Robust Query Processing

A PROJECT REPORT
SUBMITTED IN PARTIAL FULFIMENT OF THE
REQUIREMENTS FOR THE DEGREE OF
MNiaster of Engineering
IN
Saculty of Engineering

BY
Kuntal Ghosh

Computer Science and Automation
Indian Institute of Science
Bangalore — 560 012 (INDIA)

June, 2016

Declaration of Originality

[, Kuntal Ghosh, with SR No. 04-04-00-10-41-14-1-11155 hereby declare that the material
presented in the thesis titled

Robust Query Processing

represents original work carried out by me in the Deparment of Computer Science and
Automation at Indian Institute of Science during the years 2014-2016.
With my signature, I certify that:

e [have not manipulated any of the data or results.

e [have not committed any plagiarism of intellectual property. I have clearly indicated and

referenced the contributions of others.
e [have explicitly acknowledged all collaborative research and discusions.
e [have understood that any false claim will result in severe disciplinary action.

e [have understood that the work may be screened for any form of academic misconduct.

Date: Student Signature

In my capacity as supervisor of the above-mentioned work, I certify that the above statements
are true to the best of my knowledge, and I have carried out due diligence to ensure the

originality of the report.

Advisor Name: Prof. Jayant R. Haritsa Advisor Signature

(© Kuntal Ghosh
June, 2016
All rights reserved

DEDICATED TO

My Family and Friends

for their love and support

Acknowledgements

I am deeply grateful to Prof. Jayant R. Haritsa for his unmatched guidance, enthusiasm and
supervision. He has always been a source of inspiration for me. I have been extremely lucky to
work with him.

I am thankful to Anshuman Dutt and Srinivas Karthik for their assistance and guidance. It
had been a great experience to work with them. My sincere thanks goes to my fellow lab mates
as well for all the help and suggestions. Also I thank my CSA friends who made my stay at
ITSc pleasant, and for all the fun we had together.

Finally, I am indebted with gratitude to my parents and brother for their love and inspiration
that no amount of thanks can suffice. This project would not have been possible without their

constant support and motivation.

Abstract

In modern database systems, a query optimizer is used to estimate selectivities during plan
selection for SQL queries. In practice, these estimates are often significantly different compared
to the actual values encountered during query execution which results in highly sub-optimal
execution performance. In [1], a different approach is proposed to address this classical problem,
wherein the compile-time estimation process is completely skipped, rather query is executed
through cost-limited executions of a small set of plans, called “Plan Bouquet”. QUEST [2]
is a prototype system, developed to showcase the concept of plan bouquet in existence. But,
the earlier QUEST implementation was restricted to queries having at most two error-prone
base predicates. In this work, we generalize the QUEST design and implementation so that
any query having multidimensional error-prone predicates (base or join) can be evaluated.

For a given query, as we increase the number of error-prone predicates, the time taken to identify
the parametric optimal set of plans (POSP) across the error-prone selectivity space (ESS)
increases exponentially with the dimensionality of the space. In this work, we have improved the
POSP identification time from years to hours using a massively parallel supercomputer, Cray
X(C40. We have also improved the performance (in terms of running time) of basic CostGreedy
reduction algorithm [3] which is used to reduce the total number plans in POSP. Finally,
extensive experiments were performed with a suite of multi-dimensional TPC-H based query
templates on PostgreSQL optimizer. The results demonstrate that we can generate complex
plan diagrams in significantly less time. Further, a complex plan diagram can be reduced

substantially incurring only marginal increases in the estimated query processing costs.

1

Contents

Acknowledgements
Abstract

Contents

List of Figures
List of Tables

1 Introduction

1.1 Background
1.2 Motivation
1.3 Contribution
1.4 Organization

2 Plan Bouquet Technique

2.1 OVEIVIEW . . . o ot
2.2 Single Dimension Example o
2.2.1 Bouquet Identification L.
2.2.2 Bouquet Execution
2.3 Extension to Multiple Dimensions
2.4 Robustness Metric

3 QUEST Prototype System
3.1 System Architecture and Feature Details

3.2 Implementation Details o

1l

ii

iii

vi

W N N =

S O D Ol R e

4 Modifications in QUEST
4.1 Query-coupled Join Selectivity Injection
4.1.1 Implementation Details
4.1.2 An Example
4.2 Query Parser with Error-prone Predicate Selection Panel
4.3 A Common Database Interface
4.4 Query Evaluation having Multidimensional ESS
5 A Massively Parallel Algorithm for POSP Identification
6 Modified CostGreedy Algorithm
7 Empirical Analysis
7.1 Experimental Environment 0oL
7.2 Impact of Parallel Algorithm
7.3 Modified CostGreedy Algorithm Performance
7.4 Plan Reduction Quality
8 Conclusions and Future Work
Bibliography

v

CONTENTS

13

17

20

......... 20
......... 20
......... 21
......... 23

25

26

List of Figures

2.1
2.2

3.1

4.1
4.2
4.3

0.1
5.2

6.1

7.1
7.2
7.3
7.4
7.5

Example Query (EQ)
POSP performance

Existing QUEST Architecture 8
Modified QUEST Architecture 9
Plan tree for different selectivity of p_partkey = l_partkey 11
Error-prone Predicate Selection Panel 12
Time taken to generate plan diagrams 13
Parallel architecture for POSP Identification 14
2D and 3D Example 19
POSP Identification performance 21
CostGreedy performance 22
Number of points with different cardinality of belong(q) 22
Plan reduction quality by varying dimensions 23
Plan reduction quality by varying resolution 24

List of Tables

7.1 POSP cardinality for different query templates

vi

Chapter 1
Introduction

Database systems accept declarative SQL queries as input. The queries should be executed
efficiently so that data can be retrieved in less time. There are several alternative ways to
execute a query which gives the same result. But, each alternate way of executing a query
varies in performance.

Database systems have complex, cost based query optimizers which attempts to determine the
most efficient way to execute a given query by considering all possible query plans. Query plan
is an ordered sequence of steps to fetch the results for a SQL query. The optimizer will generate
and evaluate many plans and choose the least cost plan as the best plan. After selection of a
plan with minimum cost, it is passed to the executor module where the query is executed and

results are shown as output.

1.1 Background

In database systems, accurate estimations of predicate selectivities are a basic requirement for
the effective optimization of declarative SQL queries. In practice, however, these compile-time
selectivity estimates are significantly different with respect to actual values encountered during
query execution and that may result in highly sub-optimal plan selection.

In [1], a different approach is proposed to address this classical problem, wherein the compile-
time estimation process is completely skipped, rather query is executed through cost-limited
executions of a small set of plans, called “Plan Bouquet”. This approach provides guarantees
on worst-case performance for the first time in literature, but it requires a significant amount
of pre-processing to be done to identify the bouquet of plans at compile-time.

The space formed by all possible combinations of erroneous selectivities is called as Error-prone
Selectivity Space (ESS) [1]. Firstly, we identify the set of plans that covers the entire ESS. These

set of plans are called Parametric Optimal Set of Plans(POSP). Secondly, a small bouquet of
plans is identified from the POSP such that at least one of the bouquet plans is 2-optimal at
each location in the space. In order to have practical guarantees, the POSP set is reduced using

CostGreedy [3] plan reduction algorithm.

1.2 Motivation

QUEST [2] is a Java based prototype implementation of plan bouquet technique. It visually
shows bouquet execution process and provides interactivity during execution. QUEST includes
modified database system with incorporated features required for plan bouquet. Currently,
PostgreSQL is the database system used with QUEST wherein all required features are imple-
mented. At present, only two-dimensional ESS queries with error-prone base predicates can be
evaluated through QUEST.

To evaluate a query with error-prone join predicates, we need join-selectivity injection feature
to be implemented in a database so that we can get the optimizer estimated plan for a given
join selectivity. But, open-source PostgreSQL doesn’t have this feature implemented.

In order to make QUEST practically useful for queries having multi-dimensional error-prone
predicates, we need to reduce the compile-time overhead of plan bouquet [1]. For a query, as we
increase the error-prone dimensions, the time required to produce the POSP for the entire ESS
increases exponentially with the dimensionality of the ESS. If the resolution of a d-dimensional
ESS is res then, the number of optimization calls made for producing the POSP is res?, which

is computationally expensive.

1.3 Contribution

In this work, we generalize the QUEST design and implementation so that any multidimen-
sional ESS query with error-prone base predicates as well as join predicates can be evaluated.
We have also tried to reduce the time required to produce POSP for a given query template by
using a massively parallel supercomputer, Cray XC40. Our contribution can be divided into

three categories.

e QUEST Modifications: Here we explain new QUEST features including ‘Query-coupled
join selectivity injection’ in PostgreSQL 9.4, query parser with error-prone predicates se-

lection panel, a common database interface and query evaluation having multidimensional
ESS.

e A Massively Parallel Algorithm for POSP Identification: Here, we propose a

2

parallel algorithm to reduce the time taken for POSP identification resulting in lesser
pre-processing time for plan bouquet approach [1]. It also enables us to investigate high-
dimensional plan diagrams [5] (a pictorial enumeration of the execution plan choices of a

database query optimizer over the relational selectivity space) in high resolution.

e Modified CostGreedy Algorithm: In this chapter, we explain an optimization tech-
nique to speed-up basic CostGreedy algorithm.
We’ll also show in the experimental results that complex plan diagrams even with high
resolutions can be reduced to a much simpler picture, featuring less number of plans

without substantively affecting the query processing quality.

1.4 Organization

Chapter 2 provides the background details of plan bouquet technique. We explain the QUEST
architecture in Chapter 3. Chapter 4 discusses the modifications in QUEST. In Chapter 5,
we explain our parallel algorithm for POSP generation followed by a detailed description of
basic CostGreedy algorithm modifications in Chapter 6. Chapter 7 represents the empirical
evaluation of our approach. Finally, in Chapter 8, we summarize our work and mention the

outline of future work.

Chapter 2
Plan Bouquet Technique

In this chapter, we present necessary background details about plan bouquet approach for

robust query processing [1].

2.1 Overview

Plan bouquet is a new approach wherein the compile-time estimation process is completely
shunned for error-prone selectivities. Instead, these selectivities are learnt systematically at
run-time by executing a carefully chosen small set of plans called “Bouquet of plans” in a
particular sequence in cost-limited manner. Partial executions are controlled by a graded pro-
gression of isocost surfaces projected onto the POSP curve. It has been proved in [1] that this
construction results in guaranteed worst-case performance. It assumes Plan Cost Monotonicity
(PCM) property, which states that cost of POSP plans increase monotonically with increasing

selectivity values.

2.2 Single Dimension Example

Plan bouquet approach is explained for a simple query having one error-prone selectivity using

query shown in Figure 2.1.

select * from lineitem, orders, part
where p _partkey = | partkey and | orderkey =
0_orderkey and p_retailprice < 1000

Figure 2.1: Example Query (EQ)

This example query contains one base predicate and two join predicates. Out of these,

assume selectivity of base predicate p_retailprice < 1000 is error-prone.

2.2.1 Bouquet Identification

Firstly, the Parametric Optimal Set of Plans (POSP) that cover the entire selectivity range
of the error-prone predicate is identified through repeated invocations of the optimizer and
explicit injection of selectivities from lowest to highest values. Let POSP set be comprised of
plans P1 through P5. Further, each plan is optimal over a certain selectivity range. The costs
of these five plans, P1 through P5, over the entire selectivity range are enumerated as shown
in Figure 2.2 (on a log-log scale). From these plots, the trajectory of the minimum cost from
among the POSP plans is obtained as a curve which represents the ideal performance. This
curve is called as POSP Infimum Curve (PIC). Next, the PIC is discretized by projecting a
graded progression of isocost (IC) steps onto the curve. In Figure 2.2, the dotted horizontal
lines represent a geometric progression of isocost steps, IC1 through IC7, with each step being
double the preceding value. The intersection of each isocost step with the PIC (indicated by
m) gives an associated selectivity, and the identity of the best POSP plan for this selectivity.

126407 {—=—P1 -
——P2 7/
6.1E+06 - -
—i=P3 o
— 3.1E+06 |----P4 e
O PS5 RV
3 1.5E+06 - S -
i s
JE+03 e ianinipeivansety]
: 7.7E+05 B S g e T 17
E 3.8E+05 oo ooooiiiiiiiiiil -_"_’__,__-_;“‘r' PIC IC6
o = === piC
E 1.9E+05 /1’\(_ Ics
g 96E+04 | _— Ica
2 4.3E+04 - . Ic3
24E+04 4 /.ﬁt 1C2
1.2E+04 = IC1
6.0E+03 4 T T T
£ R £ £ 2 2R 2 E R 2R &R
- o~ T oQ (Vs ~ =T o o o o o o o o
o o [=] o o o o - ™~ wn o [=] — m (=1
- ~ < o0 =)
Selectivity of p_retailprice (log-scale)

Figure 2.2: POSP performance

For example, in Figure 2.2, the intersection of IC5 with the PIC corresponds to a selectivity
of 0.65% with associated POSP plan P2. The subset of POSP plans that are associated with
the intersections forms the plan bouquet for the given query. So in Figure 2.2, the bouquet
plans are P1, P2, P3, P5.

2.2.2 Bouquet Execution

At run-time, through a sequence of cost-limited executions of bouquet plans, the actual query
selectivities are discovered. Specifically, execution begins with the cheapest isocost contour.
Plans in each contour are sequentially executed with a budget limit equal to the contour’s
budget. If a plan completes its execution, then the results are returned to the user. Otherwise,
the plan is forcibly terminated and next plan in the contour is selected for execution. If all the
plans in a contour result in forcible termination, we move on to the next isocost contour and

start all over again.

2.3 Extension to Multiple Dimensions

In multidimensional selectivity environment, the IC steps and the PIC curve become surfaces,
and their intersections represent selectivity surfaces on which many bouquet plans may be
present. In spite of these changes, the basic mechanics of the bouquet algorithm remain very
similar to the 1D case. The primary difference is that we advance from one IC surface to the
next only after it is determined that none of the bouquet plans present on the current IC surface

can complete the execution of the given query within the associated cost budget.

2.4 Robustness Metric

Robustness is measured in terms of maximum sub-optimality (MSO) for plan bouquet.
Given a query QQ and an ESS, let g, denote the optimizers estimated query location, and ¢,
denote the actual run-time location in ESS. Also, denote the plan chosen by the optimizer at
¢e by P, and the optimal plan at g, by P,,. Finally, let cost(P;,q;) represents the execution
cost incurred at actual location ¢; by plan P;. Then, robustness is defined by the normalized

metric:
cost(Poe, qa)

MSO = max
Ge,qa€ESS COSt(Poaaqa)

]

Plan bouquet gives robustness guarantee in terms of MSO as:
MSO <4p
If there exist K total contours and n; plans lie on #*" contour then,

= max n;
P i=1to K

Chapter 3

QUEST Prototype System

QUEST [2] (QUery Execution without Selectivity esTimation) is prototype implementation of
plan bouquet technique. It visually shows bouquet execution process and provides interactiv-
ity during execution. QUEST includes modified database system with incorporated features
required for plan bouquet, and implementation of bouquet algorithms that execute query on
modified database engine. Currently, PostgreSQL is the database system used wherein all

required features are implemented.

3.1 System Architecture and Feature Details

The complete architecture of the QUEST system is shown in Figure 3.1, divided into a compile-
time/pre-processing phase and a run-time/execution phase. In pre-processing phase, through
repeated invocations of the optimizer, and explicit injection of selectivities, we identify a small
bouquet of plans. In execution phase, a calibrated sequence of cost bounded executions of those
plans are performed to complete the query execution.

QUEST features range from showing sub-optimality of native optimizer to executing query with

bouquet mechanism. These features can be summarized as:

1. Performance comparison with native optimizer by showing native database execution and

optimal execution performance.
2. Visually showing identification process of plan bouquet.

3. Actual and abstract executions of plan bouquet algorithm.

QUEST ARCHITECTURE |

PREPROCESSING PHASE EXECUTION PHASE |

Query with |
| —— error-prone Bouquet Layer

predicates

| 1. Identify bouguet plans 2. Execute bouguet plans

| PostgreSQL 9.4
(Generic Plan Forcing, |
| Cost limited execution) |

|_____________________||

Figure 3.1: Existing QUEST Architecture

3.2 Implementation Details

QUEST interface is implemented using Java Swing. First, it validates the input query by
accessing pg_stats meta-data relation. Next, through repeated invocations of the optimizer,
and explicit injection of selectivities in PostgreSQL, we identify the POSP over the entire
selectivity range (0-100%). CostGreedy reduction [3] is implemented for reducing POSP.

In this implementation, graphs and plan trees are drawn using open libraries “JFreeChart”
[8] and “JGraph” [9] respectively. During bouquet execution, graphs are updated through
functionality provided in JFreeChart. QUEST also provides functionality for clearing system

cache. This cache clearing function runs system (Linux) commands through Java program.

Chapter 4

Modifications in QUEST

The new QUEST architecture is shown in Figure 4.1. In this chapter, we elaborate all the
newly added QUEST features in the following order.

1. Query-coupled join selectivity injection in PostgreSQL 9.4.
2. Query parser with error-prone predicate selection panel.
3. A common database interface.

4. Query evaluation having multidimensional ESS.

QUEST ARCHITECTURE |

PREPROCESSING PHASE ~ EXECUTION PHASE |

| Query with
— Query error-prone
| predicates

Select
error-prone |
| predicates 1. Identify bouquet plans 2. Execute bouguet plans

| Database
Connection
| Interface |

| PostgreSQL 9.4
(Join Selectivity |
| Injection, Generic Plan
Forcing, Cost limited
| execution) |

Figure 4.1: Modified QUEST Architecture

4.1 Query-coupled Join Selectivity Injection

Given a multidimensional query template and a selectivity space resolution, QUEST identifies
the isocost contours (IC) in bouquet identification step. To achieve this objective, QUEST
needs the optimizer estimated optimal plans and costs for different query locations in the ESS.
Hence, we have implemented a feature in PostgreSQL to inject the user specified selectivity for
inner-join predicates through the query and obtain the corresponding plan and cost from the
optimizer. It can also be useful in some situations when we want to encourage some particular

type of join operation or join order.

4.1.1 Implementation Details

In this section, we explain the implementation details of the join selectivity injection feature in
PostgreSQL 9.4. To inject selectivities for join predicates, user has to use the following query

format:

EXPLAIN SELECTIVITY
(<join_predl> AND <join_pred2> AND ...) (<selecl> <selec2>,...) statement;

where, selecl is the selectivity for join_predicatel, selec2 is the selectivity for join_predicate2
and so on. The injected selectivities should vary between 0 and 1.

We parse the input query and store injected join clauses and their corresponding selectivities
in PlannerInfo structure which stores all the information for planning a particular Query.
PostgreSQL optimizer uses clause_selectivity() function to calculate selectivity of all kind of
predicates. Whenever this function is called for the injected join predicates, we use the user-
specified selectivity instead of the one calculated by the optimizer. Selectivities can only be

injected for the join predicates which do not have any cyclic dependencies in the given query.

4.1.2 An Example

Let us compare the output of visual explain for the following query on TPC-H database with

index created.

SELECT * FROM lineitem,part where p_partkey = l_partkey and p_retailprice <1000;

Here is the same query modified with different selectivity clauses:

10

EXPLAIN SELECTIVITY
(p_partkey = l_partkey) (0.01) SELECT * FROM lineitem,part where p_partkey = l_partkey
and p_retailprice <1000;

EXPLAIN SELECTIVITY
(p_partkey = l_partkey) (0.9) SELECT * FROM lineitem,part where p_partkey = l_partkey
and p_retailprice <1000;

Hash Join

MNested Loop

Bitmap Heap Scan index scan

lineitem Bitmap Heap Scan
part Bitmap Index Scan lineitem

part Bitmap Index Scan

p_retailprice_idx

p_retailprice_idx

(a) With selectivity of 0.01 (b) With selectivity of 0.9

Figure 4.2: Plan tree for different selectivity of p_partkey = [_partkey

Figure 4.2 shows the visual output of both the plan trees. Clearly, when the join predicate
has lower selectivity, it is beneficial to use Nested Loop Join with index scan on the inner

relation. Similarly, for higher selectivity of the join predicate, optimizer chooses Hash Join.

4.2 Query Parser with Error-prone Predicate Selection

Panel

In QUEST, we have implemented a parser which parses the input query and extracts the base
predicates and join predicates. Then, the user is asked to select the error-prone predicates

among the extracted ones using a Java selection panel, see Figure 4.3.

11

= MMQUEST (QUery Execution without S

Query Input

select n_name, sum(l extendedprice * (1 -1 discount)) as revenue from customer, orders

, lineitem, supplier, nation, region where c_custkey = o_custkey and o_orderkey = 1_
orderkey and s suppkey =1 suppkey and ¢ nationkey = s nationkey and s nationkey = n.
_nationkey and n_regionkey = r_regionkey and r name = 'ASIA' and o_orderdate >

='1994-01-01"' and o orderdate < '1995-01-01"' and ¢ _acctbal < 1000 and s acctbal < 2
000 group by n name order by revenue desc

™ select Error-prone predicates

customer (base condition): ¢_acctbal <1000,

orders (base condition): o_orderdate »='1994-01-01', o_orderdate < '1995-01-01',

|Start QueSt\ supplier (base condition): s_acctbal < 2000,

customer, orders (join condition): c_custkey=o_custkey,

customer, supplier {join condition): c_nationkey = s_nationkey,

orders, lineitem (join condition): o_orderkey =_orderkey,

lineitem, supplier (join condition): s_suppkey =1_suppkey,

supplier, nation (join condition): s_nationkey = n_nationkey,

[Picasso

Figure 4.3: Error-prone Predicate Selection Panel

The implementation is similar to [6]. To achieve this, a regular expression based parser is
implemented which collects the list of relations in the query and attribute names in the selected
predicate in a tree structure. Tree structure is needed to handle nested queries correctly. The
attribute name is searched in all relations present in the current scope to find the associated

relation and schema.

4.3 A Common Database Interface

We have implemented a database interface module which abstracts away communication to
the relational databases from QUEST. Different databases have slightly varying SQL syntax,
different types of histograms and different plan representations. This module abstracts such

inconsistencies under a common interface.

4.4 Query Evaluation having Multidimensional ESS

New QUEST implementation supports execution of query having multiple error-prone range
predicates as well as join predicates. This is achieved by using an index array similar to [6].
QUEST lays out the plan number and cost information to single dimension for storage. The
index array is used to calculate the position of each point in the single dimension layout. For
now, we have made an assumption that the entire index array can be fitted in the available

system memory.

12

Chapter 5

A Massively Parallel Algorithm for
POSP Identification

For a given query, as we increase the number of error-prone predicates, the time taken to iden-
tify the parametric optimal set of plans (POSP) across the error-prone selectivity space (ESS)

increases exponentially with the dimensionality of the space, assuming a fixed resolution.

Time taken{log(secs))
o

2D,100res 3D, 100res 40 100res a0,100res

ESS dimension and resolution

Figure 5.1: Time taken to generate plan diagrams

Figure 5.1 shows (on a log-scale) the estimated time taken on a system consisting of Intel

Haswell Xeon processors with 128GB RAM to identify POSP by varying dimensions. To get a

13

feel about the identification time, it takes almost four years to generate POSP for a selectivity
space with 5 dimensions and 100 resolution.

But, POSP identification time can be reduced significantly by efficient utilization of modern
multi-core clusters. Here, we have developed an efficient parallel algorithm for POSP identifi-

cation and implemented the same using MPI(Message Passing Interface) library.

Postgres Server 1 Postgres Server N

Node 1 | - Node N

m-core m-core

Host file \
\N-instname_l

rd

Hostnf;\me N
£ ‘\

\/
...... WEEZN

Process 0 Process_(Nm-m)

Process (m-1) Process (Nm-1)

Figure 5.2: Parallel architecture for POSP Identification

Figure 5.2 depicts the system architecture of our implementation. Suppose, 2N (N is even)
computing nodes are available and we want to use m cores in each node. Each process needs
to connect to a database server. We use N nodes to start N database servers and rest of the
nodes are used to execute the parallel algorithm. All the processes in i** node connect to the
database server hosted in /2! node. A separate thread is created for each database connection.
Since, we are creating m connections for each database server, all connection threads can be
executed in a non-preemptive manner. Thus, the computational time for POSP identification

is reduced by a factor of Nm.

14

Algorithm 1 Parallel Algorithm for POSP Identification

Input: number of processes n, dimension dim and resolution res of the ESS;
Output: POSP of the entire ESS;

1
2
3
4:
5
6

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:

27

: Init: currgoes ={ }.plans ={};
: Call MPI_Init(); //Initialize MPI execution environment
. Get rank of the current process using MPI_Comm _rank();
if rank =0 then
Divide the ESS (dim * res points) into n equally sized subspaces;
Send n subspaces (defined by the top-right and bottom-left points) to n different processes
using MPI_Send();
end if
Receive the subspace (S) information which needs to be explored by current process using
MPI_Receive();
for each query locations ¢ € S do
Get the optimal plan P, at g;
if P, ¢ plans then
Add P, in plans;
Add q in currgoces;
end if
end for
Store currges in a shared buffer glocs using MPI_Gatherv();
plans ={};
if rank =0 then
for each query locations ¢ € glocs do
Get the optimal plan P, at g;
if P, ¢ plans then
Add P, in plans;
Store P, in disk;
end if
end for
end if

: Call MPI_Finalize(); //Terminates MPI execution environment

The main idea of the our algorithm 1 is to divide the multi-dimensional ESS equally among

the processes. Each process identifies POSP in its subspace. For each plan in POSP, a process

15

stores the query location where it was found for the first time. Finally, we find the POSP for
the entire ESS by exploring only those query locations.

Along with POSP, we also store the cost and optimal plan at each location of the selectivity
space in a linear data structure. This information can be used by QUEST during bouquet
identification phase for a parameterized query template to avoid numerous optimizer calls.

Hence, pre-processing time of Plan Bouquet can be substantially reduced.

16

Chapter 6

Modified CostGreedy Algorithm

For queries having multi-dimensional error-prone predicates, the worst-case bound of plan bou-
quet algorithm depends on p, the maximum plan density over the isocost surfaces. Therefore, to
have a practically useful bound, we need to ensure that the value of p is kept to the minimum.
This can be achieved through the basic CostGreedy algorithm, a plan reduction technique de-
scribed in [3]. Here, POSP plans are allowed to swallow other plans, that is, occupy their regions
in the ESS space, if the suboptimality introduced due to these swallowings can be bounded to
a user-defined threshold, .

The input to the algorithm is a plan diagram [5], a pictorial enumeration of the execution plan
choices of a database query optimizer over the relational selectivity space and a threshold .

The output is another plan diagram. The data structures used in the algorithm are as follows:
1. cur(q): current plan of a point ¢ in the plan diagram.

2. belong(q): the set of plans that can be used instead of the current plan in the reduced

plan diagram.
3. cost(q): value indicating the cost of ¢ in the plan diagram.
4. color(q): integer denoting the color (equivalently, plan) of ¢ in the plan diagram.

The time complexity of CostGreedy is O(mn), where m and n are the number of query

points and plans, respectively, in the input plan diagram P [3].

Step 3 of CostGreedy algorithm (2) updates belong(q) with all the plans that are in ¢’s first
quadrant with cost within the given threshold starting from TopRight to BottomlLeft. But, if

plan-cost monotonicity (PCM) assumption holds then, we don’t need to check all the points in

17

¢’s first quadrant to find plans having cost within the threshold.

Algorithm 2 Basic CostGreedy Algorithm [3]

Input: Plan Diagram P, Threshold A;
Output: Reduced plan diagram;

1

. for each query locations ¢ from TopRight to BottomLeft do

set cur(q) = color(q);

update belong(q) with plans that are in ¢’s first quadrant with cost within the given
threshold.

end for

Let m be the number of points in P and n be the cardinality of POSP for P.

Create n sets S = {51,52,...Sn} corresponding to the n plans.

Let U ={1,2,...m} correspond to the m query points.

Define Vi =1,...,n,S; = {j : i € belong(r) or i = cur(r) for query point r corresponding to
J,Vji=1,...,m}.

9: Let I =(U,S), I be an instance of the Set Cover problem.

10: Let L,, be the color of the TopRight point. Remove set S,, and all its elements from 1.

11: Apply Algorithm Greedy Setcover to I. Let C be the solution.

12: C=CUS,

13: Recolor the grid with colors corresponding to the sets in C' and update new costs appro-
priately. If a point belongs to more than one subset, use color that results in least cost
increase.

14: End Algorithm CostGreedy.

We need to modify the belong(q) data structure so that it also includes the current plan at

q. We use belong(q) at step 8 of the algorithm which can be changed accordingly, because, we

are already making sure that belong(q) includes the current plan at q.

18

Oxy+lz
Fy
Ox y+1 v T
T EYE— Oyl yz
W
Quy—®0x+1y Quyz+1
W »

X > /
Figure 6.1: 2D and 3D Example

Now, suppose that g,, is a query location in 2D ESS (Figure 6.1). Then, we only need to
check plans only at g1, and g, 4.1 to find belong(q,,). Similarly, for 3D ESS, we need to
check plans at gu+1,y 2,qs y+1,» a0d Gy .41 to calculate belong(q,,). Hence, for a d-dimensional
ESS we need to check plans at d locations to find belong(q) for a query location g.

Claim: If PCM assumption holds, then, belong(q) € UL, belong(q;) U p, where ;s are the
immediate neighbour points of q (at q’s first quadrant) along each of the d dimensions and p is
optimal plan at q.

Proof: Suppose, the cost of the plan p at location ¢ is ¢. For another location ¢’, the cost
corresponding to the optimizer chosen plan p’ is ¢’. Suppose, p’ € belong(q) which means
c < <ce(l+A) where \ is the user-defined threshold. Due to PCM assumption, ¢’ must be
in ¢’s first quadrant. It is easy to see that p’ can be used for any point in the region bounded
by ¢ and ¢'. Hence, for any plan other than p that can be used at ¢, there is at least one
point among ¢’s neighbours (in ¢’s first quadrant) where it can complete execution with cost
within the threshold. We need to check all neighbour points along each dimension since PCM

assumption doesn’t provide any relation between these points. [

After the above modifications in the CostGreedy algorithm, although asymptotically the
time complexity is still O(mn), but empirically we get significant performance improvement.
Because, for most of the query points, belong(q) contains 1% — 5% of the total number of plans
in the ESS. We’ll show the results in the next chapter.

19

Chapter 7
Empirical Analysis

In this chapter, we report an experimental evaluation of our proposed techniques.

7.1 Experimental Environment

PostgreSQL version 9.4 is used to obtain estimated optimal plans and estimated cost of plans.
Our experiments have been carried out on Cray XC40 composed of 1376 computing nodes
[12]. Each node has 2 CPU sockets with 12 cores each, 128GB RAM and they are connected
using Cray Aries interconnect. Concerning software environment, the entire system is built to
operate using Cray’s customized Linux OS, called Cray Linux Environment. For our parallel
algorithm implementation, we have used the GNU compiler collection with Cray MPICH2
Message Passing Interface and for CostGreedy reduction algorithm, we have used Java. We
have performed all the experiments on TPC-H 1GB database [10].

7.2 Impact of Parallel Algorithm

We have used 300 nodes and 20 cores in each node for our experimental purpose. As discussed
in Chapter 5, we get 3000 times speed-up. Figure 7.1 indicates the performance improvement

of parallel algorithm over serial one.

20

12 I Serial

I Parallel
9 II
0 — . I

2D,100res 3D,100res 4D,100res 5D,100res

(=]

Time taken(log(secs))

(78]

ESS dimension and resolution

Figure 7.1: POSP Identification performance

As we can see in the figure, for a query with 5-dimensions and 100 resolution, our algorithm
reduces the running time from 4 years to 12 hours. This enables us to generate POSP as well
as the complete plan diagrams for high-dimensional ESS with high-resolutions in very less time
which was previously unthinkable. It also reduces the compile-time overhead for plan bouquet
to a great extent. For parameterized query templates, we can reuse these plan diagrams for
bouquet identification phase in QUEST.

7.3 Modified CostGreedy Algorithm Performance

Figure 7.2 shows the performance improvement after incorporating the modifications in Cost-
Greedy algorithm. For a query location, if we consider all the points in its first quadrant then,
we need to examine a lot of plans to check whether their costs are within the permissible thresh-
old. But, if we only look at immediate neighbour points to a query locations, the number of

plans reduces substantially.

21

10000 Il CostGreedy

B Modified
CostGreedy
75500
g
@ 5000
=
g
8
Q
£
= 2500
Q5_100res_4d Q8_100res_4d Q8_100res_50
Query Templates
Figure 7.2: CostGreedy performance
1000000
750000
2
=
5
=
2 500000
@
£
g
=
250000
U L\
20 40 60 80 100 120 140

Cardinality of belong(q)

Figure 7.3: Number of points with different cardinality of belong(q)

For example, the cardinality of POSP of TPC-H query 8 with 4 dimensions and 40 resolution
is 145. But, figure 7.3 depicts that for majority of the points, cardinality of belong(q) is
very small compared to the total number of plans. Thus, we can achieve such computational

efficiency.

22

7.4 Plan Reduction Quality

We have produced the POSP set for different TPC-H query templates by varying each dimen-
sion uniformly. Table 7.1 shows the cardinality of POSP sets for different query templates. For
example, TPC-H query 8 with 2D ESS and 100 resolution has 25 plans in its POSP set.

Query Template

#plans

Q8_100res_2d

25

Q10_100res_2d

18

Q7-100res_3d

45

Q8_100res_3d

71

Q8_100res_4d

215

Q8-100res_5d

573

Table 7.1: POSP cardinality for different query templates

These results show that the cardinality of the optimal plan set can reach high values for

some queries. Also, as we increase the dimensions, we notice a substantial increase in the num-

ber plans even with fixed resolution.

40

Number of plans

10

10% 20% 30% 40%

I Q10_100res_2d

I Q7_100res_3d
Q8_100res_4d

Il Q8_100res_5d

50% 100%

CostGreedy Reduction threshold

Figure 7.4: Plan reduction quality by varying dimensions

Now turning our attention to reduction quality, figure 7.4 shows that CostGreedy signifi-
cantly reduces plans in POSP set. We have also found that 80% of the plans in the reduced

23

plan diagrams could not be swallowed in the reduction process. Another observation is that
the initial steep exponential decrease in the number of plans with increasing threshold. We
have found this to be true as stated in [3] even with high resolution. But, with increase in
dimensions, the number of reduced plans goes beyond “anorexic”level (small absolute number
of plans). The reason for this is that CostGreedy follows a conservative cost-bounding approach
to estimate the costs of plans outside their endo-optimal regions. Plan reduction quality can be
improved by using CostGreedfy — F PC algorithm [4]. The foreign-plan-costing (FPC) feature

is used to evaluate plans outside of their endo-optimal regions.

5 B Q8_10res_4d

Il Q8 _20res_4d
20 Q8 _50res_4d
Il Q8 100res 4d

15

Number of plans

10

10% 20% 30% 40% 50% 100%

CostGreedy Reduction threshold

Figure 7.5: Plan reduction quality by varying resolution

Figure 7.5 shows that the final plan cardinality increases with the resolution. As we increase
the resolution, new plans are found near the axis which can not be swallowed by other plans.
This is the reason that the final plan cardinality increases. We can use foreign-plan-costing
(FPC) feature to check whether the final plan cardinality can be reduced further.

24

Chapter 8
Conclusions and Future Work

In the initial work, we have generalized the implementation of Quest so that any query with any
number of error-prone selectivity predicates can be evaluated. As part of Quest modifications,
we have implemented join selectivity injection feature in PostgreSQL 9.4.

In our second contribution, we have proposed a parallel algorithm for identifying POSP set for a
query template. We have shown that our algorithm improves the identification time from years
to hours. We have also improved the running time of CostGreedy reduction algorithm. Finally,
we investigated the possibilities of reducing a dense plan diagram produced by PostgreSQL,
without adversely affecting the query processing quality. Our analysis has shown that plan
reduction can be carried out efficiently and can bring down the plan cardinality to a manageable
number of plans while maintaining acceptable query processing quality.

To further improve the plan reduction quality, we can use CostGreedy-FPC' algorithm. But, as
stated in [4], the algorithm performs very poorly in terms of running time. It takes mn FPC
calls to the optimizer to reduce a ESS with m points and n plans. It will be an interesting
future work to reduce the running time of CostGreedy-FPC by exploiting parallelism using
multi-core architectures. It also opens up the possibility to analyze plan bouquet technique

and its empirical bounds for high-dimensional queries.

25

Bibliography

1]

[7]

8]
[9]

A. Dutt and J. Haritsa. Plan Bouquets: Query Processing without Selectivity Estimation.
In SIGMOD, 2014. ii, 1, 2, 3, 4

A. Dutt, S. Neelam, and J. Haritsa. QUEST: An Ezploratory Approach to Robust Query
Processing. In PVLDB, 2014. ii, 2, 7

Harish D., P. Darera, and J. Haritsa. On the Production of Anorexic Plan Diagrams. In
VLDB, 2007. ii, 2, 8, 17, 24

Harish D. Pooja N. Darera Jayant R. Haritsa. Identifying Robust Plans through Plan Dia-
gram Reduction. In VLDB, 2008. 24, 25

Jayant R. Haritsa. The Picasso Database Query Optimizer Visualizer. In VLDB, 2010. 3,
17

Mohammad Aslam. Picasso: Design and implementation of a Query Optimizer Analyzer.
Master’s Thesis, Dept. of Computer Sci. and Automation, [ISc, (2006) . 12

C Rajmohan. Turbo-charging Plan Bouquet Identification. Masters Thesis, Dept. of Com-
puter Sci. and Automation, IISc, (2014) .

http://www.jfree.org/jfreechart. 8

http://www.jgraph.com. 8

[10] http://www.tpc.org/tpch. 20

[11] http://www.tpc.org/tpeds.

[12] http://www.serc.iisc.in/facilities/cray-xc40-named-as-sahasrat /. 20

26

http://www.jfree.org/jfreechart
http://www.jgraph.com
http://www.tpc.org/tpch
http://www.tpc.org/tpcds
http://www.serc.iisc.in/facilities/cray-xc40-named-as-sahasrat/

	Acknowledgements
	Abstract
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Background
	1.2 Motivation
	1.3 Contribution
	1.4 Organization

	2 Plan Bouquet Technique
	2.1 Overview
	2.2 Single Dimension Example
	2.2.1 Bouquet Identification
	2.2.2 Bouquet Execution

	2.3 Extension to Multiple Dimensions
	2.4 Robustness Metric

	3 QUEST Prototype System
	3.1 System Architecture and Feature Details
	3.2 Implementation Details

	4 Modifications in QUEST
	4.1 Query-coupled Join Selectivity Injection
	4.1.1 Implementation Details
	4.1.2 An Example

	4.2 Query Parser with Error-prone Predicate Selection Panel
	4.3 A Common Database Interface
	4.4 Query Evaluation having Multidimensional ESS

	5 A Massively Parallel Algorithm for POSP Identification
	6 Modified CostGreedy Algorithm
	7 Empirical Analysis
	7.1 Experimental Environment
	7.2 Impact of Parallel Algorithm
	7.3 Modified CostGreedy Algorithm Performance
	7.4 Plan Reduction Quality

	8 Conclusions and Future Work
	Bibliography

