y\left(p_{3}^{R e g}\right)=1, y\left(p_{4}^{R e g}\right)=2
\]

$$
\begin{gathered}
y\left(p_{1}^{S t d}\right)=2, y\left(p_{2}^{S t d}\right)=0, y\left(p_{3}^{S t d}\right)=4, y\left(p_{4}^{S t d}\right)=0 \\
y\left(p_{5}^{S t d}\right)=0, y\left(p_{6}^{S t d}\right)=0, y\left(p_{7}^{S t d}\right)=3, y\left(p_{8}^{S t d}\right)=4
\end{gathered}
$$
\]

8 Data Generation

From the LP solution, we get the following information for each view:

1. The cardinality for each ARB in the view.
2. The cardinality for each CPB in the view.

In this section we discuss how the database summary is constructed using this information and subsequently tuples are generated from it.

8.1 View Summary Construction

To begin with we first construct the view summaries independently using the same technique as in PiGen. To summarize, we first assign domain intervals to each CPB. Recall that two CPBs that are associated with a same constraint need to be disjoint even if there domains are overlapping. Therefore, during the domain interval assignment, we break the domain into disjoint intervals and assigned them to these CPBs. After this assignment, we have view summaries ready. In these summaries, we omit the domain assignment to the CPBs of the ARBs in V_{F} that belong to PB category. As a next step, we need to extract relation summaries back from the views. Specifically, we need to replace the borrowed columns in the views with the appropriate FK column.

8.2 Key Curation

A number of CPBs in V_{F} map to a CPB in V_{D} using the relation J. Since these CPBs may require disjoint domain intervals assigned to them, we further split the domain interval assigned to a CPB in the V_{D} based on the CPBs in V_{F} related to it. Specifically, we do the following:

1. We construct a graph G_{p}^{D} for each $\mathrm{CPB} p^{D}$ in V_{D}. Construct a vertex for each $\mathrm{CPB} p^{F}$ such that $\left(p^{F}, p^{D}\right) \in J$. An edge is added between two vertices if the corresponding CPBs are not related to a common constraint through $M o L$. In other words, these CPBs need not be disjoint and can therefore can be assigned the same values.
2. Extract maximal cliques from the graph. Number of maximal cliques correspond to the number of sub-domains in which the domain of p^{D} is to be broken. Let the cardinality share of p^{D} from the sub-domain s be expressed using the variable $y_{p^{D}}(s)$.
3. Each vertex in the graph can be a part of multiple maximal cliques. This means, the corresponding $\mathrm{CPB} p^{F}$ can be assigned values from multiple sub-domains. Let the share of p^{F} from a subdomain s in the graph G_{p}^{D} be expressed using variable $y_{p^{F}}\left(p^{D}, s\right)$.
4. Now, we compute the values for all the variables $y_{p^{D}}(s), y_{p^{F}}\left(p^{D}, s\right)$ across all the graphs and maximal cliques such that:

- Summation of the share of a dimension table CPB p^{D} across all its sub-domains (maximal cliques) is equal to its total cardinality. That is:

$$
\sum_{s} y_{p^{D}}(s)=y_{p^{D}}
$$

- Summation of the share of a fact table $\mathrm{CPB} p^{F}$ across all the sub-domains (maximal cliques) in various graphs is equal to its total cardinality. That is:

$$
\sum_{\left(p^{D}, s\right)} y_{p^{F}}\left(p^{D}, s\right)=y_{p^{F}}
$$

- The cardinality share of a vertex is upper bounded by the cardinality share of the graph itself. That is:

$$
y_{p^{F}}\left(p^{D}, s\right) \leq y_{p^{D}}(s)
$$

We use the above information to break the domain of p^{D} into sub-domains and its associated cardinality divided wrt each sub-domain.

For our running example, considering only populated blocks, the domains of the CPBs of $V_{S t d}$ are as follows:

$$
p_{1}^{S t d}:[3,6), \quad p_{3}^{S t d}:[0,3), \quad p_{7}^{S t d}:[8,10), \quad p_{8}^{S t d}:[6,8)
$$

Among these, the graphs corresponding to both $p_{1}^{S t d}$ and $p_{3}^{S t d}$ have two cliques corresponding to the singleton vertices $p_{1}^{R e g}$ and $p_{3}^{R e g}$. Therefore the domains of $p_{1}^{S t d}$ and $p_{3}^{S t d}$ are split into two sub-domains and the cardinality is also split. We show one possible split as follows:

$$
\begin{array}{ll}
p_{1}^{S t d}(\text { Split } 1):[3,5), \text { Card.: } 2 & p_{1}^{S t d}(\text { Split } 2):[5,6), \text { Card.: } 0 \\
p_{3}^{S t d}(\text { Split } 1):[0,2), \text { Card.: } 1 & p_{3}^{S t d}(\text { Split } 2):[2,3), \text { Card.: } 3
\end{array}
$$

Using these domain splits, we now show the domain assignments done to each of the populated CPBs of $V_{\text {Reg }}$:

$$
\begin{array}{ll}
p_{1}^{R e g}(\text { Split } 1):[3,5), \text { Card.: } 1 & p_{1}^{R e g}(\text { Split } 2):[0,2), \text { Card.: } 1 \\
p_{3}^{\text {Reg }}(\text { Split } 1):[5,6), \text { Card.: } 0 & p_{3}^{R e g}(\text { Split } 2):[2,3), \text { Card.: } 1 \\
p_{4}^{R e g}(\text { Split } 1):[8,10), \text { Card.: } 2 & p_{4}^{R e g}(\text { Split } 2):[6,8), \text { Card.: } 0
\end{array}
$$

Next, we need to populate the FK column for each ARB in V_{F}. We do this depending on the nature of ARB.

NoPB

If an ARB a^{F} is in the NoPB category, then we first pick any ARB a^{D} such that $\left(a^{F}, a^{D}\right) \in H$. In the summary of D, we compute the cumulative ARB cardinality from the beginning till a^{D}. This gives the number of tuples generated before a^{D} is generated. Let this value be γ. Since PK values are generated from 0 , the tuple with PK value γ will be the first tuple in a^{D}. Since any PK value in a^{D} is a valid value for the FK column wrt a^{F}, we assign the FK value γ to the entire a^{F} block.

PB

Now we consider the case where an ARB a^{F} is in the PB category. Each of its constituent CPBs are to be assigned FK value ranges. For a $\mathrm{CPB} p^{F}$, we take its share with respect to each (p^{D}, s) combination. We then iterate on the ARBs in V_{F} that are related to a^{F} using H and get a target ARB that constitutes the $\mathrm{CPB} p^{D}$. There we identify the fraction of p^{D} that features s. Now, we identify the number of tuples generated before this point. This is by adding the total ARB cardinality before the target ARB and then adding the total distinct cardinality for the CPBs before the specific p^{D} CPB. Further, the subdomain cardinalities before the specific s are also added. This gives the first FK value that we need. Say this is fk -val. Then the range assigned is [fk-val, fk -val $+y_{p^{F}}\left(p^{D}, s\right)$.

In this way, for a particular fact table, a sample template for an ARB summary is shown in Figure 6. There is total cardinality of the ARB, and for every PAS acting on it, all the CPBs associated with different projection subspaces and their distinct cardinalities are maintained. Further, for the attributes not involved in any projections $\left(\mathbb{A}_{\text {left }}\right)$, only the domain is stored without any distinct cardinality. What is different here from the no-join case, is that we now also store the value ranges for each Foreign Key column. Each range is wrt to a CPB and its corresponding CPB in dimension table.

A sample database summary for our running example was already shown in Figure 5.

\mathbb{A}_{1}	\mathbb{A}_{2}	\ldots	\mathbb{A}_{α}	$\mathbb{A}_{\text {left }}$	$f k$	
CPB-1: card.,	CPB-1: card.,	\ldots	CPB-1: card.,		Key	ARB
CPB-2: card.,	CPB-2: card.,	\ldots	CPB-2: card.,	PB	Ranges	Card.
\ldots	\ldots	\ldots	\ldots			

Figure 6: Sample ARB Summary

8.3 Tuple Generation

The tuples are generated similar to how we discussed in PiGen. Additionally, for FK columns, we use the value ranges present in the summary and do a round robin on them until the entire ARB is instantiated.

9 Experimental Evaluation

In this section, we evaluate the empirical performance of a Java based implementation of our proposed solution. The Z3 solver [5] is invoked to compute the solutions for the LP formulations. Our experiments cover the accuracy, time and space overheads aspects of our work. The experiments were conducted using the PostgreSQL v9.6 engine [] on a vanilla HP Z440 workstation.

Figure 7: Schema Graph

Workload Construction. We designed a workload of 145 SQL queries derived from the TPC-DS decision support benchmark such that they satisfy the underlying assumptions. These queries covered four fact tables and their corresponding dimension tables. These fact tables were - STORE_SALES (SS), CATALOG_SALES (CS), WEB_SALES (WS), INVENTORY (INV). The distribution of queries among these four tables were: SS (73 Queries), CS (33 Queries), ws (32 Queries), INV (7 Queries). We have
shown the snapshot of a fraction of the schema graph in Figure 7. We can see the four fact tables with their dimension tables in the figure.

These 145 queries led to a tally of 540 CCs. The constraints had PAS of upto length ten. The join distribution in these CCs is shown in Figure 8. As we can see from the figure, the number of joins ranges from 1 to 4 .

Figure 8: Distribution of Joins
We show a sample SQL query from our input workload below. The corresponding AQP is also shown in Figure 9.

Sample SQL Query.

```
Select Distinct i_item_id
From store_sales SS, date_dim D, item I, customer_demographics CD,
promotion P
Where ss_sold_date_sk = d_date_sk and ss_item_sk = i_item_sk
    and cd_demo_sk = ss_cdemo_sk and p_promo_sk = ss_promo_sk
    and d_year = 2001 and cd_gender = ''M' and cd_marital_status = 'M'
    and cd_education_status = '4 yr Degree' and p_channel_email = 'N' ;
```


9.1 Workload Decomposition

We decompose the input workload into fifteen sub-workloads such that all the conflicts discussed are resolved. The complexity of these sub-workloads is quantitatively characterized in Table 3.

9.2 Constraint Accuracy

We ran our framework on the workloads mentioned before and the generated data satisfied all the constraints with $\mathbf{1 0 0 \%}$ accuracy. This is because - (a) additional constraints were included in the LP to ensure distinct cardinality relationships between fact tables and their corresponding dimension tables; (b) key curation ensured the explicit subset requirement, hence ensuring referential integrity.

9.3 Time and Space Overheads

We now turn our attention to the computational and resource overheads. The summary production times and sizes corresponding to all the sub-workloads are shown in Table 4 . We see here that the end-to-end

Figure 9: AQP of Sample Query
time for summary production for each sub-workload is less than a minute except for sub-workload 9 which is a couple of minutes. From a deployment perspective, these times appear acceptable since database generation is usually an offline activity. Moreover, the summary sizes, as shown in the table, are minuscule, within a few MBs. As mentioned earlier, these are independent of the data-scale of the original database.

To obtain a quantitative understanding, we report the sizes of the intermediate results at various pipeline stages also in Table 4 - specifically, the number of ARBs and CPBs created by Hydra are presented. The number of variables are simply the summation of these two quantities.

9.4 Performance of JOB Benchmark

We also evaluated the proposed solution on a workload of 35 SQL queries derived from the JOB benchmark based on IMDB dataset. This workload covered the three prominent fact tables - namely, MOVIE_KEYWORD (11 Queries), CAST_INFO (14 Queries), and MOVIE_COMPANIES (10 Queries), and their associated dimension tables. The number of joins in these queries range from 2 to 4 . The workload led to a tally of 161 CCs.

The workload was split into 6 sub-workloads. The characteristics of these sub-workloads are shown in Table 5.

In this case as well, Hydra ensured 100% volumetric similarity. The computational and resource overheads are tabulated in Table 6. We see that the time is at most a couple of minutes and the summary sizes are also typically within a few MBs.

Table 3: Workload Characteristics (TPC-DS)

Workload No.	\#Queries	\#CCs	Max PAS Length	Max joins
1	13	56	2	5
2	10	45	4	5
3	8	33	10	4
4	8	26	3	4
5	11	44	5	4
6	10	38	2	5
7	9	22	3	3
8	10	32	4	3
9	10	47	4	5
10	9	41	6	5
11	8	30	2	5
12	7	20	2	4
13	8	27	6	5
14	14	39	2	4
15	10	40	5	5

Table 4: Overheads and Block Profile (TPC-DS)

Workload	\#ARBs	\#CPBs	\#Variables	Summary 	
		583	672	4	1.2
1	81	162	243	2	0.6
2	39	27	66	24	5.4
3	40	76	116	4	3.4
4	40	Space (MBs)			
5	120	6485	6605	14	5.8
6	53	69	122	2	0.2
7	38	137	175	2	0.8
8	48	66	114	3	7.8
9	98	8356	8634	121	2.2
10	65	122	187	3	1
11	46	29	75	2	0.06
12	24	70	94	42	4.8
13	36	78	114	2	0.14
14	75	1473	1548	12	2
15	58	243	301	6	7

10 Conclusion

Our work expands the scope of supported constraints to collectively include Select, Project and Join operators. The main challenge in handling joins in the CCs was to ensure referential integrity among tables. Our solution constructed a unified LP for the linked tables and added referential constraints that address the aforementioned challenge. Techniques of Align Refinement and Block Mapping aid in the process of adding these constraints. The experimental evaluation on workloads derived from TPC-DS and JOB benchmarks indicated that our solution accurately models the SPJ CCs and produces

Table 5: Workload Characteristics (IMDB)

Workload No.	\#Queries	\#CCs	Max PAS Length	Max joins
1	5	27	3	3
2	6	33	3	4
3	7	30	2	3
4	6	24	3	3
5	6	28	2	3
6	5	19	2	3

Table 6: Time and Space Overheads (IMDB)

Workload	\#Variables	Summary	
		Time (s)	Space (MBs)
1	94	1	0.4
2	66	1	0.3
3	1321	7	2.5
4	198	84	0.2
5	142	10	20
6	30	1	9.1

generation summaries within viable time and space overheads.

References

[1] A. Arasu, R. Kaushik, and J. Li. Data Generation using Declarative Constraints. In Proc. of ACM SIGMOD Conf., 2011.
[2] A. Gilad, S. Patwa, and A. Machanavajjhala. Synthesizing Linked Data Under Cardinality and Integrity Constraints. In Proc. of ACM SIGMOD Conf., 2021.
[3] A. Sanghi, S. Ahmed, and J. R. Haritsa. Projection-Compliant Database Generation. In PVLDB, 15(5), 2022.
[4] A. Sanghi, R. Sood, J. R. Haritsa, and S. Tirthapura. Scalable and Dynamic Regeneration of Big Data Volumes. In Proc. of 21st EDBT Conf., 2018, pgs. 301-312.
[5] Z3. https://github.com/Z3Prover/z3
[6] PostgreSQL. https://www.postgresql.org/docs/9.6/

[^0]: ${ }^{1}$ The joins considered are restricted to PK-FK joins.

