Holistic Source-centric Schema Mappings
for XML-on-RDBMS

A Thesis
Submitted for the Degree of
Mtaster of Science (Engineering)
in the Faculty of Engineering

By
Priti Patil

szzzeeg?

|

Supercomputer Education and Research Centre
INDIAN INSTITUTE OF SCIENCE
BANGALORE — 560 012, INDIA

September 2005

Abstract

When hosting XML information on relational backends, a mapping has to be established be
tween the schemas of the information source and the target storage repositories. A rich bo
of recent literature exists for mappingplatedcomponents of the XML Schema to their rela-
tional counterparts, especially with regard to table configurations. However, for a viable real
world implementation, &olistic mapping that incorporates all fundamental aspects of relational
schemas, including table configurations, integrity constraints, indices, triggers and views, is re
quired. In this thesis, we address this lacuna and present the Elixir system for producing holisti
relational schemas that are tuned to the XML application workload.

A key design feature of Elixir is that it perfornadl its mapping-related optimizations in the
XML source space, rather than in the relational target space. For example, Elixir significantly
extends prior table configuration techniques, based on XML schema transformations, to sear
lessly preserve XML integrity constraints. On a variety of real and synthetic XML schemas
operating under a representative set of XQuery queries, we find beneficial side effects of ir
corporating these constraints in terms of more efficient table configurations and a substanti
reduction in the configuration search space. With regard to index selection, too, Elixir make:
path-index choices at the XML source and then maps them to relational equivalents — our e
periments show that this is more desirable than the prevalent practice of using the relation
engine’s index advisor to identify a good set of indices. Elixir can also map XML triggers and
XML views to obtain relational triggers and relational views respectively.

In a nutshell, the Elixir system attempts to make progress towards achieving “industrial-

strength” mappings for XML-on-RDBMS.

Contents

Abstract [
List of Figures v
List of Tables Vil
1 Introduction 1
1.1 XML-to-relationalmapping 1
1.1.1 GenericMethods 2
1.1.2 Schema-driven Mapping Methods 2
1.1.3 User-defined Mapping Methods 4
1.2 Storing XMLINRDBMS 4
1.3 TheElixirsystem 5
1.4 Architecture of Elixirsystem L oL 8
1.5 Contributions 10
1.6 Organization. e 10
2 Survey of Related Research 13
2.1 XML-to-relationalmapping. 13
2.1.1 Inlining Techniques. 13
2.1.2 Constraints-Preserving Inlining Techniques 14
2.1.3 Cost-based Flexible Mapping Techniques 16
2.2 Indexselection 16

CONTENTS iii
2.2.1 InNative XML databases 16
2.2.2 InRelationaldatabases 18
2.3 XMLTHQQErS o o o e e e e e e e e 18
24 XMLVIEWS e e e 19
3 Elixir System and Performance Methodology 20
3.1 Input. . .. e e 20
3.1.1 XMLSchema 20
3.1.2 XMLConstraints 21
3.1.3 XQueryWorkload 22
3.1.4 XMLTHQQErsS i i e e e e e e e e e 23
3.5 XMLVIEWS 25
3.1.6 XMLDocuments 26
3.1.7 DiskBudget 26
3.2 The Elixir schema mapping algorithm 27
3.3 Performance Methodology 28
4 XML Constraints to Relational Constraints 32
4.1 XMLKeys e 32
4.2 Generating Constraint-Preserving Relations 34
421 SchemaTree e 36
4.2.2 AssociationofSubtrees. Lo oo oL 37
4.2.3 From Schema Tree to Table Configuration 37
4.2.4 Incorporation of RelationalKeys 39
4.3 Integration with Cost-based Search 41
4.3.1 Filtering of Schema Transformations 42
4.3.2 Evaluating Configuration Efficiency 49
4.4 Experimental Evaluation 50
441 Experimentalsettings. 50
442 EffectofKeys 50

CONTENTS

5 Index Selection in Elixir

5.1 XISTtool

5.2 Path Index to Relational Index conversion

5.2.1 Naive approach for converting Path Index to Relational Index . .
5.2.2 Approach based on concepegjuivalenceclasses
5.3 DiskBudget Maintenance.
5.4 Query Rewriting for PathIndices

5.5 Experimental evaluation,

6 Mapping of XML Triggers and XML Views

6.1 XMLTHQQErS o i e e e e e e e e e e e e e
6.1.1 Mappable XML Triggers and Non-mappable XML Triggers
6.1.2 Detecting Mappability of XML trigger.

6.1.3 Mappable XML triggerto SQL trigger

6.1.4 Processing non-mappable XML Triggers
6.2 XMLVIEWS

6.3 Experimental Evaluation

6.3.1 Effectof XML Triggers

6.3.2 Effectof XML Viewso

6.4 Overall performance of Elixirsystem

7 Conclusions
7.1 Future Work

References

80

List of Figures

1.1
1.2
1.3
1.4
15
1.6

3.1
3.2

4.1
4.2
4.3
4.4
4.5
4.6
4.7

5.1
5.2
5.3

6.1
6.2

A typical system for storing XML usingRDBMS 5
Existing XML-to-relational Mapping approaches 6
Our proposed XML-to-relational Mapping approach 7
Architecture of the Elixirsystem 8
Sample input from XML Banking Application 11
Example Elixir Mapping e 12
Elixirsystem 21
Sample XML Document (bank.xml) 23
Schematree forbankschema oL 36
Partial Bank schematree o 38
Union distribution of savings-acc-numiahecking-acc-number 42
Schema tree after union distribution of branch-offieem 45
Type-Splitand Type-Merge e 46
Example of Repetition Split o a7
ImpactofKeys 51
The XIST architecture 54
Example relational configuration 55
Impact of Index selection with space constraint 62
Effect of XML triggers ontuning process 74
Effect of XML Views tuning process oo 75

LIST OF FIGURES

Vi

6.3 Elixir Performance

List of Tables

3.1 Details of the schemas used in the experiments

4.1 Cost of final relational configuration .

6.1 Summary of techniques used in Elixir

Vii

Chapter 1

Introduction

Over the past five years, XML (eXtensible Markup Language), by virtue of its powerful and
flexible data formatting capabilities, has become a dominant standard for information exchancg
between applications, especially on the internet. As an increasing amount of XML data are b
ing processed, efficient and reliable storage of XML data becomes an important issue. For pe
sistently storing information from XML sources, there are primarily two technological choices
available: A specialized native XML store (e.g. Tamino [47], Natix [29], Timber [27]), or a stan-

dard relational engine (e.g. IBM DB2 [25], Oracle [38], Microsoft SQL Server [19]). From a

pragmatic viewpoint, the latter approach brings with it the benefits of highly functional, efficient
and mature technology. However, there is a fundamental mismatch in the way the informatio
is modeled in XML and in relational database, this is because XML has a flexible and extensibl

tree structure, whereas relational databases has a strict homogeneous flat table structure.

1.1 XML-to-relational mapping

A rich body of literature has emerged in the last five years on the mechanics of hosting XML
documents on relational backends. Specifically, there have been several proposals for generat

efficient relational mappings. Mapping primitives can be broadly classified as follows:
e generic methods, which do not use any schema of stored XML documents.
e schema-driven methods, which are based on pre-defined schema of stored XML doct

1

CHAPTER1. INTRODUCTION 2

ments.

e user-defined methods, which are based on user-defined mapping.

1.1.1 Generic Methods

One of the first proposals for mapping XML documents was Edge mapping approach [21]
where entire XML tree is stored in a single table scherBaufceld , Tag, Ordinal ,
Targetld , Data). The table contains identifiers of nodes connected by the elgeceld
andTargetld), name of the edgeTég), a flag that indicates whether the edge is internal or
points to a leafPata), and an ordinal number of the edge within sibling edgaslifal). If
target node is leaf, then its text is includedData otherwiseData is assignedNULL value.
Similarly, Binary [21] approach groups the tuples in Edge table based on tag name (horizor
tal partitioning). This leads to better clustering and improves query performance. Moreovel
the storage space is reduced, as tag name is not stored for each tuple in partition table. XF
[55] shreds the XML documents into nodes, where each node is encoded with a unique ran
(region encoding). The encoded nodes are stored in relational database management syst
along with path information from root to the node. XParent [28] uses two tabkB:table
andData-table . Path-table stores all distinct paths identified by unique IDyta-table

stores all the node-pairSourceld andTargetld . Monet [44] partitions th&dge table based

on distinct label paths appeared in the XML document, i.e. for each distinct label-path, Mone
creates separate table. This type of structural clustering reduces the scans over large amot

of data irrelevant to the query.

1.1.2 Schema-driven Mapping Methods

Schema-driven mapping methods are based on existing schema of stored XML document
which is mapped to a relational schema. A schema is a definition of the syntax of an XML-
based language (i.e., it defines a class of XML documents). A schema language is a form
language for expressing schemas. There have been many schema language proposals, suc
DTD (Document Type Definition) [7], XML Schema [49], XML-Data [35], DCD (Document

CHAPTER1. INTRODUCTION 3

Content Description) [8], Schematron [43], etc. DTD and XML schema are the most widely
used standards. Most of the schema-driven mapping methods are based on either a DTD o
XML schema of stored XML documents. The schema-driven mapping methods can be furthe

classified in two classes : fixed and cost-based methods.

Fixed methods

Fixed methods do not use any other information than the source schema itself; their mappir
algorithm is straightforward. For example, shared inlining [45] is fixed method, in which el-
ements having multiple occurrences are mapped into tables, whereas elements with a sing
occurrence are mapped as a column of the table corresponding to its parent element. Note tli
while most techniques consider primitives that map XML constructs to pure relational systems
some [32, 41] leverage object-relational features of relational systems. Some of the techniqu:
such as X2R [13], are the extension of hybrid inline method [45] that preserves the conten
structure, and semantic information as expressed in key and foreign key constraints. RRX
[12] pioneers in translation from XFDs (XML Functional Dependencies) to relational depen-

dencies and it creates third normal form decomposition.

Cost-based methods

Cost-based methods use the additional information (usually query statistics, element statistic
etc.) and focus on creating an optimal schema for a certain application. LegoDB [5, 40] take
a cost-based approach, to derive a mapping that best suits a given application (characterized
a schema, query workload and document samples). It uses the information in the XML scherr
to derive several possible mapping alternatives, and selects the one that leads to the lowest c
for executing a given query workload over sample documents. Recently Microsoft researchel
have proposed a search algorithm [10] that explores the combined space of logical and physic

design, in conjunction with the relational advisor.

CHAPTER1. INTRODUCTION 4

1.1.3 User-defined Mapping Methods

User-defined mapping methods are often used in commercial systems. This approach requil
that the user first defines a target schema and then expresses required mapping using a syst
dependent mechanism.

Nearly all leading relational vendors are also introducing XML capabilities. Many commer-
cial tools (DB2, Oracle) provide basic support for querying XML documents using a relational
engine. For instance, Oracle [38] provides an XMLTYPE to map XML data into an object table
or view. IBM’s DB2 Extender [25] provides two primary storage and access methods for XML
documents: XML column and XML collection. MS SQL Server [19] uses OpenXML rowset
providers to support XML. It maps XML data into an edge table, a parent-child hierarchical
graph representation of XML data. POET [39] is an object-oriented database system. It may

each XML element into a separate object.

1.2 Storing XML in RDBMS

A typical system for storing XML using RDBMS is shown in Figure 1Relational schema
generatorgenerates relational mapping for XML data. Relational mapping can be done by
any of the methods, described in previous section. For relational mapping, the main objectiv
is to find a relational configuration, which requires less storage size, yet handles XML quen
efficiently and correctly. XML documents are shreddedXiL shredderand are stored in
relational databaseQuery mapping processanaps input XQueries to SQL queries in order
to retrieve data from relational database. The query results in the form of relational tuples ar
tagged and published back as XML dataXiyL converter

A common feature of much of the previous work is that it has focuseida@atedcompo-
nents of the relational schema, typically the table configurations (refer to Figure 1.2). A com:
plete relational schema, however, consists of much more than just table configurations — it als
includes integrity constraints, indices, triggers, and views. Therefore, viable XML-to-relational
systems that intend to support real-world applications need to providdisiic mapping that

incorporates all fundamental aspects of relational schemas. In this thesis, we attempt to addre

CHAPTER1. INTRODUCTION 5

Application Middleware Relational Database
Source XML (2) XML Q
Documents Shredder
3) Query
XML query Mapping SQL query |
Processor
Result XML @ XML Relational
Documents Converter tuples
Relational
XML DTD/ XML (1) Schema Database
Schema Generator Schema
~

Figure 1.1: A typical system for storing XML using RDBMS

this issue by presenting a system callldXIR (Establishing hal stic schemas foXML In
Rdbms) that produces holistic relational schemas tuned to the application workload (refer t
Figure 1.3). Elixir incorporates schema-driven cost-based XML-to-relational mapping tech-

nique.

1.3 The Elixir system

The Elixir system is built around the LegoDB cost-based table-configuration framework [5, 22,
40], and has been successfully evaluated on a variety of real-world and synthetic XML schemz
operating under a representative set of XQuery queries, using the DB2 database engine as
backend.

In producing XML-to-relational mappings, there are two possibilitiesofirce-centri@p-
proach, wherein the optimization of the mapping is carried out in the XML space, and ther
translated to the equivalent in the relational space; target-centricapproach, where a map-
ping is made from the XML space to the relational space, and then optimized in the relationg
space to fine-tune the mapping. A key design feature of Elixir is that it perfalirits mapping-

related optimizations in the XML source space, rather than in the relational target space. Th

CHAPTER 1.

INTRODUCTION

XML World

XML Documents

Relational World

Tables

XML World

XML Documents

Relational World

Tables

XML Schema XML Schema
Relational keys Relational keys
XML Keys LegoDB, XML Keys X2R,
FleXMap Indexes RRXS Indexes
XQuery Workload Triggers XQuery Workload Triggers
XQuery Triggers Views XQuery Triggers Views
(a) (b)

XML World Relational World

XML Documents
Tables

XML Schema
Approach Relational keys
Proposed

by Microsoft
Researchers

XML Keys Indexes

XQuery Workload Triggers

XQuery Triggers Views

Query Views

(©)

Figure 1.2: Existing XML-to-relational Mapping approaches

evaluation of the quality of these optimizations is done at the target, and the feedback is use
to guide the optimization process in the XML space, in an iterative manner, resulting in &
dynamically-deriveanapping tuned to the application.

This approach is based on our observation that an organic understanding of the XML sourc
can resultin more informed choices from the performance perspective. As a case in point, Elix
significantly extends prior table-configuration cost based techniques, based on XML scherr
transformations, to seamlessly preserve th&ue key and keyref integrity constraints. In
relational databases, XML key constraints can always be checked using triggered procedur
involving joins or unions. However, such stored procedures are much more expensive to evall
ate than key and foreign key constraints in relational databases [14]. To fully leverage databa:
technology for constraint checking, we therefore wish to map XML key and keyref constraints
to relational key and foreign key constraints. Cost-based strategies use schema transforn

tions to explore the search space of different relational configurations. Our study shows the

CHAPTER1. INTRODUCTION 7

XML World Relational World

XML Documents
Tables

XML Schema
Relational keys

XML Keys Indexes

Elixir

XQuery Workload Triggers

XQuery Triggers Views

Figure 1.3: Our proposed XML-to-relational Mapping approach

propagating XML keys to relations in the form of primary keys and foreign keys results in the
invalidation of schema transformations. We have developed the rules that are based on XM
keys to determine the validity of a transformation before applying that transformation. We have
also introduced more powerful variant of type split and type merge, which is necessary for mar
ping XML keys to relational keys. Beneficial side-effects of incorporating these constraints are
improved table configurations and a substantial reduction in the optimization search space.

With regard to index selection too, we quantitatively show that the source-centric approacl
is preferable — that is, it is better to choose the best set of path-indices at the XML source ar
then map these choices to relational equivalents, as compared to using the relational engin
index advisor to identify a good choice (the latter approach has been taken in a recent pap
by Microsoft researchers [10]). An additional benefit of source-based index choices is that th
knowledge can be used to guide the XQuery-to-SQL translation during query processing. Thi
is consistent with the observation in [33] that schema decomposition and query translation al
interdependent and should therefore be handled in an integrated manner.

In addition to production of table configurations, integrity constraints, indices, Elixir can
also map XML triggers and XML views to SQL triggers and relational views, respectively. We
demonstrate that only a subset of XML triggers appear to be directly mappable to SQL trigger
and Elixir incorporates an algorithm for detecting such mappable triggers and generating th
associated mapping. For the remainder, that is, the non-mappable triggers, Elixir uses stor:

procedures that can be called by the middleware at run-time. While the costs of mappable trig

CHAPTER1. INTRODUCTION 8

XML Schema XML Disk XQuery XQuery XQuery
with keys Documents Budget Workload Triggers Views

Y
Additional
StatiX XQuery Y ¥
Workload |
| e XML Trigger XML View
XML Data » XIST rq Processor Processor
Statistics L
i Relational
Path Ipdices QL €
Trighers Vielws
Phyisical Schema
Generation A
Translation XQuery
Module Rewriting

P-schema

Phyisical Schema Relational tables, keys,
Transformation indexes, statistics
and SQL Workload

Cost

L

Relational Optimizer .

v

Efficient Relational configuration Stored
consisting of table, keys, indices, Procedures
SQL triggers, Relational views

Figure 1.4: Architecture of the Elixir system

gers are natively modeled by the relational optimizer, an additional query workload equivalen
to the non-mappable triggers is included in the XML query workload. The advantage of con-
sidering XML triggers (i.e. creating SQL triggers forappable XML triggersind additional
guery workload fomon-mappable XML trigge)ss that the resultant relational configuration is
efficient not only for the given workload but also for the queries involved in triggered actions.
Our experimental results show that considering XML triggers during the tuning of relational
configuration result in better final relational configuration as compared to that when XML trig-
gers are ignored. With regard to views as well, translating materialized views specified in XML
to relational backends, result in better relational configuration.

In a nutshell, the Elixir system attempts to make progress towards achieving “industrial-

strength” mappings for XML-on-RDBMS.

1.4 Architecture of Elixir system

In designing Elixir, we have consciously attempted, wherever possible, to incorporate the idee

previously presented in the literature — in particular, we use the LegoDB system [5], with its

CHAPTER1. INTRODUCTION 9

associated FleXMap [40] and StatiX [22] components, and the XIST path-index selection too
proposed in [42].

The overall architecture of the Elixir system is depicted in Figure 1.4. Given an XML
schema and statistics extracted from XML documents (using StatiX [22]), Elixir first generates
an initial physical schema. Propagation of XML keys to relational keys is possible only for the
valid physical schema that is obtained after apply#adjd schema transformatior(gletails of
valid schema transformatiorage given in Chapter 4). Valid schema transformations are then
repeatedly applied to initial physical schema and the process of schema/query translation al
cost estimation is repeated for each transformed physical schema until a good configuration
found.

XML Trigger Processor mapmappable XML triggerso SQL triggers anshon-mappable
XML triggersto stored procedures, which can be called by middleware at runtime. To ac-
count for the cost of thaon-mappable trigger<lixir adds query workload equivalent tmn-
mappable triggerdo input query workload. XML view processor maps XML views and ma-
terialized XML views specified by the user to relational views and materialized query tables.
respectively.

XIST (XML Index Selection Tool) [42] selects the set of indices given a combination of a
guery workload, XML schema, and data statistics. It evaluates the benefit of an index by corr
paring the total execution costs for all queries in the workload before and after index is available
In addition, it compares this benefit with the cost of updating the index and recommends a st
of indices that is most effective for a constraint on the amount of disk space. The advantag
of using XIST is that it can make best use of information extracted from the XML schema and
the statistics information. For efficient computation of path indexes at the relational backenc
we convert the path index to set of relational indices. We also need to rewrite the XQueries t
take benefit from the available path indices. This query rewriting is based on the concept c
path equivalence classes XML schema. These relational indices are given to optimizer, in
addition to relational tables, statistics, and SQL workload (equivalent to rewritten XQueries).
for computing the cost of the queries.

To make our objectives concrete, a sample fragment of inputs from XML banking applica-

CHAPTER1. INTRODUCTION 10

tion are shown in Figure 1.5 and a relational mapping derived from Elixir for these inputs is

shown in Figure 1.6.

1.5 Contributions

In summary, the contributions of the thesis work include

e Techniques for translating XML Schema integrity constraints to relational constraints,
for integrating these XML Schema integrity constraints into the optimization process,

and quantitative demonstration of their benefit in pruning the mapping search space.

e Techniques for propagating XML index selections to the relational target, quantitative
demonstration of their improvement over the choices made by the relational index advisol

and utilizing the index choices to guide the XQuery-to-SQL translation process.

e Techniques for handling XML Triggers and XML views, empirical results of improve-
ment of final relational configuration obtained (due to consideration of XML Triggers

and XML views) during tuning process of relational configuration.

¢ Incorporation of these techniques in the Elixir system, which produces holistic schemz

mappings from XML sources to relational backends.

1.6 Organization

The remainder of this thesis is organized as follows: Related work is reviewed in Chapter 2
In Chapter 3, an overview of the Elixir system is presented. The constraint mapping techniqu
and its integration with cost-based optimization is discussed in Chapter 4. Index mapping i
addressed in Chapter 5. Chapter 6 explains the mapping procedure for XML triggers and XMl

views. Our conclusions are summarized in Chapter 7.

CHAPTER1. INTRODUCTION

11

—— XML Schema
<xsd:schema xmins:xsd=http://www.w3.0rg/2001/XMLSchema
<xsd:element name="bank”’
<xsd:complexType
<xsd:sequence
<xsd:element name="country” type="CountryType” minOccurs="0" maxOccurs="unbounged"/
<Ixsd:sequence
</Ixsd:complexType
<Ixsd:element

<Ixsd:schema
—— XML Documents
<?xml version="1.0"2
<bank>
<country>
<name>India</name>

<[country> ...
</bank>

—— XML Query workload

FOR $customer IN // customer

FOR $account IN // account

WHERE ($customer/ acc-number = $account/ savings-acc-number OR
$customer/ acc-number = $account/ checking-acc-number) AND
$customer/ cust-id = '1000’

return <balance>$account/ balance</balance>

Frequency 20000

FOR $country IN /bank/country

WHERE $country/ namef/text() = "INDIA"

UPDATE $country/ city { INSERT <name>Nasik</name> .. }

Frequency 100

—— XQuery Triggers

CREATE TRIGGERNewCityTrigger
AFTER INSERT OF/bank/country/city
FOR EACH NODE DO (...)

—— XML Views

CREATE VIEWimportant _customer AS

FOR $customer IN // customer

FOR $account IN // account

WHERE ($customer/ acc-number = $account/ savings-acc-number OR
$customer/ acc-number = $account/ checking-acc-number) AND
$account/ balance > 100000

return <balance>$account/ balance</balance>

— — Materialized XML views

CREATE MATERIALIZED VIEWcustomer _balance AS
FOR $customer IN // customer
FOR $account IN // account
WHERE $customer/ acc-number = $account/ savings-acc-number OR
$customer/ acc-number = $account/ checking-acc-number
return
<customer-balance>
<id>$customer/ cust-id</id>
<acc-number>$customer/ acc-number</customer-acc-number>
<balance>$customer/ balance</balance>
</customer-balance>
DATA INITIALLY IMMEDIATE REFRESH IMMEDIATE

Figure 1.5: Sample input from XML Banking Application

CHAPTER1. INTRODUCTION

12

—— Tables i
CREATE TABLE Customer (Customer-id-key INTEGER PRIMARY KEY, id INTEGER NOT NULL, name VAR-
CHAR(25), address VARCHAR(25), acc-number INTGER NOT NULL, parent-Country INTEGER, parent-City IN-

TEGER);
CREATE TABLE Account (Account-id-key INTEGER PRIMARY KEY, Savings-or-Checking-account-number IN
GER, parent-Country INTEGER, Balance DECIMAL(10,2));

—— Relational keys equivalent to XML keys

ALTER TABLE Customer ADD CONSTRAINT Customer-key UNIQUE (id, parent-Bank);
ALTER TABLE Account ADD CONSTRAINT Account-key UNIQUE (Savings-or-Checking-account-number, pa
Country);

ALTER TABLE Customer ADD CONSTRAINT Account-fkey FOREIGN KEY (account-number, parent-Cou
REFERENCES Account(Savings-or-Checking-account-number, parent-Country);

—— Recommended Indices
CREATE INDEX name-index ON Customer(name);
CREATE INDEX acc-number-index ON Account(Savings-or-Checking-account-number, parent-Country);

—— SQL Triggers

CREATE TRIGGERNcrement-Counter
AFTER INSERT ON Customer
REFERENCING NEW ASew_row
FOR EACH ROW
BEGIN ATOMIC
UPDATE Branch-office
SET Acc-counter = Acc-counter + 1
WHERE Branch-office.ld = new_row.Branch
END

— — Stored Procedure

CREATE PROCEDURREewCItyTrigger (IN customer-name STRING,
IN city-name STRING, IN city-state STRING,...)
BEGIN
Send-mail(customer-name, city-name, city-state, ...)
END

— — Materialized Query Tables

CREATE TABLEcustomer _balance AS

(SELECT Customer.id, Customer.acc-number, Account.balance

FROM Customer, Account

WHERE Customer.acc-number = Account.Savings-or-checking-acc-number)
DATA INITIALLY IMMEDIATE
REFRESH IMMEDIATE

—— Relational views

CREATE VIEWimportant _customer AS
(SELECT Customer.id, Customer.acc-number, Account.balance
FROM Customer, Account
WHERE Customer.acc-number = Account.Savings-or-checking-acc-number
AND Account.balance > 10000)

NTE-

rent-

ntry)

Figure 1.6: Example Elixir Mapping

Chapter 2

Survey of Related Research

A rich body of literature has arisen in the last few years with regard to efficiently storing XML

documents in RDBMS. Most of this prior literature focuses on isolated components of the
mapping from the XML space to the relational space, and assumes static mappings between
spaces. In contrast, our goal is to design a holistic mapping that covers all the major componer
and integrates cleanly with a cost-based dynamic mapping process. In this chapter, we shi

briefly overview previous works that are related to this thesis.

2.1 XML-to-relational mapping

Several XML-to-relational mapping technigues have been proposed, which define set of rule
to map XML schema primitives to their relational counterparts. This section includes the brief

summary of these techniques.

2.1.1 Inlining Techniques

In [45], authors have proposed various DTD-driven inlining techniques for XML-to-relational

mapping: Basic, Shared and Hybrid. The decision of whether to create a table for an elemel
or to inline it with its parent is central to these approaches and is made on the basis of wheth
or not an element is shared by other elements in the DTD. These solutions vary in the amou

of redundancy they may generate (an element could be inlined in several of its referencin

13

CHAPTER 2. SURVEY OF RELATED RESEARCH 14

elements). In all of them, key-foreign key relationship is used to capture document structure.

2.1.2 Constraints-Preserving Inlining Techniques

Inlining methods discussed in earlier section, only take into account structural constraints c
the existing XML documents. With regard to XML keys, CPI [36], X2R [13] techniques have

been proposed for mapping to relational equivalents. These systems are applicable for sta
mapping techniques like those proposed in [45]. A framework called XFD is presented in [12],
to express functional dependencies including keys, then map them to relational dependenci
and finally create a third normal form decomposition.

In this thesis, we have focused only on integrity constraints in the forkep&ndkeyrefs

but our approach can be easily extended to handle XFDs. Further, functional dependenci
are not currently part of the XML Schema standard. A major difference between all the ear
lier work and Elixir is that the former produces a relational mapping, which is optimized for

updates (enforcing constraints efficiently), whereas Elixir produces a relational mapping opti
mized for the actual query workload of the application. This section provides brief overview of

constraints-preserving inlining techniques.

CPI

CPl is a constraints-preserving algorithm based on the hybrid inlining algorithms proposed i
[45]. Given a DTD, CPI can derive semantic knowledge from it and it is possible for CPI to
preserve the knowledge by representing it as semantic constraints in relational database. This
different from techniques that merely consider the structural constraints of DTD. CPI prevent:
the possibility that transformation algorithm may cause inconsistency between the DTD an
the generated relational schema. The algorithm derives semantic knowledge only from DTI
files. This leads to another potential problem. DTD is the simplest XML structural definition
language. It has limited expressive power to represent semantic constraints compared wi

XML schema, in which semantic information captured is far greater than in a DTD.

CHAPTER 2. SURVEY OF RELATED RESEARCH 15

X2R

X2R maps an XML document together with its constraints into a relational schema so as t
check XML key and keyref constraints using key and foreign key constraints. There are som
differences between the X2R algorithm, hybrid-inlining, and CPI. First, X2R starts from a set
of key and reference relations, which capture semantic information. Second, relations that a
separated in hybrid inlining may be coalesced by paths that end with a disjunction. Moreovel
the key and the referential relations may inline ancestors other than the parent, i.e. the conte
node may be a non-parent ancestor. In the process of X2R, the notion of constraint relation
which explicitly capture XML key and keyref constraints, is proposed. It also presents a map
ping from an XML document to a relational instance, which extends constraint relations ta
capture the complete content and structure of the document. Unlike CPI, mapping in X2R i
guided by the XML key and keyref constraints rather than by the DTD. Another direct benefit
of this storage mapping is the ability to efficiently check XML constraints using relational key

and foreign key constraints.

RRXS Redundancy Reducing XML storage in relations

As in relational databases, functional dependencies for XML (XFDs) are used to describe th
property that the values of some attributes of a tuple uniquely determine the values of othe
attributes of the tuple. The difference lies in that attributes and tuples are basic units in relation:
databases, whereas in XML data, they must be defined using path expressions. For examf
consider a constraints such as if two books have the same ISBN, they must have the same tit

In the form of XFD, it can be written as follows:
//book/ISBN/value()— //book/title/value()

RRXS [12] provides a framework (XFDs) to express structural and semantic constraints. |
uses a reduced set of the input XFDs to guide the design of the target relational schema, |
translating XFDs to relational functional dependencies and creating a third normal form (3NF

decomposition.

CHAPTER 2. SURVEY OF RELATED RESEARCH 16

2.1.3 Cost-based Flexible Mapping Techniques

Most of the previous techniques focus on lossless translation of XML documents into relationa
database. Various techniques are proposed to make sure that the content, structure, and sen
tics are preserved in the produced relational configuration. However, all previous technique
give fixed mapping regardless of the types of XML applications used. This is not desirable
since different applications imply different query patterns and thus impose different demand
on the underlying relational database.

Considering all these, it might be a good idea to make use of application characteristics t
guide XML-to-relational mapping process. LegoDB [5, 40] proposed a novel cost-based ap
proach to generate relational storage mappings for XML data by taking into account the appli
cation characteristics such as XML schema, query workload, and document samples. LegoLC
system exploits a richer set of mapping primitives. In addition to parent-child relationships,
LegoDB also takes into account additional schema constructs such as choice and repetition, &
it allows multiple mapping functions for a given construct. For example, besides the option tc
create a table for a set-valued element, LegoDB also considers inlining one or more occurrenc
of the repeated element within its parent (through the repetition split transformation). LegoDE
uses the information in the XML schema to derive several possible mapping alternatives an
selects the one that leads to the lowest cost for executing a given query workload over samg

documents.

2.2 Index selection

Index selection is one of the important aspects of physical database design. In this section, v
will review various index selection techniques proposed in native XML databases and relatione

databases.

2.2.1 In Native XML databases

For native XML databases, a variety of path indices such as Dataguides [24], T-indices [37]

APEX [16], etc. have been proposed.

CHAPTER 2. SURVEY OF RELATED RESEARCH 17

In [37], Milo and Suciu describe T-indexes, a generalized path index structure for semi-
structured documents. A particular T-index is associated with a set of paths that match a pa
template. Their approach uses bisimulation relations to efficiently group together nodes th:
are indistinguishable with respect to the given template into path equivalence classes. If tw
nodes are bisimilar, they have the same node label and their parents share the same label.
the 1-index [37], data nodes that are bisimilar from the root node are stored in the same noc
of the index graph. The size of the 1-index can be very large compared to the data size, tht
A(k)-index [31] has been proposed to make a trade off between the index performance and tl
index size.

Chung et al. have proposed APEX [16], an adaptive path index for XML documents. The
main contributions of APEX are the use of data-mining techniques to identify frequently usec
subpaths, and the implementation of index structures that enable incrementally updates to ma
the workload variations. APEX exploits the query workload to find indices that are most likely
to be useful.

In [30], Kaushik et al. have proposed F&B indexes that use the structural features of the
input XML documents. F&B indexes are forward-and-backward indices for answering branch:-
ing path queries. Authors have also proposed some heuristics in choosing indices, such
prioritizing short path indices over long path indices [30].

Recently proposed XIST [42] is a tool that can be used by an XML DBMS as an index
selection tool. XIST exploits XML structural information, data statistics, and query workload
to select the most beneficial indices. XIST employs a technique that organizes paths that a
evaluated to the same result into equivalence classes and uses this concept to reduce the n
ber of paths considered as candidates for indexing. XIST selects a set of candidate paths a
evaluates the benefit of an index on each candidate path based on performance gains for n
update queries and penalty for update queries. XIST also recognizes that an index on a path ¢
influence the benefit of an index on another path and accounts for such index interactions.

While in principle, any of these could have been used for source-centric index choices i
Elixir, we have chosen to use the XIST [42] tool because of its workload and resource-base

index choices, an essential feature in practice.

CHAPTER 2. SURVEY OF RELATED RESEARCH 18

2.2.2 In Relational databases

Many commercial relational database systems employ index selection features in their quel
optimizers. For example, IBM’s DB2 Universal Database (UDB) uses DB2 Advisor [52], which
recommends candidate indices based on the analysis of workload of SQL queries and modke
the index selection problem as a variation of the knapsack problem. The Microsoft SQL Serve
[11] uses simpler single-column indices in an iterative manner to recommend multi-columr
indices. That is, the indices on fewer columns are considered before indices on more numb
of columns.

Recently, Microsoft researchers [10] have proposed a search algorithm that explores tt
combined space of logical and physical design, in conjunction with the relational advisor for
given XML schema, sample documents and query workload. The index advisor of the Mi-
crosoft SQL server 2000 is used to get the recommendation for indexes, materialized view:
and partitions to improve the performance of queries in the workload. On the other hand, Elixil
takes a consistently source-centric approach, where all optimization is done in the XML world
rather than at the relational target. Moreover, the techniques they suggest to prune the seal
space can also be incorporated in Elixir to improve the time efficiency. Finally, they do not take

into account XML keys in mapping to the relational world.

2.3 XML Triggers

In order to make XML repositories fully equipped with data management capabilities, suitable
guery and update languages are being developed. However, once the user is allowed to perfo
updates, it is perceivably necessary to guarantee the correctness of his/her updates, especial
document validity or semantic constraints are violated [6]. This problem can be addressed &
exploiting the well-grounded concept of active rules.

XQuery [4] is a language from the W3C designed to query and format XML data. In [6],
authors have proposétttive XQuerywhich is an active extension to W3C proposed standard
XQuery [4] language for defining XQuery triggers.

In [46], authors have addressed the issue of triggers over XML view of relational data by

CHAPTER 2. SURVEY OF RELATED RESEARCH 19

translating triggers over XML views to SQL triggers and update over relational data will trigger
the action. However, in Elixir, updates are done on the XML data and updates are done i

transparent manner to the relational data.

2.4 XML Views

Since the early days of data models, the concepts of views were used to give different perspe
tives and abstraction for underlying base data, for different users and uses.

Serge Abiteboul [1] have proposed a declarative notion of XML views. Abiteboul pointed
out that, a view for XML, unlike classical views, should do more than just providing different
presentations of underlying data [1]. In addition, he argues that an XML view specification
should rely on a data model (like ODMG model) and a query language. Later, Sophie Cluet €
al. [18] formally provided an XML view definition as

"....A view defined by a set of pairs p,p >, called mappings, whergis a path in the
abstract DTD ang a path in some concrete DTD..” [18].

In [15], authors have proposed a systematic approach to design valid XML views. In oul
system, we assume only valid XML views are provided as input. In [2], authors have propose
a framework for exploiting materialized XPath views to expedite processing of XML queries.
They have developed XPath matching algorithm to determine when such materialized XPat

views can be used to answer a user query containing XPath expressions.

Chapter 3

Elixir System and Performance Methodology

Input XML source environment consists of element-schema, constrainigue,key,keyrgf

document statistics, and query workload, XML triggers, and XML views as also an index spact
budget. The Elixir system aims to establish an efficient and holistic relational schema, consis
ing of table configurations, relational keys, a set of relational indices that adhere to the spac
budget, SQL triggers, and views for given input XML source environment. In this chapter, we

describe the detailed algorithm of the Elixir system.

3.1 Input

Consider input XML source environment given to Elixir system (refer to Figure 3.1). The
XML element-schema, constraints, query workload, XML Triggers, XML views are typically
supplied by the user, the XML document statistics can be generated by tools like StatiX [22

from the document repository. This section discusses the various inputs taken by Elixir.

3.1.1 XML Schema

XML Schema [49] describes contents, structure, and semantics of XML documents. XML
schemas provide a consistent way to validate XML. XML Schema reproduces the full capabili
ties of DTD [7], so existing DTD document schemas can be translated to XML Schema withou

problems. However, it goes beyond these capabilities, allowing additional types of constraints t

20

CHAPTER 3. ELIXIR SYSTEM AND PERFORMANCEMETHODOLOGY

XML World Relational World

XML Documents

Tables

XML Schema

Relational keys

XML Keys

Indexes

Elixir

XQuery Workload Triggers

XQuery Triggers Views

Figure 3.1: Elixir system

be specified such as more built-in data types, support for user-defined data types, more flexik

occurrence indicators, import/export mechanism, integrity constraints mechanism, refinemel

mechanism, and extensibility mechanism.

3.1.2 XML Constraints

Before giving XML schema key specifications, consider the sample document shown in Fig

ure 3.2. The document contains information about bank customers by country and ban

branches by country and cities. Suppose, we wish to assert that all accounts should have unic

account number. For example, since there is savings-account with account number 101, we cc

not add savings account or checking account with the same account number. We might wish'

assert that customer’s account number should be one of the account numbers, which is defin

as savings-account-number or checking-account-number.

In XML Schema, three types of identity constraints can be definaijue key, andkeyref

Examples of these XML constraints are shown in the following XML schema fragment:

<element name=ountry” type="Country ">
<key name=account-number-kéy-

<selector xpath=".Hccount”/ >

CHAPTER 3. ELIXIR SYSTEM AND PERFORMANCEMETHODOLOGY 22

<field xpath="savings-acc-number | checking-acc-number” >
</key>
<keyref name=tustomer-accouirefer="account-number-kéy-
<selector xpath="dustomer”/ >
<field xpath="acc-number” >
</key>

</element-

3.1.3 XQuery Workload

Different queries have different importance according to the frequency of execution. Thus
Elixir system uses the XQuery workload, which consists of set of XQueries along with their
frequency of execution. Frequency of execution is used for weighting the cost of the query. Al
previous approaches such as LegoDB [5], FleXMap [40], [10] have consideredeaayonly

workload of the queries. Elixir considers read only queries as well as update queries. As upda
extension is not part of XQuery standard, we have used update extension proposed in [48]. A

update is a sequence of primitive operations of the following types:

Insert(content): inserts new content (which can be simple type, element, attribute, or refer-
ence) into target. An attempt to insert an attribute with the same name as an existing a
tribute fails. An attempt to insert a reference with the same name as an existing IDREF

adds an extra entry into the IDREFS.

Delete(child): if the child is a member of the target object, it is removed. Valid types for child
include simple type, attribute, IDREF within an IDREFS list, and element. If the child
is a reference within an IDREFS, only the single entry is removed — the remainder of the
IDREFS is preserved.

Rename(child, name):if the child is a non-simple type member of the target object, it is given
a new name. Note that we cannot rename an individual IDREF within an IDREFS; suct

a rename operation will rename the entire IDREFS.

CHAPTER 3. ELIXIR SYSTEM AND PERFORMANCEMETHODOLOGY 23

<bank>
<country>
<name>India</name>
<customer-
<cust-id>1</cust-id>
<name>abc</name>
<address-...</address
<acc-number101</acc-number
</customer-
<customer-
<cust-id>2</cust-id>
<name>xyz</name>
<address-...</address
<acc-number102</acc-number
<lcustomers ...
<city>
<name>Bangalore:/name>
<state>Karnataka/state>
<head-office-
<id>0112</id>
<address...</address
</head-office-
<branch-office-
<id>0321/id>
<address...</address
</branch-office> ...
<atm>
<id>A1231</id>
<address-...</address
<latm> ...
<accoung-
<savings-acc-numberl01</savings-acc-numbger
<balance-1232423%/balance-
</account-
<account>
<checking-acc-numberl02</checking-acc-number
<balance-645634/balance-
</account>...
<lcity> ...
<l/country> ...
</bank>

Figure 3.2: Sample XML Document (bank.xml)

Replace(child, content): atomic replace operation, equivalent to (Insert(content),
Delete(child)).

3.1.4 XML Triggers

As XML triggers are not a part of XQuery standard, here weAstieve XQuery[6], an active
extension to the W3C-proposed standard XQuery [4] language, adapting the SQL3 notions.
An XQuery trigger consists of four components: the triggering operation, the triggering

granularity, the trigger condition, and the trigger action. A trigger is invoked when one of its

CHAPTER 3. ELIXIR SYSTEM AND PERFORMANCEMETHODOLOGY 24

triggering operations occur. It is being considered when its condition is under evaluation. It i
executed when its action is performed.

The syntax of an XQuery trigger [6] is the following:

CREATE TRIGGERTrigger-Name

[WITH PRIORITY Signed-Integer-Number]
(BEFORE|AFTER)
(INSERT|DELETE|REPLACE|RENAME)+

OF XPathExpression (, XPathExpression)=
[FOR EACH (NODE | STATEMENT)]

[XQuery-Let-Clause]

[WHEN XQuery-Where-Clause |

DO (XQuery-UpdateOp | ExternalOp)

e TheCREATE TRIGGERlause is used to define a new XQuery trigger, with the specified

name.

e Rules can be prioritized in an absolute ordering, expressed with an opiéiiat
PRIORITY clause, which takes as argument any signed integer number. If this clause

is omitted, the default priority is zero.
e TheBEFORE/AFTERclause expresses the triggering time relative to the operation.

e Each trigger is associated with a set of update operations (insert, delete, rename, replac

adopted from the update extension of XQuery [48].

e The operation is relative to elements that match an XPath expression (specified after tr
OF keyword), i.e. a step-by-step path descending the hierarchy of documents (accordir
to [17] and its update-related extensions). One or more predicates (XPath filters) ar
allowed in the steps to eliminate nodes that fail to satisfy given conditions. Once evaluate
on document instances, the XPath expressions result into sequences of nodes, possi

belonging to different documents.

CHAPTER 3. ELIXIR SYSTEM AND PERFORMANCEMETHODOLOGY 25

e The optional clauseOR EACH NODE/STATEMERApresses the trigger granularity.
A statement-level trigger executes once for each set of nodes extracted by evaluating tt
XPath expressions mentioned above, while a node-level trigger executes once for eac
of those nodes. Based on the trigger granularity, it is possible to mention the transitior

variables in the trigger :

— If the trigger is node-level, variabl€3LD NODEandNEWNODElenote the affected

XML element in its before and after state.

— If the trigger is statement-level, variabléd. D NODESndNEWNODESienote the

sequence of affected XML elements in their before and after state.

e An optional XQuery-Let-Clausés used to define XQuery variables whose scope covers
both the condition and the action of the trigger. This clause extendRERERENCING

clause of SQL3, because it can be used to redefine transition variables.

e The WHENlause represents the trigger condition, and can be an arbitrarily complex

XQuery where clause. WHENIlause is omitted, default value TRUE

e The action is expressed by means of @ clause, and it can contain accomplished
through the invocation of an arbitrarily complex update operation. In addition, a generic
ExternalOpsyntax indicates the possibility of extending the XQuery trigger language
with support to external operations, permitting, e.g., to send mail or to invoke SOAP

procedures.

For a complete syntax of XQuery refer to [4] and for the syntax of the update language, refer t
[48].

3.1.5 XML Views

The notion of views is essential in databases. It allows various users to see data from differe
viewpoints. Although XQuery [4] currently does not provide standard for defining XML views,

we can easily extend it to include the definition of views [15] as follows:

CHAPTER 3. ELIXIR SYSTEM AND PERFORMANCEMETHODOLOGY 26

"CREATE VIEWiew nameAS’ followed by FLWR expression
Above definition can be extended to define materialized XML views as follows:
CREATE MATERIALIZED VIEWiew.nameAS
FLWR expression
DATA INITIALLY (IMMEDIATE| DEFERREP
REFRESHIMMEDIATE | DEFERREPD

DATA INITIALLY IMMEDIATE clause allows user to populate data in table immedi-
ately. The claus®ATA INITIALLY DEFERRED means that data is not inserted as a part
of the CREATE TABLEtatement. Instead, user has to dREBFRESH TABLEtatement to
populate table. Syntax f(REFRESH TABLES as follows:

REFRESH TABLREiew name

Since the materialized view is built on underlying data that is periodically changed, usel
must specify how and when he wants to refresh the data in the view. User can specify th:
he wants anMMEDIATE refresh o-DEFERREDefresh. The clausBREFRESH DEFERRED
means that the data in the table only reflects the results of the query as a snapshot, at the til
user issueREFRESH TABLEtatement.

3.1.6 XML Documents

Statistical information (about the values and structure) from the given XML document is nec-
essary to derive accurate relational statistics, which are needed by the relational optimizer-
accurately estimate the cost of the query workload. We have used recently proposed Stati
[22], which is a XML Schema-aware statistics framework to gather the statistics of input XML

documents.

3.1.7 Disk Budget

Disk budget is the limit for the size of indexes in the output relational configuration. Elixir also

allows user to specify no disk limit by providing disk limit as -1.

CHAPTER 3. ELIXIR SYSTEM AND PERFORMANCEMETHODOLOGY 27

3.2 The Elixir schema mapping algorithm

A high-level pseudocode of the mapping algorithm of Elixir system is given in Algorithm 1.
Since the space of potential relational mappings is exponentially large, a greedy heuristic |
used to find an efficient mapping [5]. The first step in the algorithm (line 2) is to obtain the
equivalence classes, which represent the structural equivalent groups of the XML schema
details in Chapter 5. Next, a relational schema is generated on the basis of original XML
environment (line 3). XML views are mapped to relational viewsvMapXMLViewqline 4). In
next step, additional query workload to accountMan-mappable XML trigges obtained (line
5) and then, the runtime cost of the XML workload, after translation to SQL, on this schema,
is determined by accessing the relational engine’s query optimizer (lines 6, 7) — in our currer
system, the IBM DB2 engine is utilized for this purpose. Subsequently, the original XML
schema is transformed in a variety of ways (lines 9, 10), the relational runtime cost for each c
these new schemas is evaluated, and the transformed schema with the lowest cost is identif
(line 25). This whole process is repeated with the new XML schema, and the iteration continue
until the cost cannot be improved with any of the transformed schemas.

The procedure for obtaining a relational schema — funaionvertToHolisticRelSchema
is described in Algorithm 2. Here, the functi@enerateRelationsAndKegenerates the table
configuration and relational keys for the given XML element-schema and keys (line 1). Addi-
tional workload corresponding tmon-mappable XML triggens obtained usingetAdditional-
Workload(line 2). Subsequently, the appropriate indices in the XML world are determined — in
our current system, this is done using the XIST tool [42], which takes an XML element-schema
guery workload (which consists of input XML query workload and additional query workload),
and disk space constraint as input, and recommends the most benitiahdices XIST
uses path equivalence classes (EQs) to reduce the number of paths considered as candidate
indexing. For each path index recommended by XIST, the appropriate relational indices nee
to be created such that the corresponding path can be evaluated efficiently (line 6). The co
version of path indices to relational indices involves adding of extra columns to the relations
and therefore this function returns a modified relational table configuration. Elixir applies disk

limit to the path-indices by taking into account the size of their relational equivalents (details

CHAPTER 3. ELIXIR SYSTEM AND PERFORMANCEMETHODOLOGY 28

are given in Chapter 5). The statistical summary of XML data in the form of structural and
value histograms is converted to relational statistics such as, for tables, the number of data pac
and number of rows, and for columns, the number and distribution of distinct values, and th
number of nulls (line 9). Finally, XML triggers are processed amappable XML triggersare
converted to SQL triggers amtbn-mappable XML triggerare converted to stored procedures
(details are given in Chapter 6) .

The translation of XML queries to SQL — functidmanslateToSQL- uses the path indices
recommended by XIST and the path equivalence classes to come up with a good mapping.

With regard to the XML schema transforms, we consider those presented in [5], namely,
line/Outline Type-split/mergeUnion distribution/factorizationandRepetition split/mergeA
major difference, however, is that onlgabsebf the applicable transforms may be valid at each
step, because the other transforms lead to violations of the XML key constraints. Therefore, i
each iteration, a list of valid transforms is generated from the set of applicable transforms (line
8,9). Each valid transform is applied in turn to the schema and the transform that results in th
minimum cost relational configuration is chosen to produce the XML schema that will be usec
as input in the next iteration of the algorithm (lines 12-24). This process is repeated until the

current relational configuration reaches a fixed point and cannot be improved.

3.3 Performance Methodology

Elixir has been successfully evaluated on a variety of real-world and synthetic XML schema:
operating under a representative set of XQuery queries, using the DB2 database engine as
backend. Our experimental setup consists of a standard Pentium-IV machine running Linu;
with DB2 UDB v8.1 as the backend database engine. Four representative real-world XML
schemasGenex 23], EPML [20], ICRFS[26], TourML[50], which deal with gene expressions,
business processes, enterprise analysis, and tourism, respectively, are used in our study.
addition, we also evaluate the performance for the synthetic XMark benchmark sthéma.

salient summary statistics of these documents are given in Table 3.1.

'Since XMark is available only as a DTD, we created the equivalent XML Schema and incorporated keys by
mapping the IDs and IDREFs.

CHAPTER 3. ELIXIR SYSTEM AND PERFORMANCEMETHODOLOGY

29

Genex| EPML | ICRFS | TourML | XMark
unions 0 9 1 0 0
repetitions| 9 115 11 57 21
height 4 13 6 10 9
(HE + #A) 75 159 63 145 93
#keys 15 15 16 24 14

Table 3.1: Details of the schemas used in the experiments

E: Element, A: Attribute

As Elixir aims to establish an efficient and holistic relational schema, weosiof final

relational configurationas the performance metric in our experiments. It is the cost given

by optimizer (in timerons) for executing the target workload on the relational configuration

obtained at the end of tuning process.

In the following chapters, we discuss in detail the generation of the holistic relational

schema, including Table Configurations, Key Constraints, Indices, Triggers and, Views.

CHAPTER 3. ELIXIR SYSTEM AND PERFORMANCEMETHODOLOGY 30

Algorithm 1 Elixir Schema Mapping Algorithm

Input: xS: XML schema,xzK: XML keys, xW: XML query workload,z7Tr: XML Triggers, zV:
XML Views, xzStats: XML data statisticsdlimit : disk space constraint
Output: T relational table-configuration.KC: relational keysyStats: relational statistics;!: rela-
tional indicesyT'r: relational triggersySp: relational stored procedures;: relational views
1: PrevCost = oo;
EQ =FindEQs £5);
(rT,rK,rStats, rI,zPI, rTr,rSp) = ConvertToHolisticRelSchema, =K, xW, EQ, xStats,
dlimit);
rV = MapXMLViews (xV, rT);
xAw = GetAdditionalWorkload 4T, xW);
SQL_W =TranslateToSQLAT", zPI, EQ,(xW+x Aw));
Cost = GetCost {1, r K, rStats, SQL_W ,rI, rTr,rV);,
while Cost < PrevCost do
PrevCost = Cost;
10: xforms = ApplicableTransfroma(S);
11: vz forms = FilterInvalidTransforms« forms, K);
12: forall T, in vx forms do
13: xS’ = ApplyTransform{,, z.5);
14: EQ' = FindEQs ¢5);
15: (rT',rK',rStats’, rI', x PI, rTr, rSp) = ConvertToHolisticRelSchema§’, =K, W, EQ’,
xStats, dlimit);
16: rV = MapXMLViews (xV, rT);
17: xAw = GetAdditionalWorkload£Tr, xW);
18: SQL_W = TranslateToSQL/(I", zPI, EQ',(xW+x Aw));
19: Cost' = GetCost 1", rK', rStats’, SQL_W ,rI',vTr,rV);

© N gR

20: if Cost’ < Cost then

21: Cost = Cost';

22: x form =Ty,

23: end if

24: end for

25: xS = ApplyTransform § form, x.5);
26: end while

27. (rT,rK, rStats, rI,zPI, rTr, rSp) = ConvertToHolisticRelSchema(S, = K, W, EQ, xStats,
dlimit);

28: rV = MapXMLViews (zV, rT);

29: return ¢1, r K, rStats, r1,rTr,rSp, rV)

CHAPTER 3. ELIXIR SYSTEM AND PERFORMANCEMETHODOLOGY 31

Algorithm 2 Deriving holistic relational schema

Function: ConvertToHolisticRelSchema
Input: xS: XML schema,zK: XML keys, zW: XML query workload,zTr: XML Triggers FEQ:
Equivalence classes of5, xStats: XML data statistics¢dlimit : disk space constraint
Output: T relational table configuratiom,K: relational keysyStats: relational statisticg/: rela-
tional indices,x PI: XML path indicesTr: relational triggersy Sp: relational stored procedures
(rT, rK) = GenerateRelationsAndKeys{, ©K);
xAw = GetAdditionalWorkload £T'r, zW);
xPI = XIST(xS, (zW + zAw), EQ, dlimit);
I={}
for all PIin xPI do
(rT”,rI") = Convertindex{T, PI, EQ);
T=T:1=T0U1I;
end for
rStats = ConvertStatsi(T', xStats);
(rTr, rSp) = ProcessXMLTriggers(I'r, rT);
creturn ¢T, r K, rStats, 1, xPI, rTr, rSp)

el
= o

Chapter 4

XML Constraints to Relational Constraints

XML Schema allows one to mix DTD features with semantic information, such as integrity
constraints in the form of keys and foreign keys. Integrity constraints are useful for semantic
specification, query optimization, and data integration. In this chapter, we discuss the teck
nique for translating XML integrity constraints to relational constraints. Initially, we describe

the XML keys and related concepts in detail. In Section 4.2, the technique for generating
constraints-preserving relations (by propagating XML keys to relational keys) is presented. In
tegration of these XML Schema integrity constraints into the optimization process is addresse
in Section 4.3. Finally, we describe experimental evaluation of the technique discussed in thi

chapter.

4.1 XML Keys

XML Schema provides three integrity constraintslique keyandkeyref To define aunique

or keyconstraint for XML, the following factors have to be specified: 1) the context in which
the key must hold; 2) the set of nodes on which the key is defined; and 3) the values, whic
distinguish each element of the set. To definkeegref constraint, the key to which it refers
needs to be additionally specified.

Using the syntax of [9], theniqueandkeyconstraints can be written as

K:(Q,(Q {P,...,P,}))

32

CHAPTER4. XML CONSTRAINTS TORELATIONAL CONSTRAINTS 33

while thekeyrefconstraint can be written as
R:(Q,(Q.{P,...,P,})) KEYREF K

where@, @', and P,,... P, are all path expressions. The element within which the key is
defined is called theontext element’, and @, the path leading to this context element, is
called thecontext path On similar lines, the set of nodes on which the key is to be defined,
relative to the context element, is calledtasyet node setand()’, the path leading to this set
of nodes, is called thearget path P;,. .., P, are thefield paths which are relative to the target
path and identify the set of nodes whose values are used to distinguish nodes of the target nc
set. Finally, K is the name of theiniqueor key constraint, andr is the name of th&eyref
constraint.

The path expression language used to define keys in XML schema is a restriction of XPatt
and includes navigation along the child axis, disjunction at top level, and wildcards in paths

This path language can be expressed as follows:

cu=_|/]al/qal.//al(clc)
q == 1l({g/a)| -
where "/” denotes the root or is used to concatenate two path expressions, ”.” denotes the curre
context,/ is an element tag or attribute name, "-” matches a single label, and ".//” matches zerc
or more labels out of the root.
Using above notation, example keys for the sanbaliek.xmidocument shown in Figure 3.2,

are given below:

e account-number-key (//country,(.//account, {savings-acc-number | checking-acc-

number}))
Within a country, each account is uniquely identified by savings account number or check
ing account number.

e customer-account: (//country,(./customer,{acc-number})) KEYREF account-
number-key

Within a country, each customer refers to a savings account number or checking accoul

number by acc-number.

CHAPTER4. XML CONSTRAINTS TORELATIONAL CONSTRAINTS 34

Consider the bank example discussed earlier. As for the semantics of the document, or
might wish to assert that country is identified by name and within a country, city is identified
by its name and state. Within a country, offices i.e. head offices and branch offices are unique
identified by their ID. Similarly, within a country, ATMs are also identified by their ID. For
example, since there is already the branch office having ID "0321” in India, we could not ado
another head office or branch office with the same ID in India. However, we could add anothe
office with same ID in country other than India. Using syntax described earlier, these additiona

constraints can be written as follows:

e country-key. (//bank, (./country, {name}))

e city-key: (//country, (./city, {./name,./state}))

o office-key. (//country, (./city/head-office | ./city/branch-office , {id}))
e atm-key: (//country, (./city/atm, {id}))

e customer-key (//country, (./customer, {cust-id}))

4.2 Generating Constraint-Preserving Relations

The GenerateRelationsAndKepsocedure takes an XML schema with constraints as input and
produces a constraint-preserving equivalent relational schema. In relational databases, XM
key constraints can always be checked using triggered procedures, involving joins or union:
However, such stored procedures are much more expensive to evaluate than key and forei
key constraints in relational databases [14]. For example, consider the XMlad@unt-
number-key (//country,(.//account, {savings-acc-number | checking-acc-number})) and
relational configuration as follows :

TABLE City (City-id-key INT, name STRING, state STRING,

Head-office-address STRING, parent-country INT)

TABLE SAccount(SAccount-id-key INT, savings-acc-number INT, balance

CHAPTER4. XML CONSTRAINTS TORELATIONAL CONSTRAINTS 35

INT, parent-City INT)

TABLE CAccount(CAccount-id-key INT, checking-acc-number INT, balance

INT, parent-City INT)

Then to check thaccount-number-keye need to define a trigger, which gets triggered when

row is added irBAccount or CAccount and trigger performs the following steps:

1. Join SAccount with City and selectSAccount-id-key , Country-id-key as

Account-id-key , Country-id-key

2. Join CAccount with City and selectCAccount-id-key , Country-id-key as

Account-id-key , Country-id-key
3. Union the results obtained in step 1 and 2

4. Check if there is any duplicate value for pairaécount-id-key , Country-id-key
If yes, then it implies that addition of row is violating XML key, thus triggering action
(i.e. addition of row) should be roll backed. Otherwise, there is no violatiacobunt-

number-key

Execution of such stored procedure is very inefficient as compared to the constraints chec
ing using primary keys and foreign keys [14]. Thus, to fully leverage database technology fol
constraint checking, we therefore wish to map XML key and keyref constraints to relational
key and foreign key constraints. Recently proposed X2R [13] technique address the proble!
of mapping an XML document together with its constraints, into a relational schema so as t
check XML key and keyref constraints using key and foreign key constraints.

Our technique is superficially similar to the X2R storage mapping algorithm [13], but a cru-
cial difference is that they tailor the schema to fit the key constraints, thereby risking efficiency
whereas Elixir takes the opposite approach of integrating the key constraints with an efficier
schema. Specifically, X2R uses XML keys to define constraint relations, relational keys an
then uses inlining into constraint relations for the nodes that are not mapped in constraint may
ping. In contrast, th&enerateRelationsAndKepsocedure first produces a schema using the
LegoDB fixed mapping process, and then integrates the keys with this schema. Yet another d

ference is that in X2R the schema production is a one-time process, whereas Elixir employs

CHAPTER4. XML CONSTRAINTS TORELATIONAL CONSTRAINTS 36

bank (Bank)

*

|

(Country) country

/) \
name)
(Name)/ \
+ *
I (Customer) '
customer
| city (City)
cust-id (Name) / \
(Cust-id) ’ name / \
name (State) state
(Name) y

/ \ (Head-office) head office /

address acc-number
(Address) (Acc-number)

address
(ld) (Address) '

N :

(Branch-office) branch-office (Atm) atm '
| account
| (Account)

(Id) id address id address
(Address) (Id) (Address) balance

/ \(Balance)

savings-acc-number checking-acc-number

(Savings-acc-number) (Checking-acc-number)

Figure 4.1: Schema tree for bank schema

cost-based iterative process to find the best constraint-preserving schema (this iterative proce

is discussed in the following section).

4.2.1 Schema Tree

The input XML schemais first converted inteehema treesing the representation proposed in
FleXMap [40], in which the XML schema is expressed in terms of the following type construc-
tors: sequencg,”), repetition”*”), option("?”), union(’|"), < tagname > (corresponding to a
tag), and< simpletype > corresponding to base types (e.g. integer). To make this concrete,
a schema tree for the banking example discussed earlier is shown in Figure 4.1. Schema tr

nodes arannotatedwith the namesof the types and these annotations are shown in boldface

CHAPTER4. XML CONSTRAINTS TORELATIONAL CONSTRAINTS 37

and parenthesized next to the tags (the base types are omitted for readability). Each annota
node corresponds to a separate table in the relational schema, and although we start off w
every node being annotated, nodes may lose their annotation during the optimization proce

(discussed in Section 4.3).

4.2.2 Association of Subtrees

In the first step, subtrees corresponding to different paths of a single field paabsar@ated
Lettp, ..., tp, be the subtrees of the schema tree corresponding to field paths , . If

P, is of the form(p;|p2| ... |p,) Wherep,, ..., p, are the different paths of a single field path
P,andN{, N, ..., N, are the corresponding nodes in the schema tree, these nodes need to |
associated so as to map them all to a common attribute of a common relation. For exampl

consider the key:

account-number-key (//country,(.//account, {savings-acc-number |

checking-acc-number}))

As per this key, botlsavings-acc-number andChecking-acc-number need to be mapped
to the same column of the relatidecount. Thus, the nodes corresponding3avings-acc-

number andChecking-acc-number from the schema tree should be associated.

4.2.3 From Schema Tree to Table Configuration

In the next step, the XML-to-relational mapping procedure proposed in LegoDB [5] is used in
Elixir to create the table configuration, with an enhancement to handle the associated trees,

described below:

1. Create table T corresponding to each annotated ndde with a key column, and a
parent-id column that points to a key column of the table corresponding tahbsest

named ancestaof the current node, if it exists.

2. If the annotated node is a simple type, thefa ddditionally contains a column corre-

sponding to that type to store its values.

CHAPTER4. XML CONSTRAINTS TORELATIONAL CONSTRAINTS 38

(City)city

|
N

tt/\’

head-office t

\
’
N *

id address]
(Office-Id) I
/ \ .
branch-office atm (Atm) (Account) ’
(Branch-office) ‘ ‘ account
’ ’ \
id address id address
(Office-Id) I balance

PR

savings-acc-number checking-acc-number

Figure 4.2: Partial Bank schema tree

3. For each associated group of descendants, create an additional column to which all d

scendants in the group are mapped, and create a column to identify the descendant in t

group.

Note here that, in case of shared types, it is possible that two or more path expressions m

to same relational schema. For shared types, we create the column corresponding to all parer

which stores ids for respective parents. Thus, it is possible to reverse the mapping withot

losing semantics.

For example, executing the above process on the schema tree shown in Figure 4.2 leads

the relational configuration, which is as follows:

CHAPTER4. XML CONSTRAINTS TORELATIONAL CONSTRAINTS 39

TABLE City (TABLE Branch-office (
City-id-key INT , Branch-office-id-key INT ,
name STRING address STRING ,
state STRING , parent-City INT)

Head-office-address STRING ,

parent-country INT)

TABLE Office-ld (TABLE Atm(
Office-id-key INT , Atm-id-key INT ,
id STRING, id INT ,
parent-City INT , address STRING ,
parent-Branch-office INT) parent-City INT)

TABLE Account (
Account-id-key INT ,
Savings-or-checking-acc-number INT ,
acc-number-flag INT ,
balance INT |,

parent-City INT)

Note here that the relational configuration consists of five tables corresponding to the
type name<City, Branch-office , Office-Id , Atm, and Account . All the simple types
are mapped to columns. The associated tre®avings-acc-number andChecking-acc-
number is mapped to columBavings-or-checking-acc-number , and an additional col-

umn,acc-number-flag , is created for identifying the account number type.

4.2.4 Incorporation of Relational Keys

After mapping the XML schema to tables, the final step is to incorporate the relational keys tha
are equivalent to the original XML keys. Since Elixir restricts its attentiorala schema tregs
it is assured that the subtregs, .. ., tp, will always have the parent with the same type name,

which means that they will all get mapped to columns of a single relationCket . ., Cp, be

CHAPTER4. XML CONSTRAINTS TORELATIONAL CONSTRAINTS 40

these corresponding columns of the relatign @&nd letE be thecontext elementThe relational

key is now defined as follows:

e If E'is an immediate parent df, then there must be a column, nanpadent-E storing
the key for E. Otherwise, add an additional colunparent-Eto T, for storing the Id
of ancestor elemenf. Theparent-Ecolumn is required to distinguish between different

contexts created by context elemént

e Create{Cp,,...,Cp,, parent-E as a key/unique for relationyl.

For example, consider the following relational configuration obtained after the second ste
for type Account :
TABLE Account (

Account-id-key INT,

Savings-or-checking-acc-number INT,

acc-number-flag INT,

balance INT,

parent-City INT)

Note here that for typéAccount , a relation namediccount is created. The asso-
ciated tree ofSavings-acc-number and Checking-acc-number is mapped to column
Savings-or-checking-acc-number , and an additional columrgcc-number-flag , IS
created for identifying the account number type. All the remaining simple type children are
mapped to columns of relatiokccount.

For the XML keyaccount-number-keyhe context element ountry, which is not an im-
mediate parent oAccount . Therefore, a column has to be addedtaount relation, which
refers to country-id-key and create key agSavings-or-checking-acc-number ,
parent-Country }. The resulting final relational configuration is as follows:

TABLE Account (

Account-id-key INT,

Savings-or-checking-acc-number INT,

parent-Country INT,

CHAPTER4. XML CONSTRAINTS TORELATIONAL CONSTRAINTS 41

acc-number-flag INT,

balance INT,

parent-City INT)

A similar process to the above can be used for integratmgef constraints — the only
difference is the following: Lef{, be the relational key corresponding to XML key/unigie
obtained using above rule, and letbe the keyref that refers to. Use same rule foR with a
change that instead of defining key/unique, define the foreign key that ref&rs to

For example, consider a keyrefustomer-account. (//country,(./customer,{acc-
number})) KEYREF account-number-kegnd the relation for typ€ustomer is as follows:
TABLE Customer (

Customer-id-key INT,

Cust-id INT,

Name STRING,

Address STRING,

Acc-number STRING,

parent-Country INT)
For the XML keyrefcustomer-accountthe context element isountry, which is an imme-
diate parent ofCustomer . There is no need to add column @ustomer relation that
refers tocountry-id-key , as it is already present. Create foreign key{asc-number ,
parent-Country }, which refers to the relational key equivalentaocount-number-keie.

{Savings-or-checking-acc-number , parent-Country } of Account .

4.3 Integration with Cost-based Search

Cost based strategies explore the optimization space, by applying various transformations to t
XML schema, and evaluating the costs of the corresponding relational configurations. A rich se
of transformations have been proposed in [5, 40], that exploit the regular expressions and ty,
ing present in XML Schema. These transformations inclundiee/Outling Type-split/merge

Union distribution/factorizationandRepetition split/merge

CHAPTER4. XML CONSTRAINTS TORELATIONAL CONSTRAINTS 42

i *

account (Account) ’

| |
(SAccount) / \ (CAccount)

b
/ \ account account
| balance ,‘ \,
savings-acc-number checking-acc-number Savmgs-acc-n@r oalance /\balance
checking-acc-number
(a) Before union distribution (b) After union distribution

Figure 4.3: Union distribution of savings-acc-number| checking-acc-number

4.3.1 Filtering of Schema Transformations

As mentioned earlier, Elixir restricts the search space to walig schema treely filtering out
the invalid schema transformations. In this section, we will explain the motivation for filtering

of transformations followed by the procedure for filtering invalid transforms.

Motivation

Consider union distribution adiccount = savings-acc-number | checking-acc-number is
distributed (refer to Figure 4.3(a)) , then the resulting schema tree is shown in Figure 4.3(b

and corresponding relational configuration will have account-numbers stored in two relation:

as follows:

TABLE SAccount(TABLE CAccount(
SAccount-id-key INT, CAccount-id-key INT,
savings-acc-number INT, checking-acc-number INT,
balance INT, balance INT,
parent-City INT) parent-City INT)

Here our goal is to map the XML key and keyref in the form of primary key and foreign
key, respectively. According taccount-number-kegonstraint,savings-acc-number and
checking-account-number should be mapped to single column, in order to define the
relational key, thereby rendering the union distribution invalid. By avoiding this distribution,

the following relational configuration is obtained:

CHAPTER4. XML CONSTRAINTS TORELATIONAL CONSTRAINTS 43

TABLE Account (
Account-id-key INT,

Savings-or-checking-acc-number INT,

parent-Country INT,

acc-number-flag INT,
balance INT,

parent-City INT)

This example shows that not all relational configurations obtained by schema transforme
tions are valid. Thus, while exploring the search space of relational configuration, we need t
explore space of only valid relational configuration. The simple solution for this is that carry out
the transformation on schema tree and then check if relational keys equivalent to given XMl
constraints can be defined on the resulting relational configuration. If it is not possible ther
that relational configuration can be ignored otherwise it should be evaluated for the given quet
workload. This solution results in to lot of unnecessary work, which can be avoided, if we car
detect the invalidity schema transformations before carrying out the schema transformation. |
remaining chapter, we discuss each schema transformations and rules for filtering these inva
schema transformations.

Before we describe the schema transformations and filtering process in detail, the followin
notions are required: Given an XML keyKay Pathis the concatenation @,)', P, whereP,
is one component of thigeld path Thus, a key will have: key paths, where is the number
of field paths in that key. For Exampleity-keyhas two key paths//country/city/name and
/[country/city/state.

A subtreet of the schema tree is said to &achableby pathP if its root node is traversed
while traversingP along schema tree For example, considér= (branch-office | atm) in
Figure 4.1, withP being//country/city/branch-office/id. Traversingt according toP will
have to include the root node|() in order to reach théranch-office element. Thus, the

schema subtregis reachable by patk.

CHAPTER4. XML CONSTRAINTS TORELATIONAL CONSTRAINTS 44

Union Distribution and Factorization

Union distribution can be used to separate out components of a Uaighic)) = (a, b)|(a, ¢).
Conversely, the union factorization transform would factorize a union. Assume thattyftion
is being distributed, wherg andt, are subtrees of the schema tree.

This union distribution will be invalidated by the XML key constraints in the following two

cases:

Case 1. Consider the example discussed in previous section. Now we will try to analyze the
cause for invalidation. The subtrees correspondingaangs-acc-number (¢;) and
checking-account-number (¢;). Note that both the subtrees are on same field path of
the account-number-kegonstraint. Thus, if the union distribution of these tree ;.2
is distributed, then in the resulting configuratian,and¢2 will be mapped to different
relations. In generalf subtreest; and t, are both on the same field path, then union

distribution of ¢, |t, is invalid.

Case 2: Consider union distribution dbranch-office (¢;) and atm (¢,), which results in a
relational configuration (incorrectly) storintame andstate in two separate relations
(refer to Figure 4.4). The analysis of this case shows that the union distributiefiof
where the siblings of; andt, (i.e. name andstate) are key fields, result in distribution
of the key fields into multiple relations. This is also true even if sibling is not a key
field but its descendant is a key field. Thus, the general rule isfteabtreest¢; and ¢,
are not on the field path, but their common parent is on the key path, then union

distribution of ¢, |t, is invalid.

Turning our attention to Union Factorizations, we find that theyahways valideven in the
presence of constraints. The reason is that XML keys never imply that particular informatior
shouldnot be stored in a single relation, i.e. applying union factorization on a pair of elements
stored in different relations will result in storing these elements into individual columns of a

single relation. Thus, Union Factorization is valid in all cases.

CHAPTER4. XML CONSTRAINTS TORELATIONAL CONSTRAINTS 45

(City) CI"T}/ / \

/,\ (C,'tyvcgty ' (City2)
name 3) ’
state I name /s\ name /s\
head—oé \5 state /’\ state /’\
T/ * head-office y head-office /5\
I N
I account T "k T T
/ \ (Account) branch-office account atm account
branch-office atm (Account) (Account)
(a) Before union distribution (b) After union distribution

Figure 4.4: Schema tree after union distribution of branch-office| atm

Type-Split and Type-Merge

Type-Split and Type-Merge are based on the renaming of nodes. A type is said to be share
when it has distinct annotated parents. For example, in Figure 4.5(a), th&dtypehared by
the typedHead-office , Branch-office andAtm.

While, in principle, Type-Split and Type-Merge can be done with various subsets of the
type occurrences in the schema, earlier work [40] focused on the extrenygeedplit-alland
type-merge-all For example, the typ#l is fully split in Figure 4.5(b) intoHead-office-1d ,
Branch-office-ld , andAtm-Id . Similarly, while merging, full merging oHead-office-1d ,
Branch-office-ld , andAtm-Id into typeld is attempted.

Consider the XML constraintsffice-key. (//country, (./city/head-office | ./city/branch-
office, {id})) andatm-key: (//country, (./city/atm, {id})). In order to define the relational
keys foroffice-keytheHead-office-ld andBranch-office-ld should be mapped to the same
column, i.e. they should be type-merged, anddon-key Atm-Id should be mapped to the
other relation. According toffice-keyand atm-key both the transformations itgpe-split-all
andtype-merge-allare invalid. Thus, we need to do selective type-merge and selective type-
split, as shown in Figure 4.5(c).

Let T be the type to be split anBarent,, ..., Parent, be the parents df’ with distinct

annotations. The following procedure is used for selective type-split/merge:

CHAPTER4. XML CONSTRAINTS TORELATIONAL CONSTRAINTS 46

City)cit,
(City)city (City) ‘y
|
’
)
. head-office *
head-office * (Head-office) ’
(Head-office) | ‘ |
, | id
(Id) id / \ (Head-offiice-ld)/ \
. branch-office atm (Atm)
branch-office Branch-office,
(Branch-office) at‘m (Atm) {)' ‘
. id id
(1d)id (Id) id (Branch-office-Id) (Atm-Id)
(a) type-merge-all (b) type-split-all
(City)city
|
b
head-office *
(Head-office) ‘ ’
, I
id
(Office-Id) / \
branch-office
(Branch-office)l at‘m (Atm)
id id
(Office-Id) (Atm-Id)

(c)selective type split and merge
Figure 4.5: Type-Split and Type-Merge

Step 1: Do the type-split-all of T into Ti,...,7, corresponding to the parents

Parentq, ..., Parent,.
Step 2: Group the parents into different classes accordinggtopaths
Step 3: Merge typesl; whose parents are in the same class.

Consider the partial schema shown in Figure 4.5(a). In Stdd s type-split adHead-
office-Id , Branch-office-ld andAtm-Id. In Step 2, classes of the parents are formed ac-
cording to key paths, which aggHead-office-Id , Branch-office-ld } and{Atm-Id }. Then,
parents in the same class are merged — tHead-office-ld andBranch-office-ld are type-

merged intaOffice-Id , as shown in Figure 4.5(c). This schema is consistent witlofiiee-key

CHAPTER4. XML CONSTRAINTS TORELATIONAL CONSTRAINTS 47

COUNTRY
‘ (Country)
3

COUNTRY
‘ (Country)
+ *

CUSTOMER

(Customer) ’ (Customer) ’

CUSTOMER CUSTOMER
b
/, / \ /,
CUST-ID
CusT-ID \ ’ CusT-ID \
b / b
/ NAME /
NAME ’ NAME
b
: ADDRESS ACC-NUMBER /
ADDRESS ACC-NUMBER ADDRESS ACC-NUMBER
(a) Before Repetition Split (b) After Repetition Split

Figure 4.6: Example of Repetition Split

and atm-keyconstraints. The selective merge is necessary because it assures that type spli
which violate any key, will be filtered.

A similar procedure can be used for type-merge, which is as follows: Group the parents int
differentkey classeaccording tdkey pathsand place the remaining parents in a separate class,
calledNon-key classThe classes formed i.&ey classeandNon key classrepresent the valid
type-merges.

For example, assume that Figure 4.5(b) is the input schema tree in which type Id is alreac
type-split. Thus, while exploring the relational configuration search space, the type merge c
Head-office-Id , Branch-office-ld andAtm-Id has to be considered. Grouping the parents
according to key paths results in twey classes{Head-office-Id , Branch-office-ld } and
{Atm-Id }, while Non key class is {}. Thus, it is valid to type-mergelead-office-ld and

Branch-office-ld , as in Figure 4.5(c).

Repetition Split and Merge

Repetition Split and Merge exploit the relationship between sequencing and repetition in regulz
expressions by turning one into the other. They are based on the law over regular expressio
(a+ == a,ax).

Consider the repetition split of type Let F1, Fs, ..., E, be the children oT, which could

CHAPTER4. XML CONSTRAINTS TORELATIONAL CONSTRAINTS 48

be of type element or attribute. If at least one of the childref a on the field path, then

the repetition split is invalid because then the child becomes mapped to two elements. F
example, consider repetition split ofistomer (refer to Figure 4.6 under constraicustomer-

key (/lcountry, (./customer, {cust-id})). Repetition split of typeCustomer , followed by
inlining will result in storingcust-id in two relations, conflicting our goal of defining a relational
key corresponding toustomer-keyThus, this repetition split is invalid.

Note that, like union factorization and for the same reason, repetition merge is always valic

Type Inline and Outline

A type can be outline or inlined by, respectively, annotating a node or removing annotations
For each key, the process of determining inline or outline for the element can be done in tw

steps:

Step 1:
Outline-all-field-paths = false
For each field path of field
Let field-tree = tree obtained by associating different
paths in the field?,, ..., P,
Inline all the elements of field tree
If field-tree is shared
(i.e. their parents are mapped to different relations) then
Outline-all-field-paths = true
Step 2:
Let final-tree = associate all trees of fields
If Outline-all-field-paths then

outline root of final tree.

Letfield-treebe the tree obtained by associating different paths of the field path, dimlet

treebe the tree obtained after associating all field trees corresponding to fieldfpaths, P,.

CHAPTER4. XML CONSTRAINTS TORELATIONAL CONSTRAINTS 49

The first step performs the inlining of all field-trees and checks if any of these trees are share
The second step associates all the field-trees and then, if there are one or more shared field-tre
outlines the root of the final-tree so that all the field-trees are mapped to the same relation.
According to account-number-kegonstraint, Savings-acc-number and Checking-
acc-number should be mapped to the same column of the relati@rount . Thus, the nodes
corresponding t&avings-acc-number andChecking-acc-number from the schema tree
should be associated. The field tree corresponding to the field pattcotint-number-keig
the tree obtained after associating the trees correspond®aviogs-account-number and
Checking-account-number . Since this field tree is not shared, the associated tree is inlined
in the typeAccount . For office-keyconstraint, the final tree will contaid. Since it is shared

betweerhead-office andbranch-office, the tree should be outlined.

4.3.2 Evaluating Configuration Efficiency

The XML schema tree obtained by applying the transformations is translated to relational cor
figurations using the procedure explained in Section 4.2. The quality of the new relationa
configuration is assessed by computing cost estimates of executing the given query workloa
This requires accurate statistics but since it is not practical to scan the base data to produ
the statistics for each derived relational configuration, it is crucial that these statistics be acct
rately propagated as transformations are applied [40]. Merge operations preserve the accure
of statistics, whereas split operations do not. Hence, in order to preserve the accuracy of tf
statistics, before the search procedure starts, all possible valid split operations are applied to t
user-given XML schema, resulting in the so-called “fully-decomposed” schema [22]. Statis-
tics are then collected for this fully decomposed schema, and subsequently, during the sear
process, only valid merge operations are considered. We use StatiX [22] to collect statistics ¢
the filtered decomposed schema i.e. the schema obtained by applying only valid distributiv
transformations, and the cost of executing the query workload is obtained from the backen

relational optimizer.

CHAPTER4. XML CONSTRAINTS TORELATIONAL CONSTRAINTS 50

4.4 Experimental Evaluation

In this section, we present our experimental evaluation of the Elixir system. Specifically, we

investigate the performance effects of source-centric inclusion of keys in the mapping proces:

4.4.1 Experimental settings

We carry out the experiments on the 4 real-world schen@@erex[23], EPML [20], ICRFS

[26], TourML [50] and a synthetic XMark benchmark schema. Using the ToXgene tool [51],
three types of documents were generated for each XML schema by varying the distributio
of elements asll-uniform, uniform-exponentialandall-exponential resulting in documents
with uniform data, moderately skewed data, and highly skewed data, respectively. The quel
workload involves 10 representative queries for each XML schema. The number of joins ir

SQL equivalent of the query workload range from 5 to 15.

4.4.2 Effect of Keys

To serve as a baseline for assessing the effect of key inclusion, we compare the performance
Elixir (in the absence of other features like indices, triggers, and views) with that of FleXMap
(FM) [40], which is a framework for expressing XML schema transformations and for searching
the equivalent relational configuration space. Specifically, we compare against the DeepGree
(DG) search algorithm, which was found to be the best overall among the various search alte

natives considered in [40].

Runtime Efficiency

We first compare the runtime efficiency of Elixir and FleXMap with regard to the following

metrics: (a) The percentage reduction in search space, and (b) The time speedup due to t
reduction. The average number of transformations evaluated by Elixir and FM are shown i
Figure 4.7(a) for the five XML schemas. We see there that the reduction ranges from 30% t
60%, arising out of the restrictive distributive transformation and selective merging transfor-

mations discussed in Section 4.3. For example, for the ICRFS schema, the average numbt

CHAPTER4. XML CONSTRAINTS TORELATIONAL CONSTRAINTS 51

6000

’ 600 T i T .
o L_]FM []FM
1 Il Elixir Il Elixir
= 5000 1 500F d
: R -
S =
»n 40001 = =
g z 400
= ©
S 3000t £ 300-
5 =
e} (]
E 2000+ &
3 S 200r
o >
o> <
©
5 1000 100r
>
) |
ol | A I
Genex EPML ICRFS TourML XMark Genex EPML ICRFS TourML XMark
XML Schemas XML Schemas
(a) Comparison of Search space (b) Comparison of Time efficiency

Figure 4.7: Impact of Keys

of transformations performed by FleXMap are about 1860, whereas Elixir only requires abou
860.

The time speedup due to the search space reduction is shown in Figure 4.7(b), which ca
tures the average time required to obtain the final relational configuration for the same set «
schemas. Here, we observe that the runtime reductions range from 50% to 85%.

It is interesting to note here that the speeduguper-linearin the percentage space re-
duction. For example, the 50% search space reduction for ICRFS may be expected to resl
in a speedup of 2, but the speedup actually obtained is greater than 4. The reason for this
as follows: A given XQuery workload satisfies more paths in the fully decomposed schems
of FleXMap resulting irmore subqueries the equivalent SQL workload, as compared to the
number derived from the restrictive decomposed schema of Elixir. Thus, the time required fo
evaluating the cost of an individual transformation using the relational optimizer is more for

FleXMap than for Elixir. In a nutshell, Elixir has “fewer and cheaper” transformations.

Table Configuration Quality

We also compared the quality of the final relational configuration in terms afdsif execut-
ing the user query workload, and the results are shown in Table 4.1. In this tablentheates

situations where the final FleXMap configuration did not satisfy the key constraints. Note here

CHAPTER4. XML CONSTRAINTS TORELATIONAL CONSTRAINTS 52

all-uniform | uniform-exponential all-exponential

FM | Elixir | FM Elixir FM Elixir

Genex * 6193 | 6459 3367 * 6191

EPML | 2335| 1707 * 1151 * 425

ICRFS | 4565 | 4249 * 4414 * 9630

TourML * 11817| =« 3356 * 5146
XMark | 2626 | 1956 * 1453 3265| 1645

Table 4.1: Cost of final relational configuration

that the final relational configuration (valid or invalid) is dependent on the data statistics. The
reason for this is different set of transformations are selected in tuning process for different da
statistics and resulting in different relational configuration.

In the remainder, we see that Elixir typically obtains configurations that are significantly
lower cost as compared to FleXMap. The primary reason for the improvement is that Elixir
explores an additional part of the overall search space of relational configurations due to pe

forming selective type-merge/split guided by the XML key constraints.

Chapter 5

Index Selection in Elixir

In this chapter, we discuss a different component of the holistic mapping, namely deciding ol
the best choice of relation@hdices given a disk space budget. As mentioned earlier, Elixir
takes the approach of finding a good set of indices in the XML space and then mapping thet
to equivalent indices in the relational space. This is marked contrast to the technique recent
advocated by Microsoft researchers [10], where they use the index advisor of the SQL Serve
relational engine to propose a good set of indices.

Solving logical design and physical design independently leads to suboptimal performanc
[10] (i.e. if we first select logical mapping without considering physical design and then opti-
mize the physical design of selected mapping leads to suboptimal performance) . On simile
lines, Elixir explores the combined space of logical design (relational mapping by means o
schema transformations) and physical design (index selection).

For finding good XML indices, we leverage the recently proposed XIST tool [42], which
makegpath indexecommendations for given input consisting of an XML schema, query work-
load, data statistics, and disk budget. The benefit of an index is assessed by comparing the tc
execution costs for all queries in the workload with and without the index, and this benefit is
compared against the cost of updating the index. Finally, the most effective set of indices the
fit within the given disk budget is recommended.

A variety of path indices have been proposed for native XML databases, including

DataGuide [24], T-index [37], APEX [16], etc. In object-oriented databases too, path indices

53

CHAPTERS. INDEX SELECTION IN ELIXIR 54

Schema Query Workload Data Statistics

XIST N

Candidate Path Selection

Candidate Paths

N

Heuristics-based Cost-based
Benefit Computation Benefit Computation

l !

Configuration Enumeration

\
Selected Indices

Figure 5.1: The XIST architecture

are used for efficient processing of queries [3]. However, the path index concept is not directl
available in relational databases and therefore a mapping has to be established between the
indices and the defacto standard B-tree indices used in the relational world.

In this chapter, we describe the XIST tool in detail and the issues involved in mapping the
XIST choices to the relational world, which are as follows: Firstly, a strategy to convert path
indices to equivalent relational indices has to be designed (Section 5.2). Secondly, the dis
space usage of threlational indicesshould be within the user-specified budget — therefore, an
equivalence mapping between the disk budgets in the two spaces has to be identified (Secti
5.3). Finally, the XQuery-to-SQL translation process should take advantage of the presence

the relational indices (Section 5.4).

5.1 XIST tool

Figure 5.1 shows an overview of XIST [42], which consists of four modules that adapt to

a given set of input configuration. The first module is tdandidate path selectiomodule,

CHAPTERS. INDEX SELECTION IN ELIXIR 55

(Site) site

regions

(Africa) e \ (Samerica)
africa samerica
\ /
(Item) item

(Mailbox) mailbox

*

N

text
(Mailbox.text)

mail

7

from to
(M ail bOX.frOm) (MalIbOXtO)

Figure 5.2: Example relational configuration

which eliminates a large number of potentially irrelevant path indices. It uses the following two
techniques: (i) If the query workload is available, this module eliminates paths that are not ir
the query workload, and (ii) If the schema is available, the tool identifies and prunes equivaler
paths that can be evaluated using a common index.

To compute the benefits of indices on candidate paths, XIST use eithershibased ben-
efit computatiormodule or theheuristic-based benefit computatiorodule, depending on the
availability of data statistics. When data statistics are available, the cost based benefit comp
tation module is employed. When data statistics are not available, the heuristic-based bene
computation module is operated instead.

The last module igonfiguration enumeratignwhich in each iteration chooses an index
from the candidate index set that yields the maximum benefit. The configuration enumeratio
module continues selecting indices until a space constraint, such as a limit on the available di:

space, is met.

5.2 Path Index to Relational Index conversion

We now discuss a strategy to convert path indices to equivalent relational indices. Conside
an XML-to-relational mapping, as shown in Figure 5.2 for a fragment of XMark benchmark

schema [53]. A non-leaf node is annotated with a relation name, while a leaf node is annc

CHAPTERS. INDEX SELECTION IN ELIXIR 56

tated with the name of a relational column. Relatigite , Africa , ..., Samerica , ltem ,
andMailbox are created for elemensggte, africa, ..., samerica, item, andmailbox, respec-
tively. For this environment, assume that the following path ind&k,has been recommended:
Isite/regions/africa/item/mailbox/mail/from. To evaluate this path index, the four relatigns

Site , Africa , Item , andMailbox } have to be joined.

5.2.1 Naive approach for converting Path Index to Relational Index

An obvious translation process for converting Path Index to Relational Index, is to sim-
ply build the indices on the key and foreign-key pair for each parent-child involved in the
path, namely ar&ite.Site-id-key , Africa.parent-Site , Africa.Africa-id-key ,
Item.parent-Africa , ltem.ltem-id-key andMailbox.parent-Item

If we assume that for each relation, the column that stores IDs is defined as the primary ke
and that relational engines by default create an index on the primary key column, then the a
ditional indices that have to be created afgca.parent-Site , ltem.parent-Africa ,
andMailbox.parent-ltem . Further, a value index has to be createdvailbox.from to
reflect the last elementrom) in the path index, which is of simple type.

Overall, the single path index has resulted in four (additional) relational indices. As indices
are available on all the join attributes, the resulting join query can be evaluated efficiently
However, the drawback of this approach is that the number of relational indices that need t
be created for a path index is a function of the path length, and can therefore become vel

expensive to maintain.

5.2.2 Approach based on concept agquivalence classes

We propose an alternative and less expensive approach, which use the coremppvalence
classeg42] to reduce the number of relational indices. To explain this approach we first explain

the concept of equivalence classes of XML schema, followed by detailed algorithm.

CHAPTERS. INDEX SELECTION IN ELIXIR 57

Algorithm 3 Converting Path Index to Relational Indices

Function: Convertindex
Input: T tables,zPI: Path index,EQ: path equivalence classes
Output: rT”: tables, I: relational indices equivalent taP I
letey/es/ ... /e, =PI,
split_paths = SplitPathg P1, EQ); Il Split path index according to equivalence groups
rl ={};rT' =rT;
let {c1,ca,...,cm } be the EQ groups for splppaths{pi,p2,. . ..pm }
for i=2tomdo
Te; = table fromrT” to which last element gf; is mapped;
Te;_1 = table fromrT” to which last element gf;_, is mapped;
Add column (C) taT'e; which stores information about the parent fréte; _1;
Define foreign key on column (C) dfe;, which refers to key of’e; _1;
rI =rl U{(Te;C)}
: end for
. if last element op,,, is of simple typethen
(Tem,Cen) = relation and column to which last elementgf is mapped,;
rl =rI U{(Ten,Cen)}
: end if
s return ¢17, r1)

©CoNAORA®BDNR

el e s e el =
o U NMWNEO

Equivalence classes

Two pathsP; and P, are in the same equivalence class, if the evaluation of both paths agains
XML data results in selection of the same nodes. These equivalence classes can be determir
directly from the XML schema and are valid for all XML documents conforming to the XML
schema. The detailed algorithm to establish equivalence classes is given in [42].

For example, the patlsste/regions/africa, regions/africa, andafrica belong to a common
equivalence class. However, the pa#tisca/item anditem are not in the same equivalence
class because the patfrica/item matches with the items that are children of #fieca element,
whereas thétem path matches tall item nodes, some of which may not be children of the

africa element.

Detailed Algorithm

Based on the above approach, we have developed a procedure that uses the path equivale
classes (EQs) to convert the index to relational indices corresponding to each EQ on the pa

(refer to Algorithm 3).

CHAPTERS. INDEX SELECTION IN ELIXIR 58

Algorithm 4 Algorithm to split path according to path equivalence classes

Function: SplitPath
Input: P: Path,EQ: path equivalence classes
Output: split_paths: split paths according to EQs

1: j=n; split_paths = {};

2: whilej > 1do

3: lete;/ ... /e; be the longest equivalent path«f
4: split_paths = split_paths U {e;/ ... /e;};

5 =il

6: end while

7

return (split_paths)

In this algorithm, the first step is to split the path index such that each sub path corresponc
to different equivalence classes (line 2). For details of SplitPath refer to Algorithm 4. For eact
equivalence class, the information about the closest parent that is mapped to a relation and
from the previous equivalence class is stored (lines 4 through 11). Then, indices on the columi
added in previous step are created (line 10). If the last element of the path index is of simpl
type, then an index is created on the column to which it is mapped (lines 12 through 15).

To make the above algorithm concrete, consider the path indé&, =
[site/regions/africa/item/mailbox/mail/from. In the first step, PI is split into
[site/regions/africa and /item/mailbox/from. The next step adds the column
parent-Africa to the relationMailbox , and an index is created on this column, namely,
Mailbox.parent-africa . Also since the last elemerftom, is of simple type, an index is
created on théailbox.from column. Note that overall, the path indéX has resulted in

only tworelational indices (as compared to the four of the naive approach).

5.3 Disk Budget Maintenance

The user-specified disk budget of XML indices has to be considered with regard to the spac
occupied by the equivalentlational indices To estimate the size of the relational indices, we
use the following heuristic formula, which computes the size of the index using the cardinality
of the table (V) and size §;.) of the data type of that column as inputs. The column statistics

can be obtained from the XML data statistics of the corresponding type [22]. Assuming the

CHAPTERS. INDEX SELECTION IN ELIXIR 59

index is implemented as B+ tree, the size of index can be calculated as follows:
Let S;. = total size of the indexed columns

Let S, = size of page typically 4KB

Let S, = size of the pointer typically 4 bytes

Let P, = Total number of keys in a page%
Then Size of the Indexy;) is given as
N

S

= * Space 5.1
Py, * average_page_occupancy_factor " ®.1)

Note that, here we assume thatrage _page_occupancy_factor is 0.69, which is the typ-

ical fill factor for B+ tree index [54].

5.4 Query Rewriting for Path Indices

Recent work [34] has discussed use of integrity constraints information to guide XQuery-to:
SQL query translation. In this section, we focus on the use of available path indices to guid
XQuery-to-SQL query translation. XQuery-to-SQL translation, which is aware of the available
path indices, can derive a more efficient rewriting of the query.

The procedure for achieving this conversion is described in Algorithm 5. Here, the first stey
is to identify all paths in the schema that satisfy the query (line 2). For each path, split the pat|
such that each sub path is either an element or is a path corresponding to the available path ind
and then compute the path equivalence classes for each sub path. This can be achieved by 1
splitting the path using the SplitPath function of Algorithm 4 and then finding the equivalence
classes for each split path (lines 6 through 15). The relational query components are generat
by joining the relations corresponding to the EQ classes (line 16), and the final query is th
union of all these queries (line 23).

Consider the example query

FOR $mail = /site/regions/africa/item/mailbox/malil
WHERE $mail/from/text() = "priti@dsl.serc.iisc.ernet.in”
RETURN count($mail)

CHAPTERS. INDEX SELECTION IN ELIXIR 60

Algorithm 5 Algorithm for Translating XQuery-to-SQL

Function: TranslateToSQL
Input: T Tables with statistics; PI: Path indicesEQ : path equivalence classed} : XML query
workload
Output: W_SQL : SQL queries equivalent tol//
1: forall ¢ginaW do

2: letpaths = all paths in the schema that satisfy the query
3 SQL={}
4: forall Pin paths do
5: letepy/epa/ ... /epn = P;llep; is either an element or a available path inde®r()
6: path_EQs ={}
7 fori=1tondo
8: if ep; is elementhen
9: path_EQs = path_-EQs U {ep;};
10: else
11: path_EQs = path_EQs U SplitPathép;, EQ);
12: end if
13: end for
14: join_relations = {};
15: let {cy,co,. . ..cn} be theEQ classes fopath_EQs {p1,p2,- - -\Pm }
16: P_SQL = join of available tables formT corresponding to th&() classes
17: SQL=SQLUP_SQL;
18: end for

19: W_SQL =W _SQL U {query which is union of all queries that are in SRL
20: end for
21: return (W _SQL)

The relevant pattP here is/site/regions/africa/item/mailbox/mail/from. If there is no path

index onP, then the SQL translation of the above query will be as follows:

SELECT count(*)

FROM Site S, Africa A, Item I, Mailbox M
WHERE S.site-key = A.parent-site

AND A.africa-key = l.parent-africa

AND l.item-key = M.parent-item

AND M.from = ’priti@dsl.serc.iisc.ernet.in’

On the other hand, if a path index dnis available, then the translation module uses this

information to translate the query as follows:

SELECT count(*)

CHAPTERS. INDEX SELECTION IN ELIXIR 61

FROM Africa A, Mailbox M
WHERE A.africa-key = M.parent-africa

AND M.from = ’priti@dsl.serc.iisc.ernet.in’

5.5 Experimental evaluation

We compare Elixir, with its path-index-based selection, against two alternaBeescDB2
where the system has only its default primary key indices B2Advisor where DB2’s Index
Advisor tool is used to suggest a good set of indices which is on similar lines to Microsoft
researchers work in [10].

We report here the results of experiments, on two real world schemas: EPML [20], ICRFS
[26] and a synthetic XMark benchmark schema [53] with various sizes of XML documents
ranging from 1 MB to 500 MB. The query workload involves 20 queries (with identical fre-
guencies).

The index disk budget was set to be 10 percent of the space occupied by the XML docu
ment repository, a common rule-of-thumb in practice. The results for this set of experiments ar
shown in Figure 5.3, where we see that the cost of the final relational configuration is signifi-
cantly lower for Elixir as compared tBasicDB2as well asDB2Advisor The results obtained
for other schemas were also similar.

Analysis of the set of indices chosen by Elixir aD82Advisoris summarized as follows:
The SQL workload equivalent to the given XQuery workload involves several joins. DB2 at-
tempts to improve the query performance by creating multicolumn indexes or single columr
indexes with include clause. Elixir, on the other hand, uses the path indices suggested by XIS
and converts path indices to equivalent single column relational indices. The set of indexe
chosen by DB2Advisor and Elixir are quite different in that the overlap is only between 20 %
and 50 %.

CHAPTERS. INDEX SELECTION IN ELIXIR

62

Relative Cost

Relative Cost

[] BasicDB2
[DB2Advisor
Il Elixir
1t
0.8f
0.6
0.4r
0.2r
0
1 MB 10 MB 100 MB 500 MB
Document Size
(a) For EPML schema
‘ ‘ ‘] BésicDBZ
[DB2Advisor
Hl Elixir
1k
0.8
0.6r
0.4+
0.2
0
1MB 10 MB 100 MB 500 MB

Document Size

(c) For XMark schema

Relative Cost

0.8

0.6

0.4}

0.2f

[] BasicDB2
[DB2Advisor
Il Elixir

1MB 10 MB 100 MB 500 MB
Document Size

(b) For ICRFS schema

Figure 5.3: Impact of Index selection with space constraint

Chapter 6

Mapping of XML Triggers and XML Views

Having described core components of holistic schema, we move on to specialized componer
like XML triggers and XML views. In this chapter, we describe how XML triggers and XML

views are mapped in Elixir.

6.1 XML Triggers

In order to make XML repositories fully equipped with data management capabilities, suitable
guery and update languages are being developed. However, once the user is allowed to perfo
updates, it is perceivably necessary to guarantee the correctness of his/her updates, especi
if document validity or semantic constraints are violated [6]. This problem can be addresse:
by exploiting the well-grounded concept of active rules. In [6], authors have propased

tive XQuery which is an active extension to W3C proposed standard XQuery [4] language for
defining XQuery triggers. As XQuery triggers (XML triggers) are not part of standard , we have
used the extension of XQuery for defining triggers, which is proposed in [6]. In this section, we

discuss how XML triggers are mapped by Elixir.

6.1.1 Mappable XML Triggers and Non-mappable XML Triggers

Our main goal of handling XML triggers in Elixir is to map the XML triggers to SQL triggers.

Compared to relational updates XQuery updates can be seen as bulk statements since tl

63

CHAPTERG6. MAPPING OFXML T RIGGERS ANDXML V IEWS 64

may involve arbitrarily large fragments of documents that are inserted or dropped by mean
of single statement. For example consider a fragment of Bank schema (refer to Figure 4.2) ar
corresponding relational mapping. When bank sets up its operation in new city, the applicatio

performs insert query on the XPath /bank/country/city, which is as follows:

FOR $country IN /bank/country
WHERE $country/ name/text() = "INDIA"
UPDATE $country/ city {

INSERT

<name>Nasik</name>

<state-Maharashtra/state-

<head-office-...</head-office-

<branch-office-...</branch-office- ...

<atn>...</atn> ...

<account-
<savings-acc-number201</savings-acc-number
<balance-1232423</balance-

<laccount- ...

}

Above insert XQuery results into several SQL insert queries that are as follows:

INSERT INTO City (1000, Nasik’,’Maharashtra’, ...)
INSERT INTO Branch-office (...)

INSERT INTO Office-ld (...)

INSERT INTO Atm (...)

INSERT INTO Account (...)

CHAPTERG6. MAPPING OFXML T RIGGERS ANDXML V IEWS 65

Consider an XML trigger, which sends e-mail to all customers who are from the same

country as that of inserted city, for giving information about newly opened offices and ATMs.

CREATE TRIGGERNewCityTrigger

AFTER INSERT OF/bank/country/city

FOR EACH NODE

DO (
LET $city-name = NEW _NODEhame
LET $city-state = NEW _NODEktate

LET $city-head-office-id = NEW _NODEhead-office-id
LET $city-head-office-address = NEW _NODEhead-office-address
LET S$city-branch-offices = NEW _NODEhbranch-office

FOR $customer IN NEW _NODE/../ country/ customer
send-email ($customer, $city-name, S$city-state, $city-head-office-id,

$city-head-office-address, $city-branch-offices,...)

The above trigger needs to be executed after all the insert statements to retityons
Branch-office , Office-ld , Atm, Account are executed. However, in relational SQL trig-
gers, we cannot specify triggering operation as a set of operations on different tables. Clearl
such XML triggers are not mappable to relational triggers. We refer to such triggexas
mappable XML triggerslf we can define the SQL trigger, which has same semantics as that of
XML trigger, then such XML triggers are called asappable XML triggersElixir mapsmap-
pable XML triggergo SQL triggers andon-mappable XML triggen® stored procedure, which
can be called by middleware at runtime. Cost of SQL triggers that are invoked by the query ar
taken into account by relational optimizer. To model cost ofrtbe-mappable trigger<Elixir

adds query workload equivalentmon-mappable triggert input query workload.

6.1.2 Detecting Mappability of XML trigger

Mappability of XML trigger is determined as follows:

CHAPTERG6. MAPPING OFXML T RIGGERS ANDXML V IEWS 66

o If the triggering time iISBEFOREhen the XML trigger is always mappable. In case of
BEFOREHrigger, it is always possible to define equivalent SQL trigger on the reldtjon
which corresponds to node identified by path specifiettiggering operation Trigger
action is executed before doing th@gering operationon the relationR, which is the

exact semantics of XML trigger.

o If the triggering operation iIDELETEthen the XML trigger is always mappable. Though
deletion operation on XPathP) may cause the deletion of rows from different relations
(corresponding to node itself and its descendants), it can be written &3EUETESQL
statement on single relatiaR. R is the relation corresponding to node identified By
Deletion of descendants of node is automatically done because of defining the foreign ke
with CASCADE DELETBption. Thus, if we define a delete trigger on relatidnthen
integrity constraints are enforced before execution of trigger, which simulates the exac

semantics of delete XML trigger.
e If the triggering time iSAFTERand triggering operation INSERT or REPLACEhen

1. Convert XPath expressions specified in triggering event to simple XPath expression

containing only child axis and no wild characters.

2. Group these simple XPath expressions according to the relation in which the node

identified by XPath are mapped.
3. For each group

— Check if all descendants of the elements or attributes, identified by XPath ex-
pression from group, are mapped to the same relation. This condition ensure:
that SQL equivalent ofriggering operationcontains single insert or update
statement.

— Check if none of the elements other than descendants of the elements or a
tributes, identified by XPath expressions from group, is mapped to the relation
corresponding to the group. This condition ensures that there are no false trig:
gers i.e. there are no triggers on the path, which are incorrect according to

semantics of corresponding XML trigger.

CHAPTERG6. MAPPING OFXML T RIGGERS ANDXML V IEWS 67

— If both of the above conditiongr(@ppability conditionsare true then XML

trigger is mappable otherwise, it is non-mappable.

e If the triggering time iSAFTERand triggering operation IRENAMEhen XML trigger
is not mappable.RENAMBbperation always involve two sub-operations i.e. insertion
followed by deletion. Thus, XQuery involvinBENAMBBperation on the given XPath
expression always result into more than one SQL statement causing the XML trigger tc

be non-mappable.

For example consider a trigger as follows:
CREATE TRIGGER Office-or-atm-trigger
AFTER INSERT OW/id

Simple XPath expressions corresponding tiol /are bank/country/head-office/id |
/bank/country/branch-office/id | /bank/country/atm/id
Next step is to group the Simple XPath expressions according to relations. These groups a

as follows:
Group-1: /bank/country/head-office/id | /bank/country/branch-office/id
Group-2: /bank/country/atm/id

The relations corresponding to Group-1 and Group-2diiee-ld andAtm-Id , respec-
tively. As there are no descendantsithrmappability conditionspecified earlier are true, thus
this XML trigger is mappable for both the groups.

XML trigger can result in more than one SQL trigger. For example, above XML trigger is
converted into two SQL triggers, one on relatiOffice-Id and other on relatioAtm-Iid .

Note that, XML trigger could be mappable for some XPath expressions and non-mappable fc

remaining XPath expressions.

6.1.3 Mappable XML trigger to SQL trigger

Different components of SQL triggers can be derived from XML trigger as follows:

CHAPTERG6. MAPPING OFXML T RIGGERS ANDXML V IEWS 68

name of SQL trigger: As explained earlier one XML trigger might be mapped to more than
one SQL trigger. If XML trigger is mapped to single SQL trigger then we can use the
XML trigger name to define SQL trigger. Otherwise, we generate unique name for eact

trigger concatenating the name of XML trigger and relation (on which trigger is defined).

triggering time: Triggering time for SQL trigger is same as that of XML trigger BEFORE
or AFTER

triggering operation type: Triggering operation type can be decided as per triggering opera-

tion specified in XML trigger.

e INSERT: If the node identified by XPath expression of XML trigger is of simple
type, then equivalent SQL of the insert XQuery on the specified path is an update
guery. In this case triggering operation type in SQL trigged BFDATEand the col-
umn that corresponds to the simple type. If the node identified by XPath expressior

of XML trigger is nested element then operation type in SQL triggéNBERT.

e DELETE: If the node identified by XPath expression of XML trigger is of simple
type, then equivalent SQL of the delete XQuery on the specified path is an update
query (which sets its value tdULL). In this case, triggering operation type in SQL
trigger isUPDATEand the column that corresponds to the simple type. If the node
identified by XPath expression of XML trigger is nested element, then operation
type in SQL trigger iDELETE

e RENAME For mappable trigger ENAMBperation results in update SQL state-
ment. Thus, triggering operation type of SQL trigger shoultUBOATE

triggering granularity: NODESTATEMENTevel granularity can be defined in XML trigger;
these are mapped ROWSTATEMENTevel granularity of SQL trigger, respectively.

trigger-condition: XML trigger condition can be converted to SQL trigger condition using
XML-to-SQL translator. In addition, trigger condition also have the queries correspond-

ing to checking of path filters specified in pathto§gering operation

CHAPTERG6. MAPPING OFXML T RIGGERS ANDXML V IEWS 69

trigger-action: XML trigger action can be converted to SQL trigger action using XML-to-SQL

translator.

Consider XML triggerincrement-Countefor bank example. Here we assume that there is
an additional elemerdcc-counter that keeps track of number of accounts in a branch office
and customer has additional eleméranch that keep track of the branch from which he has

got account.

CREATE TRIGGERNcrement-Counter
AFTER INSERT OF //customer
LET $branch-id = NEW_NODE/ branch
FOR EACH NODE
DO (
FOR $branch-node = //branch-office
LET $counter = $branch-node/ acc-counter
WHERE $branch-node/ id=$branch-id
UPDATE $branch-node
{REPLACE $counter WITH $counter + 1 })

Using above procedure SQL trigger equivalent to above XML trigger is as follows:

CREATE TRIGGERNcrement-Counter
AFTER INSERT ON Customer
REFERENCING NEW ASew_row
FOR EACH ROW
BEGIN ATOMIC
UPDATE Branch-office
SET Acc-counter = Acc-counter + 1
WHERE Branch-office.ld = new_row.Branch
END

CHAPTERG6. MAPPING OFXML T RIGGERS ANDXML V IEWS 70

6.1.4 Processing non-mappable XML Triggers

Non-mappable XML triggersannot be mapped to equivalent relational trigger. The solution to
this is to map these triggers to stored procedure, which can be called by middleware at runtim
Elixir model the cost oNon-mappable XML triggerby including an additional, equivalent
qguery workload in the input XML query workload. We will first describe the mappingaof-

mappable XML triggeto stored procedure and then their incorporation in tuning process.

Non-mappable XML triggers to stored procedure

XML trigger action is converted to an equivalent stored procedure by converting XQuery state
ments to SQL statements; the variables referred in trigger action are considered as paramete
For example, the XML triggeNewCityTriggerdefined previously, the stored procedure corre-

sponding to this trigger is as follows:

CREATE PROCEDUREewCItyTrigger (IN customer-name STRING,
IN city-name STRING, IN city-state STRING,...)
BEGIN
Send-mail(customer-name, city-name, city-state, ...)
END

Values of NEWNODE or NEWNODES, which are needed for computation of proce-
dure parameters, can be evaluated during XML-to-SQL translation. Values of \GRDE or
OLD_NODES can be evaluated by inserting appropriate select statement before their deletio

For example translation of the insert query on city is translated as follows:

DECLARE city-name String;

DECLARE city-state String;

INSERT INTO City (1000,'Nasik’,’Maharashtra’, ...);
SET city-name = 'Nasik’;

SET city-state = 'Maharashtra’;

INSERT INTO Branch-office (...)

CHAPTERG6. MAPPING OFXML T RIGGERS ANDXML V IEWS 71

INSERT INTO Office-ld (...)

INSERT INTO Atm (...)

CALL NewCityTrigger(customer-name, city-name, city-state,...)

Incorporation of Non-mappable triggers in tuning process

As mentioned earlier, Elixir models the cost of non-mappable triggers by including additional
guery workload in the input XML query workload. The query workload equivalenido-

mappable XML triggersonsists of two query categories:

1. Select queries that are used to evaluate the variables, which are passed as a paramete
corresponding stored procedure. In addition, the select queries (Wit lause) that

are used to evaluate the condition of trigger.

2. Update queries, which are executed as a trigger action. These are the queries that beco

part of stored procedure.

Target workload also consists of the frequencies of the queries. Calculation of the frequenc

for the queries from additional workload can be done as follows:

e For each trigger, determine ttgger-count(i.e. number of times the trigger is likely to
be triggered). This can be easily done by summing the frequencies of the queries, whic
are likely to perform the triggering operation specified in the XML triggeigger-count

can be used as the frequency for the select queries.

e If trigger is conditional theractual-trigger-count(i.e. the number of time the trigger ac-
tion is performed) is less thdrigger-count Rough estimates for trectual-trigger-count
can be obtained by giving the conditional query (specified inihe¢ENIause) to rela-
tional optimizer and then getting the cardinality of the result. This estimated cardinality to
actual cardinality is théraction that indicates the probability with which the trigger will
be executed. Thusctual-trigger-countcan be obtained agréction * trigger-coun).

Actual-trigger-countan be used as the frequency for update queries.

CHAPTERG6. MAPPING OFXML T RIGGERS ANDXML V IEWS 72

6.2 XML Views

The notion of views is essential in databases. It allows various users to see data from differe
viewpoints. Although XQuery [4] currently does not provide standard for defining XML views,
we can easily extend it to include the definition of views [15] as follows:
"CREATE VIEWiew.nameAS’ followed by FLWR expression
Above definition can be extended to define materialized XML views can be defined as follows
CREATE MATERIALIZED VIEWiew nameAS
FLWR expression
DATA INITIALLY (IMMEDIATE| DEFERRED
REFRESHIMMEDIATE | DEFERREP

DATA INITIALLY IMMEDIATE clause allows user to populate data in table immedi-
ately. The claus®ATA INITIALLY DEFERRED means that data is not inserted as part of
theCREATE TABLEEtatement. Instead, user has to ®EFRESH TABLBtatement to pop-
ulate table. Syntax fdREFRESH TABLES as follows:

REFRESH TABLEiew name

Since the materialized view is built on underlying data that is periodically changed, usel
must specify how and when he wants to refresh the data in the view. User can specify th:
he want anMMEDIATE refresh o-DEFERREDefresh. The clausREFRESH DEFERRED
means that the data in the table only reflects the results of the query as a snapshot at the til
user isSUeREFRESH TABLEtatement.

Elixir maps XML views to relational views by translating XQuery to equivalent SQL query
and translates XQueries on the XML views to the SQL queries on relational views. Additionally,
if user specifies the materialized XML view, in order to improve the performance of XQueries,
then it is mapped to materialized relational views to improve the performance of equivalen
SQL queries.

For example, to make the balance inquiry faster user can specify the materialized XML viev

as follows:

CHAPTERG6. MAPPING OFXML T RIGGERS ANDXML V IEWS 73

CREATE MATERIALIZED VIEWcustomer _balance AS
FOR S$customer IN // customer
FOR $account IN // account

$account/ savings-acc-number or

WHERE $customer/ acc-number

$customer/ acc-number = $account/ checking-acc-number
return
<customer-balance>
<id>$customer/ cust-id</id>
<acc-number>$customer/ acc-number</customer-acc-number>
<balance>$customer/ balance</balance>
</customer-balance>
DATA INITIALLY IMMEDIATE
REFRESH IMMEDIATE

Its equivalent relational materialized view can be specified as follows:

CREATE TABLEcustomer _balance AS

(SELECT Customer.id, Customer.acc-number, Account.balance

FROM Customer, Account

WHERE Customer.acc-number = Account.Savings-or-checking-acc-number)
DATA INITIALLY IMMEDIATE

REFRESH IMMEDIATE

(Above syntax is for defining materialized query tables in DB2.)

6.3 Experimental Evaluation

In this section, we present our experimental evaluation of benefit obtained, due to inclusio
of XML Triggers and XML views, in the tuning process. We carry out the experiment on
two representative real-world XML schemdsPML [20], ICRFS[26] and a synthetic XMark

benchmark schema [53].

CHAPTERG6. MAPPING OFXML T RIGGERS ANDXML V IEWS 74

25

[] wilo tfiggers
Il with triggers

Cost of Executing Triggers

i l
0
XMark EPML ICRFS
XML Schema

Figure 6.1: Effect of XML triggers on tuning process

6.3.1 Effect of XML Triggers

To assess the effect of XML triggers in tuning process, for each schema, we created inpt
workload consisting of 10 read-only queries, 10 update queries, and 5 XML triggers. We carn
out two sets of experiments. First, we do not consider XML trigger while tuning and calculate
the cost of execution of triggers on the final relational configuration, referredatriggers
Other set of experiments considers triggers while tuning, referredgthsriggers We compare

the cost of execution of triggers on the final relational configuration. Our experimental result:
shows that cost for execution of triggers on the final relational configuratiaitimtriggersis

less than that imv/o triggersbecause invith triggersfinal relational configuration get tuned to

triggered actions (refer to Figure 6.1).

6.3.2 Effect of XML Views

As mentioned earlier, Elixir maps materialized XML view specified by user to materialized
relational views, to improve the performance of equivalent SQL queries. For each schem:
we created 5 materialized views and 20 queries consisting of mix of view queries and non-vie\
gueries. Note that, here we have considered only materialized views, because virtual views do

not affect cost of the query, and thus do not affect the tuning process. Our experimental resul

CHAPTERG6. MAPPING OFXML T RIGGERS ANDXML V IEWS 75

27X 10
S [] w/o views
B 6f Bl with views |
=}
2
c 5t
o
o
g 4
2
5]
T 3r
02
T
£ 2r
LL
S
w 1r]
o
O .

0

XMark EPML ICRFS
XML Schema

Figure 6.2: Effect of XML Views tuning process

shows that considering views in tuning process results in better final relational configuratior

(refer to Figure 6.2).

6.4 Overall performance of Elixir system

The previous discussion highlighted the various techniques used in Elixir and their impact ol
the final relational configuration. Summary of the techniques used in Elixir and their benefits i
given in table 6.1. Please note that a holistic comparison of relational schema quality can not &
done because the earlier mapping (FleXMap) can generate invalid schemas. Now, we pres¢
the results for the running time of Elixir i.e. user response time. User response time is th
important metric for feasibility of the system. We report here the results of two representative
real-world XML schemaseEPML [20], ICRFS[26] and a synthetic XMark benchmark schema

[53]. Target workload consists of 28ad onlyqueries and 10 update queries. For each schema,
we created 5 XML triggers and 5 materialized views for frequent queries. Figure 6.3 shows th
total time required and details about time required in different steps of tuning process — Map
ping, Index selection, Optimizer. Mapping time is the time required to carry out the schemg

transformations. The number of schema transformations done in tuning process depends on 1

CHAPTERG6. MAPPING OFXML T RIGGERS ANDXML V IEWS 76

Technique Benefit
Search space reduction : 30%-60% compared to FleXMap
Key constraint propagation Runtime reduction : 50%-85% compared to FleXMap
Better relational configurations

Cost of final relational configuration is reduced by 35- 60%
Source-centric index selectignas compared to that iDB2Advisor(target-centric index
selection)

Cost for execution of triggers on the final relational
configuration, obtained by considering triggers, is reduced

Mapping XML triggers by 50-70% as compared to that when triggers are not
considered during tuning.
Considering views in tuning process results in 65-75%
, . reduction of cost of final relational configuration as
Mapping of XML views

compared to the cost when views are ignored during tuning
process.

Table 6.1: Summary of techniques used in Elixir

complexity of schema - such as number of repetitions, unions, similar types, nesting depth, et
In our experiments, total numbers of transformations tried out were as follows: 637 (XMark),
505 (ICRFS), 1673 (EPML). We can see that time required for schema transformation (mag
ping) is less than 10% of the total time (refer to Figure 6.3). Each schema transformatior
corresponds to different relational configuration. For each relational configuration, indices ar:
selected using XIST and are converted to relational indices. The time required by XIST, fol
index selection, ranges from 25% to 35%. Each relational configuration is evaluated using re
lational optimizer. The time required for evaluation ranges from 60% to 70%, which involves
creation of tables in database, loading of statistics, getting cost from optimizer, and deletion c
tables. As we have implemented the system outside the relational engine, we cannot obtain t
cost without creating tables, loading statistics thus the time required for evaluation is more a
compared to other operations. If Elixir system is implemented inside relational engine, then th

time required for evaluation can be reduced.

CHAPTERG6. MAPPING OFXML T RIGGERS ANDXML V IEWS

77

Time (in Min.)

600

500

400

w
o
o

200

100

Hl Mapping
[Index Selection
[] Optimizer

XMark EPML ICRFS
XML Schema

Figure 6.3: Elixir Performance

Chapter 7

Conclusions

In this thesis, we studied the problem of producing holistic schema mappings from XML repos:
itories to relational backends. Our goal was to ensure both cost-based and source-centric of
mization of the mapping process. To this end, we proposed the Elixir system, which deliver:
relational schemas that include table configurations, keys, indices, triggers, and views. TF
system incorporates techniques for propagating keys through cost-based dynamic mappings,
compared to the heuristic-based static mappings of the prior literature. Further, through a di
tailed experimental study on real-world and synthetic schemas, we showed that incorporatic
of keys substantially reduces the search space and runtime required for cost-based optimizatic
as compared to FleXMap.

With regard to indices, we presented techniques for efficiently mapping source-centric inde
choices (made by the XIST tool) to the relational target. Our experimental results comparing
this approach to using the relational engine’s index advisor indicate that better quality configu
rations can be achieved with a source-centric approach.

Apart from the above core components, a holistic mapping includes other features such ¢
views, triggers, etc. Elixir incorporates the techniques for achieving their mappings to relationa
world. Empirical results shows the improvement of final relational configuration obtained due
to consideration of XML Triggers and XML views in the tuning process of relational configu-
ration.

In a nutshell, the Elixir system attempts to make progress towards achieving “industrial-

78

CHAPTER 7. CONCLUSIONS 79

strength” mappings for XML-on-RDBMS.

7.1 Future Work

The work that we have presented in this thesis can be extended in the following ways:

e Elixir uses various schema transformations for exploring the search space of relatione
configurations. These transformations includéne/Outling Type-split/mergeUnion
distribution/factorizationandRepetition split/mergeThese transformations only exploit

the structural relationship between various elements.

Some queries involve join of two different XPaths on the nodes that are semantically re
lated (we refer these queries samantic join querigs Merging of such semantically
related nodes i.e. mapping those nodes along with related information in single relatior
will improve the performance afemantic join queriednformation about such semanti-
cally related nodes can be obtained from the integrity constraints defined in XML schema
In future, we plan to study the transformations that use the semantic information from the

XML schema.

¢ As mentioned in Section 6.4, the run time performance of Elixir can be improved, if
implemented inside relational engine. In future, we are planning to implement Elixir

system insidg@ostgreSQlLan open source platform.

e Currently, Elixir maps the materialized views provided by user. In future, we plan to

incorporate the source-centric technique for recommendation of materialized views.

References

[1]

S. Abiteboul. On Views and XML. Iroc. of 18th ACM Symp. on Principles of Database
Systems (PODSMay 1999.

[2] A. Balmin, F. Ozcan, K. Beyer, R. Cochrane, and H. Pirahesh. A Framework for Using

[3]

[4]

[5]

[6]

[7]

[8]

Materialized XPath Views in XML Query Processing.Rmoc. of 30th Intl. Conf. on Very
Large Data Bases (VLDBAugust 2004.

E. Bertino and C. Guglielmina. Path-Index: An Approach to the Efficient Execution of

Object-Oriented Querie®ata and Knowledge Engineering0, 1993.

S. Boag and et al. XQuery 1.0 An XML Query Language, May 2001.
http://www.w3.org/TR/xquery/

P. Bohannon, J. Freire, P. Roy, and J. &m. From XML schema to relations: A cost
based approach to XML storage. Pmoc. of 18th IEEE Intl. Conf. on Data Engineering
(ICDE), March 2002.

A. Bonifati, D. Braga, A. Campi, and S. Ceri. Active XQuery.Rrnoc. of 18th IEEE Intl.
Conf. on Data Engineering (ICDEJFebruary 2002.

J. Bosak and et al W3C XML Specification DTD.
http://ww.w3.0rg/XML/1998/06/xmlspec-report

T. Bray and et al. DCD (Document Content Descriptiohjtp://www.w3.0rg/TR/NOTE-
dcd

80

REFERENCES 81

[9] P. Buneman, S. Davidson, W. Fan, C. Hara, and W. Tan. Keys for XMlomputer
Networks 39(5), 2002.

[10] S. Chaudhuri, Z. Chen, K. Shim, and Y. Wu. Storing XML (with XSD) in SQL Databases:
Interplay of Logical and Physical Designs. Rroc. of 20th IEEE Intl. Conf. on Data
Engineering (ICDE)March 2004.

[11] S. Chaudhuri and V. Narasayya. An Efficient, Cost—Driven Index Selection Tool for Mi-
crosoft SQL Server. IProc. of 23rd Intl. Conf. on Very Large Data Bases (VLDB)
September 1997.

[12] Y. Chen, S. Davidson, C. Hara, and Y. Zheng. RRXS: Redundancy reducing XML storage
in relations. InProc. of 29th Intl. Conf. on Very Large Data Bases (VLDBgptember
2003.

[13] Y. Chen, S. Davidson, and Y. Zheng. Constraints preserving schema mapping from XML
to relations. InProc. of 5th Intl. Workshop on Web and Databases (WebDi8)e 2002.

[14] Y. Chen, S. Davidson, and Y. Zheng. Validating constraints in XML. Technical Report
MS-CIS-02-03, Department of Computer and Information Science, University of Penn-

sylvania, 2002.

[15] Y. Chen, T. Ling, and M. Lee. Designing Valid XML Views. Froc. of 21st Intl. Conf.
on Conceptual Modeling (ERDctober 2002.

[16] C. Chung, J. Min, and K. Shim. APEX: An Adaptive Path Index for XML DataPhoc.
of ACM SIGMOD Intl. Conf. on Management of Dafaine 2002.

[17] J. Clark and et al. XML Path Language (XPath) Specification. W3C Recommendation, 1¢
November 1999 http://www.w3.org/TR/xquery/

[18] S. Cluet, P. Veltri, and D. Vodislav. Views in a Large Scale XML RepositoryProc. of
27th Intl. Conf. on Very Large Data Bases (VLDBgptember 2001.

[19] A. Conrad. A survey of Microsoft SQL Server 2000 XML features.

http://msdn.microsoft.com/library/en-us/dnexxml/html/xmIl07162001.asp?frame=true

REFERENCES 82

[20] EPC Markup Languagehttp://wi.wu-wien.ac.at/ mendling/EPML/

[21] D. Florescu and D. Kossman. Storing and querying XML data using an RDBHISE
Data Engineering Bulletin22(3), 1999.

[22] J. Freire, J. Haritsa, M. Ramanath, P. Roy, and J&Bim Statix: Making XML count. In
Proc. of ACM SIGMOD Intl. Conf. on Management of Datane 2002.

[23] Gene Expression Markup Languadstp://www.ncgr.org/genex

[24] R. Goldman and J. Widom. Dataguides: Enabling Query Formulation and optimization in
semistructured databases.Rroc. of 23rd Intl. Conf. on Very Large Data Bases (VLDB)
August 1997.

[25] IBM DB2 XML Extender. http://www-3.ibm.com/software/data/db2/extenders/ xm-
lext/library.html

[26] ICRFS XML schema.http://www.insureware.com/abouti/ mlines.shtml

[27] H. Jagadish and et al. TIMBER: A Native XML Databas€éhe VLDB Journgl11(4),
2002.

[28] H. Jiang, H. Lu, W. Wang, and J. Yu. XParent: An Efficient RDBMS-Based XML Data-
base System. IRroc. of 18th IEEE Intl. Conf. on Data Engineering (ICOB)arch 2002.

[29] C. Kanne and G. Moerkotte. Efficient Storage of XML data.Phoc. of 16th IEEE Intl.
Conf. on Data Engineering (ICDE}ebruary 2000.

[30] R. Kaushik, P. Bohannon, J. Naughton, and H. Korth. Covering Indexes for Branching
Path Expressions. IRroc. of ACM SIGMOD Intl. Conf. on Management of Daltéay
2002.

[31] R. Kaushik, P. Shenoy, P. Bohannon, and E. Gudes. Exploiting Local Similarity for Ef-
ficient Indexing of Paths in Graph Structured Data.Phoc. of 18th IEEE Intl. Conf. on
Data Engineering (ICDE)February 2002.

REFERENCES 83

[32] M. Klettke and H. Meyer. XML and object-relational database systems - enhancing struc
tural mappings based on statistics.Aroc. of 3rd Intl. Workshop on Web and Databases
(WebDB) May 2000.

[33] R. Krishnamurthy, V. Chakaravarthy, and J. Naughton. On the Difficulty of Finding Opti-
mal Relational Decompositions for XML Workloads: a Complexity Theoretic Perspective.

In Proc. of 9th Intl. Conf. on Database Theory (ICDTJanuary 2003.

[34] R. Krishnamurthy, R. Kaushik, and J. Naughton. Efficient XML-to-SQL Query Transla-
tion: Where to Add the Intelligence? Iroc. of 30th Intl. Conf. on Very Large Data
Bases (VLDB)August 2004.

[35] A. Layman and et al. XML-Datahttp://www.w3.0rg/TR/1998/NOTE-XML-data

[36] D. Lee and W. Chu. Constraints—preserving Transformation from XML Document Type
Definition to Relational Schema. IRroc. of 19th Intl. Conf. on Conceptual Modeling
(ER), October 2000.

[37] T. Milo and D. Suciu. Index Structures for Path Expression®rbc. of 7th Intl. Conf. on
Database Theory (ICDT)anuary 1999.

[38] Oracle XML DB: An oracle technical white paper.

http://technet.oracle.com/tech/xml/content.html
[39] POET. http://www.x-solutions.poet.com/

[40] M. Ramanath, J. Freire, J. Haritsa, and P. Roy. Searching for efficient XML-to-relational
mappings. IrProc. of 1st Intl. XML Database Symp. (XSy®¢ptember 2003.

[41] K. Runapongsa and J. Patel. Storing and querying XML data in object-relational DBMSs.
In Proc. of 7th Intl. Conf. on Extending Database Technology (EDBMBych 2002.

[42] K. Runapongsa, J. Patel, R. Bordawekar, and S. Padmanabhan. XIST: An XML Inde
Selection Tool. IrProc. of 2nd Intl. XML Database Symp. (XSy#Aigust 2004.

REFERENCES 84

[43] Schematron: An XML Structure Validation Language using Patterns in Trees.

http://xml.ascc.net/resource/schematron/schematron.htmi

[44] A. Schmidt, M. Kersten, M. Wendhouwer, and F. Waas. Efficient relational storage and
retrieval of XML documents. IrProc. of 3rd Intl. Workshop on Web and Databases
(WebDB) May 2000.

[45] J. Shanmugasundaram, K. Tufte, G. He, C. Zhang, D. DeWitt, and J. Naughton. Relations
databases for querying XML documents: Limitations and opportunitie®rdn. of 25th

Intl. Conf. on Very Large Data Bases (VLDEeptember 1999.

[46] F. Shao, A. Novak, and J. Shanmugasundaram. Triggers over XML Views of Relationa
Data. InProc. of 21st IEEE Intl. Conf. on Data Engineering (ICDRB)pril 2005.

[47] Tamino. http://www1.softwareag.com/Corporate/products/tamino/grdd/default.asp

[48] I. Tatarinov, Z. Ives, A. Halevy, and S. Weld. Updating XML. Pnoc. of ACM SIGMOD
Intl. Conf. on Management of Datay 2001.

[49] H. Thompson, D. Beech, M. Maloney, and N. Mendelsohn. XML schema Part 1: Struc-
tures, May 2001 http://www.w3.0rg/TR/xmlschema-1/

[50] Tourism Markup Languagehttp://www.opentourism.org
[51] ToXgene - the ToX XML Data Generatohttp://www.cs.toronto.edu/tox/toxgene/

[52] G. Valentin, M. Zuliani, D. Zilio, G. Lohman, and A. Skelley. DB2 Advisor: An Optimizer
Smart Enough to Recommend its Own IndexesPioc. of 16th IEEE Intl. Conf. on Data
Engineering (ICDE) February 2000.

[53] XMark. http://monetdb.cwi.nl/xml/
[54] A. Yao. Onrandom 2-3 treeé\cta Informatica 9(2), 1978.

[55] M. Yoshikawa, T. Amagasa, T. Shimura, and S. Uemura. XRel: a path-based approac
to storage and retrieval of XML documents using relational datab&€&lgl Transactions

On Internet Technology (TOIT)(1), 2001.

