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Abstract

To effectively support today’s global economy, database systems need to store and manipulate
text data in multiple languages simultaneously. Current database systems do support the storage
and management of multilingual data, but are not capable of querying them across different
natural languages. To address this lacuna, two multilingual functionalities: LexEQUAL[15]
and SemEQUAL[16] were recently proposed in the literature. LeXEQUAL supports phoneme
based matching of names and SemEQUAL supports ontology based matching of concepts.

In this report, we investigate the implementation of these multilingual functionalities as
first-class operators on relational engines, using the PostgreSQL open-source database sys-
tem. We first present the functionality of the above mentioned operators and their algebraic
properties, selectivity estimations and cost models. Subsequently we discuss a staged im-
plementation roadmap from outside-the-server to inside-the-server to core implementation of
LexEQUAL and SemEQUAL in PostgreSQL. To speedup LexEQUAL processing, a metric
index has been incorporated using the GiST feature of PostgreSQL. We have taken outside-
the-server implementation using existing features of the database system as the baseline for
performance measure. Our experiments over representative multilingual datasets demonstrate
orders-of-magnitude performance gains for the core and inside-the-serverimplementation over
outside-the-server. We also demonstrate the power of our core implementation in selecting effi-
cient execution plans, which is not possible with inside-the-server implementation. To the best
of our knowledge, our prototype system is the first practical attempt towards the ultimate goal

of realizing natural-language-neutral database engines.
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Chapter 1

Introduction

1.1 Need for multilingual data

The Internet — the primary digital arena for information, interaction, entertainment and com-
merce, is expanding rapidly', in addition to turning multilingual steadily®. It is imperative that
the key applications of the Internet, such as e-Commerce and e-Governance portals, must work
across multiple natural languages, seamlessly. A critical requirement to achieve this goal is that
the underlying data source — relational database management systems — should manage mul-
tilingual data effectively, efficiently and seamlessly. Current database systems do support the
storage and management of multilingual data, but are not capable of querying across different
natural languages. For example, it is not possible to automatically match the English string Al-
Qaeda and its equivalent strings in other scripts, say, Arabic, Greek or Chinese, or the English
word attack with its equivalent word in other languages, even though such a feature could be
immensely useful for news organizations or security agencies. To address this lacuna, two new
multilingual functionalities — LeXxEQUAL [15] and SemEQUAL [16] were recently proposed
in literature. LeXEQUAL supports phoneme-based matching of names while SemEQUAL sup-
ports ontology based matching of concepts.

The above papers focussed primarily on the outside-the-server implementation of the multi-
lingual functionalities. In this report, we investigate their implementation as first-class operators
on relational engines, using PostgreSQL open-source database system. We present the operator

cost models, selectivity estimates and composition rules. To push the operators into the core

!Internet user population is growing at a rate of 12 to 15% yearly[32].
2Two-thirds of the current Internet users are non-native English speakers [28] and it is predicted that the major-
ity of web-published data will be multilingual by 2010 [39].
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engine, these are critical inputs for relational query optimizer, for the selection of efficient query
execution plans.

Subsequently we discuss a staged implementation roadmap from outside-the-server to inside-
the-server to core implementation of LexXEQUAL and SemEQUAL in PostgreSQL. To speedup
LexEQUAL processing, a metric index has been incorporated using the GiST feature of Post-
greSQL. We have taken outside-the-server implementation using existing features of the database
system as the baseline for performance measure. Our experiments over representative multilin-
gual datasets demonstrate orders-of-magnitude performance gains for the core and inside-the-
server implementations over outside-the-server. We also demonstrate the power of our core
implementation in selecting efficient execution plans, which is not possible with inside-the-
server implementation. To the best of our knowledge, our prototype system is the first practical

attempt towards the ultimate goal of realizing natural-language-neutral database engines.

1.2 Background

Consider a hypothetical e-Commerce application- Books.com that sells books across the globe,
with a sample product catalog in multiple languages as shown in Figure 1.1. The product
catalog shown may be considered as a logical view assembled from data from several databases

(each aligned with the local language needs), but searchable in a unified manner for multilingual

users.

Author Title Price Category
Durant History of Civilization $ 149.00| History
Bmap 2 Flu Geor ) INR 250 | # 7 &5 g1i
Adams Arte Di Rinascita Italiana € 75.00 | Arti Fini
Lebrun L'Histoire De La France € 19.95 | Histoire

D ¢ gaigo Sea 5\ e B 5l a=l) | SAR 95 s lama
Gilderhus History and Historians £ 35.00 | Historiography
s WA U T INR 175 | sfrewr
Zoppn TTonyvidia oo TTiavo € 12.00 | Movoum
Nehru Letters to My Daughter £ 15.00 | Autobiography

Figure 1.1: Multilingual Books.com
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1.2.1 Multilingual Name Searches

In this environment, an SQL:1999 compliant query to retrieve all works of an author (say,
Nehru), across multiple languages (say, in English, Hindi, Tamil and Greek) would

have to be written as shown in Figure 1.2.

select Author, Title, Language from
Books where Author = ’Nehru’

D 4
or Author = ’ﬁﬁj?’or Author = / 2bbh,

or Author = ’Nnpo,

Figure 1.2: SQL:1999 Multiscript Query

This query suffers from a variety of limitations: Firstly, the users have to specify the search
string Nehru in all the languages in which they are interested. This not only entails the users
to have access to lexical resources, such as fonts and multilingual editors, in each of these
languages to input the query, but also requires the users to be proficient enough in all these
languages, to provide all close variations of the query name. Secondly, given that the storage
and querying of proper names is significantly error-prone due to lack of dictionary support
during data entry even in monolingual environments [13], the problem is expected to be much
worse for multilingual environments. Thirdly, and very importantly, it would not permit a user
to retrieve all the works of Nehru, irrespective of the language of publication. Finally, while
selection queries involving multiscript constants are supported, queries involving multiscript
variables, as for example, in join queries, cannot be expressed.

The LexEQUAL operator attempts to address the above limitations through the specification
shown in Figure 1.3, where the user has to input the name in only one language, and then either
explicitly specify only the identities of the target match languages, or even use * to signify a
wildcard covering all languages (the Threshold parameter in the query helps the user fine-
tune the quality of the matched output, as discussed later in the paper). When this LexXEQUAL

query is executed on the database of Figure 1.1, the result is as shown in Figure 1.4.
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select Author, Title, Language from
Books where Author LexEQUAL ’'Nehru’
Threshold 0.25 inlanguages
{ English, Hindi, Tamil, Greek }

Figure 1.3: LexXEQUAL Query Syntax

Author Title Language

Nehru Letters to My Daughter English
Gpp 25w Gegn g Tamil
TeE I U @ Hindi

Figure 1.4: Results of LexEQUAL Query

1.2.2 Multilingual Concept Searches

Consider the query to retrieve all History books in Books.com, in a set of languages of users
choice. An SQL:1999 compliant query to retrieve all books on history, across multiple lan-
guages (say, in English, Hindi, Tamil, Arabic) would have to written as shown in Figure 1.5.
This SQL:1999 query also suffers from all the limitations which are given for writing Multilin-
gual Name Searches in section 1.2.1. Further the current SQL:1999 compliant query, having
the selection condition as Category="History” would return only those books that have Cate-
gory as History books in all the languages (or in a set of languages specified by the user) are

returned.

select Author,Title,Category from

Books where Category = ’"History’
or Category = ’Eh@”’
fafnL
or Category = s FEERIL,

or Category = ’éJuM’

Figure 1.5: SQL:1999 Multilingual Semantic Matching Query

The SemEQUAL operator [16] attempts to address the above limitations through the spec-
ification shown in Figure 1.6, where the user has to input the name in only one language, and
then either explicitly specify only the identities of the target match languages, or even use *
to signify a wild card covering all languages as in LexXEQUAL query. When this SemEQUAL

query is executed on the database of Figure 1.1, the result is as shown in Figure 1.7. The output
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contains all books that have their category values that are semantically equivalent to History,

the categories that are subsumed by History * are also retrieved, due to the ALL clause in the

query.

select Author,Title,Category from

Books where Category SemEQUAL ALL
"History’ inlanguages

{English,Hindi, Tamil,Arabic}

Figure 1.6: SemEQUAL Query Syntax

Author Title Category
Durant History of Civilization| History
Gilderhus| History and Historians | Historiography
Lebrun L'Histoire De La France | Histoire
Nehru Letters to My Daughter | Autobiography
G p 25w Geor g s &G o
e I T G e

Figure 1.7: Results of SemEQUAL Query

In [16], authors refer to such matching as Multilingual Semantic Matching, which matches
multilingual text strings based on their meanings, irrespective of the languages of storage.

It should be specially noted here that this solution methodology is also applicable for ex-
tending the standard matching semantics of mono-lingual strings. For example, the LexEQUAL
operator may be used for matching the English name Catherine and all its variations, such as
Kathrin and Katerina. Similarly, the SemEQUAL operator, may be used for matching Disk

Drive with Data Storage Devices and Computer Peripherals.

1.2.3 Contribution of this Project

With this project, our contributions are as follows:
e M-Tree index implementation in PostgreSQL to improve performance of LexEQUAL

operator.

3Historiography(the study of history writing and written histories) and Autobiography (writing ones own life
history) are considered as specialized branches of History itself.
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e Core implementation of the LeXEQUAL and SemEQUAL operators, and demonstration

of improvement in performance to the tune of 2 to 3 orders of magnitude.

1.2.4 Organization of the Thesis

The rest of this Thesis is organized as follows: Chapter 2 defines and analyses the LexEQUAL
and SemEQUAL. A brief introduction to PostgreSQL is presented in Chapter 3. A brief intro-
duction to metric space and M-Tree index is presented in Chapter 4. Implementation choices
and details of implementation of the functionality inside PostgreSQL is discussed in Chap-
ter 5. The performance of different implementations of multilingual functionality are outlined
in Chapter 6. Finally, we summarize our conclusions and outline future research avenues in
Chapter 7.



Chapter 2
Multilingual Functionalities

In this chapter, we present the phonetic and semantic matching functionalities to match mul-
tilingual text attributes, formalizing the functionality of LexXEQUAL and SemEQUAL given
in [15, 16].

2.1 LexEQUAL Functionality Definition

Let L; be a natural language with an alphabet ¥3;. Let s; in language L; be a string composed of
characters from ¥;, and let Sz be set of all such s;. Let S = UzS7, for a given set of languages.
We also assume that the phoneme strings are encoded in the International Phonetic Association
(IPA) [34] alphabet, namely, >;p4. Every natural language string can be transformed to a
phonetic string in the IPA alphabet (in line with the phonetic conventions of the language). A
transformation, 77, between a given language string s; and a corresponding phonemic string p;,
is represented by 77 : St — Szp.4. The union of such transformation functions 7 (= U;77) in
a set of desired languages, represented by 7 : & — Szp 4, is assumed to be given as an input to
the query processing engine.
Definition 2.1: Two strings s; € Sy and s; € S; are phonetically equal, iff their phonemic
representations p; and p; are the same.
Example 2.1: Given that the strings {“Nero”, “Nehru” in English, “*#%” in Tamil and ‘%" in
Hindi} have corresponding phonemic representations {“nerou”, “nahru”, “naeru” and “nachru”}
respectively, only the English “Nehru” and the Hindi ““##” are phonetically same. o
However, since the phoneme sets used by different languages are seldom equal, it is al-
most impossible to match two multilingual strings phonetically. Hence in the phonetic domain,

phonemic closeness, a weaker notion of equality was defined as follows:
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Definition 2.2: Two strings s; and s; are phonetically close if and only if {editdistance(p;.p;)<
t}, where ¢ is a error tolerance for match.

The error tolerance parameter ¢ is a fraction of the input string lengths and usually defined
as a symmetric function of the two input strings. Further, this parameter must be calibrated
based on the characteristics of the data domain and may be set based on the requirements of
application or the user. The LexEQUAL matching ¥ operator, based on Definition 2.2, is
defined as follows:

Definition 2.3: {s;¥;s;} <= {editdistance(p;.p;) < t}. o

2.1.1 LexEQUAL(Y) Operator Algorithm

LexEQUAL (S;, Ly, Sy, Ly, e, So)
Input: Input Strings Sy, Sy, Input String Languages Ly, L,., Match Threshold
e
Set of Languages for output So
Set of Languages with IPA transformations Sz (as global resource)
Output: TRUE, FALSE or NORESOURCE
if L; ¢ Sz or L; ¢ S then return NORESOURCE;
if L; € S then
T;+transform(S;,L;);
T.+transform(S,,L,);
Smaller + (| T} | < | T | ? |T1] - |Tr]);
if editdistance(T},T,) < (e * Smaller) then
return TRUE else return FALSE;

SO

editdistance(St, Sgr)
Input: String Sp, String Sg
Output: Edit-distance k
l. Ly« |SL|;L.«|Sr|;
Create DistMatrix[L;, L,] and initialize to Zero;
for i from O to L; do DistMatrix[i, 0] + i;
for j from O to L, do DistMatrix|0, j] « j;
for i from 1 to L; do
for j from 1 to L, do

NoawnAwn

DistMatrix[i, j] «— Min
DistMatrix[i — 1, j]+InsCost(Sr,;)
DistMatrix[i — 1, j — 1]+SubCost(Sg;,SL;)
DistMatrix[i, j — 1]+DelCost(SRg,)
8. return DistMatrix[L;, L,);

Figure 2.1: The LexEQUAL Algorithm
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The LexEQUAL operator algorithm for comparing multiscript strings is shown in Fig-
ure 2.1. The operator accepts two multilingual text strings and a match threshold value as
input. The strings are first transformed to their equivalent phonemic strings and the edit dis-
tance between them is then computed. If the edit distance is less than the threshold value, a
positive match is flagged.

The transform function takes a multilingual string in a given language and returns its
phonetic representation in IPA alphabet. Such transformation may be easily implemented by
integrating standard TTP systems that are capable of producing phonetically equivalent strings.
The editdistance function [8] takes two strings and returns the edit distance between them.
A dynamic programming algorithm is implemented for this computation, due to the flexibility

that it offers in experimenting with different cost functions.

Match Threshold

A user-settable parameter, Match Threshold, as a fraction between 0 and 1, is an addi-
tional input for the phonetic matching. This parameter specifies the user tolerance for
approximate matching: 0 signifies that only perfect matches are accepted, whereas a pos-
itive threshold specifies the allowable error (that is, edit distance) as the fraction of the
size of query string. The appropriate value for the threshold parameter is determined by

the requirements of the application domain.

Intra-Cluster Substitution Cost

The three cost functions in Figure 2.1, namely InsCost, DelCost and SubsCost, provide
the costs for inserting, deleting and substituting characters in matching the input strings.
With different cost functions, different flavors of edit distances may be implemented eas-
ily in the above algorithm. we implemented a Clustered Edit Distance parameterization,
by extending the Soundex [14] algorithm to the phonetic domain, under the assumptions
that clusters of like phonemes exist and a substitution of a phoneme from within a cluster
is more acceptable as a match than a substitution from across clusters. Hence, near-equal
phonemes are clustered, based on the similarity measure as outlined in [17], and the sub-
stitution cost within a cluster is made a tunable parameter, the Intra-Cluster Substitution
Cost. This parameter may be varied between 0 and 1, with 1 simulating the standard
Levenshtein cost function and lower values modeling the phonetic proximity of the like-

phonemes.
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2.1.2 LexEQUAL(Y) Operator Properties

The LexEQUAL(WV) operator defined as above is functionally analogous to database equality
operator, but in the phonetic domain. The following are the properties of this operator.
Property 2.1: The ¥ operator is commutative.

Property 2.2: The ¥ operator commutes with projection, provided the attributes used in W is
preserved by the projection operator.

Property 2.3: The ¥ operator commutes with selection, sort and join operators.

Property 2.4: The ¥ operator commutes with aggregate operators, provided the aggregation

preserves the phonetic attribute.

The first property follows immediately based on the definition, and assuming normal se-
mantics for threshold measure. The second through fourth properties follow, since the values in

the result set are not altered by the operator.

2.2 SemEQUAL Functionality Definition

The definitions in this section assume only that the values of an attribute are from a specified
domain, D !, with a set of distinct semantic values. Within each domain D, the semantic values
are assumed to be arranged in a taxonomic hierarchy, H that defines i s—a relationships among
the atomic semantic values of the domain. Such network may be a collection of directed acyclic
graphs. Given an atom x and a domain D, the transitive closure of z in D is unique, and is
denoted by Tp(z). Similarly, the transitive closure of a set X (= {z;|x; € D}) is denoted by
T#(X), and is defined as U; Tp(z;), where z; € X. Assuming the above notation, the following
definitions for semantic matching were provided [16].
Definition 2.4: Given a taxonomy # in domain D and two nodes z and y in D, we define x is-a
y, iff z € Ty (y).
Definition 2.5: Given H in domain D and two sets of nodes X and Y in D, we define X is-a
Y,iff X C Tx(Y).

Since linguistic domain ontologies have low resolution power (that is, words with multiple
meanings), a weaker version of the semantic equality is defined [16], as follows:
Definition 2.6: Given a taxonomic hierarchy H in domain D and two sets of nodes X and Y in
a domain D, we say X is-possibly-a Y, iff X N Ty (Y) # ¢.

'The domains may correspond to different areas of discourse: Astronomy, Bio-Informatics, Linguistics, etc.
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Definition 2.6 is used for defining SemEQUAL operator in the following section.

2.2.1 WordNet-based Taxonomic Hierarchies

WordNet [40] 1s a standard linguistic resource for English, that provides mappings between
words and their meanings (called synsets). WordNet defines, among other things, the classifica-
tion relationships between its synsets arranged in a taxonomical hierarchy. Complete WordNet
is available for English and efforts are underway to develop WordNets in different languages,
paralleling the English WordNet. Inter-linking of synsets between WordNets of different lan-
guages is available for some languages currently [30], and is planned for others [33]. Figure 2.2
shows a simplified hierarchy in English and German (in solid lines) and the inter-linking of

noun forms between English and German using ILI links (in dotted lines).

English Noun Hierarchy German Noun Hierarchy

.................. ‘A

o REXE ) ,‘

Fauna Attifact Tier Kunstprodukt
i
/ \ """""""""""" e / \ '

S NI g A

» at » §r ...... -~ -~

Bird Mammal Machine | !Vogel Saugetier Maschine

Human Mouse  Aircraft Mensghlich Maus Flugzeug
ETCEEASTEIE PN SRR ‘r A
\" ot e, 0, B
» » S LN :
I

Mdénnlicher Weiblicher

........................................

Figure 2.2: Sample Interlinked WordNet Hierarchy

Let Wt be the WordNet of language L;. Let Sz = U;s;. By definition, YWz contains semantic
primitives s;, of L;. The noun taxonomic hierarchy defines a set of DAGs, H7 between the
elements of Sz. A WordNet defines a mapping Mz, between a wordform (w;) and its meanings
(Mz(w;)), as Mz:w; — Sy, where S, is a set of s;, s; € Sz. Consider the union of all semantic
primitives of a set of languages, Sy (= U;S7) and the union of interrelationships between them
H (= U;Hy). Clearly, H is a set of DAGs, among the elements of Sy¢-. Augmenting H with the
ILI links, a taxonomic network, H a4, is created. This H 4. is used for SemEQUAL definition,
as follows:

Definition 2.7: Given the multilingual taxonomic hierarchy H sz, {w; @3, w,} is true, if {S;
is-possibly-a S} under H pqz, where S; = Mz(w;) and S; = M 7(w;).
Note that this definition 2.6 guarantees not to produce false-dismissals, though it may intro-

duce false-positives by matching on unintended word-senses.
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Example 2.2: Both the predicates (Bird ®4,,,, Fauna) and (Bird @4, ,, Artifact) evaluate to
true, as the set of synsets of Bird namely, { Bird;, Bird,} has a non-empty intersection with the
closure of Fauna and Artifact. o
Example 2.3: Consider the predicate (Birdgngisn ®#,,. Kunstproduktcermar): The answer
is evaluated as, Is {Bird;,Birds} N {Kunstprodukt, Maschine, Flugzeug, Bird} # ¢, which

evaluates to true. o

2.2.2 The SemEQUAL(®) Operator Algorithm

The skeleton of the ® algorithm to match a pair of multilingual strings is outlined in Figure 2.3.

SemEQUAL (Stringpata, Stringquery, L, Lo, match, Tr)

Input: Stringpgt, and Stringgyery in languages Lp and Lg, match
flag, Target Languages 7,

Output: TRUE or FALSE, [Optional] Gloss of Matched Synset

1. (Wp,Wg) < WordNet Of (Lp,Lg);
2. (Sp,Sg) + Synsets of (Stringpai, in Wp, Stringguery in Wo);
3. if Match is EQUIVALENT then if Sp N Sg # ¢ return true
else return false;

else if Match is GENERALIZED then

TCg <+ TransitiveClosure(Sg, Wo, Tr);

if Sp N TCg # ¢ return true else ret urn false;
4. [Optional.] return Gloss of the Matched Synset;

Figure 2.3: Semantic Matching Algorithm

The ® function takes two multilingual strings Spate and Sguery as input. It returns true,
if LHS string maps to a semantic atom, that is some member of transitive closure of the RHS
operand in the taxonomic network H ., if it is a "GENERALIZED’ match. In the case of
"EQUIVALENT’ match, it returns true, if LHS string maps to the RHS operand in the taxo-

nomic network H ..

2.2.3 The SemEQUAL(®) Operator Properties

The following are the properties of the ® operator.
Property 2.5: The ¢ operator is not commutative.
Property 2.6: The ® operator commutes with projection, provided the attributes used in @ is

preserved by the projection operator.
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Property 2.7: The ® operator commutes with selection, sort or join operators.

Property 2.8: The ® operator commutes with aggregate operators, provided the aggregation
preserves the semantic attribute.

Property 2.9: The definition implies that A ® B is true, iff A is a descendant of B, in H. Or,
equivalently, A ® B is true, iff B is an ancestor of A, in H.

Property 2.5 follows directly from the asymmetry of the ® operator. The properties 2.6 through
2.8 follow from the algebra of the standard relational operators. Property 2.9 follows directly
from graph theory (as H is a set of DAGs) that guarantees the existence of a path from x to y,
if the node y occurs in the closure of = in H.

Property 2.5 reduces the plan search space by restricting flipping of operands of the ® op-
erator due to its asymmetry. The properties 2.6 through 2.8 provide means for enumerating
different execution plans for queries using ® operator. Property 2.9 suggests an alternative
method for implementing ® operator, which may be exploited depending on the structural char-

acteristics of the hierarchy.

2.3 Cost Models for Operators

In this section we discuss the cost models of multilingual operators. There are two variations
possible for each of the operators: scan type, which is of the form <Attr> Oper <Const>, and
join type, which is of the form <Attr> Oper <Attr>. For the cost models, the notation defined
in Table 2.1 are used and the costs of operations (in big-O notation) are given in Table 2.2.

All edit-distance computations are assumed to be implemented using dynamic-programming [18]
algorithm instead of the standard diagonal transition algorithm, for the reason given in section
2.1.1. For W operation costs with indexes, the indexes are assumed to be created on the materi-
alized phoneme strings. For approximate index the fraction of the database scanned is assumed

to be proportional to the error threshold ().

2.4 Estimations of Operator Output

This section outlines the heuristics used to estimate the output size of operators.



2.4 Estimations of Operator Output

| Symbol || Represents

| LHS (L) and RHS (R) Operands

R;, Rr | No. of Records in L, R
lps lgr | Avg. length of Records in L, R
Pr, Pr || No. of Pagesin L, R
Ar, Ar | No. of Pages for Approximate Index in L, R
k W Error Tolerance (as a fraction in (o, 1])

o ¥ Size of the Alphabet (= |X|)

Ry No. of Records storing H (=|H )
Py No. of Pages storing H
Ey No. of Pages storing Index of H
f,h Average fan-out and height of H
Table 2.1: Symbols used in Analysis
O | Remarks Algorithm Disk
Complexity | I/0
| scan Operations
¥ | No Index RLZLZR PL
U | Approx. Idx | Ryl lrk Ap
® | No Index Rip+Ry (h+1) | Py(h+1)
| join Operations
¥ | No Index RLRRZLZRO' 3(PL + PR)
\\ AppI'OX. Idx RLRRlLleO AL + AR
® | No Index R+ Rr+ | 3(PL+Pgr)+Py
R RRH(]'L+1)

Table 2.2: Cost Models for Operators
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2.4.1 Estimation of Cardinality of LexEQUAL Output

We estimated the output of the W operator, by modifying the equality (=) operator cardinality
estimation, keeping in mind that each value in the left hand side can be matched with more than

one unique value on the right hand side.

2.4.2 Estimation of Cardinality of SemEQUAL Output

We estimate the output size of ® operator, using the notation in Table 2.1, as follows: Given the
average height of H . is h, the selectivity of scan predicate is given by (h + 1)/|H amc|, and
the selectivity of join predicate is given by Ry (h + 1)/|H e



Chapter 3

PostgreSQL

PostgreSQL [36] is an object-relational database management system (ORDBMS) based on
POSTGRES, Version 4.2, developed at the University of California at Berkeley Computer Sci-
ence Department. PostgreSQL is an open-source descendant of this original Berkeley code.
It supports SQL99 and offers many modern features: complex queries, foreign keys, triggers,
views, transactional integrity, multiversion concurrency control. Also, PostgreSQL can be ex-
tended by the user in many ways, for example by adding new data types, functions, operators,
aggregate functions, index methods, procedural languages.

And because of the liberal license, PostgreSQL can be used, modified, and distributed by

everyone free of charge for any purpose, be it private, commercial, or academic.

3.1 PostgreSQL Query flow

PostgreSQL uses a client/server model. A PostgreSQL session consists of the following coop-
erating processes (programs):

* A server process, which manages the database files, accepts connections to the database
from client applications, and performs actions on the database on behalf of the clients. The
database server program is called the postmaster.

* The user’s client (frontend) application that wants to perform database operations. Client
applications can be very diverse in nature: a client could be a text-oriented tool, a graphical ap-
plication, a web server that accesses the database to display web pages, or a specialized database
maintenance tool. Some client applications are supplied with the PostgreSQL distribution, most
are developed by users.

As is typical of client/server applications, the client and the server can be on different hosts.

16
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3.1 PostgreSQL Query flow

| uiils | | Caiog | [StorgeManagers

| Acces Methods | | Nodes Liss|

Figure 3.1: PostgreSQL Query flow diagram
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In that case they communicate over a TCP/IP network connection. The PostgreSQL server
can handle multiple concurrent connections from clients. For that purpose it starts ("forks”)
a new process for each connection. From that point on, the client and the new server process
communicate without intervention by the original postmaster process. Thus, the postmaster is
always running, waiting for client connections, whereas client and associated server processes
come and go.

A query comes to the backend via data packets arriving through TCP/IP or Unix Domain
sockets. It is loaded into a string, and passed to the parser, the parser stage checks the query
transmitted by the application program for correct syntax and creates a query tree. The rewrite
system takes the query tree created by the parser stage and looks for any rules (stored in the
system catalogs) to apply to the query tree. It performs the transformations given in the rule
bodies. One application of the rewrite system is in the realization of views. Whenever a query
against a view (i.e. a virtual table) is made, the rewrite system rewrites the user’s query to a
query that accesses the base tables given in the view definition instead. The planner/optimizer
takes the (rewritten) query tree and creates a query plan that will be the input to the executor.
It does so by first creating all possible paths leading to the same result. For example if there
is an index on a relation to be scanned, there are two paths for the scan. One possibility is
a simple sequential scan and the other possibility is to use the index. Next the cost for the
execution of each plan is estimated and the cheapest plan is chosen and handed back. The
executor recursively steps through the plan tree and retrieves rows in the way represented by
the plan. The executor makes use of the storage system while scanning relations, performs sorts

and joins, evaluates qualifications and finally hands back the rows derived.

3.2 GiST Indexes

GiST stands for Generalized Search Tree. It is a balanced, tree-structured access method, that
acts as a base template in which to implement arbitrary indexing schemes. B+-trees, R-trees
and many other indexing schemes can be implemented in GiST.

One advantage of GiST is that it allows the development of custom data types with the
appropriate access methods, by an expert in the domain of the data type, rather than a database

expert.
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3.2.1 Extensibility

Traditionally, implementing a new index access method meant a lot of difficult work. It was
necessary to understand the inner workings of the database, such as the lock manager and Write-
Ahead Log. The GiST interface has a high level of abstraction, requiring the access method
implementor to only implement the semantics of the data type being accessed. The GiST layer
itself takes care of concurrency, logging and searching the tree structure.

This extensibility should not be confused with the extensibility of the other standard search
trees in terms of the data they can handle. For example, PostgreSQL supports extensible B+-
trees and R-trees. That means that you can use PostgreSQL to build a B+-tree or R-tree over
any data type you want. But B+-trees only support range predicates (<, =, >), and R-trees only
support n-D range queries (contains, contained, equals).

So if you index, say, an image collection with a PostgreSQL B+-tree, you can only issue
queries such as ”is imagex equal to imagey”, ”is imagex less than imagey” and “is imagex
greater than imagey”’? Depending on how you define ’equals”, "less than” and “greater than” in
this context, this could be useful. However, by using a GiST based index, you could create ways
to ask domain-specific questions, perhaps "find all images of horses” or ’find all over-exposed
images”.

All it takes to get a GiST access method up and running is to implement seven user-defined
methods, which define the behavior of keys in the tree. Of course these methods have to be
pretty fancy to support fancy queries, but for all the standard queries (B+-trees, R-trees, etc.)
they’re relatively straightforward. In short, GiST combines extensibility along with generality,

code reuse, and a clean interface.

3.2.2 Implementation

There are seven methods that an index operator class for GiST must provide:

consistent
Given a predicate p on a tree page, and a user query, g, this method will return false if it
is certain that both p and q cannot be true for a given data item.

union

This method consolidates information in the tree. Given a set of entries, this function

generates a new predicate that is true for all the entries.
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compress

Converts the data item into a format suitable for physical storage in an index page.

decompress

The reverse of the compress method. Converts the index representation of the data item

into a format that can be manipulated by the database.

penalty

Returns a value indicating the “cost” of inserting the new entry into a particular branch of

the tree. items will be inserted down the path of least penalty in the tree.

picksplit

When a page split is necessary, this function decides which entries on the page are to stay

on the old page, and which are to move to the new page.

same

Returns true if two entries are identical, false otherwise.

3.2.3 Limitations

The current implementation of GiST within PostgreSQL has some major limitations: GiST
access is not concurrent; the GiST interface doesn’t allow the development of certain data types,
such as digital trees (see papers by Aoki et al); and there is not yet any support for write-ahead
logging of updates in GiST indexes.

Because of the lack of write-ahead logging, a crash could render a GiST index inconsistent,
forcing a REINDEX.

More information about GiST implementation in PostgreSQL can be found at:

http://www.sai.msu.su/ megera/postgres/gist/.



Chapter 4

M-Tree

Since the computation of edit distance between two phoneme strings is very expensive and
existing index structures in PostgreSQL such as B+ trees used in exact matching prove inade-
quate for similarity searching, we added a metric(similarity) index to improve the performance
of LexEQUAL operator. In this chapter we present brief description about M-Tree [5] index,

which is a similarity index structure.

4.1 Metric space

A metric space comprises of a collection of objects and an associated distance function satisfy-

ing the following properties.

Symmetry:
d(a, b) = d(b,a)

Non negativity:
d(a, b) > 0 if a, b are not equal and
d(a,b)=0if (a=Db)

Triangle inequality:
d(a, b) < d(a, c) +d(c, b)

where a, b, ¢ are objects of the metric space.
Edit distance (Levenshtein distance) satisfies the above mentioned properties. The edit dis-
tance between two strings is defined as the total number of simple edit operations such as ad-

ditions, deletions and substitutions required to transform one string to another. For example,
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consider the strings paris and spire . The edit distance between these two strings is 4,as the
transformation of paris to spire requires one addition, one deletion and two substitutions. Edit
distance computation is expensive since the algorithmic complexity is O(mn) where m, n are
the length of the strings compared.

Since we used edit distance to measure the similarity between two phoneme strings, we can
use metric indexes to prune the search space. Metric indexes make use of the triangle inequality
to prune the search space. For example consider an element p with an associated subset of

elements X such that for all x in X,
d(p,z) < k.

We want to find all strings within edit distance e from given query string q. That is reject all
strings x such that
d(g,z) > € (1)

From the triangle inequality,

d(q,p) < d(q,z) + d(z,p)

Hence
d(q,z) > d(q,p) — d(z,p)

which reduces to
d(q,z) > d(q,p) — k (2)

From equations (1) and (2), the criterion reduces to
d(g,p) —k >e

If the inequality is satisfied, the entire subset X is eliminated from consideration. However,
we need to compute the O(mn) edit distance for all the elements in the subsets that do not satisfy

the above criterion.

4.2 M-Tree index

M-Tree [5]is an m-ary tree using m routing objects. We select m routing objects for the first
level. Together with each routing object is stored a covering radius that is the maximum distance
of any object in the subtree associated with the routing object. A new element is compared

against the m routing objects and inserted into the best subtree defined as that causing the subtree
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covering radius to expand less and in the case of ties selecting the closest representative. Thus

it can be viewed that associated with each routing object pi, is a region of the metric space
Reg(pi) = (uinU|d(pi, u) < 1),

where ri is the covering radius. Further, if a subtree becomes full it is partitioned recursively. In
the internal node, pi and ri are stored together with a pointer to the associated subtree. Further
to reduce distance computations M tree also stores precomputed distances between each routing
object and its parent.

For a given query string and search distance, the search algorithm starts at the root node and
recursively traverses all the paths for which the associated routing objects satisfy the following

inequalities. This algorithm is dynamic in nature as it allows both additions and deletions.
d(pPi,q) —d(pPi,pi) <ri+e (5)

d(pi,q) <ri+e (6)

In equation (5), we can take advantage of the precomputed distance between the routing object

and its parent.



Chapter 5
Implementation in PostgreSQL

In this chapter we explore different alternatives to implement new functionality in PostgreSQL.
We subsequently describe the system setup for our implementation and present how we added
the multilingual functionalities in the PostgreSQL open-source database system, in all different
implementation alternatives. We subsequently analyse the performance of core implementa-
tion and compare it with outside-the-server and inside the server implementations. Finally, we
demonstrate the power of our core implementation in selecting efficient query execution plans,

which is not possible with inside-the-server implementation.

5.1 Implementation choices

We explored different alternatives to implement new functionality in PostgreSQL, and iden-
tified three ways of implementation. They are outside-the-server, inside-the-server and core
implementation of new functionality. As we move from outside to core we move closer and

closer to the database engine.

Outside-the-Server Implementation: Outside-the-server implementation is the quick way
to add new functionality to PostgreSQL. In this implementation new functionality lies out-
side the PostgreSQL server. This implementation can be carried out by using user defined
function facility provided by PostgreSQL. UDF functions will be written in PL/pgSQL.
Problem with this type of implementation is that we cannot implement optimizer aware
functions. Moreover these functions won’t be executed inside the server address space
when invoked, adding lot of overhead. So, even though implementation is easier com-

pared to others this will add lot of overhead. This implementation can be migrated from
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5.1 Implementation choices

New functionality

Parser Parser++ Parser++
Optimizer Optimizer Optimizer++
Executor Executor++ Executor++
Outside-the-server Inside-the-server Core

++ means that part is maodified to add new functionality

Figure 5.1: Different implementation choices to add new functionality to PostgreSQL
database engine

one version of PostgreSQL to other versions without any difficulty. With little effort this

implementation can also be migrated to other database engines.

Inside-the-Server Implementation: Inside-the-server implementation of new functionality

aims at creating new functionality, which will be executed inside the server space. In this
implementation new functionality lies inside the PostgreSQL engine. This implementa-
tion can be carried out by using C-Language function facility provided by PostgreSQL.
These C-Language functions will be written in C. We can create a new operator from
these functions, provided function has one or two arguments. Problem with this type of
implementation is that still optimizer is not operator aware. One more problem with this
type of implementation is operators won’t get created when you install PostgreSQL. We
have to create operators for each database we create adding overhead to the user. But
this implementation rectifies the other major overheads caused by outside-the-server im-
plementation using UDF functions. This implementation can also be migrated to other
versions of PostgreSQL without any difficulty like outside the server implementation. But

this implementation cannot be migrated to other database engines.

Core Implementation: This is the hard way to implement new functionality but is the ideal

way. As the name suggests new functionality lies in the heart of PostgreSQL. In this
implementation we have to make new functionality equivalent to other first class operators
available in PostgreSQL ( like =,<,> etc). In this implementation we have to make

optimizer operator aware and operator should execute inside the server address space.
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Moreover operator should be created at the time of installing PostgreSQL, removing the
overhead of creating them for each and every database separately. For making optimizer
operator aware we have to make modifications to the code of PostgreSQL optimizer,
so that it will recognize this new operator. This will eliminate all the overheads given
for previous implementations. This will make operator equivalent to any other native

database operator that comes with PostgreSQL in terms of execution.

5.1.1 System Setup for Implementation

The implementation of the multilingual functionality was done on the PostgreSQL open-source
database system [36] (Version 7.4.3), on RedHat Linux (Version 2.4) operating system. The
implementation was tested on a stand-alone standard Pentium IV workstation (2.3GHz) with
1 GB main Memory. We implemented new multilingual operators for the purpose of adding
multilingual functionality to PostgreSQL. In addition to the operators, we implemented a spe-
cialized index structure for metric spaces, using GiST features available in PostgreSQL system.
An open-source text-to-phoneme engine — Dhvani [29], was integrated with the system, after
appropriate modification to output the phonemic strings in IPA alphabet and to made it a callable

routine from the query processing engine.

5.2 Outside-the-Server Implementation

Outside-the-server implementation is carried out by using user defined function facility pro-
vided in PostgreSQL. PL/pgSQL is used to create the new functionality using this type of im-
plementation. New functionality can be added using the command given in Figure 5.2. But the

problem is functionality added this way cannot be made into an operator.

CREATE FUNCTION lexequal (varchar,
varchar, numeric) RETURNS boolean AS
LA (lexequal code) '
LANGUAGE SQL;

Figure 5.2: SQL statement to create PL/pgSQL function

For outside-the-server implementation of LexEQUAL approximate matching functionality

is added to the database server as a UDF. Lexical resources (e.g., script and IPA code tables)
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and relevant TTP converters that convert a given language string to its equivalent phonemes in
IPA alphabet are integrated with the query processor. The cost matrix is made an installable
resource intended to tune the quality of match for a specific domain.

SemEQUAL functionality is implemented along the same lines of LexEQUAL. WordNet

resources are provided in the form of database tables.

5.3 Inside-the-Sever Implementation

Inside-the-server implementation is carried out by using C-Language function facility provided
in PostgreSQL. PostgreSQL provides calling interface for these C-Language functions. Cur-
rently two calling interfaces Version-0 and Version-1 are available. We implemented these
C-Language functions using version-0 calling interface provided by PostgreSQL. Version-1
calling interface is the recent one, but we selected version-0 to implement C-language functions
as they are supported on both old and new versions of PostgreSQL.

The command used to create a new C-Language function in PostgreSQL is given in Figure
5.3.

CREATE FUNCTION lexequal (varchar,
varchar) RETURNS boolean AS '/
DIRECTORY/lexequalsource’, ’'lexequal’
’ LANGUAGE C STRICT;

Figure 5.3: SQL statement to create C-Language Function

This implementation of C-Language function can be converted to an operator. Command to

be used is given in Figure 5.4. Only unary and binary operators are available in PostgreSQL.

CREATE OPERATOR U (
leftarg = varchar,
rightarg = varchar,
procedure = lexequal,
commutator = ¥ );

Figure 5.4: SQL statement to create operator

Even though we can make an operator with this implementation we cannot claim it as first

class operator as the optimizer of PostgreSQL is not aware of the new operator. More over
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these operator won’t come with the installation of PostgreSQL, we have make these operators

for every database we create, which is not the case with first class operators like =,<,>.

5.3.1 VU Operator Implementation

The W operator was implemented as a binary join operator, using the facility provided by the
PostgreSQL system to define new operators. However, since there is no facility to add a tertiary
operator, we implemented W as a binary operator, and made the third input, the error threshold
parameter, a user-settable parameter through a function call. The value of the parameter for
matching may be globally set by the administrators, based on the requirements of a domain
or application. The LexXEQUAL matching function in Figure 2.1, is modified slightly to take
the two strings as operator input, and the threshold from a global variable, and implemented in
the system. A modified Dhvani text-to-phoneme converter was used to convert the multilingual
strings to their phonemic representations. Currently our operator has support for English, Hindi,
Kannada and slots are provided for users to integrate new TTPs for other languages. Currently
language identification is done based on where the alphabet falls in Unicode code base. Hindi
and Kannada TTPs are taken from Dhvani [29], a TTS developed for Simputer [37]. From an
efficiency point of view, the phonemic strings corresponding to the multilingual strings were

materialized to avoid repeated conversions (as in the case of a join query processing).

5.3.2 & Operator Implementation

The ® operator was added to PostgreSQL system as a binary join operator, using the operator
addition facility in the system. The SemEQUAL matching functionality, as given in Figure 2.3,
was implemented in C. We implemented the generalized version of the algorithm. WordNet
is taken as a resource file. Due to the high cost involved in computing closures on WordNet
taxonomical hierarchies from the resource file, we pinned the WordNet in the main memory,
for efficient traversal. Further, every time a closure for a RHS attribute value is computed,
it is materialized as a hash table in temporary tables in the main memory, for fast execution of
second step of ® algorithm in checking set-membership of LHS attribute, as well as for possible
reuse. When a closure computation is needed, the materialized hash table is verified to check
if the closure is already available for the same RHS value. Thus, a class of operators that need
to process several LHS operand values for a given RHS operand value may amortize the cost
of computing and materializing the closures. For example, a scan or nested-loops join queries

using ® operator may be made more efficient by making the RHS operand the outer table, thus
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using the same closure for all inner table values. Further optimization may be achieved by

sorting the RHS values and computing the closure only for unique values.

5.4 Core Implementation

In this section we explore adding the multilingual functionalities as first class operators in the
PostgreSQL open-source database system, with a core implementation of cost models and se-
lectivity estimates. We subsequently analyse the performance of such implementation and com-
pare it with a quick outside-the-server implementation using UDFs. Finally, we demonstrate the
power of our core implementation in selecting efficient query execution plans.

In order to make the new operator available along with the PostgreSQL installation, instead
of manually creating it, we followed a different approach in the core implementation. We
first created an PostgreSQL internal function and then created a first class operator which uses
the internal function. We created internal function by first moving our code into PostgreSQL
source tree and then by making the modification shown in Figure 5.5, in ”pg_proc.h” file. This
modification creates an internal function called “lexequal” in ”pg_catalog” schema, which takes

two varchar arguments and returns boolean result.

DATA (insert OID = 2188 ( lexequal
PGNSP PGUID 12 £ £ t £ 1 2
16 "25 25" lexequal — _null_ ));

Figure 5.5: Code to make internal function

Using the internal function lexequal we made first class operator by adding the statement
shown in Figure 5.6, to “pg_operator.h” file. This modification creates a binary commutative
operator named "W’ in “pg_catalog” schema, which is not merge or hash joinable and whose
restriction and join selectivity functions are lexeqsel, lexeqjoinsel respectively. This approach
does not effect he execution time of the operator, and provides the same performance that can

be achieved with an inside-the-server implementation.

5.4.1 V¥ Operator Implementation

The code for implementing LexEQUAL (W) operator is same as the code of inside the server
implementation. To make core implementation we added selectivity and cost estimates of the

operator to optimizer. We also made the user settable parameter lexthreshold equivalent to
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5.4 Core Implementation

DATA (insert OID = 2320 ( "U" PGNSP
PGUID b £ 25 25 16 2320 2321 0 0 O
0 lexequal lexegsel lexegjoinsel ));

Figure 5.6: Code to make first class operator

any other user settable parameters present in PostgreSQL like enable_hashjoin etc. For this we

modified the files *guc.c’, "tab-complete.c’, postgresql.conf.sample’. The cost of the operator

was set to the formulae given in Table 2.2, and the selectivity estimate using the methodology

outlined in Section 2.4. To further speedup the performance we added an index and details

about the index are given below.

Specialized Index Structures

As the normal B+Tree index cannot be used in accessing near phoneme strings, we chose
a metric index structure — M-Tree [5]- to index the materialized phoneme strings, for
speeding up the ¥ operator. The M-Tree index is a height-balanced tree and is appropri-
ate for dynamic data environments, such as database systems. We chose the random-split
alternative [5] for splitting nodes when expanding the tree, since it offers best index mod-
ification time and has insignificant incremental disk I/O compared to other alternatives

that are more computationally intensive.

The M-Tree index was added to the PostgreSQL database system using the GiST indexing
feature [10] available in the system. GiST (Generalized Search Tree) defines a framework
for managing a balanced index structure that can be extended to support new datatypes
and new queries that is natural to the datatypes. A more efficient Slim Tree [24] could
not be considered, as the necessary explicit insertion of specific elements on designated

nodes of the index tree, is not supported in the PostgreSQL’s GiST implementation.

5.4.2 @ Operator Implementation

The code for implementing SemEQUAL (®) operator is same as the inside the server imple-

mentation. In this implementation to make operator first class we created operators by going

through the procedure given above and added information required by the optimizer to avoid

worst plans. We added simple cost models as given in Table 2.2 and cardinality estimations as

given in Section 2.4, for use in the optimizer.



31 5.4 Core Implementation

5.4.3 Optimizer Prediction Performance

In order to ascertain the quality of our cost models and the accuracy of the optimizer in predict-
ing the query costs, a series of queries using our multilingual operators on a suite of tables with
varying data characteristics, were run on the system. A series of tables of varying characteristics
(in terms of attribute size, tuple count, number of database blocks and selectivity) were created,
and a suite of queries that used the multilingual operators were run on these tables. For each
query, we recorded the optimizer predicted cost and the actual runtime of the query. It should
be noted that the optimizer prediction cost is specified in terms of units of disk-page fetch in
PostgreSQL system.
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Figure 5.7: Optimizer Prediction Performance

Figure 5.7 plots the correlation between the predicted optimizer costs and the actual run-
times of the queries. X-axis gives optimizer prediction in the units of disk page accesses and
Y-axis gives actual runtime in msecs. The computed correlation coefficient on the plot is well
over 0.9, indicating reasonably accurate cost models. Though there is some error in computing
large queries, we observed that this error is in the same range as in the case of estimation with

conventional operators.
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Performance Analysis

In this chapter, we outline our performance experiments with our implementation of multi-
lingual operators on PostgreSQL database system. We first present a baseline performance
using outside-the-server implementation. Since execution time of operators implemented in
both inside-the-server and core approaches are same, we presented both of them combined in
sections 6.4, 6.5 and show that performance will be improved by 2 to 3 orders of magnitude.
Further demonstrate the power of core implementation in selecting efficient query execution

plans, which is not possible with inside-the-server implementation.

6.1 Data Setup for Experiments

For ¥ operator we selected proper names from three different sources so as to cover common
names in English and Indic domains. The first set consists of randomly picked names from the
Bangalore Telephone Directory, covering most frequently used Indian names. The second set
consists of randomly picked names from the San Francisco Physicians Directory, covering most
common American first and last names. The third set consisting of generic names representing
Places, Objects and Chemicals, was picked from the Oxford English Dictionary. Together the
set yielded about 800 names in English, covering three distinct name domains. Each of the
names was hand converted to two Indic scripts — Tamil and Hindi. As the Indic languages are
phonetic in nature, conversion is fairly straight forward, barring variations due to the mismatch
of phoneme sets between English and the Indic languages.

To convert English names into corresponding phonetic representations, standard linguistic
resources, such as the Oxford English Dictionary [35] and TTP converters from [31], were used.

For Hindi strings, Dhvani TTP converter [29] was used. For Tamil strings, due to the lack of
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access to any TTP converters, the strings were hand-converted, assuming phonetic nature of
the Tamil language. Further those symbols specific to speech generation, such as the supra-
segmentals, diacritics, tones and accents were removed. Sample phoneme strings for some

multiscript strings are shown in Figure 6.1. This way we generated 2400 names in three different

scripts.
Lexicographic String |Language |Phonetic Representation (i IPA)
University English |Jjunevarstti
Gmp Tamil neiru
Ecole French eikagl
@ ESwT Tamil rndiya
2t Hindi _ |hardradzen
Espandl spanish |espanjel

Figure 6.1: Phonemic Representation of Test Data

Since above data size is very small, we synthetically generated a large data set from this
multiscript lexicon. Specifically, we concatenated each string with all remaining strings within
a given language. The generated set contained about 200,000 names, with an average lexico-
graphic length of 14.71 and average phonemic length of 14.31. Figure 6.2 shows the frequency
distribution of the generated data set — in both character and (generated) phonetic representa-
tions with respect to string lengths.

For ® operator we wanted to use different WordNets, but since different WordNets are
in different stages of development, for performance experiments we used English WordNet.
Queries that compute closures of varying sizes were employed for profiling the ® operator.
All experiments were run on these datasets on a standard workstation, quiesced of all other

activities.

35000

phonémestrmg I
textstring ---%--

30000 |
25000 |- ; %

20000 - / X

Count

15000 i X
10000 -

5000

I
16
length

Figure 6.2: Distribution of Generated Data Set (for Performance Experiments)
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We implemented a prototype of ¥ and ® on top of the PostgreSQL(Version 7.4.3) database
system. The multilingual strings and their phonetic representations (in IPA alphabet) were both
stored in UTF-8 format. The algorithms shown in Figures 2.1, 2.3 were implemented, as a

UDF in the PL/SQL language and as C-Language function respectively.

6.2 Baseline Performance of ¥ Operator

To baseline the performance of the outside-the-server implementation of the W operator, we first
added it to the PostgreSQL open-source database systems using user-defined function, defined
in PL/SQL programming environment. The reason for the choice was to have parity with other

systems that allow only such environments for adding UDFs.

Query Type Scan-type | Join-type
(Sec.) (Sec.)

Base Performance 3618 453

With Metric Index 362.9 166.9

Table 6.1: Outside-the-Server Performance of ¥ Operator

Table 6.1 lists the performance of outside-the-server implementation of the Woperator, in
scanning 200, 000 row table and joining two tables with 450 rows each, without and with ap-
propriate indexes on the materialized phonemic strings. The performance values with metric
index show the best performance possible with outside-the-server implementation with ideal
metric index. The results show clearly that while the no-index implementation is expensive, the
metric index structure can help in reducing the cost by nearly an order of magnitude. The main

impediment to the performance is the expensive UDF invocations.

6.3 Baseline Performance of ® Operator

Similarly, the basic ® operator was implemented as a user defined function using PL/SQL
features, and a baseline performance is measured running the operator on the dataset based on
the WordNet taxonomical hierarchy. The first step of the ® operator is the most expensive one,
as closure computations on relational tables are recognized to be expensive[2, 9, 11]. The cost
models and the query plans of the database systems indicate that nearly 98% of the query time

was spent on the first step. We present here the time to compute a suite of queries, each with
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varying sizes of transitive closures. Table 6.2 shows the performance of our basic outside-the-

server implementation of ® operator.

Closure Outside-the-Server | Outside-the-Server
Cardinality (without Index) (with Index)
(Sec.) (Sec.)

155 5.67 0.02

482 17.7 0.09

2041 75.6 0.64

2538 95.7 0.90

5340 201.8 2.77

11551 840.5 11.6

Table 6.2: Qutside-the-Server Performance of ® Operator

The basic no-index implementation of the ® operator is expensive, taking upto few hundred
seconds for typical queries. A B+-Tree index on the hierarchy table H r,. speeds up the closure
computation significantly, improving it by nearly two orders of magnitude, though there is a

significant increase in the costs, when large closures are computed.

6.4 Core (or Inside-the-server) Performance of ¥ Operator

After implementing the W operator in core as indicated in the section 5.4, we ran the same ex-
periments that were used for testing the performance of the outside-the-server implementation.
For LexEQUAL experiments, the GiST index (implementing the M-Tree) was also used for
enhancing the performance. We provide, in Table 6.3, the performance of queries scanning the
same 200, 000 row table and joining same 450 row tables that were used in outside-the-server

experiments for the W operator.

Query Type Scan-type | Join-type
(Sec.) (Sec.)

Base Performance 5.2 1.9

M-Tree 4.2 1.9

Table 6.3: Core Performance of U Operator

As can be seen, the performance of the queries is two orders of magnitude faster than the

outside-the-server performance of the same queries shown in Table 6.1. As can be seen, M-Tree
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didn’t improved the performance as expected in this case. But it is helpful in other cases like,
when duplicates are present and when difference in average lengths between the tables is high
enough for it to rule out lot of cases. We measured the performance gain due to the GiST index
on scan of 1000, 000 row table and 450X 1000, 000 join, and Figure 6.3 highlights the relative
performance gain due to the M-Tree index. We note that the performance of the ¥ operator is

significantly speeded up by the M-Tree index, upto nearly 9o%.

GiST Index Performance
1

0.9

0.8

0.7
0.6
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0.1

o
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Figure 6.3: Performance of M-Tree Index

6.5 Core (or Inside-the-server) Performance of ¢ Operator

The implementation of the ® operator as a core operator was tested for queries that require clo-

sures of various sizes in WordNet taxonomic hierarchy, and the results are shown in Table 6.4.

Closure Core Core
Cardinality | (without Index) | (with Index)
(Sec.) (Sec.)
155 1.378 0.005
482 4.303 0.014
2041 19.68 0.037
2538 22.70 0.042
5340 44.86 0.044
11551 96.71 0.068

Table 6.4: Core Performance of & Operator

Compared with the outside-the-server performance of ® operator (as shown in Table 6.2),
we note that the performance of the core implementation is about one order of magnitude better,
when computed without building an index on the hierarchy. With index, the performance is

improved by at least two orders of magnitude, to a few tens of milliseconds. The performance
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of our PostgreSQL implementation with index structures is sufficient for practical deployments,

given that the typical size of closure is around 2, ooo [16].

6.6 A Motivating Optimization Example

We illustrate the power of the core implementation to distinguish between efficient and ineffi-
cient execution plans with the new operators, by the following example:
Example 6.1: Consider a query Find the books whose Author name sounds like that of the pub-
lisher (threshold of 0.25). Assuming the tables Author (A) with AuthorID and Author Name,
Books (B) with BookID and foreign key to its author and publisher, and Publisher (P) with
PublisherID and Publisher Name, the following two expressions (also, shown pictorially in Fig-
ure 6.4) capture the semantics of the above query:
Plan 1:114. author1D,P.PubID,B.BookI D
(O(Threshold<o.25) (¥ A.AName,P.PName(P; A)

(B ™ookip (A B))))

Plan 2: HA.AuthoﬂD,P.PubID,B.BookID(NBookID (A, B)

(J(Threshold§0.25) (\I]A.AName,P.PName (P, A) ) ) )

Tt ot s Ot st B

quutthame,PubName(Tmesho!d:025) ‘@‘ .
/ \ / @’w

Publisher

©
NL-Join{AuthoriD) E \P
/ \ 'Matenahze(ﬁoale,.) Adhorkae Pulne (Trestold 29
(AuthorlD)

E Book
Book
HeshiAuthorD) E Author

Mterialize(PublisherlD, Name)
Author

Publisher

Figure 6.4: Query Plans for Example 6.1

We created tables Author, Book and Publisher, along the lines of our examples in the pre-
vious sections, and forced the optimizer to evaluate and run two different execution plans for the
same query, on the same tables, by enabling or disabling different optimizer options. For each

plan, we recorded the optimizer predicted cost and measured the runtime of the execution. The
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optimizer predicted cost and the runtime for Plan(1) are 2, 439, 370 and 82.15 seconds, respec-
tively. The corresponding figures for Plan(2) are 7, 513, 852 and 2338.31 seconds, respectively.
Clearly, Plan(1) is superior (in terms of runtime, a post-facto observation) and is chosen (due to
its lower predicted cost by the optimizer) for execution. Further, we were able to force different
query execution plans by modifying the characteristics of the underlying table, confirming the
use of our cost models and optimization strategies by the optimizer. o

Inside-the-server implementation won’t have the above power to distinguish between effi-

cient and inefficient execution plans.



Chapter 7
Conclusions

With this project we have made the first step towards the ultimate objective of achieving com-
plete multilingual functionality in database systems. In this report, we first highlighted the need
for seamless processing of multilingual text data, with motivating example from real-life do-
main. We presented formally the definitions of specific multilingual operators and analysed
their properties that are used to define the composition rules among them. We presented their
cost models and selectivity estimates, the critical inputs to the relational query optimizer. Sub-
sequently, we presented strategies to add such functionality to PostgreSQL database engine.
Given the enormous effort and impracticality involved in adding such functionality to stable
database system implementations, we proposed a staged implementation roadmap, starting with
outside -the-server implementation using user-defined functions (UDF) and existing SQL:1999
features, that may be implemented with no change to database server. However, the results
confirm that performance may not be sufficient for practical implementations, due to the high
overheads associated with outside-the-server implementation.

Hence, we explore inside-the-server implementation of the functionality as database op-
erators. But in this implementation relational optimizer is unaware of new operators making
it inefficient. So, we explore core implementations of the functionality as first-class opera-
tors inside the database kernel with selectivity estimates and cost models for new operators.
In order to optimize the performance of LexEQUAL operator, we added a metric M-Tree in-
dex using GiST index features supported on PostgreSQL database system. We first baselined
the outside-the-server performance of PostgreSQL database system, and demonstrated that the
core implementation improves the performance by two orders of magnitude over the outside-

the-server implementation. Further, we showed that the indexes improves the performance by
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another one to two orders of magnitude. Also, we demonstrated the power of the query alge-
bra in aiding optimizer to select efficient execution plans. Thus our core implementation of
multilingual functionality on PostgreSQL database system represents the first step towards the

ultimate objective of realizing natural-language-neutral database engines.



Chapter 8
Future Research

In this project we tried to implement LexXEQUAL and SemEQUAL functionality inside the Post-
greSQL database engine. Even though we completed core implementation of LexEQUAL its
functionality is limited to few languages. TTPs for other languages can be added to LexEQUAL
to make it really multilingual. Currently language identification is done by identifying where
the alphabet falls in the unicode code base. This approach works fine for Indian languages, but
fails for some European languages which share same script. To rectify this, we have to add a
new data type to the PostgreSQL, which stores string as well as language to which it belongs.
Currently there is an inefficiency in the join processing when phoneme computation is done
online. To rectify this we have to materialize the phonemes and reuse them in the join computa-
tion. We added M-Tree index to PostgreSQL to improve performance of LexEQUAL operator,
but it is not improving performance in all the cases. Here there is a good research problem to
implement new approximate index for this domain.

We implemented SemEQUAL by taking WordNet as a resource file, since recursive-SQL
functionality is not present in PostgreSQL. But ideal way of implementing it would be to take
WordNet as a table and use recursive-SQL query to compute closure. For this we have to first
implement recursive-SQL functionality in PostgreSQL and then we have to make SemEQUAL

operator to use this to compute results.
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