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Abstract

Estimates of predicate selectivities by database quemnaars often differ significantly from
those actually encountered during query execution, lgattirpoor plan choices and inflated
response times. Recently, a novel idea, SEER [1], of mitigathis problem by replacing
selectivity error-sensitive plan choices with alternatplans that provide robust performance
was proposed. The idea was based on the recent observalioingt even the complex and
dense “plan diagrams” associated with industrial strengthmizers can be efficiently reduced
to “anorexic” equivalents featuring only a few plans, witth@degrading the query processing
quality. The SEER algorithm proposed in [1] has a worst casaing time complexity of
O(n.r?), wheren is the number of plans that feature in the original plan diagrd is the
dimensionality of the plan diagram am¢t>> 4) is the resolution of the plan diagram. Thus,
though it works well for 2D plan diagrams, for higher dimersl diagrams, the computa-
tional overheads incurred by SEER are impractical. In thort, we propos€C-SEER,

a resolution independent algorithm, with a worst case mmtime complexity ofO(n.4%).
Extensive experimentimation with a representative seeothmark query templates on com-
mercial optimizers indicates that CC-SEER is an order ofmtade faster than SEER while
being competitive on reduction quality and robustness. TReSEER algorithm has been
implemented in the recently released version 2.0 of Picapmizer visualization tool.

A related issue is the universality of the techniques predas [1] with regard to optimizer
cost models. We investigate this issue and show that SEEISEER is applicable only to a
special breed of optimizers which obey the cost model defindd], i.e. it is not feasible
to extend these techniques to optimizers with more compdek models. To address this is-

sue, we propos&/C-SEER, a cost model scalable technique, based on the concepatoiix



condition numberThe worst case running time complexity of WC-SEERIg:.2¢). Experi-
mental results show that WC-SEER outplays the previousitgqals on all grounds (reduction

quality, robustness and computational efficiency).
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Chapter 1

Introduction

The query execution plan choices made by database engieastoifn out to be poor in prac-
tice because the optimizer’s selectivity estimates aneifssgntly in error with respect to the
actual values encountered during query execution. Suohsemwhich can even be in orders of
magnitude in real database environments [18], arise du@dadety of reasons [23], including

outdated statistics, attribute-value independence gssoims and coarse summaries.

1.1 Robust Plans.

To address this problem, one obvious approach is to impravguality of the statistical meta-
data, for which several techniques have been presented itdrature ranging from improved
summary structures [2] to feedback-based adjustmentst{?8h-the-fly reoptimization of
queries [15, 18, 4]. A complementary and conceptually tffie approach, which we consider
in this report, is to identifyrobust plansthat are relatively less sensitive to such selectivity
errors. In a nutshell, to “aim for resistance, rather thaeGuby identifying plans that provide
comparatively good performance over large regions of thecgeity space. Such plan choices
are especially important for industrial workloads wherebgll stability is as much a concern
as local optimality [17].

Over the last decade, a variety of strategies have been ggdpo identify robust plans,
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including the Least Expected Cost [6, 7], Robust Cardin&gtimation [3] and Rio [4, 5] ap-
proaches. These techniques provide novel and elegant fations (summarized in Section 7),

but have to contend with the following issues:

1. They arantrusiverequiring, to varying degrees, modifications to the optanengine.

2. They requirespecializednformation about the workload and/or the system which may

not always be easy to obtain or model.

3. Their query capabilities may bienited compared to the original optimizer — e.g., only
SPJ queries with key-based joins were considered in [3,ufthEr, [4] has been imple-

mented and evaluated on a non-commercial optimizer.

4. Most importantly, as explained in Section 7, none of theovige, on an_individual
query basis, quantitativguaranteeon the quality of their final plan choice relative to
the original (unmodified) optimizer’s selection. That isey “cater to the crowd, not

individuals”.

1.2 Anorexic Reduction of Plan Diagrams.

Our techniques are based on #@orexic reduction of plan diagramsa notion that was re-
cently presented and analyzed in [10]. Specifically, a “@agram” [21] is a color-coded
pictorial enumeration of the plan choices of the optimizerd parametrized query template
over the relational selectivity space. That is, it visuaptures the POSP geometry. For
example, consider QT8, the parametrized 2D query templaders in Figure 1.2, based on
Query 8 of TPC-H. Selectivity variations on ts@PPLIERANdLINEITEM relations are spec-
ified through thes_acctbal :varies and|_ extendedprice :varies predicates, respectively.
The associated plan diagram for QT8 is shown in Figure 1,.pf@duced with the Picasso
optimizer visualization tool [20] on a popular commerciatabase engine.

As evident from Figure 1.2(&)plan diagrams can be extremely complex and dense, with

1The figures in this report should ideally be viewed from a cotipy, as the grayscale version may not clearly
register the features.
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select ayear, sum(case when nation = 'BRAZIL' then volume else 0 érsdm(volume)

from (select YEAR(oorderdate) as gear, Lextendedprice * (1 -_Hiscount) as volume
n2.nname as nation

from part, supplier, lineitem, orders, customer,
nation nl, nation n2, region

where ppartkey = Ipartkey and suppkey = Isuppkey and_brderkey = aorderkey
and acustkey = ccustkey and mationkey = nl.mationkey and nl.megionkey
= r_regionkey and sationkey = n2.mationkey and name = '"AMERICA and
p_type ='ECONOMY ANODIZED STEEL and
s acctbal :variesand|_extendedprice :varies

) as allnations

group by ayear
order by ayear

Figure 1.1:Example Query Template: QT8

a large number of plans covering the space — several su@noes spanning a representative
set of benchmark-based query templates on industriatgitieptimizers are available at [20].
However, these dense diagrams can typically be “reducestiuich simpler pictures featuring
significantly fewer plansyithout materially degrading the processing quality of amjividual
query. For example in Figure 1.2(a), if users are willing to totera minor cost increase) of

at most 10% for any query point in the diagram, relative toriginal cost, the picture could
be reduced to Figure 1.2(b), where only 7 plans remain —shatast of the original plans have
been “completely swallowed” by their siblings, leading thighly reduced plan cardinality.

A detailed study of the plan diagram reduction problem was@nted in [10], and it was
shown that a cost increase thresholdoafy 20 percenis usually amply sufficient to bring
down the absolute number of plans in the final reduced pidtuwthin or around ten In
short, that complex plan diagrams can be made “anorexiclewbktaining acceptable query

processing performance.

Example. We now show an example of how anorexic reduction helps totikyeselectivity-
error-resistant plans: In Figure 1.2(a), estimated seldes of around (14%,1%) lead

to a choice of plarP70. However, if the actual selectivities at runtime turn oubt®
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significantly different, say (50%,40%), executing WRRAO, whose cost increases steeply
with selectivity, would be disastrous. In contrast, thisoemwould have had no impact
with the reduced plan diagram of Figure 1.2(b), side the replacement plan choice
at (14%,1%), remains the preferred plan for a large rangdgtfen values, including
(50%,40%). Quantitatively, at the run-time location, pRh has a cost of 135, while

P70’s cost of 402 is aboutree timesnore expensive.

It is easy to see, as in the above example, that the repla¢qtaenwill, by definition be
a robust choice for errors that lie within its optimality rex, i.e. its“endo-optimal” region.
This is the advantage, mentioned earlier, of considerippoements only from the POSP set
of plans. The obvious question then is whether the sizesasiethegions are typically large
enough to materially improve the system performance.

A second, and even more important question, is: What if thergare such that the run-
time locations aréexo-optimal” w.r.t. the replacement plan? For example, if the run-time
location happens to be at (80%,90%), which is outside thenggity region of P1? In this
situation, nothing can be said upfront — the replacementdmeimuch better, similar or much
worse than the original plan. Therefore, ideally speakimg,would like to have a mecha-
nism through which one could assess whether a replacemgtubally safeover the entire

parameter space.

1.3 Contributions.

Following are the contibutions made in this report:

e CC-SEER We address the scalability concerns of the SEER algorittopgsed in [1].
Specifically, we propose CC-SEER, an order of magnituderfadgorithm with a worst
case running time complexity of(n.4¢) as against (n.r?) of SEER, while being com-
parable with regard to reduction quality and robustnessovehfeature of CC-SEER is
that the computational overheads incurred by it are indegetnof resolution of the plan

diagram.
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e Investigating universality of SEER/CC-SEER The techniques discussed in [1] and
CC-SEER are predicated on compliance of the optimizer viiehadost model defined
in [1]. We investigate the universality of these technigaled show that it is not feasible
to extend them beyond simple cost models. As an implicatfahie, the problem of
robust plan identification resurfaces for optimizers witimplex cost models containing

higher degree polynomials.

e WC-SEER We propose a cost model oblivious technique of identifyiolgust plans.
Specifically, we propose WC-SEER, an algorithm based ondheapt of matrix condi-
tion number. Because of its model oblivious nature, WC-SkEbpdtentially applicable
to any optimizer. The running time complexity of WC-SEERJ&.2¢). Experimental
investigations suggest that WC-SEER outplays CC-SEERI@r@inds, i.e. reduction

guality, robustness and computational efficiency.

1.4 Organization.

The remainder of this report is organized as follows: In Gea, we present the overall
problem background, framework and motivation. The plart cosdels and the checks for
replacement safety are discussed in Chapter 3. The desitpe @C-SEER reduction algo-
rithm and its analysis are presented in Chapter 4. In Ch&pige investigate the universality
of SEER/CC-SEER. In Section 5.2, we present WC-SEER, a osodél scalable algorithm.
Our experimental framework and performance results arbligigted in Section 6. Related

work is overviewed in Section 7. Finally, in Section 8, we soamize our conclusions.



Chapter 2

Problem Framework

For ease of exposition, we assume in the following discudsiat the SQL query template is 2-

dimensional in its selectivity variations — the extenshigher dimensions is straightforward.

2.1 Plan and Reduced Plan Diagrams

From a query templat®, a plan diagran® is produced on a 2-dimension@l 1] selectivity
spaceS by making repeated calls to the optimizer. The selectiiigce is represented by a
grid of points where each poig{z, y) corresponds to a unique query with selectivitiegy

in the X and Y dimensions, respectively. Eagcls associated with an optimal (as determined
by the optimizer) planP;, and a cost;(q) representing the estimated effort to exeapteith
plan P;. Corresponding to each plah is a unique colorl;, which is used to color all the
guery points that are assigned® As mentioned earlier, the plan diagram is essentially a
visual characterization of the parametric optimal set ahpl(POSP) [12]. We ude andS

interchangeably in the remainder of the report based ondheekt.

2.1.1 Plan Diagram Reduction Problem

. This problem is defined as follows [10]: Given an input plaagdamP, and a maximum-
cost-increase threshold(\ > 0), find a reduced plan diagraR with minimum cardinality

such that for every pla®; in P,
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1. EitherP, € R, or

2. YV q € P, the assigned replacement plBne R guarantees?@ < (14X

¢i(q)
Thatis, find the maximum possible subset of the plaistimat can be completely “swallowed”
by their sibling plans in the POSP set. A point worth reempziag here is that the threshold
constraint applies on andividual querybasis. For example, setting= 10% stipulates that
the cost ofeachquery point in the reduced diagram is witHiri times its original value.

It was proved in [10] that the above problem is NP-Hard. Tfeeee an efficient heuristic-
based online algorithm, calleédostGreedy, was proposed and shown to deliver near-optimal
“anorexic” levels of reduction, wherein the plan carditabf the reduced diagram usually
came down to around 10 or less fonahreshold of only 20%. In a nutshell, complex plan
diagrams can be easily made very simple without materidfgcang the query processing

quality.

2.1.2 Selectivity Estimation Errors

Consider a specific query point, whose optimizer-estimated location $is (z., y.). De-
note the optimizer’'s optimal plan choice at poiptby P,.. Due to errors in the selectivity
estimates, thactuallocation ofg. could be different at execution-time — denote this location
by q.(z., y.), and the optimizer’'s optimal plan choicegtby P,,. Assume thaP,. has been
swallowed by a sibling plan during the reduction processdertbte the replacement plan as-
signed tog. in R by P,.. Finally, extend the definition of query cost (which appliedthe
optimal plan) to have;(¢) denote the cost of an arbitrary POSP plarat an arbitrary query
pointtin S.

With respect tdr, the actual query point, will be located in one of the following disjoint

regions ofP,. that together coves:

Endo-optimal region of P,.. Here,q, is located in the optimality region of the replacement
plan P.., which also implies thab,. = P,,. Sincec,.(q,) = ¢.a(qa), it follows that the
cost of P, atq,, ¢e(qa) < coe(qa) (by definition of a cost-based optimizer). Therefore,

improved resistance to selectivity errors is alwgysranteedn this region.
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Swallow-region of P..: Here,q, is located in the region “swallowed” b¥,. during the re-
duction process. Due to thethreshold constraint, we are assured thatg,) < (1 +
A)¢oa(qa), @and by implication that,.(¢.) < (1+ X)coe(qa). Now, there are two possibil-
ities: If ¢..(q.) < coe(qa), then the replacement plan is again guaranteed to impreve th
resistance to selectivity errors. On the other hand,.i7.) < ¢.e(q.) < (14 N)coe(qa),

the replacement is guaranteed to not cause any real harem tfie small values of

that we consider in this report.

Exo-optimal region of P,.:. Here,q, is located outside both the endo-optimal and swallow-
regions ofP,.. At such locations, we cannot apriori predi¢t’s behavior, and therefore
the replacement may not always be a good choice — in prindgtateuld bearbitrarily
worse Therefore, we would like to ensure that even if the replaa@moes not provide
any improvement, it is at least guaranteed to not do any haiat is, theexo-optimal
region should have the same performance guarantees as Hilawegion We show
in Chapter 3 how this objective can be efficiently achievedulgh simple but powerful

checks to decide when replacement is advisable.

2.2 Robust Reduction

From the above discussion, it is clear that we need to enbateohly safe replacements are
permitted. This means that replacement should be pernuotigdif the A\ threshold criterion
is satisfied not just at the estimated point, auall locationsin the selectivity space. At the
same time, it is important to ensure that the safety checlisinnecessarily conservative,
preventing most plan replacements, and in the procesgladlithe error-resistance benefits.
Therefore, the overall goal is to maximize plan diagram otidan without violating safety

considerations. More formally, our problem formulation is
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2.2.1 Robust Reduction Problem.

Given an input plan diagraR, and a maximum cost-increase-threshal@d\ > 0), find a

reduced plan diagrafR with minimum plan cardinalituch that for every pla#; in P,
1. P, eR,or

2.V ¢ € P, the assigned replacement pl&n € R guarantee¥ query pointsy’ € P,

ci(q
algy =Y

~
~—

That is, find the minimum-sized error-resistant “cover” tns that reduces the plan diagram
P without increasing the cost of any reassigned query poinmbye than the cost increase
thresholdjrrespective of the actual location of the query at run-time

It is easy to see that the Robust Reduction problem is NP;Hlastlike the standard Plan
Diagram Reduction problem, and therefore we present a d$tedbased algorithm later in
Chapter 4. But, prior to that, we show in the following sestimw replacement safety can be

checked efficiently.



Chapter 3

Ensuring Robust Reduction

To find an error-resistant cover of the plan diagram, we neeValuate the behavior of each
replacement pla®,., w.r.t. its swallowing targefP,., atall pointsin S. This requires, in prin-
ciple, finding the costs oFf,. and all potential®,. at every point in the diagram. Of course,
P,. and P,. need not be costed in their respectergdo-optimalregions, since these values
are already known through the plan diagram production m®2c&he remainingxo-optimal
costs can be obtained using thareign-Plan-Costindeature, hereafter referred to BRC, a
feature that has become available in the current versiosewaral industrial-strength optimiz-
ers, including DB2[30] (Optimization Profile), SQL Sen&t] (XML Plan) and Sybase[32]
(Abstract Plan).

While the above solution is conceptually feasible, it isgtilly unviable due to its enor-
mous computational overheads. Plan-costing is certalrdgper than the optimizer’s standard
optimal-plan-searching process [13], but the overall bead is stillO(nm) wheren andm
are the number of plans and the number of points, respegtiad?. Typical values of, range
from the several tens to several hundreds, whiles of the order of several thousands to
several hundreds of thousands, making an exhaustive agipio@ractical.

The above situation motivates us to study whether it is ptssbased on using FPC at
only a few select locations, tafer the behavior in the rest of the space. In the remainder of

this section, we describe our strategy for making such areémice. It was shown in [1] that it

11
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is possible to characterize plan cost behavior using a simpdl accurate parametrized math-
ematical model. The accuracy of the model was substantwitidseveral hundred distinct

plans arising out of TPC-H and TPC-DS-based query temptatésdustrial optimizers.

3.1 Modelling Plan Cost Functions

The following cost model was proposed in [1] for characiegzplan cost behavior in a

d—dimensional selectivity space :

Cost(xq,...,xq) = Z(ailxil + by, log x, )+

(51

§ (ailizxilxiz + bilizxilxiz log xilxiQ)

11 <09
+ ...+ CL12“d($C1.T2.T3..SUd)
+ biog(T12273..24) log(x1923..24)

+ ag (3.1)

where thea's andb’s are the(2¢*! — 1) coefficients and the;,i = 1...d represent thel

relational selectivities.

For instance, the cost model of a plan for a 2D selectivityreps of the form

Cost(x,y) =a1z + agy + azxy + ayxlog x + asylog y+

agxrylog ry + ay (3.2)

whereay, as, as, a4, as, ag, a7 are coefficients, and, y represent the selectivities &f, andR,,,
respectively.
Modeling a specific plan requires suitably choosing the sesaefficients, and this is

achieved through standard surface-fitting techniquesyrihes! in [1]
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3.2 Replacement Safety Conditions

For ease of presentation, we will initially assume that dyjective is to model the cost behav-
ior of plans with respect to a 2-D selectivity space (e.guFegl.2(a)) corresponding to distinct
relationsk, andR,. The extension to higher dimensions is straightforwardiardiscussed
later.

For the 2D scenario, using the abdieoefficient cost model, our goal now is to come up
with an efficient mechanism to assess, given an optimal Blancandidate replacement plan
P,. and a cost-increase threshaldwhether it would be safe fromglobal perspective to have

P.. swallowP,..

Let the cost functions fof,.. and P,. be
fre(z,y) = a1 + agy + azwy + agzlog x + asylogy + agrylog xy + a7 (3.3)

and

foe(x,y) = bix + boy + byzy + byxlog x + bsylog y + bexy log xy + by (3.4)

respectively. Now consider thieafety function”

f(@,y) = fre = (1+A) foe (3.5)

which captures the differences between the cosid.oand a\-inflated version ofP,. in the
selectivity space. All points wherg(z,y) < 0 are referred to aSafePointsvhereas points
that havef(z,y) > 0 are calledviolatingPoints For a replacement to be globally safe, there
should be no ViolatingPoints anywhere in the selectivitgcsp

For a specific value of, the safety functiorf(x, y) can be rewritten as

fy(@) =1 *xz+ g2 xxlogz + g3

for appropriate coefficients,, g2, g3. Similarly, we can defing,(y). With this terminology,
the following theorem provides us with conditions for chiagkwhether the selectivity space

is safe for the plan-pairK,.,P,.) with regard to replacement.
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Consider the following two lemmas, borrowed from [1], pertiag to safety function be-
havior — the first provides us with a condition that is suffitieo ensure safety of all points on
the straight line segment joining a pair of safe points, atiie second describes the behaviour
of the slope. i.e. second derivative, of the safety function

LEMMA 3.1 (Line Safety).Given a fixedy = y,, and a pair of safe pointéz,,y,) and
(72, Yo) Withz, > x,, the straight line joining the two points is safe if the slgfjgx) is either
(i) monotonically non-decreasing, OR (ii) strictly decsaeg with f; (z,) < 0or f; (z2) > 0.

A similar result holds when is fixed.
Note that the slope value at a point, y;) along a dimension can be approximated as the

slope of the line joining that point to the next point on thatticular dimension. For instance,
1,%0) — f(%2, v0)

Ty — X2
LEMMA 3.2 (Second Derivative Behavior)f the slope of the safety functiof (), is

., (21) can be approximated witfi.(x

non-decreasing (resp. decreasing) along the line-segme#st y; andy = ., then it is non-
decreasing (resp. decreasing) for all line segments in therval (y;,y2). A similar result
holds for f.(y).

In addition to the above two lemmas, we prove another lemmiaipeng to behavior of first
derivative of the safety function. CC-SEER critically dsamuch of its performance from this
lemma.

LEmMmA 3.3 (First Derivative Behavior)Given a fixed) = v, letg(z) = (W) .
Now, given a pair of point&ey, yo) and(z2, yo) With z; < x5 such thaty(z;) < 0 andyg(:cz)yog
0, Vo € [z1,25], g(x) < 0 if the slopeg’(x) is either (i) monotonically non-decreasing, i.e.
g'(z1) < ¢'(z2), OR (ii) strictly decreasing witly’(z1) < 0 or ¢’(x2) > 0. A similar result
holds wheny is fixed.

Lemma 3.3 basically says that by computing the valug @f; ) andg’(z-) it is possible to
determine whether or note € [z, 25, g(z) < 0. Similarly, it is also possible to determine
whether or not'z € [z1, 5], g(x) > 0, by just computing the values gf(x;) andg’(xs).
Slope approximation similar to that mentioned for compgitime value of first derivative of the
safety function at a point can be employed here also. Faamiestg’(z,) can be approximated

with 1 (y()) — Jaxo (3/0) .

T — T2




Chapter 4

The CC-SEER Algorithm

In this section, we will describe the safety checking prazegdwhich give a plan-pai®,., Pre),
responds whether the replacementif by P,. is globally safe throughout the selectivity
spaceS. We then present and analyze the CC-SEER algorithm whichth&eprocedure to do
error-resistant plan diagram reduction.

In the following, we will assume that the selectivity sp&ees represented by a gri@,

with m = r x r points, i.e. the grid resolution in each dimension.is

4.1 Safety Checking

Let the points onX axis of G be labelledz, z, - - ,z, in ascending order of selectiv-
ity (Fig. 4.1). Similarly, letY-axis points be labelled,, ., - - ,y.. Leveraging the Lem-

mas 3.1, 3.2 and 3.3, we use the following safety tests:

Figure 4.1:2D Grid of Selectivity Points

15
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1. Wedge Test

e Ensure safety at corners points®@f i.e. confirm that the safety function is non-
positive at points{z1, 1), (-, v1), (z1,9-), (-, y,). If coner point are safe, goto

next step. Else, retutdnsafe
o If f; (z1) < f, (x,) AND f; (1) < f, (z,), returnSafe Else, goto next step.

o If f7 (y1) < fi (y-) AND f, (1) < f. (y.), returnSafe Else, returrinconclu-
sive
The wedge test corresponds to FPC operations at the pombsadEby red color in
Fig. 4.1. Thus, the total number of FPC operations done intdge test is atmost
24,

2. CornerCube Test

o If f; (z), f'y.(x) are both strictly decreasing, use Lemma 3.2 to ensurevthat
[y1, 9], either (i) f; (z1) < 0, OR (ii) f, (=) > 0. If true, returnSafe Else, goto

next step.

o If fI (y), f'z.(y) are both strictly decreasing, use Lemma 3.2 to ensurevthat
[x1,x,], either (i) f.(y1) < 0, OR (i) f.(y,) > 0. If true, returnSafe Else, return

Inconclusive

The cube test corresponds to the red and blue points in HigT4us, the total number
of FPC operations done in the cube test, in addition to thed dn the wedge test,
is atmost 8. Note that inconclusive responses from theysafetcking procedure are

conservatively deemed UNSAFE.

The complete CC-SEER algorithm is given in Fig. 4.2. The algm, for each plan pair,
calls the wedge test, and the cornercube test is calledaffivddge tests responds 'inconclu-

sive’.
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CC-SEER (Plan DiagramP, Threshold X)

1. Create a Set-Cover Instante= (U, S), whereS = {51, 52, ...,S,}, U = {1,2,...,n}, corre-
sponding to the: plans in the original plan diagram.

2. Seteaclty; = {i},Vi=1..n
3. For each pair of plang’;, P;) do
if WEDGETEST (P;,P;,\) == Unsafe) then
Continue
if WEDGETEST (P,,P;,\) == Safe) then

Si = SiU{i}
else if(WEDGETEST (F;,F;,A\) == Inconlusive AND
CORNERCUBETEST (P;,P;,\) == Safe) then

Si =S UL}

4. Solve the set-cover instanf@ising the Greedy Setcover algorithm to identify the platained
in R.

Figure 4.2:The CC-SEER Reduction Algorithm

4.1.1 Extension of CC-SEER to Higher Dimensions

In this section, we will chalk out the generic CC-SEER safdtgcking procedure. Given an
plan pair(P,., P,..), the CC-SEER safety checking procedure responds whetbeeace-
ment of P, with P,. is globally safe throughout the selectivity sp&e

In the following, we will assume that the selectivity spaxesipresented by&dimensional

grid G. The resolution on each dimensionrisLet X, X5, ---, X4 be thed dimensions of
G. Letxz;, zs,- -+ , x4 be the selectivity values in the dimensidq in ascending order of
selectivity.

Lety : S — R be atarget functionthat assigns each selectivity point@with some real
number. A target function is said to BEAL if it is of the form given by Equation 3.1.

CC-SEER uses an auxillary recursive procedis®lonPositive (G, d, ¢), which when
given ad-dimensional grids and an ideal target functiop as input, responds whether or not
Vs € S, p(s) < 0. Animportannt point worth remphasising here is that thescpdure is based
on the Lemmas 3.1, 3.2 and 3.3.
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CC-SEER (Plan DiagramP, Threshold X)

1. Create a Set-Cover Instante= (U, S), whereS = {51, 52, ...,S,}, U = {1,2,...,n}, corre-
sponding to the: plans in the original plan diagram.

2. Seteaclty; = {i},Vi=1..n
3. For each pair of plang’;, P;) do

let f(.) be the safety function pertaining to
the replacement aP; with P;.
if IsNonPositive(G, d, f) == Yes
S =5 U{s}

4. Solve the set-cover instanfeising the Greedy Setcover algorithm to identify the platasimed
in R.

Figure 4.3:The Generic CC-SEER Reduction Algorithm

4.1.2 Analysis

The total number of FPC operations required by CC-SEER férdamensional selectivity
space isn.4?. The selectivity points at which the safety function is exéd correspond
to unit hypercubes at the corners of the selectivity spata, is why the name CC-SEER
(CornerCube-SEER). In any robust reduction algorithm, BP€rations constitute the running

time bottleneck. Thus, the worst case runnning time conifylex CC-SEER isO(n.4%).
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IsNonPositive(G, d, )

1: if d ==0then
2: G represent a single selectivity point. Let us call this peint
3:  if o(s) <0then
4 return Yes
5. else
6 return No
7 end if
8: end if
9: fori=1toddo
10: Let G; andGg be thed — 1 dimensional selectivity grids given BX; = x;; andX; = x;,
respectively.
11: if IsNonPositive(G1,d — 1, ) == Nothen
12: return No
13: endif
14: if ISNonPositive(Gz,d — 1, ) == No then
15: return No
16: endif
17: Letyp: S — R be a new ideal target function defined a&(s) = 8(;@(;)
1
. " 9¢'(s)
18:  Also, lety(s) = X,
19: if ¢ is positive at the corners @, andGs then
20: return Yes
21: endif
22: if IsNonPositive(G1,d — 1, ¢’) == Yes OR IsNonPositivéGa,d — 1, —¢') == Yesthen
23: return Yes
24: else
25: Continue
26: endif
27: end for

28: return No

Figure 4.4:The CC-SEER Safety Checking Procedure



Chapter 5

Richer Cost Models

The CC-SEER algorithm, wherein peripheral behavior detemglobal safety, are applica-
ble only to the class of query optimizers which obey the costleh defined in [1], thereby
limiting the applicability of the technique. Moreover, Wwiadvent of new operators, even the
compatible optimizers might cease to be so. For instangalementing new operators (e.g.
skyline operator) might introduce a square term in the casteh Hence, it becomes essential
to investigate the problem of robust plan identificationdost models containing higher de-
gree polynomials. In this report, we present a charact#oiz&f optimizer cost models with
respect to applicability of the CC-SEER approach. Consattyyeve identify the richest class
of optimizers beyond which extending this technique is rasfble without incurring unviable

computational overheads.

5.1 A Motivating Example

Let us consider the following cost model which contains aasguerm:

Cost(x,y) =a1z + agy + azxy + ayxlog x + asylog y+

agwylog zy + arz® + agy® + ag(zy)” (5.1)

20
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€) Non- (b) Non-(c) One Local(d) One Local
Increasing Decreasing Maxima Minima

Figure 5.1:Safety Function- First Derivative Behavior

Cost(r) = c1x + corlogz + c32° + ¢4

The safety function is defined g%z, y) = Costp, (x,y) — (14 X)Costp, (x,y).
For a particular value of, resulting in a 1D selectivity space, the safety functfdm, y)

can be rewritten as

fy(@) = iz + goxlogz + gsz® + ga
= fy(x) = g1 + g2(1 + log ) + 293

= fy(@) = 2 + 29,
= f/(x) = _x—gQ i.e. f(x) is monotonic
Our goal is to investigate global safety, i.e. safety atealistivity points in the 1D selec-

tivity space, ofP,, for P,. given the fact thaf,. is safe forP,, atz; andz,. In other words,
we address the following question : “does the safety funcfjdx) attain local maxima at any
intermediate poing*”. If not, then global safety can be guaranteed just by engusafety at
the end points. On the other hand, in cgser) does attain local maxima at some selectivity
pointz* € (z4,z,), global safety of?,. for P,. depending on the value gf (z*). However,
in such an event, there is no efficient mechanism to deterthmealue off,(z*). Therefore,

we are bound to conservatively deny global safety.

The various possible behaviors ¢f,(z) are shown in Fig. 5.2. For instance, Fig. 5.2(a)

says that the safety function is non-negative and non-&stng as well. The various possible
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A f(x)
X4 Xe 0 X RN X2
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(a) Non-Increasing (b) One Local Minima  (c) One Local Maxima

f(x)

) x)
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X1~ Xr
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(d) Two Extremas (e) Non-Decreasing (f) Two Extremas

Figure 5.2:Safety Function Behavior

behaviors off, () with regard to “number of extremas” attained by it(iny, z.), for this cost
model, are shown in Figure 5.1. We hasten to clarify that®ijonly captures the possibilities
with regard to the gradient of (x). For instance, Figure 5.1(a) essentially says fjat) in

this case is non-decreasing, and not tffét) is non-negative. Now, the question posed above

can be categorically addressed by looking at the valugé(af) and f; ().

Case 1:f,(r1) >0, f,(x,) <0

The safety function attains local maxima at an intermediaiat, as shown in Figure 5.2(c).
Hence, safety at end points does not gurantee global safégyconservatively deny global
safety.

Case 2:f,(r1) <0, f,(x,) >0

The safety function attains local minima (but never locakimme) at an intermediate point, as
shown in Figure 5.2(b). Terminal safety therefore gurastgebal safety.

Case 3:f,(z1) <0, f;(z,) <0

The safety function will either be non-increasing, as shawhig. 5.2(a), or will attain two
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extremas, as shown in Fig. 5.2(f). The latter behaviof,0f) corresponds t¢’(x) attaining

a local maxima at some intermediate pairit as shown in Fig. 5.1(d), such tha}(z*) >

0. However, finding out whether or ngf (z) attains local maxima is not possible without
computing the value of second or higher derivativeg %) (for e.g. f;/(x1)). The important
point here is that it is not possible to efficiently computeapproximate such values. We

therefore, conservatively deny safety.

Case 4:f,(z1) > 0, f;(z,) >0
The safety function will either be non-decreasing, as shimwfig. 5.2(d), or will attain two
extremas, as shown in Fig. 5.2(d). The latter behaviof, 0f) corresponds tg; () attaining
a local minima at som intermediate poirt, as shown in Fig. 5.1(c), such thgf(z*) < 0.
For reasons similar to those in Case 3, we conservatively diedal safety.

Note that with the cost model defined in [1], whergjf(x) is monotonic, we would have
been able to guarantee safety in Cases 3 and 4.

Extending our investigation to a more complex cost modehsater the following cost

model containing a cubic term:

Cost(z,y) =a1x + asy + asxy + asx log x + asy log y+
agrylog vy + azr® + agy® + ag(xy)*+

ap®® + any® + alz(ﬂfy)?’ (5.2)

The safety function for this model can have upto two extremas;, z,.). The conlusions
and reasonings with regard to global safety would remairstimae as above, in Cases 1, 3
and 4. However in Case 2, unlike the simpler one defined in),(glbbal safety has to be
denied. This is because of the fact tifgtz) can attain two extremas (local maxima followed
by local minima) leading to the situation whefg(z) can attain local maxima. It is again
hard to determine whether or not such a situation occursowitknowing the values of higher
derivatives off, (x). Thus, for this cost model, the CC-SEER based approach vawialys
deny global safety.



Chapter 5. Richer Cost Models 24

5.1.1 Characterizing Cost Models

It is possible to characterize various cost models witheeso first derivative of the safety
function, i.e.f, (). Letk be the maximum number of extremas thigtr) can possibly attain
in (zy,2,), i.e. f,(z) can attaink, but never more thah, extremas in(x, r,). With such a
characterization of optimizer cost models, it can be shdwanif £ > 2 for a given optimizer
cost model then it is infeasible to extend the CC-SEER ampré@ such an optimizer. Note
thatk = 0 for the optimizer considered in [1]. Thus, the CC-SEER apphowill not work for

the cost models with > 2.

5.2 WC-SEER: A Cost Model Scalable Technique

In light of the discussion in Chapter 5, we propose a techsigfuidentifying robust plans,
Well Conditioned SEERNVC-SEER), which in principle, because of its cost modelade
nature, is not confined to a special breed of query optimiz&secifically, we propose an
efficient and practically accurate technique of identifyinbust plans, based on the concept of
condition number of a matrix. Unlike SEER and CC-SEER, which rely on the costaveor

of plans on the periphery of the selectivity space to dedlmgad safety, this technique, given
an upper boung on the number of foreign plan costings, tries to capture titen: “which

f selectivity points when used to learn the cost function oéxecution plan, lead to the most
accurate fit”. In essence, WC-SEER does not necessarilyctatgelf to the periphery of the

selectivity space.

5.2.1 Condition Number of a Matrix

The condiiton number is a measure of stability or sensjtiofta matrix (or the linear system

it represents) to numerical operations. The condition nemalb a square matrid is defined
by
IAIATHE < JAJ#0

K(A) =
00 : otherwise
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where||.|| denotes the norm of a matrix.
The condition number of a singular matrix is alternativedfided as the ratio of its largest
eigen value to smallest eigen value. The condition numhb@andgdhe basis of the following
well known theorem from linear algebra [24]

THEOREM 1. Given an equation of the fordz = b and that the measurement lois

inexact, the relative error in the solution= A~'b satisfies

oz _lloo]
24 It

wherec is the condition number of matrit.

Matrices with condition numbers nebare said to bevell-conditionedli.e. stable, whereas
those with large condition numbers (el@? for a5 x 5 Hilbert matrix [25]) are said to bii-
conditionedi.e. highly sensitive. Matrices with condition numberwamd 10 are considered

to be reasonably stable for all practical purposes.

5.2.2 Efficiently Determining the Plan Cost Functions

In this section, we describe an efficient mechanism for dateng the parametric coefficients
of a given query execution plan. For the purpose of illugirgiet us the consider the optimizer
studied in [1]. However, as it will turn out, the effectivesseof our technique is independent
of the optimizer cost model. Also, let us assume that the giagram under consideration is
2-dimensional. The extension to higher dimensions isgittéorward. The cost model of a

plan for a 2D selectivity space is of the form,

Cost(x,y) =a1z + agy + azxy + ayxlog x + asylog y+

agxylog Ty + ay (5.3)

Consider the system of linear equations given by,
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XA=C (5.4)

where,

z1 y1 ziy1 xi1logxr yilogyr xiyilogziyr 1
T2 Y2 T2y2 x2logxa  y2logyas x2y2logxays 1
z3 ys z3y3 x3logzs yslogys z3yslogzsys 1
X = T4 Ya Tays zT4logxa yYalogys zayslogmays 1 (5-5)
T5s Ys Ts5Ys zslogxs  yslogys zsyslogwsys 1
T6 Yo TeYe zTelogxe Yslogys TeYelogweys 1
z7 yr z7yr x7logzr yrlogyr zryrlogzryr 1
isa7 x 7 location matrix.
(431
a2
as
A=| a (5.6)
as
Qg
az

is the to be determined x 1 coefficient vectorfor a given planP, and,
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(&1
Co
C3
C=| ¢ (5.7)
Cs

Ce

Cr

is the7 x 1 cost vector Here,c; is the actual cost of plaf at the selectivity pointz;, ;).

Let {s; = (x;,y;): i = 1t0 7} be some seven selectivity points in the 2D selectivity space
We can find the cost of a given pldnat these seven selectivity points using theeign plan
costingfeature now available in all major industrial strength optiers. Thus the matrices
X and(C are known to us. If the cost model decribed in (5.3) is a péffieéor plan P, i.e.
Costp(x;,y;) = ¢;, then the seven parametric coefficientsfocan be obtained by solving the
linear system of equations given by (5.4) , i4= X 'C. However, the cost model is least
likely to be a perfect fit for any query execution plan. Nométiss, we know from [1] that this

cost model is an almost perfect fit for all execution plares,the RMS error is very small.

Let A; = Cost(x;,y;) — ¢; be the residual error between the actual cost and fitted €ost o
plan P at selectivity point(x;,y;). Let A = [A;] be theresidual vector for plan P wrt the
mentioned selectivity points. We know that the vectdrconsists of very small values, i.e.
A; is very close to zero for all. Now, let us ask the question that how big is the difference
betweenX ~'C and X ~'(C' + A) is going to be, given that the vectdk consists of values
very close to zero. The answer to this question depends arotidition number of matrix.

If X is a well-conditioned matrix then this difference betwelea two solutions will be very
small. Thus, our task boils down to finding a set of seven selgcpoints in the 2D selectivity
space which correspond to a well-conditioned location matr

Fig. 5.2.3 gives the pseudocode listing for WC-SEER (for 2aychms).
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5.2.3 Minimizing Condition Number

In previous subsection, we elaborated on how minimizingcdition number of location
matrix can be leveraged to accurately, and without incgrhinge overheads, learn the plan
cost functions. In this subsection, we talk about the comipuatl difficulty of lining up a
well conditioned location matrix. In a space comprisedo$electivity points, there aréC:;
distinct location matrices. As mentioned earlier in theargpm is of the order of several
thousands to several hundreds of thousands. Given thisllarsize of the location matrix
search space, exhaustive search can not be used. Thevefarsort t;meighbourhood search
techniques.

Neigbourhood search techniques typically start with aifdéasolution. Given a feasible
solution, all its neighbours are considered and the beshgstdhem is chosen. This process
is repeated till a locally optimal solution is obtained.

In our case, a set of seven uniformly distributed points amggeal diagonal of the selectiv-
ity space was fed as solution seed to the search algorithenn&lybourhood space is defined
such that a solutiod/’ is considered to be a neigbour of another solutiénff A/’ differs
from M in exactly one of the seven selectivity points. With the absegttings, we were able
to find, without incurring large overheads, well-condigahlocation matrices. For e.g., for
2D selectivity spaces, the following seven selectivitypsicorresponding to a location matrix

with condition number o6 can be used:

M = {s; : (0.3293,0.9697), s5 : (0.9744,0.9802),

sz : (0.1276,0.3843), s4 : (0.9714,0.2455),

: )
: )

s5 ¢ (0.6919,0.0281), sg : (0.087,0.00048),
: )

s7 ¢ (0.0226,0.9812)} (5.8)

An important point to note here is that size of the neigboathspace scales exponentially
with dimensionality of the search space, i(#r?). Hence, exploring the entire neigbourhhod

space of a candidate solution, particularly in case of higlvaensional selectivity spaces, is
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impractical. Thus, for higher dimensional selectivity spavery large scale neighbourhood
search(VLSN) techniques [26] can be employed to avoid explicithagching over a large
neighbourhood. We hasten to point out that these seventigélepoints are irrespective of
the database or query template. Thus, finding a well com#itidocation matrix is a one time
cost and can be done offline.

To confirm the scalability of our approach with the complgxf cost models, we tried
to construct a well conditioned location matrix for a few qaex cost models as well. For
instance, for the cost model defined in (5.2), we were ablentbdiset of 13 selectivity points

which correspond to location matrix with a condition numogs.

WC-SEER (Plan Diagram P, Threshold \)

1: Create a Set-Cover Instanée= (U, S), whereS = {S;,52,---,S,}, U = {1,2,--- ,n}, corre-
sponding to the: plans in the original plan diagram.

2: Seteacls; = {i},Vi=1---n

for each planP; in the original plan diagrardo

w

4:  constructP/s cost functionCostp,(.), as explained in Section 5.2.2, using the seven selectivity
points prescribed in (5.8).

5: end for

6: for each pair of plan§P;, P;) do

7. safety «— TRUFE

8: for each selectivity point € S do

9: if Costp,(s) < (1+ A)Costp,(s) then
10: saftey «— FALSFE
11: end if
12:  end for

13:  if safety == TRUE then

14: S; = S;U{j}

15:  endif

16: end for

17: Solve the set-cover instandeusing the Greedy SetCover algorithm to identify the planained
in R.

Figure 5.3:The WC-SEER Reduction Algorithm

5.2.4 Analysis

The total number of FPC operations required in the WC-SEIERrahm is equal to: times

the number of parameters in the underlying cost model. Rpante, the cost model defined in
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(3.1) ha2(t1) — 1 parameters for d—dimensional selectivity space. Thus the total number
of FPC operations required is(2(**!) — 1). As we have mentioned before in the report that
FPC operations are the bottleneck of robust reduction égos, the running time complexity

of WC-SEER isO(n.24).
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Experimental Results

6.1 Experimental Setup

The testbed used in our experiments is the Picasso optiwisgalization tool [20], execut-
ing on a Sun Ultra 20 workstation equipped with an Opteron|@wae 4GHz processor, 4
GB of main memory and 720 GB of hard disk, running the WindowsP¢o operating sys-
tem. The experiments were conducted over plan diagramsipeodrom a variety of two and
three-dimensional PC-H and TPC-DS-based query templates. The TPC-H database con-
tainsuniformly distributed data of size 1GB, while the TPC-DS databaseslsistwed data
that occupies 100GB. The plan diagrams were generated vittiustrial-strength commer-

cial database query optimizer.

6.1.1 Physical Design.

We considered two different physical design configurationsur study:PrimaryKey (PK)
andAllindex (Al) . PK represents the default physical design of our databagaes wherein

a clustered index is created on each primary key. Al, on therdiand, represents an “index-
rich” situation wherein (single-column) indices are aghle on all query-related schema at-
tributes.

In the subsequent discussion, we usex@irefer to a query template based on Queof

31
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Query Orig SEER CC-SEER WC-SEER
Temp- Plans | Plans Agg Min Plans Agg Min Plans Agg Min
late # # SERF SERF # SERF SERF # SERF SERF
QT2 60 7 0.22 -0.1 10 0.22 -0.05 6 0.25 -0.1
QT5 51 3 0.48 0 4 0.45 -0.1 2 0.50 0.2
QT8 121 2 0.88 0.1 3 0.88 0.02 2 0.88 0.1
QT9 137 4 0.59 -0.1 5 0.52 -0.3 4 0.62 -0.3
QT10 a4 3 0.18 0.01 6 0.2 0 3 0.23 0.01
QT16 32 5 0.21 -0.1 6 0.18 -0.1 3 0.28 0
3DQT5 68 3 0.24 -0.02 3 0.22 -0.01 3 0.27 0
3DQT8 191 4 0.54 0 4 0.50 -0.04 4 0.56 -0.01
3DQT10 75 4 0.32 -0.03 11 0.31 0.01 4 0.43 0.01
AIQT2 87 15 0.71 -0.02 19 0.68 -0.04 10 0.72 -0.05
AIQT5 126 13 0.40 0 15 0.41 0.02 11 0.51 0.01
AlIQT8 121 6 0.38 0.02 7 0.38 0.02 7 0.46 0.02
AIQT9 132 12 0.48 -0.01 13 0.42 0 12 0.52 0
AIQT10 37 6 0.11 0 7 0.10 0 6 0.21 0.07
AIQT16 35 8 0.56 -0.03 9 0.55 -0.03 8 0.64 -0.1
3DAIQT5 139 10 0.48 0 15 0.48 0.01 10 0.52 0.01
3DAIQT8 168 9 0.28 -0.03 13 0.30 -0.03 6 0.35 -0.01
3DAIQT10 77 12 0.22 -0.03 14 0.20 0.05 8 0.30 0.05
DSQT12 25 2 0.32 0.01 4 0.32 0 2 0.42 0.07
DSQT18 114 2 0.68 -0.06 3 0.59 -0.06 2 0.73 0
DSQT19 55 4 0.51 0 5 0.48 0 2 0.57 0
3D-DSQT12 33 2 0.36 -0.1 4 0.35 -0.2 4 0.44 -0.1
3D-DSQT183D | 222 8 0.68 0 10 0.70 0.1 4 0.70 0.1
3D-DSQT193D 98 7 0.64 -0.01 10 0.60 0 3 0.68 -0.01

Table 6.1: Plan Stability Performance
the TPC-H benchmark, and DS®1o refer to a query template based on Queof the TPC-

DS benchmark, operating in the default PK configuration. iy Al the query template

identifiers in describing our results for the Allindex si@ed configuration.

6.1.2 Query Location Distribution.

All the performance results shown initially in this secteme for plan diagrams generated with
exponentiallydistributed locations for the query points across the sglgcspace, resulting

in higher query densities near the selectivity axes andridswéne origin. This choice is based
on earlier observations in the literature (e.g. [12, 13) #idt plans tend to be densely packed
in precisely these regions of the selectivity space. Fronerfopmance perspective, these
diagrams represent the “tough-nut” challenging situaiaith respect to obtaining anorexic

reduction due to their high plan densities and substaptimtiader range of plan cost values.
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6.1.3 Error Resistance Metrics

Our guantification of the stability delivered through plaplacement is based on tBERF
error resistance metric introduced in [1]. For a specifiorinstance, with estimated query lo-
cationg, and cost-optimal pla®,., and a run-time locatiogq,, theSelectivity Error Resistance

Factor (SERF) of a replacememt.. w.r.t. P,. is computed as

C(PT€7 Qtz) - C(Pom Qa)
C(Poea Qtz) - C(Pom Qa)

SERF(Q@aQa) =1- (61)

Intuitively, SERF captures thieaction of the performance gapetweenP,. andP,, at g,
that is closed byP,.. In principle, SERF values can range overco, 1], with the following
interpretations: SERF in the range, 1], indicates that the replacement is beneficial, with
values close to 1 implying immunity to the selectivity erréior SERF in the rangg- ), 0],
the replacement is indifferent in that it neither helps nant$, while SERF values noticeably
below X highlight a harmful replacement that materially worseresghrformance.

To capture theaggregatempact of plan replacements on improving the resistanceto s

lectivity errors in the entire spa& we computeAggSERF as!

querep(S) aneemooe(S) SERF(qev Qa)
quGS aneemooe(S) 1

whererep(S) is the set of query instances $1whose plans were replaced, and the normal-

AggSERF =

(6.2)

ization is with respect to the number of error locations t@ild benefit from improved ro-
bustness. Specifically, from the universe of all possilgleq,) combinations, we exclude
those scenarios which inherently do not require help — thatlen the error location falls in
safe,e, .. the region comprising those selectivity points atahih®,. is either optimal or
within (1 + X) of the optimal plan.

Note that in the above formulation, we assume for simplittigt the actual locatiog, is
equally likely to be anywhere i,.’'s exo-optimal space, that is, that the errors are randomly

distributed over this space. In our future work, we plan teestigate the more generic case

In [1], the aggregate impact was evaluated based on thddosavhere replacements were made, whereas
our current formulation is based on the locations wherestimss is desired.
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where the error locations have an associated probabibtyilolition.

Apart from AggSERF, we also compute metrMSERF andMaxSERF, representing
the minimum and maximum values of SERF over all replacemmestances. MaxSERF values
close to the upper bound of 1 indicate that some replacenpeowgded immunity to specific
instances of selectivity errors. On the other hand, largatne values for MIinSERF indicate
that some replacements were harmful. We measure the piapoftsuch harmful instances
in our experiments.

An important point to note here is that while it is not possitd provide meaningful assis-
tance insa fe,., we still need to consider the possibility that replacera@emay end up causing
harm, reflected through negative SERF values, in these regidms.ig taken into account in

our calculation of MinSERF by evaluating it over tastire selectivity space.

Query | SEER | CC-SEER | WC-SEER
Template
QT2 5.43 0.8 0.35
QT5 2.99 0.67 0.31
QT8 12.41 1.88 0.86
QT9 10.59 2.14 0.92
QT10 4.28 0.52 0.24
QT16 2.43 0.45 0.26
3DQT5 20.12 3.08 1.44
3DQTS8 84.16 8.17 3.5
3DQT10 | 19.29 3.94 2.0
AlQT2 6.83 1.2 0.52
AIQTS 5.72 1.7 0.73
AlQT8 6.6 1.83 0.81
AIQT9 6.25 2.08 1.0
AIQT10 2.65 0.48 0.2
AlIQT16 2.78 0.49 0.21
3DAIQTS5 | 40.97 6.52 2.8
3DAIQT8 | 50.91 8.96 3.96
3DAIQT10 | 17.07 4.01 1.72

Table 6.2: Running Time (Sec)
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6.1.4 Performance Metrics

A variety of performance metrics are used to characterigd#havior of the various replace-

ment algorithms:

1. Plan Stability The overall effect of plan replacements on stability is nueed through the
AggSERF, MaxSERF and MInSERF statistics.

2. Plan Diagram Cardinality This metric tallies the number of unique plans present in the
plan diagram, with cardinalities that are less than or aglawentyconsidered aanorexic
diagrams

The various performance numbers for SEER, CC-SEER, and ®ERSare given in Ta-
ble 6.1. The computational overheads incurred by theseitigts in terms of running time
are given in Table 6.2. As is evident, CC-SEER is an order gjmiade faster than SEER,
while giving comparable performance in terms of reductioalify and robustness. Also is ev-
ident that WC-SEER virtuallly beats SEER and CC-SEER orhallthree grounds of running

time, reduction quality and robustness.



Chapter 7

Related Work

Over the last decade, a varietyadmpile-timestrategies have been proposed to identify robust
plans. For example, in the Least Expected Cost (LEC) apprf@c/], it is assumed that the
distribution of predicate selectivities is apriori availla, and then the plan that has the least-
expected-cost over the distribution is chosen for exenutid/hile the performance of this
approach is likely to be good on average, it could be arhigraoor for a specific query as
compared to the optimizer’'s optimal choice for that queryor&bver, it may not always be
feasible to provide the selectivity distributions.

An alternative Robust Cardinality Estimation (RCE) stggt@roposed in [3] is to model
the selectivity dependency of the cost functions of theoregicompeting plan choices. Then,
given a user-specified “confidence threshadld”the plan that is expected to have tleast
upper boundwith regard to cost ifil" percentile of the queries is selected as the preferred
choice. The choice of’ determines the level of risk that the user is willing to simstaith
regard to worst-case behavior. Like the LEC approach, tdasay be arbitrarily poor for a
specific query as compared to the optimizer’s optimal choice

Finally, in the (initial) optimization phase of the Rio apprch [4, 5], a set of uncertainty
modeling rules from [15] are used to classify selectivityes into one of six categories (rang-
ing from “no uncertainty” to “very high uncertainty”) based their derivation mechanisms.
Then, these error categories are converted to hyper-igagdemerror boxes drawn around the

optimizer’s point estimate.  Finally, if the plans chosentbg optimizer at the corners of

36
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the principal diagonal of the box are the same as that chdsie @oint estimate, then this
plan isassumedo be robust throughout the box. However, the conditionseumdhich this

assumption is likely to be valid are not outlined.



Chapter 8

Conclusions

Errors in selectivity estimates are well-documented cawdgoor plan choices by database
optimizers. In this report, we investigated whether themjzer’s choices could be replaced
by alternative plans, more resilient to these errors, floeparametric optimal set over the se-
lectivity space. In particular, we proposed CC-SEER, aroad magnitude faster algorithm
than the SEER algorithm proposed in [1], while being contpetion reduction quality and
robustness. We also investigated the scalability of thesfeniques with the cost model com-
plexity, thereby showing that how they will not work with cptax cost models. To address
this issue, we proposed WC-SEER, a cost model scalableithigiorExperimental evidence
suggests that the WC-SEER algorithm beats the previousitpaads, i.e. SEER/CC-SEER, on

all grounds.
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