
Data Generation using Join Constraints

Anupam Sanghi Shadab Ahmed Prashik Rawale Jayant R. Haritsa

Technical Report
TR-2022-01

(August 2022)

Database Systems Lab
Dept. of Computational and Data Sciences

Indian Institute of Science
Bangalore 560012, India

https://dsl.cds.iisc.ac.in

Abstract

Adequately testing a database engine requires synthesizing data that resembles the client data
processing environments. Contemporary data regenerators use declarative formalisms for construct-
ing synthetic data. In particular, they specify operator output volumes through row cardinality
constraints. However, thus far, adherence to these volumetric constraints has been limited in the
scope of operators handled. For instance, none of the frameworks provide a solution that sup-
ports cardinality constraints with Select-Project-Join (SPJ) operators. This project aims to provide
a comprehensive solution for such constraints involving SPJ operators.

1 Introduction
RDBMS vendors often require synthetic data to capture the data processing scenarios on the client-side
effectively. This need arises for use cases such as testing DBMS and database applications, benchmark-
ing, etc.

In the past decade, several frameworks [1, 2, 3, 4] have been proposed that focus on workload-aware
data regeneration using constraints derived from the execution of client query workloads, as described
next.

Workload-Aware Data Regeneration
Consider a sample client scenario where we have the database schema and an example query as shown
in Fig. 1(a) and Fig. 1(b), respectively. Suppose that we get the execution plan for this query, by
running the query at the client deployment, as shown in Fig. 1(c). Note that the edges in the plan tree
are annotated with the number of rows flowing from one operator to the other. We refer to this plan as
an Annotated Query Plan (AQP). The set of row-cardinality constraints (CCs) derived from this AQP
is listed in Fig. 1(d).

The focus of the workload-aware data regeneration is to ensure volumetric similarity. That is, on
running the client query workload on the synthetic database produced at the vendor site, the AQPs
obtained are very similar to the ones fetched from the client site. In other words, the synthetic data
should adhere to the CCs obtained with respect to the input client AQPs.

Cardinality Constraint. A CC dictates that the output of a given relational expression over the gen-
erated database should feature a specified number of rows. For Select-Project-Join (SPJ) query formu-
lations, the canonical constraint representation is:

|πP(σf (T1 ▷◁ T2 ▷◁ ...TN))|= k (1)

where k is the number of rows that are output after applying the complete relational expression, i.e.,
the output cardinality, P represents the set of attributes on which projection is applied (PAS), and f
represents the filter conditions on the inner join of relations T1, T2, ..., TN .

Background
The workload-aware data regeneration frameworks in the literature do not provide a comprehensive
solution that handles CCs with SPJ operators. For instance, [2, 1, 4] model filter constraints using a
linear programming (LP) based approach at its core. However, they lack the support for the projection

1

Figure 1: Example AQP and CCs

operator. Likewise, [3] models filter and projection constraints in the LP; but due to being limited to a
single relation, it does not support the join operator.

A critical shortcoming of the prior work is the lack of modeling the join constraints accurately.
Unlike filter predicates that specify the constants/value-ranges that are permissible for the constrained
columns, modeling join predicates require constructing dependence with respect to the join columns
such that the generated tables obey the required join output cardinality. With large number of input
constraints, this problem gets even more challenging.

A way to handle joins was used in [1, 4], where they constructed the denormalized tables first and
then extracting the original tables from it. Specifically, for each table T to be constructed, a correspond-
ing view VT is synthesized first. This view captures the denormalized equivalent of T (excluding the
key columns). These views allow rewriting the join expression on a single view. Therefore, processing
on views help in generating correlations that are compatible with the various join cardinality in the
input. For example, the views constructed with respect to the two tables in Figure 1(a) are as follows:

VR(Course, Y ear, Score, Age, Scholarship,GPA),

VS(Age, Scholarship,GPA)

Further, the first two CCs from Figure 1(d) can now be rewritten as:

|(σAge≥25∧Y ear=21(VR))|= 3000

|πAge(σAge≥25∧Y ear=21(VR))|= 10

Using these views, filters on each view can be handled independently using the single table algorithm.
However, the challenge then lies in extracting the original tables back from their denormalized versions.
This is because these views need to obey referential integrity 1. For example, the value-combinations for
Age, Scholarship,GPA in VR should be a subset of VS in order to replace the borrowed columns with
the appropriate foreign-key value. In [1, 4], due to the lack of consideration of projection operation,
adding only a few spurious tuples in the referenced table was sufficient to ensure referential integrity.
This resulted in minor errors in satisfying the CCs. However, this approach cannot be used in presence
of projection because each value-combination with respect to the borrowed columns need to be repre-
sented in the referenced table. Therefore, the LP formulation and the subsequent data generation from
the solution need to explicitly model constraints to ensure referential integrity.

1The joins considered are restricted to PK-FK joins.

2

Our Contribution
In this work, we provide a comprehensive solution to handle the SPJ-cardinality constraints. Specifi-
cally, we use techniques proposed in PiGen [3] to model filter and projection conditions. These con-
ditions were used in [3] to form individual LPs for each of the participating relations. Further, we
also exploit the aforementioned denormalization strategy. A marked contrast is the way we model join
conditions into the solution pipeline. We construct a unified LP for the linked (through referential con-
straints) tables. This LP models the referential constraints to ensure that the number of distinct value-
combinations generated, with respect to the borrowed columns, in various intervals of the Foreign-Key
table (referencing) view is upper bounded by the corresponding interval in the (referenced) Primary-
Key table. Further, our Key Curation module ensure that the key values picked are such that the corre-
sponding tuples in the dimension table have the prescribed number of distinct value-combinations for
borrowed columns.

Additionally, our solution leverages the concept of dynamic regeneration [4], and constructs
Database Summary, that ensures data can be generated on-demand during query processing while
satisfying the input CCs. Therefore, no materialized table is required in the entire testing pipeline.
Further, the time and space overheads incurred in constructing the summary is independent of the size
of the table to be constructed and, in our evaluations, requires only a few 100 KBs of storage.

A detailed evaluation on a workload derived from the standard TPC-DS decision support benchmark
has been conducted. The results demonstrates that the proposed solution accurately and efficiently
models the SPJ CCs. As a case in point, for a workload of over 20 queries, leading to ∼130 CCs, the
generated data satisfied all the CCs with perfect accuracy. Moreover, the entire summary production
pipeline completed within viable time and space overheads.

2 Framework
In this section, we summarize the problem statement, the underlying assumptions, the output delivered,
and a tabulation of the notations used in this chapter.

2.1 Problem Statement
Given an SPJ query-workload W , with its corresponding set of AQPs Q, derived from an original
database with schema S and statistical metadata M, the objective is to generate a synthetic database D
such that it conforms to S and Q. That is, the AQPs obtained from the original database match, wrt the
cardinality annotations, the AQPs obtained on D.

2.2 Assumptions
We assume that W comprises of only PK-FK joins. Further, we assume that the filters and projections
are applied only on non-key columns. Again, we assume that Q is collectively feasible. Finally, for
brevity, we present the ideas using tables with columns having float data type; the extension to other
data types is straightforward.

2.3 Output
Given S, M, W and Q, Hydra outputs a collection of database summaries S. Each summary sD ∈ S
can be used to deterministically produce the associated database D. The databases produced are such

3

that: (a) all of them conform to S, and (b) for each query in W , its corresponding AQP in Q matches
with the AQP obtained on at least one output database instance.

2.4 Notations
The main acronyms and key notations used in this chapter are summarized in Tables 1 and Table 2,
respectively.

Table 1: Acronyms

Acronym Meaning
AQP Annotated Query Plan
CC Cardinality Constraint
SPJ Select Project Join
PAS Projection Attribute Set
FB Filter Block
RB Refined Block

ARB Aligned Refined Block
CPB Constituent Projection Block
PSD Projection Subspace Division

NoPB No Projection on a Subset of Borrowed Columns
PB Projection on a Subset of Borrowed Columns

Table 2: Notations

(a) Database Related

Symbol Meaning
S Database Schema
GS Schema Graph
D Output Database
T Output Table
sD Summary of D
F Fact Table
D Dimension Table
VT View wrt T
B Borrowed Attribute-Set

(b) Workload Related

Symbol Meaning
q Query
W Query Workload
Q Set of AQPs
c A c
f Filter Predicate
A PAS
l Output row card. after filter
k Output row card. after projection

(c) Block Related

Symbol Meaning
rT RB wrt VT

aT ARB wrt VT

pT CPB wrt VT

x(aT) variable for |aT |
y(pT) variable for |pT |

(d) Relation/Function Related

Symbol Meaning
U(T) Set of attributes in T
dom(.) Domain of the input parameter
M A relation btw CCs and ARBs
L A relation btw CPBs and ARBs
H A relation btw ARBs wrt VF and VD

J A relation btw CPBs wrt VF and VD

4

3 Design Principles

Figure 2: Join Solution Pipeline

The solution pipeline is illustrated in Figure 2. The green boxes illustrate the modules added/updated
to handle joins. We briefly discuss each of the core modules in this section. For ease of exposition, we
use the fact and dimension table terminology from data warehousing to refer to the tables having FK
and the corresponding PK, respectively. Further, the notations F and D are used to denote a fact table
and dimension table, respectively.

3.1 Denormalization
Inspired from DataSynth, we also construct views, where the view VT for a table T is its denormalized
equivalent (excluding key columns). Each column in a view is stored as a structure comprising of
two fields: {Column Name, Column Path}. The Column Path is stored as an array of the foreign
key columns involved in the query. Each view is associated with a view name and an array of the
column structures. To populate this array, first a schema graph GS is constructed. Here, a vertex is
made corresponding to each table in the database. For each PK-FK dependency, a directed edge is
added from the FK table to PK table. The edge is annotated with the participating columns of both the
relations. Note that, since two relations can have multiple PK-FK dependencies, there can be multiple
directed edges between tables. We assume GS to be a DAG, which is common in real-world databases
and is reflected in the benchmarks too.

Once GS is constructed, we traverse it in reverse topological order. For each edge (F.fk,D.pk) in
the order, the columns in view VD are added to VF . For each such column A, the Column Path of
VD.A, prepended with F.fk, is inserted as the Column Path for VF .A.

The join expression in a CC c, consists of series of PK-FK columns that participate in the joins in the
subtree rooted at the AQP node corresponding to c. It is easy to see that this PK-FK column series can

5

be uniquely mapped to a path in GS . The view VT corresponding to the source vertex in this path will
have columns from all the tables included in the path. Also, it is easy to see that the filter and projection
operation on a join expression can be equivalently written on VT . Hence, in this way, each CC can be
written as a filter and projection operation on a single view.

For our running example, the Views that are constructed are as follows:

VReg(Age, Scholarship,GPA,Course, Y ear, Score), VStd(Age, Scholarship,GPA)

Further, the aforementioned CCs from our running example, can be rewritten on the views VReg and
VStd as follows:

c1 : |πGPA(σAge<20∧GPA<6(VReg))|= 2 c2 : |πGPA(σAge≥20∨GPA<6(VReg))|= 4

c3 : |σAge<20∧GPA<6(VReg)|= 15000 c4 : |σAge≥20∨GPA<6(VReg)|= 250000

c5 : |σAge<20∧GPA<6(VStd))|= 2000 c6 : |σAge≥20∨GPA<6(VStd))|= 42000

c7 : |VReg|= 370000 c8 : |VStd|= 50000

As described earlier, referential integrity has to be ensured in the data that is generated. Let us first
describe referential integrity in the view semantics.

Theorem 1. Two tables F and D, with F having an FK column referencing table D, satisfy a referential
integrity dependency, iff the corresponding views VF and VD obey the following condition:

πB(VF) ⊆ πB(VD)

where B is the set of columns in VD borrowed by VF .

3.2 Workload Decomposition
In the previous chapter, a pair of constraints were defined to be overlapping if their PASs partially
intersect and their filters overlap. To handle this, we had an additional workload decomposition module
that splits the input workload into sub-workloads such that each of them is free from these overlapping
projection conflicts.

We have extended this case of overlapping projections to include the projection conflicts that surface
in the presence of joins. For example, a pair of queries q1, q2 on a dimension table D, with PASs A1

and A2 respectively, induce a conflict if (a) the PASs A1,A2 ⊆ D, and partially overlap with each other,
and (b) the filters in q1 and q2 intersect. We discuss the details of all the conflicts in Section 4. These
conflicts are additionally used by the workload decomposition module to do the workload split.

3.3 Data Space Partitioning
Region Partitioning and Symmetric Refinement. To model the filter predicates associated with the
input workload, the data space of each view is logically partitioned into a set of blocks. Each block
satisfies the condition that every data point in it satisfies the same subset of filter predicates. To do this
partitioning, we leverage the region partitioning technique discussed in [4], which partitions the data
space into the minimum number of filter-blocks (FBs).

To handle various projection subspaces (corresponding to the different PASs in the input queries)
independently, a Symmetric Refinement strategy is adopted (discussed in PiGen [3]). Specifically, it
refines an FB into a set of disjoint refined blocks (RBs) such that each resultant RB exhibits translation
symmetry along each applicable projection subspace.

6

Figure 3: Partitioning of Reg and Std Views

To make the above concrete, the partitioning of data space of VReg is shown in Figure 3(a). For ease
of presentation, we show only the two dimensions that participate in the example queries. In this figure,
the filter predicates are represented using regions delineated with colored solid-line boundaries. When
region partitioning is applied on this scenario, it produces the three disjoint FBs: rReg

1 , rReg
2 , rReg

3 , whose
domains are depicted with dashed-line boundaries. For our running example, the resultant blocks are
already symmetric. The partitioning with respect to VStd is also shown in Figure 3(b). Here, we have
additionally added a constraint shown by blue solid-line to add complexity in the example.

Align Refinement. To obtain the original tables from their denormalized equivalents, the views need
to obey referential integrity. As discussed in Theorem 1, the referential integrity constraint between
fact table view VF and dimension table view VD is expressed as follows:

πB(VF) ⊆ πB(VD)

To add referential constraints, for a CC c with PAS A (where A ⊆ B) applicable on VReg, its constituent
RBs need to be aligned with each other along A. By align we mean that the domain of RBs along A
are either identical or disjoint. The blocks obtained after refinement are called Aligned Refined Blocks
(ARBs). For example, rReg

2 in Figure 3(a) is split into aReg
2a and aReg

2b to ensure alignment with aReg
1 ,

as shown in Figure 4(a). (The other RBs happen to be already aligned, so their equivalent ARBs are
unaltered).

Further, we also need to ensure that each RB in VD is either completely contained or disjoint from
the domain of each ARB in VF . Therefore, we also do a refinement of RBs in VD as part of this module
and produce ARBs that ensure alignment with VF . For example, rStd2 and rStd3 in Figure 3(b) are split
into aStd2a , aStd2b and aStd3a , aStd3b respectively, as shown in Figure 4(b). We discuss the details of this module
in Section 5.

Projection Subspace Division. This technique divides each projection subspace into a set of con-
stituent projection blocks (CPBs), as per PiGen. For our running example, the CPBs obtained for VReg

7

Figure 4: Align Refinement

are as follows:

pReg
1 = πGPA(a

Reg
1) ∩ πGPA(a

Reg
2b), pReg

2 = πGPA(a
Reg
1) \ πGPA(a

Reg
2b)

pReg
3 = πGPA(a

Reg
2b) \ πGPA(a

Reg
1), pReg

4 = πGPA(a
Reg
2a)

Further, the CPBs obtained for VStd are as follows:

pStd1 = πGPA(a
Std
1) ∩ πGPA(a

Std
3b), pStd2 = πGPA(a

Std
1) \ πGPA(a

Std
3b)

pStd3 = πGPA(a
Std
1) ∩ πGPA(a

Std
2b), pStd4 = πGPA(a

Std
1) \ πGPA(a

Std
2b)

pStd5 = πGPA(a
Std
3b) \ πGPA(a

Std
1), pStd6 = πGPA(a

Std
2b) \ πGPA(a

Std
1)

pStd7 = πGPA(a
Std
2a), pStd8 = πGPA(a

Std
3a)

3.4 LP Formulation
After the above processing is completed for each view, we formulate a unified LP for the linked (through
referential constraints) tables. The LP is constructed using variables representing the cardinalities of
ARBs and CPBs. Specifically, Filter Constraints and Projection Constraints are modeled for each view
in the same way as proposed in the previous chapter. For modeling Referential Constraints we also
do a Block Mapping where the ARBs and CPBs of VF are mapped to those of VD. The referential
constraints ensure that for each block in VF the number of distinct values along borrowed columns
is upper bounded by the number of distinct values in the corresponding blocks in VD. Once this is
ensured, the exact subset property is ensured in the final Key Curation stage.

3.5 Summary Construction
Using the LP solution, we first build a summary data structure for each view that contains all the relevant
information for extracting the corresponding base relation. Specifically, from the view summary the
base relation summary is obtained by replacing the borrowed columns with the appropriate FK column.
The process to do this is described next.

8

Figure 5: Sample Summary

Key Range Curation. This final stage is responsible for the curation of FK values in F . Specifically,
for each ARB aF in VF , to construct its equivalent in F , a range of FK values is assigned to it. This
assignment is done using a range of PK values associated to a set of blocks in VD, such that:

1. The chosen VD blocks are contained within the boundaries of aF after projecting along B.

2. The tuples associated with the selected PK values have the desired number of distinct values
along the PAS prescribed by the projection applied on aF .

In this way, we get the summary for each table, which is used for dynamic data regeneration. A sample
summary is shown in Figure 5. To appreciate the summary in entirety, we also show the other columns
in the Std table schema. Therefore, we can see that the distinct row counts along different projection
subspaces are represented similar to the discussion in the previous chapter. Additionally, we show the
FK column in Reg table summary having the range of RollNo values to be included.

4 Workload Decomposition
As discussed in the previous section, the case of conflicting projection constraints is handled by splitting
the workload into sub-workloads such that each sub-workload is free from such conflicts. In addition
to the characterization of such overlapping projections in case of single table queries (as per PiGen),
we have extended the class of overlapping projections to include the cases that appear in presence of
joins. These additional cases of projection conflicts can be categorized based on the nature of referential
dependencies as follows:

1F : 1D1F : 1D1F : 1D. Assume a pair of queries q1 and q2 having common fact (F) and dimension (D) tables, and
the PASs applicable are A1 and A2 respectively, where A1 ̸= A2. Further, the filter conditions in the
queries intersect. In this case, q1 and q2 are conflicting if A1,A2 ⊆ D. The conflict arises because there

9

is an implied projection dependency between F and D with respect to A1 ∪ A2 as well. Therefore, F
is subjected to projection constraints along A1 ∪ A2,A1 and A2, which are overlapping.

multi-F : 1Dmulti-F : 1Dmulti-F : 1D. Assume a pair of queries q1, q2 with PASs A1 and A2. Further, both the queries involve
a dimension table D such that the filters along D in the queries are overlapping. Now, if A1,A2 ⊆ D
and partially overlap with each other, then it is a straightforward case of overlapping constraints on D.
Therefore, q1 and q2 form a conflicting pair of queries.

1F : multi-D1F : multi-D1F : multi-D. Assume a query q involving fact table F and dimension tables D1 and D2. Further,
the PAS A applied on q is such that A ⊆ D1∪D2 and A ⊈ D1,A ⊈ D1. To ensure referential integrity,
projection constraints on F along A∩D1 and A∩D2 are required. Both these constraints conflict with
the preexisting projection constraint along A.

The conflicts in the 1F : 1D and multi-F : 1D category can be handled by splitting the workload into
sub-workloads. Specifically, we construct a graph with each query being a vertex and adding an edge
between two queries if there is conflict between them. Now, if we run vertex coloring algorithm on the
graph, the subset of queries having the same color assigned form a sub-workload.

Unlike the previous two conflicts which were inter-query, the third case of 1F : 1D type conflict is
intra-query. A workaround to handle these queries is to generate all distinct tuples along A∩D1 for filter
compliant region of the dataspace in D1, and along A ∩ D2 in D2. Subsequently, for F , the requisite
number of distinct rows along A are generated by curating FKs from D1, D2. This is always possible
since the distinct row cardinality along A in F can at most be the product of the distinct cardinality
along A∩D1 in D1 and the distinct cardinality along A∩D2 in D2. Due to the distinct rows generation
in D1 and D2, any other query with overlapping filters on D1 (or D2) will lead to a conflict. Again, we
use workload decomposition to take care of these conflicts.

5 Align Refinement
To apply referential constraints on the various blocks of the fact table and dimension table views, we
need to ensure that the blocks are well aligned. We next discuss the alignment process separately for
the fact and dimension tables.

5.1 Fact Table Refinement
We know that the CPBs related to the same CC c need to be assigned disjointed set of values, even if
their domains overlap. Therefore, for solution tractability, as a first step, we ensure that for the CPBs
that are related to the same constraint c featuring PAS A, have either identical or disjointed domains.
This helps to divide the domain of A, for a constraint c, into a set of intervals such that each constituent
CPB is associated with an interval.

This CPB to interval mapping is done by ensuring that any two RBs related to the same CC with
PAS A are aligned with each other along A. That is, they are either identical or disjoint with each other
along the subspace spanned by A. Specifically, two blocks rF1 , r

F
2 are considered aligned with each

other if either dom(πA(r
F
1)) = dom(πA(r

F
2)) or dom(πA(r

F
1)) ∩ dom(πA(r

F
2)) = ∅.

The Align Refinement module for a fact table view VF takes the RBs for the view as input and refines
them such that the resultant blocks are mutually aligned. A block in VF obtained after refinement is
called an Aligned Refined Block (ARB) and is denoted as aF . In Figure 3(a), we saw rReg

1 and rReg
2

participate in a common constraint comprising of projection along GPA, and are not aligned along

10

GPA. As a result, rReg
2 is split in aReg

2a and aReg
2b , as shown in Figure 4(a) after which alignment is

preserved. Further we can see that the red constraint is associated with a single interval I1 : GPA ≤ 6
and the green constraint is associated with two intervals I1 : GPA ≤ 6 and I2 : GPA ≥ 6.

The algorithm for performing this refinement iterates over each pair of RBs (rF1 , r
F
2) related to the

same CC with PAS A, and outputs four (if non-empty domains) blocks, the domains of which are
represented as follows:

dom(πU(F)\A(r
F
1))× (dom(πA(r

F
1)) \ dom(πA(r

F
2))),

dom(πU(F)\A(r
F
2))× (dom(πA(r

F
2)) \ dom(πA(r

F
1))),

dom(πU(F)\A(r
F
1))× (dom(πA(r

F
1)) ∩ dom(πA(r

F
2))),

dom(πU(F)\A(r
F
2))× (dom(πA(r

F
1)) ∩ dom(πA(r

F
2)))

5.2 Dimension Table Refinement
Each ARB aF along fact table view has to be given values for the borrowed columns that appear in
the dimension table and are within its domain boundary. For this, we do a refinement of the RBs in
dimension table as well so that each resultant block is either completely contained in the domain of a
block aF (along B) or is disjoint from it.

The Align Refinement module for a dimension table view VD takes the RBs for the view as input
and refines them such that the resultant blocks are mutually aligned. A block in VD obtained after
refinement is also called an aligned refined block (ARB) and is denoted as aD. In Figure 3(b), the
RBs rStd2 and rStd3 partially overlap with the blocks aReg

2a and aReg
2b (from Figure 4(a)) along the 2-D

space (GPA,Age). Therefore, we split these blocks into aStd2a , aStd2b , aStd3a , and aStd3b ARBs, as shown in
Figure 4(b).

The algorithm for performing this refinement iterates over each RB rD one by one. For an rD, each
ARB aF in VF is compared along B, and if dom(πB(a

F)), dom(rD) partially overlap, then rD is broken
into two blocks, the domains of which are represented as follows:

dom(rD) \ dom(πB(a
F)), dom(rD) ∩ dom(πB(a

F))

6 Block Mappings
To ensure referential integrity, we need to establish a mapping between the ARBs and CPBs in VF and
VD. We define these mappings first.

6.1 Aligned Refined Blocks Mapping
An ARB aF is related to an ARB aD by a relation H iff the domain of aD is contained into domain of
aF along the borrowed columns B. That is:

(aF , aD) ∈ H ⇐⇒ dom(aD) ⊆ dom(πB(a
F))

For our running example, the ARB mapping is given as follows:

H = {(aReg
1 , aStd1), (aReg

2b , aStd2b), (aReg
2b , aStd3b), (aReg

2a , aStd2a), (aReg
2a , aStd3a), (aReg

3 , aStd4)}

11

6.2 Constituent Projection Blocks Mapping
A CPB pF is related to a CPB pD by a relation J iff for each ARB aF associated with pF , there is an
ARB aD associated with pD, such that, the domain of aD is contained in the domain of aF . That is:

(pF , pD) ∈ J ⇐⇒ ∀aF s.t. pFLaF ,∃aDs.t. (pDLaD) ∧ (aFHaD)

Essentially all the CPBs in D that are related to a CPB pF through J together form its domain. For our
running example, the CPB mapping is given as follows:

J = {(pReg
1 , pStd1), (pReg

1 , pStd3), (pReg
2 , pStd1), (pReg

2 , pStd2), (pReg
2 , pStd3), (pReg

2 , pStd4),

(pReg
3 , pStd1), (pReg

3 , pStd3), (pReg
3 , pStd5), (pReg

3 , pStd6), (pReg
4 , pStd7), (pReg

4 , pStd8)}

7 Referential Constraints
The referential constraints are imposed on the ARBs and CPBs depending on the nature of projections
applied. Therefore, we first classify ARBs into two main categories:

No Projection on a Subset of Borrowed Columns (NoPB) If an ARB aF in VF is either not sub-
jected to a projection constraint, or the projection is along PAS A such that A ⊈ B, then aF

is included in the NoPB category. For example, aReg
3 is not subjected to any projection along the

borrowed columns. Therefore, it belongs to the NoPB category.

Projection on a Subset of Borrowed Columns (PB) If an ARB aF in VF is subjected to a projection
constraint with PAS A such that A ⊆ B, then we call aF to be in the PB category. For ex-
ample, aReg

1 , aReg
2a , aReg

2b are all subjected to projection constraint along GPA borrowed column.
Therefore, these ARBs belong to the PB category.

7.1 NoPB Blocks
If there is a projection constraint applied on a block aF along a PAS A, which is not a proper subset of
B, then this means that there is at least one attribute in A that was present in the original schema of the
fact table F itself. In this case, we replace the PAS from A to A ∩ U(F), where U(F) are the set of
attributes in F . By ensuring distinctness for a subset of A, we automatically get distinctness for A as
well.

After the above pre-processing, each block aF in the NoPB category has no projection constraint
along any attribute of B. Therefore, we can generate any single value along B that lies in the domain
boundary of the block. In other words, we can pick any value from the ARBs in VD that are related to
aF by relation H . To do this, we need to ensure that if aF is populated then at least one related ARB
aD is also populated. This is ensured by the following constraint:

|aF |≤ |F |
∑

aD:(aF ,aD)∈H

|aD| (2)

Here |F | is a trivial upper bound on aF .

12

7.2 PB Blocks
Consider a block aF on which a constraint with PAS A, such that A ⊆ B, is applied. The distinct
cardinality relationship has to be ensured at two levels for aF – (a) Constituent CPBs level, and (b)
Constraint level, stemming from the interdependence of the ARBs. Specifically, the following con-
straints are applied:

CPB Bound. For a CPB pF , its cardinality is upper bounded the summation of the CPBs in D that
form its domain. That is:

|pF |≤
∑

pD:(pF ,pD)∈J

|pD| (3)

Constraint Interval Bound. For each interval I obtained wrt a CC c (after Align Refinement), the
sum of the cardinalities of the CPBs wrt VF that are associated with c, and have domain as I , is
upper bounded by the sum of the cardinalities of the CPBs wrt VD, which are related to any of
the aforementioned CPB wrt VF , using J . That is,∑

pF :dom(pF)=I∧(pF ,c)∈MoL

|pF |≤
∑

pD:(pF ,pD)∈J∧dom(pF)=I∧(pF ,c)∈MoL

|pD| (4)

7.3 LP Constraints
The LP has variables with respect to each ARB and CPB in both the fact table and dimension table
views. Specifically, for a CPB p, we have a corresponding variable y(p) denoting |p|, and for each
ARB a, we have a corresponding variable x(a) denoting |a|. Therefore, replacing these cardinality ex-
pressions (in Equations 2, 3, and 4) with the corresponding variables, we get the referential constraints.
The filter and projection constraints are modeled as discussed in PiGen.

For our running example, following are the LP constraints for the two example AQPs:

Filter Constraints

x(aReg
1) = 15000

x(aReg
1) + x(aReg

2a) + x(aReg
2b) = 250000

x(aReg
1) + x(aReg

2a) + x(aReg
2b) + x(aReg

3) = 370000

x(aStd1) = 2000

x(aStd1) + x(aStd2a) + x(aStd2b) + x(aStd3a) + x(aStd3b) = 42000

x(aStd1) + x(aStd2a) + x(aStd2b) + x(aStd3a) + x(aStd3b) + x(aStd4) = 50000

Projection Constraints

y(pReg
1) + y(pReg

2) = 2

y(pReg
1) + y(pReg

2) + y(pReg
3) + y(pReg

4) = 5

13

Referential Constraints

[NoPB]
x(aReg

3) ≤ 370000x(aStd4)

[PB - CPB Bound]

y(pReg
1) ≤ y(pStd1) + y(pStd3)

y(pReg
2) ≤ y(pStd1) + y(pStd2) + y(pStd3) + y(pStd4)

y(pReg
3) ≤ y(pStd1) + y(pStd3) + y(pStd5) + y(pStd6)

y(pReg
4) ≤ y(pStd7) + y(pStd8)

[PB - Constraint Interval Bound]

y(pReg
1) + y(pReg

2) + y(pReg
3) ≤ y(pStd1) + y(pStd2) + y(pStd3) + y(pStd4) + y(pStd5) + y(pStd6)

y(pReg
4) ≤ y(pStd7) + y(pStd8)

In addition to these constraints, we also add the sanity constraints as discussed in PiGen. One
possible solution to the LP is as follows:
[Reg ARBs]:

x(aReg
1) = 15000, x(aReg

2a) = 120000, x(aReg
2b) = 115000, x(aReg

3) = 120000

[Std ARBs]:

x(aStd1) = 2000, x(aStd2a) = 10000, x(aStd2b) = 10000,

x(aStd3a) = 10000, x(aStd3b) = 10000, x(aStd4) = 8000

[Reg CPBs]:
y(pReg

1) = 2, y(pReg
2) = 0, y(pReg

3) = 1, y(pReg
4) = 2

[Std CPBs]:

y(pStd1) = 2, y(pStd2) = 0, y(pStd3) = 4, y(pStd4) = 0,

y(pStd5) = 0, y(pStd6) = 0, y(pStd7) = 3, y(pStd8) = 4

8 Data Generation
From the LP solution, we get the following information for each view:

1. The cardinality for each ARB in the view.

2. The cardinality for each CPB in the view.

In this section we discuss how the database summary is constructed using this information and subse-
quently tuples are generated from it.

14

8.1 View Summary Construction
To begin with we first construct the view summaries independently using the same technique as in
PiGen. To summarize, we first assign domain intervals to each CPB. Recall that two CPBs that are
associated with a same constraint need to be disjoint even if there domains are overlapping. Therefore,
during the domain interval assignment, we break the domain into disjoint intervals and assigned them
to these CPBs. After this assignment, we have view summaries ready. In these summaries, we omit
the domain assignment to the CPBs of the ARBs in VF that belong to PB category. As a next step, we
need to extract relation summaries back from the views. Specifically, we need to replace the borrowed
columns in the views with the appropriate FK column.

8.2 Key Curation
A number of CPBs in VF map to a CPB in VD using the relation J . Since these CPBs may require
disjoint domain intervals assigned to them, we further split the domain interval assigned to a CPB in
the VD based on the CPBs in VF related to it. Specifically, we do the following:

1. We construct a graph GD
p for each CPB pD in VD. Construct a vertex for each CPB pF such that

(pF , pD) ∈ J . An edge is added between two vertices if the corresponding CPBs are not related
to a common constraint through MoL. In other words, these CPBs need not be disjoint and can
therefore can be assigned the same values.

2. Extract maximal cliques from the graph. Number of maximal cliques correspond to the number
of sub-domains in which the domain of pD is to be broken. Let the cardinality share of pD from
the sub-domain s be expressed using the variable ypD(s).

3. Each vertex in the graph can be a part of multiple maximal cliques. This means, the corresponding
CPB pF can be assigned values from multiple sub-domains. Let the share of pF from a sub-
domain s in the graph GD

p be expressed using variable ypF (p
D, s).

4. Now, we compute the values for all the variables ypD(s), ypF (pD, s) across all the graphs and
maximal cliques such that:

• Summation of the share of a dimension table CPB pD across all its sub-domains (maximal
cliques) is equal to its total cardinality. That is:∑

s

ypD(s) = ypD

.

• Summation of the share of a fact table CPB pF across all the sub-domains (maximal cliques)
in various graphs is equal to its total cardinality. That is:∑

(pD,s)

ypF (p
D, s) = ypF

• The cardinality share of a vertex is upper bounded by the cardinality share of the graph
itself. That is:

ypF (p
D, s) ≤ ypD(s)

15

We use the above information to break the domain of pD into sub-domains and its associated cardi-
nality divided wrt each sub-domain.

For our running example, considering only populated blocks, the domains of the CPBs of VStd are as
follows:

pStd1 : [3, 6), pStd3 : [0, 3), pStd7 : [8, 10), pStd8 : [6, 8)

Among these, the graphs corresponding to both pStd1 and pStd3 have two cliques corresponding to the
singleton vertices pReg

1 and pReg
3 . Therefore the domains of pStd1 and pStd3 are split into two sub-domains

and the cardinality is also split. We show one possible split as follows:

pStd1 (Split 1) : [3, 5),Card.: 2 pStd1 (Split 2) : [5, 6),Card.: 0

pStd3 (Split 1) : [0, 2),Card.: 1 pStd3 (Split 2) : [2, 3),Card.: 3

Using these domain splits, we now show the domain assignments done to each of the populated
CPBs of VReg:

pReg
1 (Split 1) : [3, 5),Card.: 1 pReg

1 (Split 2) : [0, 2),Card.: 1

pReg
3 (Split 1) : [5, 6),Card.: 0 pReg

3 (Split 2) : [2, 3),Card.: 1

pReg
4 (Split 1) : [8, 10),Card.: 2 pReg

4 (Split 2) : [6, 8),Card.: 0

Next, we need to populate the FK column for each ARB in VF . We do this depending on the nature
of ARB.

NoPB

If an ARB aF is in the NoPB category, then we first pick any ARB aD such that (aF , aD) ∈ H . In the
summary of D, we compute the cumulative ARB cardinality from the beginning till aD. This gives the
number of tuples generated before aD is generated. Let this value be γ. Since PK values are generated
from 0, the tuple with PK value γ will be the first tuple in aD. Since any PK value in aD is a valid value
for the FK column wrt aF , we assign the FK value γ to the entire aF block.

PB

Now we consider the case where an ARB aF is in the PB category. Each of its constituent CPBs are to
be assigned FK value ranges. For a CPB pF , we take its share with respect to each (pD, s) combination.
We then iterate on the ARBs in VF that are related to aF using H and get a target ARB that constitutes
the CPB pD. There we identify the fraction of pD that features s. Now, we identify the number of tuples
generated before this point. This is by adding the total ARB cardinality before the target ARB and then
adding the total distinct cardinality for the CPBs before the specific pD CPB. Further, the subdomain
cardinalities before the specific s are also added. This gives the first FK value that we need. Say this is
fk-val. Then the range assigned is [fk-val, fk-val+ ypF (p

D, s).
In this way, for a particular fact table, a sample template for an ARB summary is shown in Figure 6.

There is total cardinality of the ARB, and for every PAS acting on it, all the CPBs associated with
different projection subspaces and their distinct cardinalities are maintained. Further, for the attributes
not involved in any projections (Aleft), only the domain is stored without any distinct cardinality. What
is different here from the no-join case, is that we now also store the value ranges for each Foreign Key
column. Each range is wrt to a CPB and its corresponding CPB in dimension table.

A sample database summary for our running example was already shown in Figure 5.

16

A1 A2 ... Aα Aleft fk
ARB
Card.

CPB-1: card., CPB-1: card., ... CPB-1: card.,
PB

Key
Ranges

CPB-2: card., CPB-2: card., ... CPB-2: card.,
...

Figure 6: Sample ARB Summary

8.3 Tuple Generation
The tuples are generated similar to how we discussed in PiGen. Additionally, for FK columns, we
use the value ranges present in the summary and do a round robin on them until the entire ARB is
instantiated.

9 Experimental Evaluation
In this section, we evaluate the empirical performance of a Java based implementation of our proposed
solution. The Z3 solver [5] is invoked to compute the solutions for the LP formulations. Our ex-
periments cover the accuracy, time and space overheads aspects of our work. The experiments were
conducted using the PostgreSQL v9.6 engine [] on a vanilla HP Z440 workstation.

Figure 7: Schema Graph

Workload Construction. We designed a workload of 145 SQL queries derived from the TPC-DS
decision support benchmark such that they satisfy the underlying assumptions. These queries covered
four fact tables and their corresponding dimension tables. These fact tables were – STORE SALES (SS),
CATALOG SALES (CS), WEB SALES (WS), INVENTORY (INV). The distribution of queries among
these four tables were: SS (73 Queries), CS (33 Queries), WS (32 Queries), INV (7 Queries). We have

17

shown the snapshot of a fraction of the schema graph in Figure 7. We can see the four fact tables with
their dimension tables in the figure.

These 145 queries led to a tally of 540 CCs. The constraints had PAS of upto length ten. The join
distribution in these CCs is shown in Figure 8. As we can see from the figure, the number of joins
ranges from 1 to 4.

Figure 8: Distribution of Joins

We show a sample SQL query from our input workload below. The corresponding AQP is also shown
in Figure 9.

Sample SQL Query.

Select Distinct i item id
From store sales SS, date dim D, item I, customer demographics CD,
promotion P
Where ss sold date sk = d date sk and ss item sk = i item sk
and cd demo sk = ss cdemo sk and p promo sk = ss promo sk
and d year = 2001 and cd gender = ‘M’ and cd marital status = ‘M’
and cd education status = ‘4 yr Degree’ and p channel email = ‘N’ ;

9.1 Workload Decomposition
We decompose the input workload into fifteen sub-workloads such that all the conflicts discussed are
resolved. The complexity of these sub-workloads is quantitatively characterized in Table 3.

9.2 Constraint Accuracy
We ran our framework on the workloads mentioned before and the generated data satisfied all the
constraints with 100% accuracy. This is because – (a) additional constraints were included in the
LP to ensure distinct cardinality relationships between fact tables and their corresponding dimension
tables; (b) key curation ensured the explicit subset requirement, hence ensuring referential integrity.

9.3 Time and Space Overheads
We now turn our attention to the computational and resource overheads. The summary production times
and sizes corresponding to all the sub-workloads are shown in Table 4. We see here that the end-to-end

18

Figure 9: AQP of Sample Query

time for summary production for each sub-workload is less than a minute except for sub-workload 9
which is a couple of minutes. From a deployment perspective, these times appear acceptable since
database generation is usually an offline activity. Moreover, the summary sizes, as shown in the table,
are minuscule, within a few MBs. As mentioned earlier, these are independent of the data-scale of the
original database.

To obtain a quantitative understanding, we report the sizes of the intermediate results at various
pipeline stages also in Table 4 – specifically, the number of ARBs and CPBs created by Hydra are
presented. The number of variables are simply the summation of these two quantities.

9.4 Performance of JOB Benchmark
We also evaluated the proposed solution on a workload of 35 SQL queries derived from the JOB
benchmark based on IMDB dataset. This workload covered the three prominent fact tables – namely,
MOVIE KEYWORD (11 Queries), CAST INFO (14 Queries), and MOVIE COMPANIES (10 Queries), and
their associated dimension tables. The number of joins in these queries range from 2 to 4. The workload
led to a tally of 161 CCs.

The workload was split into 6 sub-workloads. The characteristics of these sub-workloads are shown
in Table 5.

In this case as well, Hydra ensured 100% volumetric similarity. The computational and resource
overheads are tabulated in Table 6. We see that the time is at most a couple of minutes and the summary
sizes are also typically within a few MBs.

19

Table 3: Workload Characteristics (TPC-DS)

Workload No. #Queries #CCs Max PAS Length Max joins
1 13 56 2 5
2 10 45 4 5
3 8 33 10 4
4 8 26 3 4
5 11 44 5 4
6 10 38 2 5
7 9 22 3 3
8 10 32 4 3
9 10 47 4 5
10 9 41 6 5
11 8 30 2 5
12 7 20 2 4
13 8 27 6 5
14 14 39 2 4
15 10 40 5 5

Table 4: Overheads and Block Profile (TPC-DS)

Workload #ARBs #CPBs #Variables
Summary

Time (s) Space (MBs)
1 89 583 672 4 1.2
2 81 162 243 2 0.6
3 39 27 66 24 5.4
4 40 76 116 4 3.4
5 120 6485 6605 14 5.8
6 53 69 122 2 0.2
7 38 137 175 2 0.8
8 48 66 114 3 7.8
9 98 8356 8634 121 2.2

10 65 122 187 3 1
11 46 29 75 2 0.06
12 24 70 94 42 4.8
13 36 78 114 2 0.14
14 75 1473 1548 12 2
15 58 243 301 6 7

10 Conclusion
Our work expands the scope of supported constraints to collectively include Select, Project and Join
operators. The main challenge in handling joins in the CCs was to ensure referential integrity among
tables. Our solution constructed a unified LP for the linked tables and added referential constraints
that address the aforementioned challenge. Techniques of Align Refinement and Block Mapping aid
in the process of adding these constraints. The experimental evaluation on workloads derived from
TPC-DS and JOB benchmarks indicated that our solution accurately models the SPJ CCs and produces

20

Table 5: Workload Characteristics (IMDB)

Workload No. #Queries #CCs Max PAS Length Max joins
1 5 27 3 3
2 6 33 3 4
3 7 30 2 3
4 6 24 3 3
5 6 28 2 3
6 5 19 2 3

Table 6: Time and Space Overheads (IMDB)

Workload #Variables
Summary

Time (s) Space (MBs)
1 94 1 0.4
2 66 1 0.3
3 1321 7 2.5
4 198 84 0.2
5 142 10 20
6 30 1 9.1

generation summaries within viable time and space overheads.

21

References
[1] A. Arasu, R. Kaushik, and J. Li. Data Generation using Declarative Constraints. In Proc. of ACM

SIGMOD Conf., 2011.

[2] A. Gilad, S. Patwa, and A. Machanavajjhala. Synthesizing Linked Data Under Cardinality and
Integrity Constraints. In Proc. of ACM SIGMOD Conf., 2021.

[3] A. Sanghi, S. Ahmed, and J. R. Haritsa. Projection-Compliant Database Generation. In PVLDB,
15(5), 2022.

[4] A. Sanghi, R. Sood, J. R. Haritsa, and S. Tirthapura. Scalable and Dynamic Regeneration of Big
Data Volumes. In Proc. of 21st EDBT Conf., 2018, pgs. 301-312.

[5] Z3. https://github.com/Z3Prover/z3

[6] PostgreSQL. https://www.postgresql.org/docs/9.6/

22

