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Abstract

Generating synthetic databases that capture essential data characteristics of client databases

is a common requirement for enterprise database vendors. This need stems from a variety

of use-cases, such as application testing and assessing performance impacts of planned engine

upgrades. A rich body of literature exists in this area, spanning from the early techniques that

simply generated data ab-initio to the contemporary ones that use a predefined client query

workload to guide the data generation. In the latter category, the aim specifically is to ensure

volumetric similarity – that is, assuming a common choice of query execution plans at the client

and vendor sites, the output row cardinalities of individual operators in these plans are similar

in the original and synthetic databases.

Hydra is a recently proposed data regeneration framework that provides volumetric simi-

larity. In addition, it also provides a mechanism to generate data dynamically during query

execution, using a minuscule database summary. Notwithstanding its desirable characteristics,

Hydra has the following critical limitations: (a) limited scope of SQL operators in the input

query workload, (b) poor scalability with respect to the number of queries in the input work-

load, and (c) poor volumetric similarity on unseen queries. The data generation algorithm

internally uses a linear programming (LP) solver that throttles the workload scalability. This

not only puts a threshold on the training (seen) workload size but also reduces the accuracy for

test (unseen) queries. Robustness towards test queries is further adversely affected by design

choices such as a lack of preference among candidate synthetic databases, and artificial skew in

the generated data.

In this work, we present an enhanced version of Hydra, called High-Fidelity Hydra (HF-

Hydra), which attempts to address the above limitations. To start with, we expand the SQL op-

erator coverage to also include the LIKE operator, and, in certain restricted settings, projection-

based operators such as GROUP BY and DISTINCT. To sidestep the challenge of workload

scalability, HF-Hydra outputs not one, but a suite of database summaries such that they col-

lectively cover the entire input workload. The division of the workload into the associated

sub-workloads is governed by heuristics that aim to balance robustness with LP solvability.
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Abstract

For generating richer database summaries, HF-Hydra additionally exploits metadata statis-

tics maintained by the database engine. Further, the database query optimizer is leveraged

to make the choice among the various candidate databases. The data generation is also aug-

mented to provide greater diversity in the represented values. Finally, when a test query is

fired, HF-Hydra directs it to the database summary that is expected to provide the highest

volumetric similarity.

We have experimentally evaluated HF-Hydra on a customized set of queries based on the

TPC-DS decision-support benchmark framework. We first evaluated the specialized case where

each training query has its own summary, and here HF-Hydra achieves perfect volumetric

similarity. Further, each summary construction took just under a second and the summary

sizes were just in the order of a few tens of kilobytes. Also, our dynamic generation technique

produced gigabytes of data in just a few seconds. For the general setting of a limited set of

summaries representing the training query workload, the data generated by HF-Hydra was

compared with that from Hydra. We observed that HF-Hydra delivers more than forty percent

better accuracy for outputs from filter nodes in the plans, while also achieving an improvement

of about twenty percent with regard to join nodes. Further, the degradation in volumetric

similarity is minor as compared to the one-summary scenario, while the summary production

is significantly more efficient due to reduced overheads on the LP solver.

In summary, HF-Hydra takes a substantive step forward with regard to creating expres-

sive, robust, and scalable data regeneration frameworks with immediate relevance to testing

deployments.
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Chapter 1

Introduction

In industrial practice, a common requirement for database vendors is to adequately test their

database engines with representative data and workloads that accurately mimic the data pro-

cessing environments at customer deployments. This need can arise either in the analysis of

problems currently being faced by clients, or in proactively assessing the performance impacts

of planned engine upgrades on client applications. While, in principle, clients could transfer

their original data and workloads to the vendor for the intended evaluation purposes, this is

often infeasible due to privacy and liability concerns. Moreover, even if a client is willing to

share the data, transferring and storing the data at the vendor’s site may prove to have imprac-

tical space and time overheads. Therefore, an important requirement, looking into the future,

is to be able to dynamically regenerate representative databases, at query execution time that

accurately mimic the behavior of the client’s data processing environment.

A rich body of literature exists on data regeneration, beginning with workload-independent

techniques (e.g [16, 12]), which provide scalable and efficient solutions, but fail to retain complex

statistical characteristics such as the sizes of intermediate relations created during the execution

of a query plan. To address this problem, a particularly potent approach of workload-dependent

database regeneration was introduced in QAGen [11], and has served as the foundation for many

of the practicable systems proposed over the last decade [20, 7]. Workload-dependent techniques

aim to generate synthetic data whose behavior is volumetrically similar to the client database on

the input query workload. That is, assuming a common choice of query execution plans at the

client and vendor sites (ensured through “plan forcing” [3] or “metadata matching” [24]), the

output row cardinalities of individual operators in these plans are very similar in the original

and synthetic databases. Our goal is to reduce the absolute error between the output row

cardinalities of each operator in the plans obtained from the client as well as the regenerated

database. This similarity helps to preserve the multi-dimensional layout and flow of the data, a
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pre-requisite for achieving similar performance on the client’s workload. As a case in point, the

DataSynth [7, 8] tool from Microsoft expresses such volumetric constraints as a Linear Program

(LP) whose solution is used to construct the synthetic database.

A common limitation of contemporary techniques (reviewed in detail in Chapter 2), is that

they run into issues of scale or efficiency at one stage or the other in the regeneration pipeline.

This is partly due to their focus on materialized static solutions, making them impractical at

large volumes. Further, the ability to scale to large query workloads and data volumes has not

been clearly established, and validations have been typically restricted to relatively simple and

small benchmarks such as TPC-H [4].

Also, workload-aware data regeneration focuses on volumetric similarity for the client’s input

(training) query workload. But in database testing applications, generalization to new queries

can be a necessary requirement at the vendor site. Hence, reasonable volumetric similarity on

any unseen (testing) query workload is critical as well. This ability to provide robustness to

test queries has not been explicitly addressed in generators proposed in the literature.

1.1 Prior Work

To materially address the above-mentioned challenges in the data regeneration pipeline, a potent

database regenerator, Hydra ([25], [26]) was recently proposed. Hydra is based on a workload-

aware declarative approach to database regeneration, and aims to create synthetic databases

that achieve volumetric similarity on input query workloads. Specifically, it takes as input from

the client, the metadata and query execution plans corresponding to a query workload. With

this input, it generates a synthetic database at the vendor site such that a similar volume of

data is processed at each stage of the query execution pipeline for the workload queries. Hydra

consciously addresses data scale and efficiency issues through the entire regeneration pipeline.

A special feature of Hydra is that the data generation can be done “on-demand”, obviating the

need for materialization. This functionality is achieved through the construction of a concise

database summary.

In this section, we provide background information on the basic concepts – Annotated Query

Plans [11] and Cardinality Constraints [7] – underlying workload-dependent regeneration that

are relevant to our design of the Hydra system.

1.1.1 Annotated Query Plans

Consider a toy scenario (for ease of presentation) where the client has the following database

schema:

R (R pk, S fk, T fk) S (S pk, A, B) T (T pk, C)
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where pk and fk refer to primary-key and foreign-key attributes, respectively. A sample client

query on this schema is shown in Figure 1.1, with the corresponding query execution plan in

Figure 1.2. Note that this execution plan has the output edge of each operator annotated with

the associated row cardinality (as evaluated during the client’s execution) – for instance, there

are 50K rows resulting from the join of R and S. Such a plan is referred to as an “Annotated

Query Plan” (AQP) in [11]. The goal now is to generate synthetic data at the vendor site such

that when the above query is executed on this data, we obtain the identical, or very similar,

AQP.

Select * from R, S, T

where R.S fk = S.S pk and

R.T fk = T.T pk and

S.A ≥ 20 and S.A < 60 and

T.C ≥ 2 and T.C < 3

Figure 1.1: Example Query

Figure 1.2: Example Annotated Query Plan

1.1.2 Cardinality Constraints

A unified and declarative mechanism for representing AQP data characteristics, called cardinal-

ity constraints (CCs), was proposed in [7]. A cardinality constraint dictates that the output of
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a given relational expression over the generated database should feature the specified number

of rows. For instance, the CCs expressing the AQP of Figure 1.2 are shown in Figure 1.3.

The data regeneration technique takes the schematic information and the set of CCs from the

client site and produces synthetic data that closely meets these CCs. To make the problem

tractable, it is assumed that CCs consist of filters on only non-key attributes and that all joins

are between primary keys and foreign keys.

|R| = 80K

|S| = 700

|T | = 1500

|σS.A∈[20,60)(S)| = 400

|σT.C∈[2,3)(T )| = 900

|σS.A∈[20,60)(R ./ S)| = 50K

|σS.A∈[20,60)∧T.C∈[2,3)(R ./ S ./ T )| = 30K

Figure 1.3: Cardinality Constraints (CCs)

1.1.3 Overview of Hydra

Hydra’s data generation pipeline begins by deriving CCs from the input AQPs. Subsequently,

for each relation, a corresponding view is constructed. The view comprises of the relation’s

own non-key attributes, augmented with the non-key attributes of the relations on which it

depends through referential constraints. This transformation (predicated on the assumption

that all joins are between primary key-foreign key (PK-FK) attributes) results in replacing the

join-expression present in a CC with a minimal view that covers the relations participating

in the join-expression. After this rewriting, we get, a set of CCs, where each CC is a filter

constraint on a view along with its associated output cardinality.

Each view is decomposed into a set of sub-views (need not be disjoint) to reduce the com-

plexity of the subsequent modules. After obtaining these sub-views, two following main modules

are executed:

1. Satisfiability Modulo Theories (SMT) problem formulation

2. Database Generation

Let us look into each of the steps in the upcoming subsections. Prior to that, we present a

brief introduction to SMT for better understanding.
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1.1.3.1 Satisfiability Modulo Theories (SMT)

In computer science and mathematical logic, Satisfiability Modulo Theories (SMT) is the prob-

lem of determining whether a mathematical formula is satisfiable. It generalizes the Boolean

satisfiability problem (SAT) to more complex formulas involving real numbers, integers, and/or

various data structures such as lists, arrays, bit vectors, and strings. The name is derived

from the fact that these expressions are interpreted within (”modulo”) a certain formal theory

in first-order logic with equality (often disallowing quantifiers). Formally speaking, an SMT

instance is a formula in first-order logic, where some function and predicate symbols have ad-

ditional interpretations, and SMT is the problem of determining whether such a formula is

satisfiable. SMT solvers (e.g. Z3 [5, 15] and CVC4 [9]), which aim to solve the SMT problem

for a practical subset of inputs, have been used as a building block for a wide range of tools

across computer science, including in automated theorem proving, program analysis, program

verification, and software testing.

1.1.3.2 SMT Problem Formulation in Hydra

For a view, the set of CCs is taken as input, and an SMT Problem (Hydra uses the term LP,

however technically, it is a satisfiability problem because of the absence of an objective function)

is constructed for this set. Each sub-view’s domain space is partitioned into a set of regions

using the CCs applicable on that sub-view. A variable is created for each region, representing

the number of tuples chosen from the region. Each CC is encoded as a linear constraint on

these variables.

For the view S an example constraint is shown by the red box (A in [20, 40) and B in

[15000, 50000)) in Figure 1.4 has an associated cardinality 150 (say). Likewise, another green

constraint is also shown - say with cardinality 250. Let the total number of tuples in the S be

700. These constraints can be expressed as the following linear constraints:

x1 + x2 = 250,

x2 + x3 = 150,

x1 + x2 + x3 + x4 = 700,

x1, x2, x3, x4 ≥ 0

where the four variables represent the tuple cardinality assigned to the respective regions.

Lastly, additional constraints are added to ensure that the marginal distributions along common

attributes among sub-views are identical.
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Figure 1.4: Region Partitioning in Hydra

1.1.3.3 Database Generation

The solution to the SMT problem for a view gives the cardinalities for various regions. These

regions, being at a sub-view level, are merged to obtain the equivalents in the original view

space. Since each view is solved separately, the view solutions are altered such that they obey

referential integrity. In this process, some additional (spurious) tuples may be added in the

views corresponding to the dimension tables. But the number of spurious tuples added is

independent of the scale of the client database. Finally, once the consistent view solutions are

obtained, a database summary is constructed.

An example database summary is shown in Figure 1.5. Here, entries of the type a - b in

the PK columns (e.g. 101-250 for S pk in table S), mean that the relation has b− a+ 1 tuples

with values (a, a+ 1, . . . , b) for that column, keeping the other columns unchanged. Using the

summary, Tuple Generation module (implemented inside the DBMS query executor module)

dynamically generates tuples on demand during query execution.

Figure 1.5: Example Database Summary in Hydra
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To ensure that the client’s plans are chosen to execute queries at the vendor site, Hydra

uses the CoDD tool [1] to copy the metadata catalogs.

1.2 Limitations of Hydra

While Hydra has the above-mentioned desirable characteristics, its applicability is restricted to

handling volumetric similarity on training queries. Following are some of its key limitations:

Limited SQL Operator Coverage: Hydra supports input training queries that feature fil-

ters and joins. Among filters, Hydra is restricted to only supporting equality and range

predicates. Queries that feature pattern matching operators such as LIKE, and projection

based operators such as DISTINCT and GROUP BY are not supported by Hydra.

Inherent Scalability Limitation: Hydra can only handle a few hundred queries in its client

workload owing to its inherent scalability limitation. The limitation is caused by the use

of Z3 solver to solve the equations from the SMT formulation. For larger query workloads,

with an increase in the number of variables and the complexity of the equations, the solver

ends up crashing.

No Preference among Feasible Solutions: There can be several feasible solutions to the

SMT problem. However, Hydra does not prefer any particular solution over the other.

Moreover, due to the usage of the simplex algorithm internally, the SMT solver returns

a sparse solution, i.e., it assigns non-zero cardinality to very few regions. This leads to a

very different inter-region distribution of tuples in the original and synthetic databases.

This severely affects the ability to provide robustness to testing query workloads.

Restricted Diversity in Generated Data: Within a region that gets a non-zero cardinality

assignment, Hydra picks up a single data point, and assigns it with the entire region’s

cardinality. Hence, the generated data ends up with featuring only very few unique data

points, thus lacking diversity. Hence, accuracy to test queries is greatly affected.

1.3 Our Contributions

In this thesis, we present High-Fidelity Hydra (HF-Hydra), an enhancement over Hydra,

to address the above-mentioned limitations. The overview of each segment of our contributions

are as follows:
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Operator Coverage Expansion

In realistic client workloads, queries involving string attributes feature pattern matching filters,

i.e., they involve the LIKE operator. Hence, in the first segment of the thesis, we discuss

extending the ambit of Hydra’s operator coverage which is restricted to only equality and range

predicates in filter constraints, to also include the LIKE operator. LIKE predicates can be

considered as regular expression strings, and for a workload of queries, there may be multiple

predicates applied on the same attribute with possible intersections. In HF-Hydra, we propose

a solution to discover and handle such intersections. We then transform the LIKE predicates

into equivalent equality filter predicates, which can be eventually processed by the existing

setup.

Moving on, to sidestep the challenge of workload scalability, HF-Hydra outputs not one,

but a suite of database summaries, each constructed from a sub-workload such that they col-

lectively cover the entire input workload. The division of the workload into the associated

sub-workloads is governed by heuristics aiming to provide robustness to test queries while en-

suring computational viability. A pictorial representation of this idea is illustrated in Figure 1.6.

Let us consider the training workload to contain n queries. Firstly, we consider a special case,

where the scope is restricted to providing volumetric similarity to only training queries. Here,

we generate individual summaries for each query in the workload. Hence the total number of

summaries m, would be equal to n. Although such a solution helps in bypassing the scalability

limitation, this may not extend robustness to test queries. And so, secondly, we consider the

general case, where the goal is to also provide good robustness to test queries. An ideal case

here is when all the training queries are used to construct one summary (m = 1). This summary

can be expected to provide good robustness, but for larger workloads, the inherent limitation

of the solver prevents us from the queries at once. Hence, to meld robustness with scalability,

a workload-division strategy is proposed to divide the workload into a few sub-workloads, and

a summary is produced for each of them (m < n). At runtime, when a test query is fired, HF-

Hydra directs it to the database summary that is expected to provide the highest volumetric

similarity. The details of each of these contributions are discussed in the sequel.
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Figure 1.6: Overview of suite of summaries proposed in HF-Hydra

Managing Scalability for Training Workloads

In this next segment of the thesis, we look into our special case that focuses only on handling

training queries. Here, HF-Hydra provides an extreme solution wherein, for each query in

the workload, a different database summary is produced. The idea here is that with dynamic

generation in action, when a training query is fired, the summary for that query is picked to

generate tuples on the fly. With this approach, we can bypass the inherent scalability limitation

and manage to handle any number of training queries. Also, in this specialized setting, we

extend support for projection-based SQL operators.

Robustness to Testing Queries

In this subsequent segment of the thesis, we discuss the framework of HF-Hydra that addresses

the general case, where the focus is also to provide robustness for test queries. To start with,

in addition to the constraints from the training workload, we model the metadata statistics as

constraints as well, and augment them to obtain a refined region-partitioning of the data space.

Metadata statistics are usually not maintained up to date, and so these constraints could be

inconsistent with the workload constraints. We frame an LP with the workload constraints, and

the metadata constraints are included as an optimization function that tries to satisfy them

with minimal error. From the LP solution, we correct the metadata constraints with their

errors to resolve any inconsistency.

As the next step, an equivalent SQL query is generated for every region, and its cardinality

estimate is obtained from the database query optimizer. Another LP is framed, with both

workload and error-corrected metadata constraints, and an optimization function is added that
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tries to get the region’s cardinality to be assigned by the solver close to the region’s estimate.

This way, the optimizer is leveraged to make a focused choice among the candidate databases.

Finally, a summary is constructed, and for each region therein with a non-zero cardinality

assignment, we generate tuples adhering to the optimizer’s distribution model, with greater

diversity in the represented domain values.

Melding Robustness with Scalability

In the framework discussed for the general setting in the previous segment, with an increase

in the workload constraints, and use of optimization functions, the load on the theorem prover

is even more severe, and we may run into scalability issues. Hence, to sidestep this challenge,

in the last segment of the thesis, we propose a workload-division strategy to produce a few

sub-workloads, and a summary is produced for each sub-workload. The process starts with

introducing two sub-workloads, by splitting the training domain interval for each attribute

across the whole workload into two sub-domains, and associating each with either sub-workload.

A workload constraint that has an intersection with a sub-domain in any of its participating

attributes is assigned to the corresponding sub-workload. Each sub-workload is then checked

for computational viability in the LP formulation process. The heuristic used for this check is

whether the number of variables that are produced from the constraints in a sub-workload is

under the limit that the solver can easily handle. For sub-workloads that fail the check, the

splitting is repeated recursively for each one of them.

When a test query is fired, each of its participating attributes is checked for intersection with

each sub-domain corresponding to every sub-workload. We then deterministically direct the

test query to be executed on the data generated from the sub-workload where the intersection

is found to be maximum.

We have experimentally evaluated HF-Hydra on a customized set of queries based on the

TPC-DS decision-support benchmark. We start with the specialized case where each training

query has its own summary, and show that HF-Hydra achieves perfect volumetric similarity in

this setting. Further, the summaries are constructed in the order of seconds and the summaries

occupy only a few tens of kilobytes. The dynamic generation technique produces data in

gigabytes per second, comparable to data access speeds from materialized tables on permanent

storage. For the general setting of a limited set of summaries representing the training query

workload, the data generated by HF-Hydra was compared with that obtained from Hydra.

The evaluation was done in two parts: First, we constructed a workload for which a single

summary could be produced with viable LP complexity. In this case, HF-Hydra delivered 44

percent better accuracy for filter nodes, while also achieving an improvement of 27 percent
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with regard to join nodes. Secondly, to test our workload-division strategy, we extended the

workload to include a larger suite of queries, giving rise to a few sub-workloads. In this case,

HF-Hydra delivered close to 30 percent better accuracy for filter nodes, while also achieving

an improvement of close to 20 percent with regard to join nodes. Also, to evaluate our logic

of directing a given test query to the appropriate summary, we showcase both the best and

worst case possible assignment, and it was observed that the former outperformed the latter in

terms of accuracy.

1.4 Thesis Organisation

The remainder of this thesis is organized as follows: We start with reviewing the related lit-

erature in Chapter 2. Moving to our contributions, firstly, we present the operator coverage

expansion done in HF-Hydra to include the LIKE operator in Chapter 3. Subsequently, we

present in detail our simplified approach to manage scalability for training queries in Chap-

ter 4. Later, we present a detailed description of the design and implementation of the general

framework of HF-Hydra to provide robustness to testing query workloads in Chapter 5. Lastly,

we discuss our framework for melding robustness with scalability in Chapter 6. Finally, we

dive into a detailed experimental evaluation of HF-Hydra for each scenario in chapter 7. We

conclude the thesis and discuss the future directions in Chapter 8.
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Chapter 2

Related Work

Over the last few decades, a rich corpus of literature has developed on synthetic database

construction. There are two broad streams of research on the topic, one dealing with the ab

initio generation of new databases using standard mathematical distributions (e.g. [16, 12]), and

the other with regeneration of an arbitrary existing database. In the latter category, there are

two approaches, one of which uses only schematic and statistical information from the original

database (e.g. [23, 28]). The other uses both the original database and the query workload to

achieve statistical fidelity during evaluation (e.g [11, 7]). Both Hydra and HF-Hydra fall into

this class.

In this chapter, we briefly review recent literature on the above research categories.

2.1 Ab Initio Generation

Descriptive languages for the definitions of data dependencies and column distributions were

proposed in [12, 17, 22]. For example, [12] proposed a special-purpose language called Data

Generation Language (DGL) that is used by the tool to generate synthetic data distributions by

utilizing the concept of iterators. It supports a broad range of dependencies between relations

but the construction of dependent tables always requires access to the referenced table, creating

a bottleneck on the data generation speed.

In contrast to the above, MUDD[29] and PSDG[17] generate all related data at the same

time. However, this can also be rendered inefficient if the referenced tables are large in size.

MUDD proposes algorithms to parallelize the data generation process, and to efficiently generate

dense-unique-pseudo-random sequences and derive nonuniform distributions. Both MUDD and

PSDG decouple data generation details from data description, facilitating users to customize

the tool for their needs.
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In the distributed setting, a faster way of generating references is through recomputing since

it eliminates the I/O costs incurred to satisfy referential constraints across relations that are

present across different nodes. PDGF [22] was designed with this goal of achieving scalability

and decoupling. In PDGF, the user specifies two XML configuration files, one for the data model

and one for the formatting instructions. The generation strategy is based on the exploitation

of determinism in pseudo-random number generators (PRNG) that allows regenerating the

same sequences, hence eliminating the scan overheads. PDGF supports the generation of data

with cyclic dependencies as well, but this incurs high computation cost for generating the keys.

Finally, PDGF comes with a set of fixed generators for different datatypes and basic distribution

functions.

A similar generator is Myriad [6], which implements an efficient parallel execution strategy

leveraged by extensive use of PRNGs with random access support. With these PRNGs, Myriad

distributes the generation process across the nodes and ensures that they can run independently

from each other, without imposing any restrictions on the data modeling language.

2.2 Database Dependent Regeneration

DBSynth[23] is an extension to PDGF, which builds data models from an existing database

by extracting schema information and sampling. If sampling is permissible, histograms and

dictionaries of text-valued data are built. Also, Markov chain generators are used if the text

data contains multiple words. These help in analyzing the word combination frequencies and

probabilities. Finally, after the model construction is complete, PDGF is invoked to generate

the corresponding data.

Like DBSynth, RSGen[28] takes a metadata dump, including 1-D histograms, as the input,

and generates database tables along with a loading script as the output. RSGen uses a bucket-

based model at its core, which is able to generate trillions of records with minimum memory

footage. However, the proposed technique works well only for queries with single attribute

range predicates. Further, due to the inaccurate cost computations and statistical model in the

query optimizers, the volumetric similarity is poor for queries involving predicates on correlated

attributes.

UpSizeR [30] is a graph-based tool that uses attribute correlations extracted from an ex-

isting database to generate an equivalent synthetic database. A derivative work, Rex [13]

produces an extrapolated database given an integer scaling factor and the original database,

while maintaining referential constraints and the distributions between the consecutive linked

tables. Dscaler [32] addresses the problem of generating a non-uniformly5 scaled version of a

database using fine-grained, per-tuple correlations for key attributes, but such information is
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typically hard to come by. Moreover, all these techniques only generate the key attributes,

whereas the non-key values are sampled from the original database using these key values.

Hence, the approach becomes impractical in Big Data and security-conscious environments.

Finally, Dscaler fails to retain accuracy for some common query classes.

2.3 Workload Aware Regeneration

Apart from the above techniques, another line of work [10, 11, 20, 7] is based on workload

dependence (as in the case of Hydra). Here the aim is to generate a database given a workload

of queries such that volumetric similarity is achieved on these queries.

2.3.1 Reverse Query Processing (RQP)

Reverse Query Processing (RQP) [10] gets a query and a result as input and returns a possible

database instance that could have produced that result for that query. Specifically, given a SQL

Query Q, the Schema SD of a relational database (including integrity constraints), and a Table

R (called RTable), the goal of RQP is to find a database instance D such that: R = Q(D),

and D is compliant with SD and its integrity constraints. In general, there are many different

database instances that can be generated for a given Q and R. Depending on the application,

some of these instances might be better than others. In order to generate test databases, it

might be advantageous to generate a small D so that the running time of tests are reduced.

While RQP tries to be minimal, the techniques do not guarantee any minimality.

The overall architecture of RQP is shown in Figure 2.1. In RQP, a query is (reverse)

processed in four steps by the following components: (a) Parser: The SQL query is parsed

into a query tree which consists of operators of the relational algebra. This parsing is carried

out in exactly the same way as in a traditional SQL processor. What makes RQP special is

that that query tree is translated into a reverse query tree TQ. In the query tree TQ, each

operator of the relational algebra is translated into a corresponding operator of the reverse

relational algebra. In fact, in a strict mathematical sense, the reverse relational algebra is not

an algebra and its operators are not operators because they allow different outputs for the same

input. (b) Bottom-up Query Annotation: The second step is to propagate schema information

(types, attribute names, functional dependencies, and integrity constraints) to the operators of

the query tree. Furthermore, properties of the query (e.g., predicates) are propagated to the

operators of the reverse query tree. As a result, each operator of the query tree is annotated

with constraints that specify all necessary conditions of its result, to give T+
Q . That way, it can

be guaranteed that a top-level operator of the reverse query tree does not generate any data

that violates one of the database integrity constraints. (c) Query Optimization: In the last
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Figure 2.1: Architecture of RQP

step of compilation, the annotated query tree T+
Q is transformed into an equivalent optimized

reverse query tree T
′
Q that is expected to be more efficient at run-time. (d) Top-down Data

Instantiation: At run-time, the annotated reverse query tree is interpreted using the RTable R

as input. Just as in traditional query processing, there is a physical implementation for each

operator of the reverse relational algebra that is used for reverse query execution. The result of

this step is a valid database instance D. As part of this step, a model checker (more precisely,

the decision procedure of a model checker) is used in order to generate data.

In many applications, queries have parameters (e.g., bound by a host variable). In order to

process such queries, values for the query parameters must be provided as input to Top-down

data instantiation phase. The choice of query parameters again depends on the application;

for test database generation, for instance, it is possible to generate several test databases with

different parameter settings derived from the program code. In this case, the first three phases

of query processing need only be carried out once, and the Top-down data instantiation can

use the same optimized annotated reverse query tree for each set of parameter settings. It

is also possible to use variables in the RTable. That way, it is possible to specify tolerances.

Specifying such tolerances has two important advantages. First, depending on the SQL query,

it might not be possible to find a test database that generates a report with the exact value.
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Second, specifying tolerances (if that is acceptable for the application) can significantly speed

up reverse query processing because it gives the model checker more options to find solutions.

The equivalence of two SQL queries is undecidable if the queries include the relational minus

operator and if the queries do not follow a distinct operator order. As a result, RQP for SQL

is also undecidable; that is, in general it is not possible to decide whether a D exists for a

given R and Q if Q contains a minus operator. Furthermore, there are obvious cases where

no D exists for a given R and Q (e.g., if tuples in R violate basic integrity constraints). The

approach presented in this paper, therefore, cannot be complete. It is a best-effort approach:

it will either fail (return an error because it could not find a D) or return a valid D.

2.3.2 Query Aware Generation (QAGen)

The idea of using cardinalities from a query plan tree was first introduced in Query Aware

Generation (QAGen) [11]. They start by constructing a symbolic database which is like a

regular database, but its attribute values are symbols (variables), not constants, and then

translate the input AQPs to constraints over the symbols in the database.

The data generation process of QAGen consists of two phases: (a) the symbolic query pro-

cessing phase, and (b) the data instantiation phase. The goal of the symbolic query processing

phase is to capture the user-defined constraints on the query into the target database. To pro-

cess a query without concrete data, QAGen integrates the concept of symbolic execution from

software engineering into traditional query processing. Symbolic execution is a well known pro-

gram verification technique, which represents values of program variables with symbolic values

instead of concrete data and manipulates expressions based on those symbolic values. Borrow-

ing this concept, QAGen first instantiates a database that contains a set of symbols instead of

concrete data. Inside each symbolic tuple, the values are represented by symbols rather than

by concrete values. Since the symbolic database is a generalization of relational databases and

provides an abstract representation for concrete data, this gives room to QAGen to control

the output of each operator of the query. The symbolic query processing phase leverages the

concept of traditional query processing.

The general architecture of QAGen is shown in Figure 2.2. First, the database schema M

and the input query QP are analyzed by the Query Analyzer. The output of this process is a

knob-annotated query execution plan. A knob can be regarded as a parameter of an operator

that controls the output. A basic knob that is offered by QAGen is the output cardinality

constraint. This knob allows a user to control the output size of an operator. However, whether

a knob is applicable depends on the operator and its input characteristics. Then, the user

specifies her desired requirements on the operators of the query tree. Afterwards, the input
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Figure 2.2: Architecture of QAGen

query is executed by a Symbolic Query Engine just like in traditional query processing; i.e.,

each operator is implemented as an iterator, and the data flows from the base tables up to the

root of the query tree.

However, unlike in traditional query processing, the symbolic execution of operators deals

with symbolic data rather than concrete data. Each operator manipulates the input symbolic

data according to the operator’s semantics and the user-defined constraints, and incrementally

imposes the constraints defined on the operators to the symbolic database. After this phase, the

symbolic database is then a query-aware database that captures all requirements defined by the

test case of the input query (but without concrete data). The Data Instantiation phase follows

the symbolic query processing phase. This phase reads in tuples from the symbolic database that

are prepared by the symbolic query processing phase and subsequently, a Constraint Satisfaction

Program (CSP) is invoked to identify values for symbols that satisfy all the constraints, and

instantiates the symbols. The instantiated tuples are then inserted into the target database.

To allow a user to define different test cases for the same query, the input query of QAGen is

in the form of a relational algebra expression.

On the positive side, these generators are capable of handling complex operators as they

use a general CSP, but the performance cost is huge since the number of CSP calls increases

with the database size. Further, it requires operating on a symbolic database of matching size

to the original database, and processing the entire database during the algorithm execution.

17



This makes it impractical for Big Data environments.

QAGen is similar to HF-Hydra’s specialized setting discussed in Chapter 4, in the sense that

both of them work on the level of individual input queries, and creates an exclusive database

for that query.

2.3.3 MyBenchmark

MyBenchmark [20], an offline data generation tool, uses the Symbolic Query Processing (SQP)

technique developed in [11] as a building block. However, MyBenchmark does not restrict itself

to find a single database instance D for all input queries. Instead, given a database schema H, a

set of annotated queries Q = {Q1, Q2, . . . , Qn} (the operator(s) in Qi are annotated with cardi-

nality constraint(s) Ci), MyBenchmark generates m (m ≤ n) databases D1, D2, . . . , Dm and m

sets of parameter values P1, P2, . . . , Pm, such that (a) all databases Dj (1 ≤ j ≤ m) conform to

H, and (2) the resulting cardinalities Ci of executing Qi on one of the generated databases Dj ,

using the parameter values Pj, approximately meet Ci (the degree of approximation defined is

based on the relative error between actual cardinalities and annotated cardinalities). If m = n,

that essentially means MyBenchmark is the same as QAGen in which each query has to be ex-

ecuted on a separate generated database. Therefore, the goal of MyBenchmark is to minimize

m, the number of generated databases, in best effort. Figure 2.3 shows the architecture for

MyBenchmark.

Figure 2.3: Architecture of MyBenchmark

SQP was designed to generate n separate databases for the n input annotated queries. If

SQP is carried out on a “processed” symbolic database, SQP will generate many symbolic tuples

with contradicting constraints (as different queries may impose different constraints on the same
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symbolic tuple) and they will be unable to be instantiated with concrete values. To generate

m databases for n annotated queries Q1, Q2, . . . , Qn, MyBenchmark first uses QAGen’s SQP

engine as a black-box component to process each annotated query separately (without data

instantiation) and generates n Symbolic Databases (SDBs) D1, D2, . . . , Dn. Each symbolic

database Di guarantees that Qi(Di) satisfies the constraints annotated on Qi. Then, a Symbolic

Database Integrator is used to integrate the SDBs. The integration algorithms are designed to

minimize the number of symbolic tuples with contradicting constraints and the number of

generated databases. Finally, we use the Data Instantiator of QAGen to instantiate each

integrated SDB with concrete values. The major advantage of this architecture is that we can

fully utilize the capability of SQP in processing a variety of SQL queries.

QAGen is similar to HF-Hydra’s extended version of the general framework discussed in

Chapter 6, in the sense that both of them take in an input workload of n queries, and produces

a few (m) databases, and the number of databases m is tried to be kept minimum in best effort.

2.3.4 DataSynth

The goal of Datasynth [7] is to design efficient algorithms for generating synthetic databases

that satisfy a given set of cardinality constraints. The set of constraints provided as input can

be large. The queries in the constraints can be complex, possibly involving joins over multiple

tables. DataSynth assumes that the input database schema is a snowflake schema with only

joins between primary and foreign key attributes, and the filter selection predicates are added

on the non-key attributes.

The Data Generation Problem (DGP) in DataSynth is defined as: Given a database schema

and a collection of cardinality constraints C1, C2, . . . , Cm generate a database instance con-

forming to the schema that satisfies all the constraints. In the decision version of the problem,

the output is Yes if there exists a database instance that satisfies all the constraints and No,

otherwise. While the general data generation problem is hard, the algorithms are able to han-

dle a large and useful classes of constraints. The algorithms are probabilistically approximate,

meaning that they satisfy all constraints in expectation. The algorithms are also sensitive to

the complexity of the input cardinality constraints in a precisely quantifiable way and use ideas

from probabilistic graphical models.

DataSynth creates a denormalized relation for every relation from the input schema, which

comprises non-key attributes of its own relation and all the non-key attributes of all the relations

that it references. DataSynth performs Grid-partitioning over its data space. Grid-Partitioning

first intervalizes the domain of each attribute based on the constants appearing in the CCs,

and divides the domain into a grid aligned with the interval boundaries for each attribute. If
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a denormalized relation has n attributes, and each attribute gets divided into l intervals, then

the domain of the denormalized relation is partitioned into a grid of ln cells. For each cell in

the grid, a variable is created that represents the number of data rows present in that cell. The

output of grid partitioning is a group of regions such that the domain points in each region

satisfy the same set of CCs.

Figure 2.4: Grid Partitioning in DataSynth

The key difference between Hydra’s region partitioning and DataSynth’s grid partitioning

can be seen in Figure 2.4. Each rectangular box (formed with dotted lines) forms a region in

DataSynth, whereas only the coloured rectangles, and their intersections correspond to the re-

gion formed in Hydra. An important point to note is, the number of regions in grid-partitioning

is not minimal, unlike Hydra, i.e., there can be more than one region that satisfies the same

CCs. An LP is formulated after this with a variable for each region where the variable signifies

the cardinality of the region. The solution of the LP is used to generate a denormalized table

in a probabilistic manner, which is used to generate the base tables.

DataSynth severely suffers in scaling to a larger number of queries in the input workload,

owing to its grid-partitioning approach, as it creates an explosion in the number of variables

and hence becomes difficult for the solver to handle. The probabilistic way of generating tuples

also introduces some errors, where the error is defined as the output cardinality mismatch in

the CCs.

2.3.5 Touchstone

Touchstone [19] is a workload-aware data generator, that achieves fully parallel data generation,

linear scalability, and austere memory consumption for supporting the generation of enormous
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query-aware test databases. Touchstone generates one single database instance for multiple

queries. In query-aware data generation, we need to handle the extremely complicated depen-

dencies among columns which are caused by the complex workload characteristics specified on

the target test queries, as well as the data characteristics specified on the columns. There are

two core techniques employed by Touchstone beneath the accomplishments of all above enticing

features. Firstly, Touchstone employs a completely new query instantiation scheme adopting

the random sampling algorithm, which supports a large and useful class of queries, as well as

the actual query execution trees from the running database system. Secondly, Touchstone is

equipped with a new data generation scheme using the constraint chain data structure, which

easily enables thread-level parallelization. This scheme allows Touchstone to easily scale up to

dozens of nodes and hundreds of cores for parallelized database generation and thus achieves a

1000× performance improvement against [20].

The input to Touchstone contains the database schema H, data characteristics of non-

key columns D, and workload characteristics of test queries W . These characteristics W are

obtained by running actual queries over the client database, thereby obtaining result cardinality

for each edge of the query plan, and then masking the constraints with parameters to obtain

parametric constraints. This parameterization is done for privacy reasons. The output of

Touchstone consists of two parts, namely the instantiated queries Q and the generated Database

instance (DBI). To support the generation procedure, the infrastructure of Touchstone is divided

into two major components, which are responsible for query instantiation and data generation,

respectively, as shown in Figure 2.5.

Figure 2.5: Architecture of Touchstone

Touchstone builds a group of random column generators G = {G1, G2, . . . , Gn}, which de-

termine the data distributions of all non-key columns to be generated. A random column
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generator Gi in G is capable of generating values for the specified column while meeting the

required data characteristics in expectation.

Given the input workload characteristics W , Touchstone instantiates the parameterized

queries by adjusting the related column generators if necessary and choosing appropriate values

for the variable parameters in the predicates. The instantiated queries Q are output to the

users for reference, while the queries Q and the adjusted column generators G are fed into

the data generation component. The data generation component generally deploys the data

generators over a distributed platform. The random column generators and constraint chains

are distributed to all data generators for independent and parallel tuple generation.

The data generation module in Touchstone consists of two steps. In the first compilation

step, Touchstone orders the tables as with a generation sequence. This is done by constructing

a topological order over the tables. In order to decouple the dependencies among columns and

facilitate parallelization, Touchstone decomposes the query trees annotated with constraints

into constraint chains. A constraint chain with respect to a table is defined as the sequences of

constraints with a descendant relationship in the query trees. In the second assembling step,

the working threads in Touchstone independently generate tuples for the tables based on the

result order from the compilation step. For each tuple, the working thread fills values in the

columns by calling the random column generators independently and incrementally assigns a

primary key, while leaving the foreign keys blank. By iterating the constraint chains associated

with the table, the algorithm identifies the appropriate candidate keys for each foreign key

based on the maintained join information of the referenced primary key, and randomly assigns

one of the candidate keys to the tuple. Touchstone maintains the join information table to

track the status of joinability of primary keys based on a bitmap representation. There are two

attributes in the entry of join information table, i.e., bitmap and keys, indicating the status of

joinability and the corresponding satisfying primary key values. Note that the keys in the entry

may be empty (such entries will not be stored in practice), which means there is no primary

key with the desired joinability status.

The data fidelity of synthetic database is evaluated by a relative error on cardinality con-

straints, and maximum errors are in the range of 1-4%. A few key limitations of Touchstone

are the following : (a) No support for filters on key columns, (b) Equality constraints over fil-

ters involving multiple columns are not supported, (c) Equi-joins on columns with no reference

constraint are not supported and (d) No support for database schema with cyclic reference

relationship. Touchstone is similar to HF-Hydra’s general framework discussed in Chapter 5,

in the sense that both of them take in metadata constraints as additional input other than the

query workload, and generates a single synthetic database.
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2.3.6 Hydra

We have already seen a brief introduction to Hydra in Chapter 1. However, in this section,

we present a detailed overview of Hydra’s architecture, along with a summary of its various

components and their interactions with the database engine. Figure 2.6 captures the overall

architecture of Hydra.

Figure 2.6: Hydra Architecture

In this picture, the green boxes show the new components designed specifically for Hydra.

Among these, the primary components are the LP Formulator, the Summary Generator, and

the Tuple Generator, all shown with thick borders. The other modules have been sourced from

the literature, including the preprocessor (orange) from DataSynth [8], the CODD metadata

processor (yellow) [24], and the Z3 LP solver (blue) [15]. Now we drill down into each component

as follows:

Client Site The information flow from the client to the vendor is as follows: At the client

site, Hydra fetches the schema information (S), and the query workload (q1, q2, q3, ..., qn) with

its corresponding AQPs (p1, p2, p3, ..., pn) obtained from the database engine. The AQPs are

converted to equivalent cardinality constraints (CCs) using a Parser. The metadata from

the database catalogs (M) is captured with the help of CODD. In order to address client

security concerns, all this information (schema, metadata, queries and CCs) is passed through

an Anonymizer that suitably masks the information before shipping it to the vendor site. In this

process, non-numeric constants appearing in the queries and plans are mapped to numbers to

facilitate LP formulation at the vendor site. Due to this mapping, the final database summary

generated at the vendor site also consists of only numeric datatypes. It is possible to reverse
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this mapping to get back the original datatypes, but this is not an important consideration for

satisfying the cardinality constraints.

LP Formulator and Solver: For each view, the LP Formulator takes as input the corre-

sponding set of subviews and applicable CCs, and then constructs the LP. The domain corre-

sponding to each sub-view is partitioned into regions using a novel region-partitioning algorithm

that takes as input the different cardinality constraints. There is one variable for each region,

corresponding to the number of tuples chosen from the region. Each cardinality constraint is

encoded as an LP constraint on these variables, and the solution of the LP is used in deciding

which tuples to include in the sub-view.

Hydra’s region-partitioning strategy is in marked contrast to the grid-partitioning strategy

used in [7]. Recall that grid-partitioning first intervalizes the domain of each attribute based

on the constants appearing in the CCs, and divides the domain into a grid aligned with the

interval boundaries for each attribute. If a sub-view has n attributes, and each attribute gets

divided into ` intervals, then the domain of the sub-view is partitioned into a grid of `n cells. For

each cell in the grid, a variable is created which represents the number of data rows present in

that cell. In contrast, region-partitioning strategy divides the domain into only as few regions

as is necessary to precisely write out each cardinality constraint, and assigns one variable

corresponding to each region. Typically, this leads to far fewer variables than grid-partitioning,

which has one variable per cell in the grid. As the cardinality constraints get more complex,

the difference in complexity of the LPs produces by region-partitioning and grid-partitioning

become more pronounced. This LP is passed on to the Z3 [15] solver, which provides one of

the feasible solutions as the output.

Summary Generator: This module generates the database summary from the LP solutions

obtained on the views. Since partitioning is carried out at a sub-view level, the LP solution,

which is expressed in terms of sub-view variables, needs to be mapped to equivalents in the

original view space. A sampling-based approach was proposed in [7] for this purpose – for

example, say a view (A,B,C) is split into a pair of sub-views (A,B) and (B,C), the algorithm

computes the distributions Prob(A,B) and Prob(C|B). Then, each tuple is generated by first

sampling a point from the former distribution, and then sampling a point from the latter

conditioned on this outcome.

However, Hydra chooses not to take this approach since the computational overhead incurred

is enormous and the sampling process introduces errors. Instead, Hydra uses an alternative

deterministic alignment algorithm, which works purely using summaries. This component is

also responsible for ensuring that the generated summary obeys referential integrity.
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Tuple Generator: The Tuple Generator resides in the database engine. It ensures that

whenever a query is fired, the executor does not need to fetch data from the disk, but instead

gets data on-demand from the Tuple Generator, using the database summary.

A unique feature of Hydra’s data regeneration approach is that it delivers a database sum-

mary as the output, rather than the static data itself. This summary is of negligible size,

depends only on the query workload and not on the database scale. It can be used either for

dynamically generating data during query execution, or optionally for materializing static rela-

tions when parameters related to I/O processing need to be monitored. This summary-based

approach helps eliminate the enormous time and space overheads incurred by prior techniques

in generating and storing data before initiating analysis.

Therefore, using dynamic generation can prove to be a good option since it can help to

eliminate the large time and space overheads incurred in: (1) dumping generated data on the

disk, and (2) loading the data on the engine under test.
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Chapter 3

Operator Coverage Expansion

Hydra does not support the LIKE operator in its input training workload. In HF-Hydra,

we extend the ambit of Hydra to include the LIKE operator as well. We achieve this by

converting the LIKE predicate into one or more equivalent equality filter predicates. The

detailed mechanism is discussed in this chapter.

To start with, from the entire input query workload, we collect all the predicate constants

that occur with the LIKE operator, and segregate them on the basis of the attribute they are

applied upon. Depending on the number of predicate constants an attribute has, the handling

mechanism is classified as follows. To make things clear, we take a toy example with queries

on the Ship mode relation from the TPC-DS benchmark schema in each case and explain the

process.

3.1 Single LIKE Predicate

The attributes which have only one LIKE predicate applied upon them in the entire training

workload fall in this category. LIKE predicate constants can be considered as regular expres-

sions. We take the regular expression and generate any valid representative string that satisfies

the regular expression, and with that, we convert the LIKE predicate into an equality filter

predicate.

Consider the following example query Q1 and its corresponding AQP shown in Figure 3.1.

Q1: Select * from ship mode where

sm code like ’C%’;
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Figure 3.1: AQP for Query Q1

The cardinality constraint corresponding to the LIKE predicate in Q1 is:

CC1: |σsm code∼∼ ′C%′ (Ship mode)| = 4

The LIKE predicate is applied on sm code, and the predicate constant is ’C%’, which we

take as our regular expression. ’C’ is a valid representative string that satisfies ’C%’. Now the

CC can be now transformed as :

CC1: |σsm code∼∼ ′C%′ (Ship mode)| = 4

→ |σsm code = ′C′ (Ship mode)| = 4

Now, this modified CC can be handled in the same way in which other equality filter

predicate CCs are handled with the existing setup.

3.2 Multiple LIKE Predicates

The attributes which have more than one LIKE predicate applied upon them in the entire

training workload fall in this category. The data generation mechanism in such cases needs to

be aware of any possible intersections among the different predicates that are featured on the

same attribute. If no care is taken, then the resultant synthetic database will fail to satisfy the

CCs. Let us take an example to understand this better.

Consider the following queries Q2, Q3, Q4, and their corresponding AQPs shown in Fig-

ures 3.2a, 3.2b, 3.2c.

Q2: Select * from ship mode where

sm code like ’%A%’;
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Q3: Select * from ship mode where

sm code like ’%AB%’;

Q4: Select * from ship mode where

sm code like ’%B%’;

(a) AQP for Q2 (b) AQP for Q3 (c) AQP for Q4

Figure 3.2: AQPs for Multiple LIKE predicate case

The cardinality constraints corresponding to the LIKE predicate for Q2, Q3, Q4 are:

CC2: |σsm code∼∼ ′%A%′ (Ship mode)| = 8

CC3: |σsm code∼∼ ′%AB%′ (Ship mode)| = 4

CC4: |σsm code∼∼ ′%B%′ (Ship mode)| = 7

Let’s first try to handle multiple LIKE predicates the same way as the previous subsection,

and so for the regular expressions ’%A%’, ’%AB%’, and ’%B%’, let the representative strings

be ’A’, ’AB’, ’B’.

Also, let us consider that Q2, Q3, Q4 are the only queries that form our training workload.

Then the database generated from the resultant summary, for the attribute sm code is shown

in Table 3.1.

sm code Count

A 8

AB 4

B 7

Table 3.1: Sample synthetic database for sm code
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Now, if we runQ2, Q3, Q4 over this synthetic database, the resulting CCs for LIKE predicates

would be:

CC2: |σsm code∼∼ ′%A%′ (Ship mode)| = 12

CC3: |σsm code∼∼ ′%AB%′ (Ship mode)| = 4

CC4: |σsm code∼∼ ′%B%′ (Ship mode)| = 11

Clearly, the CCs from the synthetic data do not match the CCs from the client AQPs, and

so we need a different strategy to handle multiple LIKE predicates. This incorrectness has

risen because of the overlaps in the regular expressions from the CCs. The regular expressions

from the first two CCs have a non-null intersection, and so do the regular expressions from the

last two CCs. If there were no such overlaps, or in other words, if the regular expressions were

disjoint, we can then use the same transformation strategy as used in the previous subsection.

So, firstly, we need to identify the existence of such overlaps by performing intersections on

the individual regular expressions and secondly, come up with a methodology to form disjoint

spaces within the regular expressions.

3.2.1 Discovering Intersections

Performing intersection on regular expression strings directly is non-trivial, and so, we adopt

an indirect approach. We make use of concepts from automata theory to convert Regular

expression → Epsilon-NFA → NFA → DFA. Note that DFAs are closed under intersec-

tions. Once we have equivalent DFAs for our regular expressions, we can now easily perform

intersections on every pair of DFA and produce another DFA, which would be then equivalent

to the intersection of the regular expressions. This exercise essentially gives us a Venn diagram

denoting the powerset of intersections. An example Venn diagram for three regular expressions

R1, R2, R3 can be seen in Figure 3.3. In our toy example, for 3 regular expressions, there will be

a total of seven spaces in the Venn Diagram. In general, for k number of regular expressions,

we will have 2k − 1 number of spaces in the Venn Diagram.
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Figure 3.3: Venn diagram showing intersections for all DFAs

Recall that the goal was to generate disjoint individual spaces so as to completely avoid any

possible overlaps among the regular expressions. The seven spaces in Figure 3.3 are still not

disjoint. To make each space truly disjoint, we can intersect each space with its corresponding

complement in the diagram. Note that DFAs are closed under complement as well so, at the

end of this exercise, we would get seven disjoint spaces and a corresponding DFA for each of

them. The final disjoint Venn Diagram for three regular expressions R1, R2, R3 looks as shown

in Figure 3.4.
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Figure 3.4: Venn diagram showing all disjoint spaces

For each of the seven spaces, we have a corresponding DFA from the Venn Diagram. Each

of these DFA can be converted back to a regular expression. Now the initial regular expressions

from the CCs that formed the training workload can be expressed as a conjunction of these

disjoint constituent regular expressions. For example, R1 is now broken down into four disjoint

spaces s1, s4, s6, s7. From the DFAs corresponding to s1, s4, s6, s7, we can get four regular

expressions r1, r4, r6, r7, and equivalently express R1 as

R1 = r1 ∪ r4 ∪ r6 ∪ r7

Likewise, R2 and R3 can be expressed as

R2 = r2 ∪ r4 ∪ r5 ∪ r7
R3 = r3 ∪ r5 ∪ r6 ∪ r7

3.2.2 Representative strings for disjoint spaces

Now that we have achieved disjointness in the regular expressions, we can proceed to generate

representative strings for each space. For each of the seven spaces s1, s2, . . . , s7, the corre-

sponding regular expressions r1, r2, . . . , r7, and their representative strings are listed in Table

3.2.
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Note that there may be cases in which the intersection of a pair of DFA resulted in NULL,

and so the DFA for such spaces and their corresponding regular expression would simply be

NULL. In our toy example, spaces x2, x4, x5 are NULL. Such spaces can be simply ignored in

the transformation process.

Disjoint Regular Expression Representative String

r1 (%A%) ∩ (%AB%) ∩ (%B%) A

r2 (%A%) ∩ (%AB%) ∩ (%B%) NULL

r3 (%A%) ∩ (%AB%) ∩ (%B%) B

r4 (%A%) ∩ (%AB%) ∩ (%B%) NULL

r5 (%A%) ∩ (%AB%) ∩ (%B%) NULL

r6 (%A%) ∩ (%AB%) ∩ (%B%) BA

r7 (%A%) ∩ (%AB%) ∩ (%B%) AB

Table 3.2: Representative strings for disjoint spaces

3.2.3 Cardinality assignment for disjoint spaces

To generate data for each disjoint space using its representative string, we need to split the

cardinality of each CC to its constituent disjoint spaces. For this purpose, we frame each

CC into a linear equation. Each disjoint space is assigned a variable. Collectively, we then

get a system of linear equations in these variables. These equations are solved to yield the

cardinalities for the constituent disjoint spaces.

For our toy example, the system of linear equations would be:

R1: x1 + x6 + x7 = 8

R2: x7 = 4

R3: x3 + x6 + x7 = 7

Note that the spaces which turned out to be NULL are ignored in the equations. A feasible

solution for the above system of linear equations is:

x1 = 2, x3 = 1, x6 = 2, x7 = 4
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3.2.4 Final Transformation

The LIKE predicates of CC2, CC3, CC4 from Q2, Q3, Q4 are finally transformed using their

constituent representative strings and corresponding cardinalities, as shown in Table 3.3. Note

that collectively, there could be some duplicate CCs, which stemmed out from the intersection

among the CCs. However, we take into consideration the unique ones only (highlighted in

boldface). These transformed CCs can be handled the same way other equality filter predicates

are handled with the existing setup.

Original CC Transformed CC(s)

CC2 |σsm code∼∼ ′%A%′ (Ship mode)| = 8

|σ(sm code = ′A′) (Ship mode)| = 2

|σ(sm code = ′BA′) (Ship mode)| = 2

|σ(sm code = ′AB′) (Ship mode)| = 4

CC3 |σsm code∼∼ ′%AB%′ (Ship mode)| = 4 |σ(sm code= ′AB′) (Ship mode)| = 4

CC4 |σsm code∼∼ ′%A%′ (Ship mode)| = 7

|σ(sm code = ′B′) (Ship mode)| = 1

|σ(sm code= ′BA′) (Ship mode)| = 2

|σ(sm code= ′AB′) (Ship mode)| = 4

Table 3.3: Final Transformation of CCs with LIKE Predicates

3.2.5 Optimization Measures

The intersection of two DFAs could result in an explosion in the number of states of the resultant

DFA, and so, it could get complex to compute subsequent intersections up the pipeline. Hence

as an optimization measure, we minimize the resultant DFA after each individual intersection

and then proceed with subsequent intersections.

The algorithm discussed here has exponential time complexity. But, in realistic workloads,
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we can expect most intersections to end up in NULL, and so the subsequent intersections up

the pipeline would be totally avoided. Hence, our proposed algorithm for handling intersections

among regular expressions combined with minimization of resultant states at each step of the

process can be expected to ensure pragmatic computational overheads.

3.3 Multiple LIKE predicates in a single CC

In our toy example for multiple LIKE predicates, we had looked at multiple LIKE predicates

accumulated from CCs over a workload for a given attribute, but in all of those CCs, we had

a single LIKE predicate within each CC. But if a single training query has multiple LIKE

predicates applied in it, then the corresponding filter CC will have multiple LIKE predicates in

it as well. The CC might have the multiple predicates either in disjunction or in conjunction,

depending on the actual training query. We discuss the procedure to handle such cases here.

3.3.1 Multiple predicates in conjunction

For multiple predicates from a single CC in conjunction, we can take up the individual predi-

cates and compute intersections with other predicates from the other CCs in the workload and

create disjoint spaces as discussed already. In the transformation phase of converting the LIKE

predicates into equality predicates, instead of taking up the representative strings from individ-

ual spaces, we can directly take up the representative string corresponding to the intersection

of all the predicates that form the conjunction in the CC under consideration.

As an example, let us consider the workload to have only two CCs, namely CC4 from the

earlier section and the following CC5:

CC4: |σsm code∼∼ ′%B%′ (Ship mode)| = 11

CC5: |σ((sm code∼∼ ′%A%′) ∧ (sm code∼∼ ′%AB%′)) (Ship mode)| = 4

We take up regular expressions ’%A%’, ’%AB%’, ’%B%’ and proceed to get disjoint spaces.

For the transformation of CC5, we can directly generate a representative string from the regular

expression obtained from DFA corresponding to the highest granularity for CC5. i.e. ’%A%’ ∩
’%AB%’. Let the representative string be ’AB’. The transformation of CC5 would then be:

CC5: |σ(sm code∼∼ ′%A%′) ∧ (sm code∼∼ ′%AB%′) (Ship mode)| = 4

→ |σ((sm code = ′AB′)) (Ship mode)| = 4
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3.3.2 Multiple predicates in disjunction

For multiple predicates from a single CC in disjunction, we can simply choose to retain any

one of the available predicates and drop the rest. From there, we can proceed with the rest of

the workload by computing intersections, creating disjoint spaces, and transforming them back

into equality predicates.

As an example, let us consider we have the following CC:

CC6: |σ((sm code∼∼ ′%A%′) ∨ (sm code∼∼ ′%B%′)) (Ship mode)| = 20

Here we have two predicates with regular expressions ’%A%’ and ’%B%’. We can choose to

retain any one of them, and drop the other. The transformation would then be as follows:

CC6: |σ((sm code∼∼ ′%A%′) ∨ (sm code∼∼ ′%B%′)) (Ship mode)| = 20

→ |σsm code∼∼ ′%A%′ (Ship mode)| = 20

and eventually,

→ |σ((sm code = ′A′)) (Ship mode)| = 20
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Chapter 4

Managing Scalability For Training

Queries

In this chapter, we look into our specialized case that focuses only on handling training queries.

We discuss in detail our simplified approach to bypass the scalability limitation and manage

to handle any number of training queries in HF-Hydra. We achieve this by working on the

level of each individual query. Also, in this specialized setting, we extend support to include

projection-based operators in our training query.

We begin the discussion with an overview of our simplified approach. We then proceed to

look into different scenarios of training queries and how relation summaries are generated in

each case. To make things concrete, in each case, we present a query derived from the TPC-DS

benchmark suite, as a running example. Subsequently, we look into the special case of handling

LIKE predicates when we deal with individual queries and also queries with projections. Fi-

nally, we talk about how dynamic generation is performed and the overall picture of managing

scalability for training queries.

4.1 Overview

Hydra takes in a workload of training queries and produces a summary that ensures volumetric

similarity. As we discussed in section 1.1.3, Hydra carries out view formation, region parti-

tioning, and then extracts individual relations back from the views by ensuring no referential

integrity violations and eventually constructs the individual relation summaries.

However, for the AQP from a single query, all the corresponding CCs are essentially sub-

trees, and so they have a superset-subset relationship. Hence the regions corresponding to each

individual participating relation from these CCs readily come out to be disjoint. By virtue of
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this, when working at the level of individual queries, we can directly handcraft a data point

adhering to this region and add it to our relation summary similar to the ones seen in Figure 1.5,

thus skipping all the above-discussed processing that is critical while dealing with a workload

of queries.

Each data point we fabricate for a given CC of a relation will consist of a row containing

values for all the attributes (except primary key (PK)) of the relation, according to its schema.

But the row will have actual values for only the attributes that take part in the query. The

rest of the attributes can be assigned any values, or even simply left out as null. A numerical

cardinality is associated with each row. During dynamic generation, this row is replicated the

specified cardinality number of times, with consecutive natural numbers used as the primary

key value. The next row in summary takes on from the next natural number as its PK value

where the previous row left off.

Note that only PK is left out from our fabrication, but the Foreign key (FK), if any, for a

relation is fabricated as part of the rows in the summary itself. Hence, for a given fact relation,

it is critical to know the PK values of the dimension relation with whom it is about to join

(borrow PK) during query execution. Hence we process the relations in a topological order of

their PK-FK dependencies.

For a single relation, with presence/absence of filter predicates and projection attributes, we

have four possible scenarios. Similarly, for multiple relations, we have four more possible scenar-

ios. However we look at only the scenarios which are comparatively complex in the upcoming

sections. The solutions for other scenarios can be trivially extended. In each section, we will

look into how HF-Hydra handles queries of increasing complexity with filters and projections

and generates the individual relation summaries.

4.2 Query with Single relation

The query template under consideration is as follows :

Select distinct P1, P2, ..., Pn

from R

where F1, F2, ..., Fn ;

Here, P1, P2, ..., Pn are the attributes projected from Relation R

and F1, F2, ..., Fn are the filter predicates that are applied on R.

As an example, let us consider Query Q1 and its corresponding AQP shown in Figure 4.1.
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Q1: Select distinct d month seq

from date dim where

d year = 2001;

Figure 4.1: AQP for Q1

The CCs from the AQP for Q1 would be :

|πd month seq (Date dim)| = 12

(Let us term the CCs of this type as Projection CC, with the attributes that appear in the

CC as PAttr and the cardinality as PCard)

|σd year=2001 (Date dim)| = 365

(Let us term the CCs of this type as Filter CC, with the attributes that appear in the CC as

FAttr and the cardinality as FCard)

|Date dim| = 73049

(Let us term the CCs of this type as Relation CC, and the cardinality as RCard)

The procedure to generate the relation summary for R is as follows:

1. Create a template row with placeholders for each attribute in the relation. Fabricate the

corresponding value at the index of FAttr with a constant that satisfies the filter

predicate(s). We can populate the other attributes in the row with any legal value from

the corresponding datatype for each attribute.
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2. Create PCard − 1 number of rows from the template obtained from Step 1, and fabricate

unique values for PAttr in every row. If any of the attributes in PAttr is also in FAttr,

then it is made sure the unique fabricated value still satisfies the filter predicate. This can

be done by choosing different predicate values that feature in the filter CC to fabricate

each row for the common attribute(s) in PAttr and FAttr. Each of these rows is added to

the relation summary with cardinality 1.

3. Create a row from the template obtained from Step 1, and choose a different value than

the one used in Step 2, and fabricate that value for PAttr. This row is added to the relation

summary with cardinality FCard −PCard + 1. Step 3 will satisfy the Filter CC. Steps 2

and 3 together will satisfy the Projection CC, since, among the total PCard unique values

needed to satisfy projection post the application of filter predicate, PCard − 1 unique

values come from Step 1, and the last unique value comes from Step 2.

4. Create a row with values for each attribute in the schema filled with any legal value

from the corresponding datatype for each attribute. This row is added to the database

summary with cardinality RCard − FCard. Steps 2, 3, 4 together satisfy the Relation CC,

as the total rows required for this relation together come from all the three steps.

Since we deal with a single relation here, the relation summary for R forms our database

summary, which is subsequently used for database generation.

4.3 Query with Multiple relations

The query template under consideration is as follows :

Select distinct P1, P2, ..., Pn

from R1, R2, ..., Rn

where <Join clause for R1, R2, ..., Rn >

and F1, F2, ..., Fn;

Here, P1, P2, . . . , Pn are the attribute(s) projected

together from all relations R1, R2, . . . , Rn

and F1, F2, . . . , Fn are the filter predicate(s)

that are applied on relations R1, R2, . . . , Rn.

Let us now discuss some sub cases of this template to understand.
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4.3.1 Query with multiple relations and filters

Let us consider Query Q2 and its corresponding AQP shown in Figure 4.2.

Q2: Select * from

web sales, customer, customer address, date dim where

ws bill customer sk = c customer sk and

c current addr sk = ca address sk and

ws sold date sk = d date sk and

c birth year > 1950 and

c birth month in (6,5,12,4,3,7) and

ca state in (’TN’,’IL’,’GA’,’MO’,’CO’,’OH’,’NM’) and

d year = 2001;

Figure 4.2: AQP for Q2

The CCs for the query would be :

|σd year=2001 ∧ c birth year>50 ∧ c birth month∈(6,5,12,4,3,7) ∧ ca state∈(′TN ′,′IL′,′GA′,′MO′,′CO′,′OH′,′NM ′)

(Customer ./ Customer address ./ Date dim ./ Web Sales)| = 9522

|σd year=2001(Date dim ./ Web Sales)| = 147019
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|σc birth year>50 ∧ c birth month∈(6,5,12,4,3,7) ∧ ca state∈(′TN ′,′IL′,′GA′,′MO′,′CO′,′OH′,′NM ′)

(Customer ./ Customer address)| = 6505

|σc birth year>50 ∧ c birth month∈(6,5,12,4,3,7) (Customer)| = 32765

|σca state∈(′TN ′,′IL′,′GA′,′MO′,′CO′,′OH′,′NM ′) (Customer address)| = 9924

|σdyear=2001 (Date dim)| = 365

|Web sales| = 719384, |Customer| = 100000

|Customer address| = 50000, |Date dim| = 73049

For queries with multiple relations, the fabrication is done in two steps: (a) Firstly, we fabri-

cate data directly for non-key attributes for individual relations, so that the Filter CCs that are

applied on the relations are satisfied. (b) Secondly, we fabricate values for the remaining CCs

which correspond to join nodes. The join nodes are handled by proper FK value fabrication in

the borrowed key attributes of the relations. The number of tuples flowing through each of the

intermediate join nodes depend on the actual PK-FK value match among the joining relations,

and hence by properly fabricating the FK values, we control the flow of tuples at each stage to

satisfy each CC with join node.

The procedure to generate relation summaries for all the participating relations is as follows:

1. For every relation with both Filter and Relation CCs, the fabrication process is as

per the following steps:

In Q2, Date dim, Customer, and Customer address fall under this category.

(a) Create a row with placeholders for each attribute in the relation. Fabricate the

corresponding value at the index of FAttr with a constant that satisfies the

filter predicate(s). We can populate the other non-key attributes in the row with

any legal value from the corresponding datatype for each attribute.

(b) For the row from Step (a), the FK attributes are fabricated as follows :

i. For every FK attribute whose corresponding dimension relation has Filter CC

applied on them, we need to make sure that we choose a legal value from the

range of the primary key values that satisfy the Filter CC.

ii. For every FK attribute whose corresponding dimension relation does not have

Filter CC applied on them, we can choose any legal value from the range of

the primary key values.
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This row is added to the relation summary with cardinality FCard. This will satisfy

the Filter CC. We term such fabricated rows as Filter satisfying rows.

(c) Create a row with placeholders for each attribute in the relation. Fabricate the

corresponding value at the index of FAttr with any constant that does not satisfy

the filter predicate(s). We can populate the other non-key attributes in the row

with any legal value from the corresponding datatype for each attribute.

(d) For each row from Step (c), we can populate the FK attributes with any legal value

from the range of the primary key values of their corresponding dimension relations.

This row is added to the relation summary with cardinality RCard − FCard. We

term such fabricated rows as Filter non-satisfying rows. Rows from Step (a) and

(c) will together satisfy the Relation CC.

2. For every relation with only Relation CC, the fabrication process is as per the following

steps:

In Q2, Web Sales fall under this category.

(a) Create a row with placeholders for each attribute in the relation. We can populate the

non-key attributes in the row with any legal value from the corresponding datatype

for each attribute.

(b) For every row from Step (a), the FK attributes are fabricated in the same way as

discussed in Step 1(b). This row is added to the relation summary with cardinality

RCard. This will satisfy the Relation CC. We term such fabricated rows as Trivial

rows.

4.3.2 Query with multiple relations and projection

Let us consider query Q3 and its corresponding AQP as shown in Figure 4.3.

Q3: Select distinct ws net paid, c birth year, c birth month, ca zip, ca state from

web sales, customer, customer address, date dim where

ws bill customer sk = c customer sk and

c current addr sk = ca address sk and

ws sold date sk = d date sk;
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Figure 4.3: AQP for Q3

The CCs for the query would be :

|π ws net paid,
c birth year,

c birth month,
ca zip,
ca state

(Customer ./ Customer address ./ Date dim ./ Web Sales)| = 718385

|Customer ./ Customer address ./ Web sales ./ Date dim| = 719384

|Customer ./ Customer address ./ Web sales| = 719384

|Customer ./ Customer address| = 100000

|Web sales| = 719384, |Customer| = 100000

|Customer address| = 50000, |Date dim| = 73049

In the case of projections applied in a query with multiple relations, the projection node

appears as the topmost node in the AQP. For the case of multiple relations, we make a finer

adjustment in our classification of Projection CC as follows:

(a) We consider Projection CC to be applied only on the final fact relation in the join sequence.

(Here, only Web sales is considered to have Projection CC).

(b) Also, we classify the attributes that appear in the Projection CC into two groups:

PAttr are the attributes from the final fact table in the join. (Here, it is ws net paid)

Borrowed projected attributes are the attributes projected from other relations. (Here,
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they are c birth year, c birth month, ca zip, ca state)

The procedure to generate relation summaries for all the participating relations is as follows:

1. For the relation with both Projection and Relation CC, the fabrication process is as

per the following steps:

In Q3, Web sales fall under this category.

(a) Create PCard − 1 number of rows with placeholders for each attribute in the relation.

Fabricate the corresponding value at the index of PAttr with unique values in every

row. We term such fabricated rows as Projection satisfied rows.

(b) For every row from Step (a), the FK attributes are fabricated as follows:

i. For FK attributes, whose dimension relations have borrowed projected

attributes, we need to make sure that we choose a unique legal value from

the range of the PK values. In case we exhaust all the unique values in the range

of PK values, then we can sort to using repetition.

ii. For FK attributes, whose dimension relations do not have borrowed pro-

jected attributes, we can choose any legal value from the range of the PK

values of the corresponding dimension table.

We can populate the other non-key attributes in the rows from Step (a) with any

legal value from the corresponding datatype for each attribute. Each of these rows

is added to the relation summary with cardinality 1.

(c) Create a row with placeholders for each attribute in the relation and fabricate PAttr

with a different value than all PAttr from rows of Step (a). We term such fabricated

rows as Projection non-satisfied rows.

(d) For every row from Step (c), the FK attributes are fabricated as follows:

i. For FK attributes, whose dimension relations have borrowed projected

attributes, we must choose the same legal value from the range of the PK

values of the corresponding dimension table.

ii. For FK attributes, whose dimension relations do not have borrowed pro-

jected attributes, we can choose any legal value from the range of the PK

values of the corresponding dimension table.
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We can populate the other non-key attributes in the rows from Step (c) with any

legal value from the corresponding datatype for each attribute. This row is added

to the relation summary with cardinality RCard −PCard + 1.

The rows from Step (a) and (c) together will satisfy the Projection and Relation CC.

2. For every relation with only Relation CC and borrowed projected attributes, the

fabrication process is as per the following steps:

In Q3, Customer and Customer address fall under this category.

(a) Create RCard number of Projection satisfied rows with unique values for all bor-

rowed projected attributes. Each of these rows is added to the relation summary

with cardinality 1. This satisfies the Relation CC. Projections are indirectly applied

on relations of this type, i.e., when the fact table borrows these Projection satisfied

rows, then they will participate in the projection that is directly applied on the fact

table.

(b) For every row from Step (a), the FK attributes are fabricated in the same way as

discussed in Step 1(d).

3. For every relation with only Relation CC, the fabrication process is as per the following

steps:

In Q3, Date dim fall under this category.

(a) Create a Trivial row, and add it to the relation summary with cardinality RCard.

This will satisfy the Relation CC.

(b) For every row from Step (a), the FK attributes are fabricated in the same way as

discussed in Step 1(d).

4.3.3 Query with multiple relations, filters, and projection

Consider query Q4 and its corresponding AQP shown in Figure 4.4.

Q4: Select distinct ws net paid, c birth year, c birth month, ca zip, ca state from

web sales, customer, customer address, date dim where

ws bill customer sk = c customer sk and

c current addr sk = ca address sk and

ws sold date sk = d date sk and
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c birth year > 1950 and

c birth month in (6,5,12,4,3,7) and

ca state in (’TN’,’IL’,’GA’,’MO’,’CO’,’OH’,’NM’) and

d year = 2001 and

ws net profit > 1;

Figure 4.4: AQP for Q4

The CCs for the query would be :

|π ws net paid,
c birth year,

c birth month,
ca zip,
ca state

(σd year=2001 ∧ c birth year>50
∧ c birth month∈(6,5,12,4,3,7)
∧ ca state∈(′TN ′,′IL′,′GA′,

′MO′,′CO′,′OH′,′NM ′)
∧ ws net profit>1

(Customer ./ Customer address

./ Date dim ./ Web Sales)| = 761

‘

|σ d year=2001 ∧ ca state∈(′TN ′,′IL′,′GA′,′MO′,′CO′,′OH′,′NM ′)
∧ c birth year>50 ∧ c birth month∈(6,5,12,4,3,7) ∧ ws net profit>1

(Customer ./ Customer address

./ Date dim ./ Web Sales)| = 3693

‘

|σd year=2001 ∧ ws net paid>1(Date dim ./ Web Sales)| = 57200

‘
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|σ c birth year>50 ∧ c birth month∈(6,5,12,4,3,7)
∧ ca state∈(′TN ′,′IL′,′GA′,′MO′,′CO′,′OH′,′NM ′)

(Customer ./ Customer address)| = 6505

‘

|σws net profit>1 (Web sales)| = 280020

|σc birth year>50 ∧ c birth month∈(6,5,12,4,3,7) (Customer)| = 32765

|σca state∈(′TN ′,′IL′,′GA′,′MO′,′CO′,′OH′,′NM ′) (Customer address)| = 9924

|σdyear=2001 (Date dim)| = 365

|Web sales| = 719384, |Customer| = 100000

|Customer address| = 50000, |Date dim| = 73049

The procedure to generate relation summaries for all the participating relations is as follows:

1. For every relation with Projection, Filter, and Relation CCs, the fabrication process

is as per the following steps:

In Q4, Web sales fall in this category with the filter on ws net profit and ws net paid as

its projected attribute.

(a) Create a template Filter satisfying row.

(b) Create PCard − 1 Projection satisfying rows from the template obtained from

Step 1 with unique values for PAttr, as the same way discussed in Step 2 of

Section 4.2. Each of these rows is added to the relation summary with cardinality

1. This will satisfy the Projection CC.

(c) Create a Projection non-satisfying row from the template obtained from Step 1

with the same values for PAttr, as the same way discussed in Step 3 of Section

4.2, and add this row to the relation summary with cardinality FCard −PCard + 1.

Rows from Steps (b) and (c) here together will satisfy the Projection and Filter CC.

(d) Create a Filter non-satisfying row, and add this row to the relation summary

with cardinality RCard − FCard. This will satisfy Relation CC.

(e) For each row from Step (b), the FK attributes are fabricated as follows:

i. For the FK attribute whose dimension relation have Filter CC and borrowed

projected attributes, we need to make sure that we choose a unique legal

value from the range of the primary key values which have satisfied their

Filter CC. In case we exhaust all the unique values in the range of primary key

values, then we can sort to using repetition.

InQ4, FKs of rows of Web sales referenced from Customer and Customer address

would fall under this category.
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ii. For the FK attribute whose dimension relation has no Filter CC but has

borrowed projected attributes, we need to make sure that we choose any

legal unique value from the range of the primary key values of the correspond-

ing dimension relation.

InQ4, FKs of rows of Web sales referenced from Customer and Customer address

would have fallen under this category if those relations did not have any filters.

iii. For the FK attribute whose dimension relation have Filter CC alone, we need

to make sure that we choose any legal value from the range of the primary key

values that have satisfied their Filter CC.

In Q4, FKs of rows of Web sales referenced from Date dim fall under this cate-

gory.

iv. For the FK attribute whose dimension relation do not have Filter CC applied

on them, we can choose any legal value from the range of the primary key values.

(f) For each row from Step (c), the foreign key attributes are fabricated as follows:

i. For the FK attribute whose dimension relation have Filter CC and borrowed

projected attributes, we need to make sure that we choose the same legal

value from the range of the primary key values which satisfy their Filter CC.

ii. For the FK attribute whose dimension relation has no Filter CC but has

borrowed projected attributes, we need to make sure that we choose the

same legal value from the range of the primary key values which have do not

satisfy their Filter CC.

iii. For the FK attribute whose dimension relation have Filter CC alone, we need

to make sure that we choose any legal value from the range of the primary key

values that satisfy the Filter CC.

iv. For the FK attribute whose dimension relation do not have Filter CC applied

on them, we can choose any legal value from the range of the primary key values.

(g) For each row from Step (d), we can populate the FK attributes with any legal value

from the range of the primary key values.

2. For every relation with Filter, Relation CC and has borrowed projected at-

tributes, the fabrication process is as per the following steps:

In Q4, Customer and Customer address relations fall in this category.

(a) Create a template Filter satisfying row.
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(b) Create FCard Projection satisfied rows with unique values for borrowed pro-

jected attributes from the template row obtained from Step 1. Each of these rows

is added to the relation summary with cardinality 1. This will satisfy the Filter CC,

while the borrowed projected attributes would be unique in each row.

(c) Create a Filter non-satisfying row, and add it to the database summary with

cardinality RCard − FCard. This will satisfy Relation CC.

(d) For each row from Steps (b), the foreign key attributes are fabricated the same way

as in Step 1(e).

(e) For each row from Step (c), the foreign key attributes are fabricated as the same as

in Step 1(g).

3. For every relation with Projection and Relation CC, the fabrication process is done

in the same way as discussed in Step 1 of subsection 4.3.2.

In Q4, if Web sales relation had no filters, it would have fallen in this category.

4. For every relation with Relation CC and borrowed projected attributes, the fab-

rication process is done as the same way as discussed in Step 2 of subsection 4.3.2.

In Q4, if Customer and Customer address relation had no filters, it would have fallen in

this category.

5. For every relation with only Filter and Relation CC, the fabrication process is done

as the same way as discussed in Step 1 of subsection 4.3.1

6. For every relation with only Relation CC, the fabrication process is done as the same

way as discussed in Step 2 of subsection 4.3.1.

4.4 Simplicity in Handling LIKE Operator

As we have only a single query into consideration in this context, we can make certain optimiza-

tion to the general case of handling the LIKE operator discussed in Chapter 3. For an AQP

from a single query, there can only be a maximum of one CC per relation for LIKE operators.

In that one CC, we can still have one or multiple LIKE predicates that are applied. For the

case of a single LIKE predicate, we follow the same procedure as discussed in subsection 3.1.

However, for multiple LIKE predicates, the same procedure discussed in from subsection 3.3 is

followed, but with the following optimization.

Let us consider that we have a CC with three LIKE predicates in conjunction and their

regular expressions are R1, R2, and R3. Recall Figure 3.3 from subsection 3.2.1:
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Here, we can directly take the representative string corresponding to R1 ∩ R2 ∩ R3, thus

completely skipping the computation of disjoint spaces, and proceed with the transformation

of like predicate into equality filter predicate.

4.4.1 Like Predicate participating in Projections

In our design, wherever projections were applied, we fabricated unique values in the template

rows and added it to the corresponding relation summary. For queries wherein the attributes on

which the LIKE operator is applied, also feature as a projected attribute, we follow an indirect

approach. First, the LIKE predicate is converted into an equality filter predicate using the

same procedure discussed in subsection 3.1. But a slight modification is done, wherein, instead

of generating just one representative string, we generate Pcard number of unique representative

strings from the corresponding regular expression, and frame them all in disjunction, and form

our equality filter predicate.

As an example, let us consider the following Projection CC and a CC with LIKE predicate

applied on Ship mode relation from the TPC-DS benchmark, both with sm code as the common

participating attribute.

|πsm code (Ship mode)| = 4

|σ(sm code∼∼ ′%C%′) (Ship mode)| = 15

We need 4 distinct representative strings from ’%C%’, and say we generate ’CA’, ’CB’, ’CC’,

’CD’. Then the LIKE predicate CC is transformed as follows :

|σ(sm code∼∼ ′%C%′) (Ship mode)| = 15
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→ |σ((sm code = ′CA′) ∨ (sm code = ′CB′) ∨ (sm code = ′CC′) ∨ (sm code = ′CD′)) (Ship mode)| =

15

Now, with the Projection CC and this transformed filter CC, the problem reduces to han-

dling Projection and Filter CCs together, which can be carried out by the procedures discussed

earlier in this chapter.

4.5 Dynamic Tuple Generation

We built relation summaries on a per-query basis, and so the dynamic generation process

becomes a function of the query chosen as well. Each time a query is invoked, the relation

summaries corresponding to that query are chosen to perform dynamic generation. Now we

look into how the actual dynamic generation procedure is carried out.

From the individual relation summaries we built in the previous sections, we saw that each

row in the summary had a list of value combinations and an associated cardinality entry. The

dynamic generation process involves generating each relation from the database summary on-

the-fly as follows. We consider the primary key values to be the row numbers of the relation.

Therefore, to get the rth tuple of a relation R, the primary key is chosen as r, and the rest of the

attributes come from the relation summary. We iterate over the rows of relation summary and

take the cumulative sum of the cardinality entries until the sum exceeds r. Say the summation

crosses the value r in jth row of the relation summary. The rest of the values of the rth tuple are

precisely the same as those present in the jth row of the relation summary. For each attribute

for which we have metadata statistics obtained from the client, we take care to initialize a value

from the domain captured in those statistics, rather than picking up any random value.

4.6 Managing Scalability

With the discussion of projection and like inclusive data generation procedure done in the

previous sections, we finally look into how we can extend these to manage and handle any

number of queries in the training workload.

In the LP formulation phase of Hydra, there are a set of linear equations formed and is

solved by using Z3 Solver. When a workload of training queries are processed at once, the

number of variables would be large, and so the inherent computational limitation of the solver

prevented us from extending the workload to a very large number of queries.

On contrast, in this chapter, we have discussed an extreme case where we worked at the

level of individual queries instead of the whole workload at once. Note that for an AQP from

a single query, all the corresponding CCs are sub-trees, and hence they have a superset-subset
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relationship. This gets reflected in the equations that are formed as well. As an example, let

us recall the Filter and Relation CCs of Q2 corresponding to Customer and Customer address

relation.

|σc birth year>50 ∧ c birth month∈(6,5,12,4,3,7) (Customer)| = 32765

|Customer| = 100000

|σca state∈(′TN ′,′IL′,′GA′,′MO′,′CO′,′OH′,′NM ′) (Customer address)| = 9924

|Customer address| = 50000

If we frame equations for the above CCs, using Hydra’s LP formulation module, then we

end up with the equations as shown in Table 4.1.

Relation Equations Solution

Customer x1 = 32765 x1 = 32765

x1 + x2 = 100000 x2 = 67235

Customer Address x1 = 9924 x1 = 9924

x1 + x2 = 50000 x2 = 40076

Table 4.1: Nature of equations while handling one query

We can clearly see that the equations can be solved with mere substitution. Hence, while

working with a single query at a time, as we propose here, we need not make use of the solver

at all. Hence, we can bypass the inherent scalability limitation of the solver and manage to

handle any number of queries in the training workload.

In fact, it is precisely this substitution strategy we emulate in our relation summary gener-

ation process discussed in the previous subsections of this chapter, when we directly assigned

the cardinalities using Pcard, Fcard and Rcard, as the Projection, Filter and Relation CCs all

follow a hierarchial superset-subset relationship, as they are derived from the same AQP.
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Chapter 5

Robustness to Test Query Workloads

In this chapter, we take a detailed look into the general framework of HF-Hydra that enables us

to achieve robustness to test query workloads. In this setup, we utilize all the queries from the

training workload, to create a unified database summary. First, we start with the discussion of

modeling metadata statistics into CCs. Then we talk about how the metadata CCs are made

consistent with the CCs from the AQP. Later, we see the process of generating equivalent SQL

queries for regions and extracting the optimizer’s cardinality estimate and using it to obtain a

better inter-region distribution from the solver. Subsequently, we see the summary generation

process and how the intra-region distribution of tuples is done in HF-Hydra, leveraging the

database optimizer’s model to create more diversity in the data.

5.1 Modeling Metadata Statistics

Most database engines maintain metadata statistics which can be easily modeled as CCs. Here,

we discuss some of the Postgres engine’s stats and how they are modeled into CCs in HF-Hydra.

This technique can be extended easily for other database engines as well. To distinguish these

CCs from AQP CCs, we hereafter refer to them as metadata CCs.

5.1.1 Postgres Metadata Statistics

The metadata information in Postgres is stored in the pg statistic system catalog. Entries

in pg statistic are always approximate even when freshly updated. Rather than looking at

pg statistic directly, it’s better to look at its view pg stats when examining the statistics man-

ually. The pg stats view is designed to be more easily readable and is restricted to show only

rows about tables that the current user can read. We source information from three metadata

statistics, specifically MCV, MCF, and Histogram bounds from pg stats. We look into each

one of them in detail in the following subsections.

53



5.1.2 MCVs and MCFs

Postgres maintains two lists for most attributes in a relation, namely, Most Common Values

(MCVs) and Most Common Frequencies (MCFs). Let us see the definitions and an example

for each from the Postgres documentation to understand better.

Most Common Values: A list of the most common values in the column. (Null if no values

seem to be more common than any others.)

Most Common Frequencies: A list of the frequencies of the most common values, i.e., num-

ber of occurrences of each divided by the total number of rows. (Null when MCVs is.)

Example:

For an attribute A of a relation R, the frequency of an element stored at position i in the

MCVs list will be stored at the matching position i in the MCFs array.

SELECT most common vals, most common freqs FROM pg stats WHERE
tablename = ’tenk1’ AND attname = ’stringu1’;

most common vals {FDAAAA, NHAAAA, ATAAAA, BGAAAA,
EBAAAA, MOAAAA, NDAAAA, OWAAAA,

BHAAAA, BJAAAA}
most common freqs {0.00333333, 0.00333333, 0.003, 0.003, 0.003,

0.003, 0.003, 0.003, 0.00266667, 0.00266667}

In the example, the frequencies corresponding to strings – ’ATAAAA’ is 0.003 and ’BHAAAA’

is 0.00266667. We can express this information in the form of CCs as follows:

• For a value a stored in MCVs with frequency ca stored in MCF, the corresponding CC is:

|σA=a(R)| = ca

5.1.3 Histogram bounds

Postgres maintains equi-depth histograms for most of the attributes in a relation. It stores the

bucket boundaries in an array. All the buckets for an attribute are assumed to have the same

frequency. The bucket frequency is computed by dividing the total tuple count obtained after

subtracting all frequencies present in the MCFs array from the relation’s cardinality with the

number of buckets. An example from the Postgres documentation is given below.
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Example :

SELECT histogram bounds FROM pg stats WHERE tablename = ’tenk1’

AND attname = ’unique1’;

{1, 970, 1943, 2958, 3971, 5069, 6028, 7007, 7919, 8982, 9995}

In this example, the attribute ’unique1’ has 10 equi-depth histogram buckets.

We can express histogram bounds information in the form of CCs as follows:

• Say for an attribute A, a bucket with a boundary [l, h) and frequency B exists. Further,

within this bucket, say two MCVs exist, namely p and q with frequencies cp and cq

respectively, then the following CC can be formulated:

|σA∈[l,h)(R)| = B + cp + cq

5.2 Refined Partitioning using Metadata

We saw that Hydra uses all the AQP CCs to do region partitioning in subsection 1.1.3. In HF-

Hydra, we additionally use the metadata CCs to do a refined-region-partitioning of the data

space. The result of this activity is that we get regions at a much finer granularity. Note that

we use the metadata CCs only to do refined region partitioning, but not include them in the

SMT formulation. Instead, we further process these metadata CCs and eventually formulate

an LP, and the details are discussed in the upcoming section.

An example representation of refined region partitioning is given in Figure 5.1.

Figure 5.1: Refined partitioning in HF-Hydra using Metadata CCs
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5.3 Architecture of HF-Hydra

The end-to-end pipeline of the general setting of HF-Hydra’s data generation to provide ro-

bustness to test queries is shown in Figure 5.2. The client AQP and metadata CCs are given as

input to LP Formulator. Using the inputs, the module constructs a refined partitioning of the

data space. Further, an LP is constructed by adding an objective function to pick a desirable

feasible solution. From the LP solution, which is computed using the popular Z3 solver [5, 15],

the Summary Generator produces a richer database summary. We discuss the different modules

in detail in the upcoming sections.

Figure 5.2: HF-Hydra Pipeline

5.4 LP Formulator

Here we discuss our LP formulator module to get a better inter-region tuple cardinality distri-

bution. Note that the original database also satisfies the SMT problem that Hydra constructs,

but there can be several assignments of cardinalities to the regions such that all of them satisfy

the constraints. For example, if we recall the SMT equations constraints corresponding to the

example shown in Figure 1.4, we have

x1 + x2 = 250,

x2 + x3 = 150,

x1 + x2 + x3 + x4 = 700,

x1, x2, x3, x4 ≥ 0
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Both the following solutions satisfy the constraints:

Solution 1: x1 = 250, x2 = 0, x3 = 150, x4 = 300

Solution 2: x1 = 100, x2 = 150, x3 = 0, x4 = 450

Hydra does not prefer any particular solution over the other. Another point to note about

the equations that get formed in Hydra is that they are highly under-determined, i.e., there are

more number of variables that participate in the equations than the number of equations that

are formulated. The Z3 solver assigns non-zero cardinality to very few regions. This is because

of the use of the simplex algorithm internally, which seeks a basic feasible solution, leading to

a sparse solution. Further, not only is the solution sparse, but also, the assigned cardinalities

may be very different from the original database since no explicit efforts are made to bridge

the gap. For example, the two solutions illustrated above are both similar from the sparsity

point of view but the values themselves are very different. It is very easily possible that one of

the two is picked by the solver, and the other is actually the desired solution. Therefore, the

distribution of tuples among the various regions in the original and synthetic databases can be

very different, leading to the generation of a drastically different synthetic database. Hence,

volumetric similarity for test queries can incur enormous errors.

In HF-Hydra, we propose a two-step process to enhance the inter-region distribution from

our LP formulation:

1. Correct the inconsistencies in the values from the metadata CC with respect to the values

from AQP CCs.

2. Frame an LP and obtain cardinality assignments that are compliant with the database

optimizer’s cardinality estimate for individual regions.

We discuss each step in detail in the following subsections.

5.4.1 Metadata Inconsistency Correction

One issue with metadata CCs is that they may not be completely accurate as they may have

been computed from a sample of the database. Therefore, to be used with the AQP CCs while

framing the LP constraints, we need to resolve the inconsistencies in the metadata CCs. For

this purpose, we frame an LP with the AQP CCs, and add the metadata CCs in an optimization

function that tries to satisfy the metadata CCs with minimal error.

The complete algorithm is as follows:
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1. Run region partitioning (as discussed in Section 1.1.3) using all the CCs, i.e., CCs from

both AQPs and metadata.

2. The CCs from AQPs are added as explicit LP constraints.

3. The CCs from metadata are modeled in the optimization function that minimizes the L1

norm of the distance between the output cardinality from metadata CCs and the cardi-

nality from the sum of variables that represent the CCs. If there are n regions (variables)

together obtained from m metadata CCs and q AQP CCs, then the LP formulation is as

shown in Figure 5.3. Here, Iij is an indicator variable, which takes value one if region

i satisfies the filter predicate in the jth metadata CC, and takes value zero otherwise.

Further, C1, C2, . . . , Cq are the q LP constraints corresponding to the q AQP CCs.

minimize
m∑
j=1

εj subject to:

1. − εj ≤

( ∑
i:Iij=1

xi

)
− kj ≤ εj, ∀j ∈ [m]

2. C1, C2, ..., Cq

3. xi ≥ 0 ∀i ∈ [n], εj ≥ 0 ∀j ∈ [m]

Figure 5.3: LP Formulation for Metadata Inconsistency Correction

An example representation of this LP formulation is shown in Figure 5.4. Here, the high-

lighted portion shows a metadata CC from a histogram bucket along the attribute A, and the

six refined regions that satisfy the filter predicate corresponding to this metadata CC.
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Figure 5.4: Metadata Inconsistency Correction in HF-Hydra

From the solution of the LP obtained from the solver, we get error values for each ε used in

the optimization function. This error can be now adjusted against the corresponding metadata

CC variable. Once this error correction is done, the metadata CCs will become consistent

with the AQP CCs, and we can directly use both types of CCs as explicit constraints. These

error-corrected metadata CCs are used in the second step of the process, as discussed in the

upcoming subsection.

5.4.2 Optimizer Cardinality Estimate Compliance

While adding the metadata CCs explicitly with the AQP CCs can help to obtain a better LP

solution, it can still suffer from inconsistent inter-region distribution from the solver – in fact,

we may still get a sparse solution. This is because there is no explicit constraint that works on

the individual regions to get a less-sparse cardinality assignment.

In this next step, we try to overcome this lacuna by trying to obtain an LP solution with

explicit constraints on the level of individual regions. To begin with, the estimates for each

region’s cardinality are obtained from the database engine itself. Once the estimates are ob-

tained, we find an LP solution that is close to these estimates while satisfying all the explicit

CCs coming from the AQPs and error-corrected metadata CCs. Note that, similar to the previ-

ous subsection, the cardinality estimates cannot be expected to be accurate, and so the values

may be inconsistent with the explicitly added CCs. Hence, we add the optimizer cardinality
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estimate compliance constraint as an optimization function.

The complete algorithm is as follows:

1. Run region partitioning (as discussed in Section 1.1.3) using both AQP CCs and error-

corrected metadata CCs.

2. For each region obtained from (1), we construct an SQL query equivalent. Any query that

can capture the region precisely is acceptable. The query generation process is described

in detail in section 5.4.3.

As an example, the queries for the four regions from Figure 1.4 is as follows:

Select * from S where ((S.A < 20 and S.B < 20,000) or

((S.A ≥ 20 and S.A < 30 and S.B < 15,000));

Select * from S where ((S.A ≥ 20 and S.A < 30 and

S.B ≥ 15,000 and S.B < 20,000);

Select * from S where ((S.A ≥ 20 and S.A < 30 and S.B ≥ 20,000) or

(S.A ≥ 30 and S.A < 40 and S.B ≥ 15,000));

Select * from S where ((S.A < 20 and S.B ≥ 20,000) or (S.A ≥ 20

and S.B ≥ 50,000) or (S.A ≥ 40) or (S.A ≥ 30 and S.B < 15,000));

3. Once the region-based SQL queries are obtained, their estimated cardinalities are obtained

from the optimizer. This is done by dumping the metadata on a dataless database using

the CoDD metadata processing tool [1] and then obtaining the compile-time plan (for

example, using EXPLAIN 〈query〉 command for the case of Postgres). Let the estimated

cardinality for the n regions be x̃1, x̃2, . . . , x̃n.

4. We construct an LP that tries to give a feasible solution, i.e., that satisfies all AQP and

error-corrected metadata CCs, while minimizing the L1 distance of each region from its

estimated cardinality as obtained from the previous step. The LP formulation that is

formulated is shown in Figure 5.5.
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minimize
n∑

i=1

εi subject to:

1. − εi ≤ xi − x̃i ≤ εi ∀i ∈ [n]

2. C1, C2, ..., Cq

3. xi, εi ≥ 0 ∀i ∈ [n]

Figure 5.5: LP Formulation for Optimizer Cardinality Estimate Compliance

An example representation of this LP formulation is shown in Figure 5.6. Here, the high-

lighted portion shows an example refined region. The cardinality estimate for such refined

regions that take part in the LP formulation are obtained and used in the optimization func-

tion.

Figure 5.6: Optimizer Cardinality Estimate Compliance in HF-Hydra

Our choice of minimizing the L1 norm in these steps is reasonable because from the query

execution point of view, the performance is linearly proportional to the row cardinality. This

is especially true for our kind of workloads where the joins are restricted to PK-FK joins.

Given the Metadata Inconsistency Correction and Optimizer Cardinality Estimate Compli-

ance steps, the following aspects are to be noted:
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1. Metadata Inconsistency Correction step is comparatively simpler as it adds fewer con-

straints and hence is computationally more efficient. Optimizer Cardinality Estimate

Compliance adds more constraints, as it works on every region. However, since gener-

ating data is typically a one-time effort, any practical summary generation time may be

reasonable.

2. The solution quality depends entirely on the quality of the metadata and the optimizer

estimates. Since Optimizer Cardinality Estimate Compliance works at a finer granular-

ity, it is expected to provide higher fidelity, assuming a reasonably accurate cardinality

estimator. On the other hand, the accuracy of the constraints in Metadata Inconsistency

Correction is usually more reliable as they are derived as it is from the metadata.

5.4.3 SQL Query Generation for Regions

An SQL query is made up of two components - (a) From clause - where the participating

relation name(s) are mentioned and (b) Where clause - where Join predicate(s) and Filter

predicate(s) are mentioned, if any. Join predicate contains information about the attributes

used in joining the relations, and Filter predicate(s) contain the filter constraint(s) applied on

the participating relation(s).

A query in the client workload may or may not feature joins. If there are any joins, HF-

Hydra distinctly captures the join path (i.e., all the PK-FK attributes that were used in the

join clause), for each view that is formed. So, just by extracting the join sequence information

that is associated with all the attributes from every CC that is satisfied by this region, we can

form the Join predicate for our SQL query. From these join predicates, we can then extract all

the participating relation names, and construct the From clause of our SQL query.

A region in its most general form can be represented as a collection of multidimensional

arrays, where each multi-d array has an array of intervals for its constituent dimensions (relation

attributes). We term each dimension as a Bucket, and each collection of such Buckets as a

BucketStructure. One or more such BucketStructures constitutes the region. For example,

Figure 5.7 shows the structure of a region. It can be expressed verbally as:

((A ∈ [a1, a2) or [a3, a4)) and (B ∈ [b1, b2) or [b3, b4)) and C ∈ [c1, c2)) or

((A ∈ [a1, a2) or [a3, a4)) and B ∈ [b5, b6) and C ∈ [c3, c4))

After refined-region-partitioning, all the intervals for each attribute corresponding to a re-

gion are captured in the corresponding buckets and bucketstructures of that region. Within

each bucket, the split points may or may not be continuous. The convention in HF-Hydra is

that every interval is in the form of [a, b) i.e., the included values are from a to b− 1.
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Figure 5.7: Region Structure

The filter predicates for our SQL query is generated as follows:

1. Within a bucket, a continuous interval is picked. The interval is then converted to a

bounded filter predicate with the endpoints of the interval as its bounds. In case of

intervals in the buckets where there is only one known endpoint, and the other endpoint

is either the start or the end of the corresponding domain, then the corresponding filter

predicate generated will have only one bound with the known endpoint and will remain

unbounded on the other direction.

2. Step 1 is repeated for each continuous interval in the bucket. All the predicates generated

therein are together expressed in conjunction, and a filter predicate representing the entire

bucket is generated. Each filter predicate generated for a bucket is applied against the

particular attribute representing the bucket.

3. Similarly, individual filter predicates representing each bucket is created for each bucket

participating in the bucketstructure. These are again together expressed in conjunction

to form a filter predicate representing the entire bucketstructure. Each filter predicate

for a bucketstructure is a conjunction of filter predicates on all the individual attributes

participating in the bucketstructure.

4. All filter predicates representing each bucketstructure obtained from Step 3 are then

together expressed in disjunction, to form the filter predicate representing the whole

region.

The final SQL query is generated as:

SELECT * FROM <From clause>

WHERE <Join predicates> (AND) <Filter predicates>;
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Let us consider an example Region R to better understand the whole process. Say there are

three relations X, Y, and Z, joined with (X.PK and Y.FK) and (Y.PK and Z.FK), and with

non-key attributes X.A, Y.B, and Z.C. Say, post the LP formulation phase of HF-Hydra, we

have a region with two bucketstructures as follows:

BucketStructure 1 BucketStructure 2

Column X.A [a1, a2, a3, a4, a5) Column X.A [a6, a7, a8, a9)[a11, a12, a13)

Column Y.B [−∞, b1)[b3, b4, b5) Column Y.B [b6, b7)

Column Z.C [c1, c2, c3) Column Z.C [c5, c6, c7, c8)[c10,∞)

Here, From Clause = X,Y,Z and

Join Predicates = (X.PK = Y.FK) AND (Y.PK = Z.FK)

The filter predicates representing each bucket are:

BucketStructure 1

Column X.A (X.A ≥ a1 AND X.A < a5)

Column Y.B ((Y.B < b1) AND (Y.B ≥ b3 AND Y.B < b5))

Column Z.C (Z.C ≥ c1 AND Z.C < c3)

BucketStructure 2

Column X.A ((X.A ≥ a6 AND X.A < a9) AND (X.A ≥ a11 AND X.A < a13 ))

Column Y.B (Y.B ≥ b6 AND Y.B < b7)

Column Z.C ((Z.C ≥ c5 AND Z.C < c8) AND (Z.C ≥ c10))

The filter predicates representing each bucketstructure are:

BucketStructure 1

((X.A ≥ a1 AND X.A < a5) AND ((Y.B < b1) AND (Y.B ≥ b3 AND Y.B < b5))

AND (Z.C ≥ c1 AND Z.C < c3))
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BucketStructure 2

((X.A ≥ a6 AND X.A < a9) AND (X.A ≥ a11 AND X.A < a13 )) AND

(Y.B ≥ b6 AND Y.B < b7) AND

((Z.C ≥ c5 AND Z.C < c8) AND (Z.C ≥ c10))

The filter predicate representing the whole region is:

Region R

((X.A ≥ a1 AND X.A < a5) AND

((Y.B < b1) AND (Y.B ≥ b3 AND Y.B < b5))

AND (Z.C ≥ c1 AND Z.C < c3))

OR

((X.A ≥ a6 AND X.A < a9) AND (X.A ≥ a11 AND X.A < a13 )) AND

(Y.B ≥ b6 AND Y.B < b7) AND

((Z.C ≥ c5 AND Z.C < c8) AND (Z.C ≥ c10))

The final SQL query equivalent generated for region R is:

SELECT * FROM X,Y,Z

WHERE (X.PK = Y.FK) AND (Y.PK = Z.FK)

AND

(((X.A ≥ a1 AND X.A < a5) AND

((Y.B < b1) AND (Y.B ≥ b3 AND Y.B < b5)) AND

(Z.C ≥ c1 AND Z.C < c3))

OR

(((X.A ≥ a6 AND X.A < a9) AND (X.A ≥ a11 AND X.A < a13 )) AND

(Y.B ≥ b6 AND Y.B < b7) AND

((Z.C ≥ c5 AND Z.C < c8) AND (Z.C ≥ c10))));

A point to note here is, the SQL query we generate for a region by this process is not the

only way to represent the region. There could be many other queries that can be equivalent in

representing the region, and any of these is acceptable for our use case to get the optimizer’s

cardinality estimate.
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5.5 Summary Generator

Within a region that gets a non-zero cardinality assignment, Hydra generates a single unique

tuple. As a result, it leads to inconsistent intra-region distribution. That is, even if the inter-

region distribution was matched between the original and synthetic databases, the distribution

of tuples within a region could vary enormously. This is again not surprising since no efforts

have been put to match the intra-region distribution. This single point instantiation per region

creates a situation wherein only very few domain points are chosen to generate the entire

database, and makes the data look very unrealistic. This heavily affects the accuracy of test

queries. In HF-Hydra, we instead generate data within the region in compliance with the

distribution of the database engine’s estimation module. For instance, the Postgres engine

assumes uniform distribution among the metadata stats. Hence in our implementation, we also

resort to uniform distribution within each region. For other engines, this step can be modified

accordingly to comply with other distribution models that is followed by that engine.

The LP solution returns the cardinalities for various regions within each sub-view. As

discussed earlier, the regions across sub-views need to be merged to obtain the solution at the

view level. After merging, the views are made consistent to ensure referential integrity (RI) and

finally, a database summary is constructed from these views. This summary is used for either

on-demand tuple generation or, alternatively, for generating the entire materialized database.

We briefly discuss these stages now in the following subsections.

5.5.1 Merging Sub-Views

Say two sub-views R and S are to be merged, and they have a common set of attributes A. If

A is empty then we can directly take the cross of the regions in R and S to obtain the regions

in the view space. But when A is non-empty, the merging of regions happen among compatible

pair. A region from R is compatible with a region form S if the two have an identical projection

along A. Several regions in R and S can have identical projection along A. Therefore, we define

compatibility at a set level. That is, a compatible pair is a set of regions from R and S such that

all these regions have identical projections along A. For such a compatible pair, let r1, r2, . . . , rm

be the regions from R and s1, s2, . . . , sn be the regions from S. In HF-Hydra we merge each

region ri with each region sj from a compatible pair and assign it a cardinality
|ri||sj |∑
i∈[m] |ri|

. Note

that
∑

i∈[m] |ri| =
∑

j∈[n] |sj|, which is ensured by consistency constraints in the LP. Hence in

each pair, m×n regions are constructed. Merging of two regions can be thought of as taking a

join of the two regions along A. A sample sub-view merging is shown in Figure 5.8 where two

sub-views (A, B) and (A, C) have four and three regions, respectively. Further, there are two
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compatible pairs that finally lead to six regions after merging.

Figure 5.8: Sub-view Merging

5.5.2 Ensuring Referential Integrity

Since each view is solved separately, it can lead to RI errors. Specifically, when F , the fact

table view (having FK column), has a tuple where the value combination for the attributes that

it borrows from D, the dimension table view (having PK column), does not have a matching

tuple in D, then it causes an RI violation. Our algorithm for ensuring referential integrity is as

follows:

1. For each region f of F , project the region on the attributes that are borrowed from D.

Let the projected region be fp.

2. Iterate on the regions in D that have non-zero cardinality and find all the regions that

have an intersection with fp.

3. For each region d of D obtained from (2), split d in two disjoint sub-regions d1 and d2

such that d1 is the portion of d that intersects with fp and d2 is the remaining portion.

The cardinality of d is split between d1 and d2 using the ratio of their domain volumes.

A corner case to this allocation is when the cardinality of d is equal to 1 – in such a case,

we replace d with d1.

4. If no region is obtained from (2), then we add fp in D and assign it a cardinality 1. This

handles RI violation but leads to an additive error of 1 in the relation cardinality for

the dimension table. Collectively, these errors can be considered negligible. Also, they

are independent of the scale of the database we are dealing with, and therefore, as the

database size grows, the relative error keeps shrinking.

As we saw that the algorithm takes projections of regions along borrowed set of dimensions.

Since the regions neither have to be hyper rectangles nor have to be continuous, they may not
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be symmetric along the borrowed attribute(s), further adding to the complexity of ensuring

consistency. If the set of the attributes in a view V is A, and the set of attributes that it

borrows are B, then a region r in V is symmetric along B iff:

r = σ(V ) = σ(πB(V ))× σ(πA\B(V ))

In order to ensure regions are symmetric, before starting the referential integrity step, regions

are split into sub-regions to make them symmetric along the borrowed set of attributes.

5.5.3 Parallelization in Ensuring Referential Integrity process

The merge process described in subsection 5.5.1 can result in a lot of regions, and so the

intersection process described in subsection 5.5.2 can take a lot of time to compute. Hence,

in HF-Hydra, we deploy parallelization to perform intersections efficiently and are discussed in

this subsection.

Recall that a region is a collection of multi-dimensional arrays called Bucketstructure,

wherein the information about individual attributes that make up the region are captured.

In Step 1 and 2 of sub-section 5.5.2, to compute the intersection of F with D, we need to

iterate for every bucketstructure within each region f of F and intersect with every bucket-

structure in each region d of D. Note that, within a region, a whole bucketstructure is unique,

but individual buckets within them can be shared across bucketstructures, and even with other

regions. Hence while projecting a region f of F along the attributes borrowed from D, we

may end up having bucketstructures that are duplicates of each other. So, firstly, we make

sure that all these duplicates are removed and so that the projected region has only unique

bucketstructures within them. This reduces the total number of intersections to be computed.

Secondly, regions are disjoint, and so there is no dependency between regions f1, f2, . . . , fn

of F , and so, each of their intersections with regions d1, d2, . . . , dn of D can be computed

parallelly. For each pair of intersections, from regions of F and D to be made, we can create

a new independent thread and perform the intersection. But this causes severe overheads and

delays in thread creation, resource allocation, and thread deletion. Hence, we follow a different

approach to parallelization as follows:

1. The maximum number of parallel threads the underlying system can support is deter-

mined, and let’s call it Tmax. This depends on the number of processors available in the

system.

2. A fixed thread pool of Tmax threads are created, and each pair of intersection to be

computed is given as a list of jobs to the pool. In the case of a fixed thread pool, each
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thread takes up a job and runs it to completion. If there are more number of jobs than

the number of threads, then they are all placed in a waiting queue, and is dispatched to

threads one after the other. This way, a thread pool reuses previously created threads to

execute all the jobs and offers a solution to the above-mentioned thread overheads.

3. Although intersection for each pair of regions can be performed independently, the result

of the intersections, for those pairs of regions which did have a non-zero intersection, are

accumulated in one data structure per view. In order to avoid any race conditions, we

make use of concurrent data structures for storing the results of the computation.

5.5.4 Generating Relation Summary

Once we get the consistent summary for each view, where for each view, we have the set of

(symmetric) regions and their corresponding cardinalities, we need to replace the borrowed

attributes in a view with appropriate FK attributes. Here the challenge is to remain in the

summary world and still achieve a good span among all the FK values within a region. To

handle this, instead of picking a single value in the FK column attribute for a region, we

indicate a range of FK values.

Before discussing how the FK column value ranges are computed, let us discuss how the PK

columns are assigned values. Each region in any view has an associated region cardinality. PK

column values are assumed to be auto-number so, given two regions with cardinality a and b,

the PK column value ranges for the two regions are 1 to a and a+1 to a+ b, respectively. Now,

to compute the FK column values, for each region in the fact table view F , the corresponding

matching regions from the dimension table view D are fetched. Once these regions are identified,

their PK column ranges are fetched, and the union of these ranges is assigned to the FK column

for the given F ’s region.

Recall that a region in its most general form can be represented as a collection of multi-

dimensional arrays, where each multi-d array has an array of intervals for its constituent di-

mensions (relation attributes). We split the region into sub-regions, where each sub-region is a

single multi-d array. Further, we divide the parent region’s cardinality among the sub-regions

in the ratio of their volumes. In this way, summary for each relation collectively gives the

database summary. A sample database summary produced by HF-Hydra is shown in Table 5.1

((analogous to Figure 1.5). As a sample, the second row in summary for table T means that

the last 603 rows in the table have PK column value 903 to 1505, while the value for column C

is the range [0, 2) or [3, 10).
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R

R pk S fk T fk

1 - 10000 1 - 200 1 - 902

10001 - 30000 201 - 250 1 - 902

30001 - 45000 251 - 300 903 - 1505

45001 - 50000 301 - 400 903 - 1505

50001 - 60000 401 - 450 903 - 1505

60001 - 65000 451 - 550 903 - 1505

65001 - 75000 551 - 600 903 - 1505

75001 - 80000 601 - 703 903 - 1505

S

S pk A B

1 - 200 [0 - 20) [0 - 20000)

201 - 250 [20 - 30) [0 - 15000)

251 - 300 [20 - 30) [20000 - 50000)

301 - 400 [30 - 40) [15000 - 50000)

401 - 450 [0 - 30) [50000 - 80000)

451 - 550 [30 - 40) [0 - 15000) ∪ [50000 - 80000)

551 - 600 [40 - 60) [0 - 20000) ∪ [50000 - 80000)

601 - 703 [0 - 20) ∪ [40 - 60) [20000 - 50000)

T

T pk C

1 - 902 [2 - 3)

903 - 1505 [0 - 2) ∪ [3,10)

Table 5.1: HF-Hydra Example Database Summary
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5.5.5 Comparison with Hydra

Hydra’s strategy for merging two sub-views is different. For a compatible pair where we con-

struct m× n regions (as described in section 5.5.1), Hydra may generate as few as max(m,n)

regions. Therefore, it leads to several “holes” (zero-cardinality regions) in the view, further

leading to poor generalizations to unseen queries.

For regions that are constructed after merging the sub-views, a single tuple is instantiated.

This is again a bad choice as it creates holes. RI violations lead to the addition of spurious

tuples, as we discussed. In HF-Hydra, these violations are sourced primarily from undesirable

solution, where the solver assigns a non-zero cardinality to a region in the fact table for which

the corresponding region(s) in the dimension table has a zero cardinality. In such a case, then no

matter how we distribute tuples within the regions, it will always lead to a violation. However,

Hydra does not even do any careful choice of the single tuple that it instantiates within a region.

Therefore, it has additional sources of RI violations.

5.6 Tuple Generator

The summary generation module gives us the database summary featuring various (sub) re-

gions and their associated cardinalities. We want to spread the region’s cardinality among

several points. Now depending on our requirement of either dynamic generation or material-

ized database output, the strategy would slightly differ as follows:

5.6.1 Materialized Database

If a materialized database output is desired, randomness can be introduced. For each (non-PK)

attribute, the values are generated by first picking up an interval using a probability distribution

where each interval’s selection probability is proportional to the length of the interval. Once

the interval is picked, a random value in that interval is generated.

5.6.2 Dynamic Generation

With dynamic generation, we cannot generate values randomly because the resultant tables

will not be consistent across multiple query executions. Therefore, we generate values in a

deterministic way. Based on the lengths of the intervals that are contained for an attribute

in the region, the ratio of tuples to be generated from each interval is computed. Now, if n

values have to be generated within an interval, the interval is split into n equal sub-intervals,

and the center point within each interval is picked. If the range does not allow splitting into n

sub-intervals, then it is split into the maximum possible sub-intervals, followed by a round-robin

instantiation.
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Chapter 6

Melding Robustness with Scalability

In the framework discussed for the general case in the previous segment, with increase in the

workload constraints, we may run into scalability issues, stemming from the inherent compu-

tational capacity limitation of the solver. The load on the solver is even more severe with the

use of optimization functions in the LP formulation, which further hurts the handling capacity.

Hence, to sidestep this challenge, in this chapter, we propose a workload-division strategy to

produce a few sub-workloads from WExtended, the extended workload containing large number

of cardinality constraints, and eventually construct an individual database summary for each

of them using the same procedure discussed in the previous chapter.

When a testing query is fired, we then deterministically forward it to be executed on the

database generated from one of these summaries, which is expected to produce the maximum

volumetric similarity.

We start the discussion with an overview of our workload division strategy. Next, we talk

about how attribute intervals for training domain space are collected. Subsequently, we talk

about our discovery process to figure out the number of sub-workloads that would be required

to bypass the solver’s limitation. Finally, we look into how the training queries are mapped

into individual sub-workloads, and how a given test query is deterministically forwarded.

6.1 Workload Division Strategy

The goal of our workload-division strategy is to create sub-workloads from WExtended, such that

each individual sub-workload is within the handling capacity of the solver. We do this by

dividing the domain space that is formed across all attributes from the training workload into

sub-domains. Each sub-domain of an attribute is then assigned to a sub-workload, and it is

ensured that all sub-workloads collectively cover the training workload domain space.
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Let us consider that we divide the domain space across all attributes into four sub-domains

giving rise to four sub-workloads. For two attributes A and B, a pictorial representation of our

proposed workload-division strategy is given in Figure 6.1. The first sub-workload will focus

on the space that comprises the first sub-domain across all attributes as shown in Figure 6.1a,

the second sub-workload will focus on the space that comprises the second sub-domain across

all attributes as shown in Figure 6.1b, and likewise, up till m number of sub-workloads.

(a) (b)

(c) (d)

Figure 6.1: Overview of Workload-Division Strategy
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A consolidated view of the domain space post the division is shown in Figure 6.2. It is to be

noted any other combination in the ordering of assignments among the sub-domains and the

sub-workloads is acceptable as well. But care needs to be taken that such an assignment ends

up in all the individual sub-workloads collectively covering the entire domain space.

Figure 6.2: Consolidated view of sub-workloads covering the entire domain space

6.2 Collecting Domain of Attributes

To facilitate the workload-division strategy to create sub-workloads, we first collect the domain

of each attribute that participate in WExtended using the following procedure:

1. All CCs from AQPs, and all CCs from metadata statistics that feature in WExtended are

extracted, and for each CC, we collect all the participating filter predicates. Each filter

predicate constitutes of – (a) the attribute on which the filter is applied, (b) the filter

operator used and, (c) the filter predicate constant.

2. Among the three, we collect only the attribute name and the filter predicate constant,
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and thereby, at the end of this step, we create a list of all attributes along with all the

predicate constants that have featured for that attribute in WExtended.

3. For each attribute, the accumulated predicates are sorted. This sorted list represents the

entire domain interval of each attribute that has been featured in WExtended. The same

strategy is adopted for attributes of all data types.

The complete collection of all these individual domain intervals constitute the whole domain

space of our WExtended.

6.3 Determining the Number of Sub-Workloads

The number of sub-workloads, m, is determined by a deterministic discovery process. Recall

that the need for dividing WExtended into sub-workloads stems from the inherent scalability

limitation of the solver which prevents us from using all the constraints at once in our summary

construction process. The solver breaks down when the LP formulation ends up with a complex

system of equations with too many variables. Both the nature of the equations, and the

number of variables that are formulated affect the handling capacity of the solver, However,

in our proposal, we make use of the heuristic of the number of variables generated from the

constraints in a sub-workload alone to tell whether it is within the handling capacity of the

solver. The detailed procedure is as follows:

1. The process starts with producing two sub-workloads from WExtended. The domain interval

constructed for all attributes as discussed in the previous subsection, is broken into two,

and each sub-domain is associated with each sub-workload.

2. Once the sub-domain intervals are finalized for each sub-workload, we iterate overWExtended,

and for each CC therein, we assign it to an appropriate sub-workload using the mapping

procedure, which is discussed in the upcoming subsection 6.4.

3. Once the mapping process is complete, each sub-workload is then checked for its com-

putational viability in terms of the number of variables in the LP formulation process.

The numerical limit for this heuristic is set by the vendor. For Z3 solver that is used

in HF-Hydra, we have frequently observed the solver taking enormous amount of time

and resources to compute with equations spanning variables upwards of 40,000. It is to

be noted that the solver is invoked independently for each relation (view, to be precise

in HF-Hydra) to assign cardinalities for regions that are formed post the refined region

partitioning for that relation. Hence, this number corresponds to the variables formulated

for a single relation, and not across all relations at once.
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4. For those sub-workloads that fail the check, the corresponding sub-domain for all at-

tributes is again split into two, creating two sub-sub-domains, thus giving rise to two new

sub-sub-workloads. Then the CCs that are featured in the sub-workload are re-assigned

by the same mapping procedure into the new sub-sub-workloads.

5. This checking and eventual splitting is repeated recursively for each sub-workload until we

reach the stage where all individual sub-workloads are within the computationally viable

zone, i.e. all sub-workloads have the number of variables from their LP formulation that

is easily manageable by the solver.

An extreme worst case possibility from the above procedure is when the sub-workloads

keep getting split into sub-sub-workloads. Here, this procedure will end up in yeilding a single

query per sub-workload scenario. At that point, we can take over with the techniques to create

relation summaries as discussed in chapter 4. But as long as a sub-workload contains more than

one constraint, we resort to creating summary using the general framework from chapter 5.

We talked about dividing the domain of the attribute that features in the training workload

in Step 1 of the above procedure. During each bifurcation, we take care to make a continuous

and almost equal cardinality assignment to each sub workload. Specifically, in the sorted list of

predicates that we collect for all attributes, we maintain the count for unique predicates, and

during the actual bifurcation process, we split the domain into two continuous sub-domains such

that the cardinality of filter predicates in each sub-domain is tried to be equal. The intuition

behind doing this can be better understood when we discuss it in subsection 6.4.1.

Another possible corner case is that if there are fewer predicate points that feature in the

workload than m, the number of sub-workloads. This is especially possible in the case of

categorical domain attributes. In this case, for that attribute alone, we assign the same sub-

domain for more than one sub-workload. As long as the entire space is covered, any assignment

of sub-domains to sub-workloads is acceptable.

Before discussing the mapping procedure for the assignment of training CCs into appropriate

sub-workloads, let us take an example to understand the division of domain of attributes that

feature the training workload.

6.3.1 Example for Intervalisation of Attribute Domain

Let us take an example training workload of CCs that are applied on Customer relation of the

TPC-DS benchmark, on attributes c birth day and c birth month.

CC1: |σc birth day≥25 ∧ c birth month=3 (Customer)| = 150

CC2: |σc birth month≤2 (Customer)| = 200
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CC3: |σc birth day=28 ∧ c birth month=1 (Customer)| = 100

CC4: |σ(c birth day≥22 ∧ c birth day≤25) ∧ c birth month=3 (Customer)| = 250

The first step in our workload-division strategy is to create a sorted list with all predicate

values that represent the domain of the attribute featured in WExtended. These predicate values

may have appeared with any operator, i.e., with =, <,>,≤,≥, or LIKE. We can see that

c birth day has predicate values 22, 25, and 28, whereas c birth month has 1, 2, and 3. Likewise,

let us consider that with similar additional CCs from WExtended, we continued with the same

procedure to collect all the predicates, and the final list of attributes with their sorted domain

of predicates looks as illustrated in Table 6.1.

Attribute Predicates

c birth day 20, 22, 22, 22, 22, 25, 25, 25, 25, 28, 28

c birth month 1, 2, 2, 3, 3, 4

Table 6.1: Sorted Domain for Attributes from WExtended

The two individual lists represent the sorted domain of attributes c birth day and c birth month

featured in the training workload. In addition to the list, we also maintain the count of each

unique predicate that features in the list, as shown in Table 6.2.

c birth day c birth month

Predicate Count Predicate Count

20 1 1 1

22 4 2 2

25 4 3 2

28 2 4 1

Table 6.2: Count of Unique Predicates

Using this information, we can begin the intervalisation of domains of c birth day and

c birth month into two sub-domains. From the predicate points in Table 6.1 and their counts

in Table 6.2, we can see that by doing a continuous-almost-equal-partitioning, we end up with

two sub-domain intervals (for the case where m = 2) as shown in Table 6.3. Further, by the
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same logic, we also illustrate the situation where each of these two sub-domains is further

recursively split into two finer sub-sub-domains (for the case when m = 4) in Table 6.4.

Attribute Sub-Domain Intervals

W1 W2

c birth day (-∞, 25) [25, ∞)

c birth month (-∞, 3) [3, ∞)

Table 6.3: Intervalisation of Attribute Domains for m = 2

Attribute Sub-Domain Intervals

W1 W2 W3 W4

c birth day (-∞, 22) [22, 25) [25, 28) [28, ∞)

c birth month (-∞, 2) [2,3) [3,4) [4, ∞)

Table 6.4: Intervalisation of Attribute Domains for m = 4

The sub-domain interval information constructed here is stored and is used for both the

procedures of mapping of training CCs into appropriate sub-workloads and also during the

forwarding of test query to be executed on the database from the summary where it is expected

to achieve maximum volumetric similarity. We now look into each of these procedures in detail

in the upcoming subsections.

6.4 Mapping of Training CCs

1. For a given CC from WExtended, we take into consideration all its participating attributes

and extract the predicates.

2. From each participating attribute’s sub-domain intervalisation information, we figure out

the sub-domain(s) with which the predicate has an intersection. We build an Allocation

table to store this information. Once an intersection is found to exist, the CC’s presence

in that sub-domain is marked by denoting a one against the CC in the corresponding

sub-workload in the Allocation table.

3. The above step is repeated for all CCs to populate the Allocation table. By the end of this

process, a CC that has had an intersection in at least one of its participating attributes
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with a particular sub-domain will feature in that corresponding sub-workload. There is

a possibility that a particular CC has two or more predicates with intersections in sub-

domains corresponding to different sub-workloads. In such a case, that CC becomes part

of all the sub-workloads which has its presence. Hence, with this mapping process, we do

not do a strict disjoint division of CCs into sub-workloads.

4. After the mapping procedure is complete, each sub-workload of constraints is individually

processed as discussed in the previous chapter to do refined region partitioning, and an

LP is formulated to note the number of variables that are formed. Then the decision as

to whether the splitting can be stopped for this sub-workload is taken accordingly.

6.4.1 Best Effort to Reduce Number of Sub-Workloads

Note that in our attribute intervalisation procedure, we give weightage to the count of the unique

predicates so as to do an almost equal partitioning of CCs in the sub-workloads. Instead, if we

just make the sub-domain division based on the range of the predicates that are collected, then

there are chances that some sub-workload(s) do not get any CCs mapped to it, whereas some

other sub-workload(s) which is associated with a heavily featured predicate(s) will get most of

the CCs mapped to it. Such sub-workload(s) will be then needed to be recursively split again

and again, and so resulting in an unnecessary increase in the total number of sub-workloads.

With best effort in our almost equal partitioning approach, we try to load balance the number of

CCs that go into every sub-workload, so as to keep the total number of sub-workloads minimal.

However, we do not guarantee any minimality with our technique.

6.4.2 Example for Mapping Procedure

To demonstrate the above-mentioned procedure for mapping training CCs into sub-workloads,

let us consider the filter predicates of CC1 till CC4 from our earlier example:

Filter predicate from CC1: σc birth day≥25 ∧ c birth month=3

Filter predicate from CC2: σc birth month≤2

Filter predicate from CC3: σc birth day=28 ∧ c birth month=1

Filter predicate from CC4: σ(c birth day≥22 ∧ c birth day≤25) ∧ c birth month=3

Let us start with splitting this workload of four CCs into two sub-workloads. For CC1, the

participating attributes are c birth day and c birth month. For c birth day, the predicate is

≥25, and from our sub-domain interval information for c birth day from Table 6.3, we can see

that it has an intersection with W2 alone. We mark this presence by putting a one against CC1
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for W2. For c birth month, the predicate is =3, and from our sub-domain interval information

for c birth month from Table 6.3, we can see that the intersection is with W2 alone again. We

mark this presence by putting an additional one against CC1 for W2.

In CC2, the participating attribute is c birth month only. For c birth month, the predicate

is < 2, and from our sub-domain interval information for c birth month from Table 6.3, we can

see that the intersection is with W1 alone. We mark this presence by putting a one against CC2

for W1. Similarly. we fill the allocation table by marking the presence of each filter predicate

from CC3 and CC4. The Allocation table at the end of this process for the workload is shown

in Table 6.5 as follows:

Query Sub-Workload

W1 W2

CC1 1,1

CC2 1

CC3 1 1

CC4 1 1,1

Table 6.5: Allocation Table for m = 2

From the data in Allocation Table 6.5, we can then map the constraints into respective sub-

workloads as shown in Table 6.6. Note that a CC is mapped to all the sub-workloads where its

presence is marked.

Workload W1 W2

Constraints CC2, CC3, CC4 CC1, CC3, CC4

Table 6.6: Mapping of CCs for m = 2

From the above Table 6.6, we can see that both W1 and W2 are allocated with three out of

the four CCs, and so when such a scenario happens for an extended workload of queries, both

sub-workload may still fail our heuristic check, and so further refinement might be needed. Let

us now look into the case of how each of these two sub-workloads is recursively split into two

further sub-sub-workloads.

Using the domain interval information from Table 6.4, which corresponds to four sub-

workloads, we proceed with the re-mapping. The same procedure is used to re-map the con-
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straints from W1 and W2 of Table 6.5 into W1, W2, and W3, W4 of Table 6.7, respectively.

Query Sub-Workload

W1 W2 W3 W4

CC1 1,1 1

CC2 1 1

CC3 1 1

CC4 1 1,1

Table 6.7: Allocation Table for m = 4

From the data in Allocation Table 6.7, we can then map the constraints into respective

sub-workloads as shown in Table 6.8.

Workload W1 W2 W3 W4

Constraints CC2, CC3 CC2, CC4 CC1, CC4 CC1, CC3

Table 6.8: Mapping of CCs for m = 4

6.5 Forwarding Test Query

When a test query is fired, we now have a choice of sub-workloads to which we can forward it

to be executed. But the challenge here is to forward it to the database generated from that

summary, where it is most likely to achieve maximum volumetric similarity. The procedure to

forward the test query to one of the m sub-workloads is as follows:

1. The test query is broken down to extract all its participating filter predicates, and us-

ing the sub-domain interval information created during the intervalisation exercise from

section 6.2, we follow the same procedure as discussed in section 6.4, which was used for

training CC mapping, and create a Match table, similar to that of the Allocation Table.

2. The key difference in the Match table is that, instead of marking the presence of a filter

predicate in a particular sub-workload, we maintain the actual count of filter predicates

that get mapped into each sub-workload.
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3. The sub-workload with the maximum count at the end of this exercise is likely to have

the maximum intersection with this test query, and so we forward the test query to be

executed against the database generated from the summary corresponding to that sub-

workload.

4. In case multiple candidate sub-workloads have the same count as the maximum count

across all sub-workloads, then we can forward the test query to any of those candidate

databases.

An important point to note here is that, while mapping training CCs for individual sub-

workloads in section 6.4, we worked at the granularity of CCs. So, it is possible that a set of

individual CCs, which were derived from the same AQP of a training query can be mapped to

different sub-workloads. While forwarding test query, we use the participating filter predicates

to determine the sub-workload with which this test query has maximum intersection, but the

forwarding is done at the granularity of the whole of the test query and not the individual

components of the test query to different sub-workloads.

6.5.1 Example for Test Query Forwarding

To demonstrate the test query forwarding procedure discussed previously, let us consider that

the following queries based on Customer relation from the TPC-DS benchmark make up our

testing workload.

Q1: Select * from Customer where c birth day ≤ 26 and c birth month = 2;

Q2: Select * from Customer where c birth day = 24 or c birth month = 3;

Q3: Select * from Customer where c birth day ≥ 29;

Q4: Select * from Customer where (c birth day ≥ 20 and c birth day ≤ 26)

and (c birth month = 1 or c birth month = 2);

The final Match Table at the end of this forwarding process is shown in Table 6.9. For

Q1, the participating attributes in the filter predicates are c birth day and c birth month. For

c birth day, the predicate is ≤26, and from our sub-domain interval information for c birth day

from Table 6.4, we can see that it has an intersection with W1,W2,W3. We make the count for

Q1 against W1,W2,W3 as 1. For c birth month, the predicate is =2, and from our sub-domain

interval information for c birth month from Table 6.4, we can see that the intersection is with

W2 alone. We now increase the count for Q1 against W2 as 2. As we can see among the four

sub-workloads, test query Q1 has a maximum count with W2, and hence Q1 will be forwarded

to be executed against the database generated from the summary produced from W2.
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ForQ2, the participating attributes in the filter predicates are c birth day and c birth month.

For c birth day, the predicate is =24, and from our sub-domain interval information for c birth day

from Table 6.4, we can see that it has an intersection with W2 alone. We make the count for

Q2 against W2 as 1. For c birth month, the predicate is =3, and from our sub-domain interval

information for c birth month from Table 6.4, we can see that the intersection is with W3 alone.

We now make the count for Q2 against W3 as 1. As we can see among the four sub-workloads,

both W2 and W3 have equal count, which is the same as maximum, and hence Q2 can be

forwarded to be executed against the database generated from the summaries of either W2 or

W3.

Likewise, Q3 is forwarded to the database generated from the summary produced from W4,

and Q4 can be forwarded to the database generated from the summaries of either W1 or W2.

Query Sub-Workload

W1 W2 W3 W4

Q1 1 2 1

Q2 1 1

Q3 1

Q4 2 2 1

Table 6.9: Match Table for Test Queries
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Chapter 7

Experimental Evaluation

In this chapter, we empirically evaluate the performance of HF-Hydra’s suite of solutions as

compared to Hydra. We implemented the modules of HF-Hydra entirely in Java, on top of the

Hydra codebase, which was sourced from [2].

The performance is evaluated using a 100 GB version of the TPC-DS decision-support

benchmark. The database is hosted on a PostgreSQL v9.6 engine, with the hardware platform

being a vanilla standard HP Z440 workstation with Intel Xeon 3.2 GHz 8 core processor, 32

GB memory, running Ubuntu Linux 18.04. Our setup is similar to the one used in [25]. We

present the results from different scenarios discussed in chapters 4, 5, 6 in each section.

7.1 Query Workload

7.1.1 Specialized Workload Scenario

We constructed a workload, WProjection consisting of 150 projection-inclusive representative

queries based on the TPC-DS benchmark query suite. Although in the specialized workload

scenario, we execute one query at a time, to provide an essence of the diversity of the queries

chosen for our experiments, we present the following statistics. The distribution of the cardi-

nalities (with the cardinalities measured on a log10 scale) in the CCs from all the queries in

WProjection is shown in Figure 7.1. The distribution of tuples for the CCs are presented with a

separation into three groups – CCs that are pure selection filters, and CCs that involve joins

applied on top of filters, and lastly, CCs that involve projection. We can clearly see from the

figure that the distribution of the cardinalities in these AQPs covered a wide range, from a few

tuples to several millions. Also, the distribution of number of projected attributes from all the

queries in WProjection is shown in Figure 7.2. From the figure, we can see that we have good

diversity in the number of projected attributes as well.

84



Figure 7.1: Distribution of Cardinality in CCs from AQPs of WProjection

Figure 7.2: Distribution of Number of Projected Attributes in Queries from WProjection
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7.1.2 Unified Workload Scenario

For the unified workload scenario, where HF-Hydra produces a single unified summary for the

entire workload, we constructed two different workloads, WTrain and WTest consisting of 176 and

55 representative queries, respectively, based on the TPC-DS benchmark query suite. These

were used as our input training and unseen testing workloads, respectively. The corresponding

AQPs from WTrain resulted in 419 CCs, while there were 207 such CCs from WTest. The

distribution of tuples for the CCs from WTrain and WTest are presented with a separation into

two groups – pure selection filters on base relations and CCs that involve joins applied on top

of filters. The distribution of the cardinalities (with the cardinalities measured on a log10 scale)

in the CCs from WTrain is shown in Figure 7.3, and that of WTest is shown in Figure 7.4.

In addition to that, 1245 CCs were derived from Metadata statistics and made part of our

WTrain totaling the total number of CCs used for training as 1664. From figures 7.3 and 7.4

we can see again that the distribution of the cardinalities in the AQPs from both WTrain and

WTest, cover a wide range, from a few tuples to several millions.

Figure 7.3: Distribution of Cardinality in CCs from AQPs of WTrain
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Figure 7.4: Distribution of Cardinality in CCs from AQPs of WTest

7.1.3 Split Workload Scenario

For the split workload scenario, where HF-Hydra produces a different summary for each sub-

workload, we extended the above constructed WTrain workload with an additional 24 queries to

create WExtended of 200 queries in total, and this resulted in a total of 502 CCs. The distribution

of the cardinalities (with the cardinalities measured on a log10 scale) in the CCs from WExtended

is shown in Figure 7.5. In addition to the queries, we derived 4028 CCs from Metadata statistics

and was made part of WExtended. With this, the total count of CCs that formed our extended

training workload went up to 4530. This WExtended was found to be not manageable by HF-

Hydra to create a unified summary, owing to the inherent limitation of the solver. Thus we

invoked our workload-division strategy, and four sub-workloads were created. The division of

CCs from WExtended into the individual sub-workloads is quantified in Table 7.1. It is to be

noted that our workload-division strategy does not perform a disjoint mapping of CCs into

sub-workloads, and hence some CCs can be part of multiple sub-workloads as well. We used

the same WTest constructed in the previous subsection as our testing workload for this scenario

as well.
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Number of Constraints

W1 W2 W3 W4

Workload (AQP) Cardinality constraints 308 355 355 318

Metadata Cardinality constraints 1248 1095 1008 952

Total Cardinality constraints 1556 1450 1363 1270

Table 7.1: Division of WExtended’s Cardinality constraints for individual sub-workloads

Figure 7.5: Distribution of Cardinality in CCs from AQPs of WExtended

7.2 Count of Variables

In this section, we present the number of variables that were created during the LP formulation

phase in HF-Hydra in each scenario. This is particularly important, as we create sub-workloads

in the split workload scenario based on the heuristic of the number of variables formed in the

workload. But for specialized workload scenario, when we work with the level of individual

queries, the number of variables is not a pressing concern since we can solve the equations with

mere substitution as seen in section 4.6. Hence, here we present the numbers for the other two

scenarios. In each case, in addition to presenting the total number, we drill down specifically
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to show six relations that had the most number of variables.

7.2.1 Unified Workload Scenario

For our WUnified, the number of variables that got formulated is highlighted in Table 7.2.

Relation Name Number of Variables

Hydra HF-Hydra

Catalog sales 1,069 1,472

Date dim 158 447

Inventory 16 898

Item 230 1,458

Store sales 1,876 4,944

Web sales 412 437

Total (across all relations) 3,944 10,493

Table 7.2: Number of variables from WUnified

7.2.2 Split Workload Scenario

For our WExtended, the number of variables that got formulated is highlighted in Table 7.3.

Relation Name Number of Variables

W1 W2 W3 W4

Catalog sales 378 466 13,507 6,124

Date dim 479 302 313 404

Inventory 287 385 140 128

Item 356 292 268 294

Store sales 1,738 3,935 3,756 3,351

Web sales 398 392 17,338 9,662

Total (across all relations) 4,254 6,372 35,869 21,225

Table 7.3: Number of variables from WExtended

89



A point here to note is that we used all the CCs from WTrain for HF-Hydra, but for the case

of Hydra, we used only the 176 queries within WTrain, as Hydra cannot handle the inconsistency

among CCs of AQP and Metadata stats. For the case of HF-Hydra, we explicitly addressed

this in our LP formulation discussed in section 5.4.1. This note applies to all the experiment

results presented comparing Hydra and HF-Hydra in the upcoming subsections as well.

7.3 Database Summary Size

7.3.1 Specialized Workload Scenario

In the specialized workload scenario of HF-Hydra, the summary generated is similar to that

of Hydra. However, since we deal at the level of each individual query, the summary is much

simpler than the one produced in Hydra. Specifically, for each of the 150 queries fromWProjection,

the range of the generated summary sizes was just in the order of 20-40 KBs, which is minuscule.

7.3.2 Unified Workload Scenario

Coming to our unified workload scenario, a key difference between HF-Hydra and Hydra is

with regard to the structure of the database summary. Firstly, there are many more regions

in the HF-Hydra summary. Secondly, instead of picking a single point per region, HF-Hydra’s

summary retains the entire region and generates a diverse spread of tuples. The summary sizes

produced from both Hydra and HF-Hydra for WTrain is illustrated in Table 7.4. We can see

that there is certainly a large increase in summary size, going from kilobytes to megabytes

– however, in absolute terms, the summary size is still small enough to be easily viable on

contemporary computing platforms.

Hydra HF-Hydra

Database Summary Size 40 KB 21.8 MB

Table 7.4: Database Summary size for WUnified

7.3.3 Split Workload Scenario

In our split workload scenario of HF-Hydra, the individual summary sizes for each of the four

sub-workloads created from our workload-division strategy for WExtended is shown in Table 7.5.

We can note here that the summary sizes are comparatively higher for W3 and W4. This can be

associated with the large number of variables that got formulated for these two sub-workloads

as can be seen from Table 7.3. Thus, the summary for W3 and W4 constitutes a richer summary
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with a much more number of regions than that of W1 and W2.

W1 W2 W3 W4

Database Summary Size 5.1 MB 5.5 MB 87.1 MB 50 MB

Table 7.5: Database Summary size for WExtended

7.4 Database Summary Construction Time

7.4.1 Specialized Workload Scenario

For each of the 150 queries from WProjection, the database summary construction time were

observed to be very practical. Specifically, the individual summary construction process for

each query took less a second.

7.4.2 Unified Workload Scenario

Coming to our unified workload scenario of HF-Hydra, the summary construction time for

WUnified is shown in Table 7.6. We can note here that the construction times are comparatively

higher for HF-Hydra, and this can be associated with the use of optimization function to get a

better inter-region distribution. To throw more light, the time taken by the solver to process our

LP formulation is mentioned explicitly – however, in absolute terms, the summary construction

time is still small enough to be easily viable on contemporary computing platforms.

Hydra HF-Hydra

Total Summary Construction Time 1 min 26 sec 5 min 56 sec

Time taken by Solver 6 sec 2 min 55 sec

Summary Construction Time (Excluding Solver) 1 min 20 sec 3 min 1 sec

Table 7.6: Database Summary Construction Time for WUnified

7.4.3 Split Workload Scenario

In our split workload scenario of HF-Hydra, the individual summary construction times for

each of the four sub-workloads created from our workload-division strategy for WExtended is

shown in Table 7.7. We can note here that the construction times are comparatively higher

for W3 and W4. This can be again associated with the large number of variables that got
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formulated for these two sub-workloads, as can be seen from Table 7.3. Also, to stress the

overheads of the solver in our summary construction process, we exclusively present the time

taken by the solver. We can clearly see that with an increase in variables, the solver takes a

larger time. Thus, with extended workloads, the load on the solver becomes unmanageable,

and eventually ends up crashing. This motivates us to use our workload-division strategy to

process and provide robustness to extended workloads.

W1 W2 W3 W4

Total Summary

Construction Time

1 min 42 sec 3 min 32 sec 48 min 52 sec 19 min 40 sec

Time taken by Solver 38 sec 1 min 59 sec 39 min 29 sec 9 min 59 sec

Summary Construction

Time (Excluding Solver)

1 min 4 sec 1 min 33 sec 9 min 23 sec 9 min 41 sec

Table 7.7: Database Summary Construction Time for WExtended

7.5 Dynamic Generation Time

In HF-Hydra, we have the ability to generate the entire database on-the-fly from the database

summary. The database summary can be used to create materialized database as well. To verify

whether dynamic generation can indeed produce data at rates that are practical for supporting

query execution, for both the specialized workload scenario and unified workload scenario, we

constructed materialized databases and made a comparison. The dynamic generation time of

HF-Hydra, as compared to Hydra and the standard sequential scan from the disk are presented

in Table 7.8. The split workload scenario uses the same framework of dynamic generation as

that of the unified workload scenario, and so we exclude it from presenting.

Disk Scan Dynamic Generation

Hydra HF-Hydra

Specialized

Summary

Scenario

Unified Summary

Scenario

Split Summary

Scenario

8 min 1 sec 5 min 17 sec 4 min 11 sec 6 min 44 sec 6 min 40 sec

Table 7.8: Dynamic Generation time taken to produce and supply 100 GB of data
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We see here that dynamic generation is not only competitive with a materialized solution

but is in fact, typically faster. Therefore, using dynamic generation can prove to be a good

option since it can help to eliminate the large time and space overheads incurred in: (1) dumping

generated data on the disk, and (2) loading the data on the engine under test.

7.6 Data Scale Independence

The summary sizes and the time taken to generate the summary are independent of the client

database size. We evaluate this by taking two instances of TPC-DS benchmark as the client

database, namely 100 GB and 1 TB, and generating summary for unified workload scenario.

The results are enumerated in Table 7.9. While going from 1× to 10× with the database size,

the summary sizes and the generation time do not vary much.

Data Scale (TPC-DS) 100 GB 1 TB

Database Summary Size 21.8 MB 35.6 MB

Summary Generation Time 5 min 56 sec 8 min 34 sec

Table 7.9: Data Scale Experiment Analysis

7.7 Heuristic Validation

Recall that we mentioned in section 6.3 that, we make use of the heuristic of the number of

variables generated from the constraints in a workload alone to tell whether it is within the

handling capacity of the solver. To portray the impact of the number of variables on the time

taken to obtain a solution from the LP solver in HF-Hydra, we consider three workloads, and

present the number of variables and the time taken by the solver in each case in Table 7.10. The

workloads chosen are as follows: (a) the WTrain workload used for our unified workload scenario,

(b) the workload used for experimental evaluation in [27], (let’s call it WA), which contained

225 cardinality constraints sourced from AQPs and 2622 cardinality constraints sourced from

metadata constraints, and (c) the same WExtended, but with 3077 metadata constraints (let’s

call it WB). We can clearly observe that with increase in the number of variables, the solving

time significantly increases and with further increase in variables, the solver ends up crashing.

Hence, the heuristic used for splitting the workloads in split workload scenario is reasonable.
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WTrain WA WB

Variable Count

(Top 3 relations)

4,944 & 1,472 &

1,458

64,427 & 60,792 &

4,027

14,87,868 & 1,55,084

& 61,314

Total Variable

Count (across all

relations)

10,493 1,33,940 17,45,397

Total Time Taken

by Solver

2 min 55 sec 22 hr 36 min 27 sec Crash

Table 7.10: Impact of Variable Count on Solver Time

7.8 Data Diversity and Realism

To showcase the diversity in our synthetic data generation, we drill down into the look of the

data produced by HF-Hydra. For this purpose, a sample fragment of Item relation from the

TPC-DS produced by Hydra is shown in Figure 7.6a, and the corresponding fragment generated

by HF-Hydra is shown in Figure 7.6b. It is evident from these snapshots that unlike Hydra,

which has heavily repeated attribute values – for instance, all the rec start date values are

the same, HF-Hydra delivers more diversified realistic databases with significant variations in

the attribute values.

item sk color price rec start date

0 Coral 10.01 1991-02-01

1 Coral 10.01 1991-02-01

... ... ... ...

21 Coral 10.01 1991-02-01

17908 Beige 7.00 1991-02-01

17909 Beige 7.00 1991-02-01

... ... ... ...

17999 Beige 7.00 1991-02-01

(a) Hydra Database (Item)

item sk color price rec start date

7125 Beige 9.91 1990-05-08

3847 Coral 4.13 1990-03-26

1618 Dark 4.56 1990-04-06

8450 Floral 2.46 1990-06-17

2836 Navy 27.33 1990-03-06

3086 Pink 63.66 1990-04-14

1827 Red 1.61 1990-03-08

3651 Violet 7.43 1990-03-24

(b) HF-Hydra Database (Item)

Figure 7.6: Showcasing Data Diversity in HF-Hydra
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7.9 Volumetric Similarity - Training Queries

Volumetric similarity on training queries is affected by the addition of spurious tuple while

ensuring referential integrity. Here we throw light on the number of such tuples that were

added.

7.9.1 Specialized Workload Scenario

For each of the 150 queries of WProjection, we achieved 100 percent volumetric similarity on all

types of CCs, specifically, base relations, filters over base relations, join nodes, and projection

nodes, from the AQP of individual queries. This is because, while working on the level of

each individual query, the summary is directly constructed without any violation of referential

integrity, and hence there is no addition of spurious extra tuples.

7.9.2 Unified Workload Scenario

Coming to our unified workload scenario, we present the share of the spurious tuples as com-

pared to the relation’s actual cardinality for some relations of the TPC-DS benchmark in

Figure 7.7. We can clearly see that the number of extra tuples added is negligibly small. Also,

the number of extra tuples that get added are independent of scale of the actual database,

which is a property we retain from Hydra. We exclude presenting the figures for split workload

scenario, as it shares the same summary construction mechanism as that of the unified workload

scenario, and so the results are very similar.

Figure 7.7: Volumetric similarity for Training Queries
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7.10 Volumetric Similarity - Testing Queries

For evaluating the volumetric accuracy on the constraints derived from the testing queries,

we use the UMBRAE (Unscaled Mean Bounded Relative Absolute Error) model-comparison

metric [14], with Hydra serving as the reference model. Apart from its core statistical soundness,

UMBRAE’s basis in the absolute error is compatible with the L1 norm used in the HF-Hydra

optimization functions. UMBRAE values range over the positive numbers, and a value U has

the following physical interpretation:

U = 1 denotes no improvement wrt baseline model

U < 1 denotes (1− U) ∗ 100% better performance wrt baseline model

U > 1 denotes (U − 1) ∗ 100% worse performance wrt baseline model

The value U is computed using the formula:

U =
MBRAE

1−MBRAE
,

where MBRAE =
1

n

n∑
t=1

|ejt |
|ejt |+ |eht |

where |ejt | and |eht | denote the absolute error for HF-Hydra and Hydra respectively with respect

to constraint t; n denotes the total number of constraints.

We chose the UMBRAE metric to present our results owing to its following salient features:

(a) Informative: it can provide an informative result without the need to trim errors (b) Re-

sistant to outliers: it can hardly be dominated by a single forecasting outlier (c) Symmetric:

over-estimates and under-estimates are treated fairly (d) Scale-independent: it can be applied

to data sets on different scales; (e) Interpretability: it is easy to understand and can provide

intuitive results.

7.10.1 Unified Workload Scenario

The UMBRAE values obtained by HF-Hydra over the 55 queries from WTest are presented here,

with Hydra serving as the reference baseline (U = 1). For a clearer understanding, the results

for base filters and join nodes are shown separately in Figures 7.8 and 7.9, respectively. For join

nodes, we provide the breakup showing individual accuracies for CCs involving 1-4 joins. We

see that HF-Hydra delivers 44 percent better performance on filters while also achieving an

improvement of 27 percent with regard to joins. The reason for the greater improvement in

filters over join nodes is that metadata statistics is typically maintained on a per-column basis,
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making it harder to capture joins that combine information across columns. On drilling down

in the join nodes, we see a performance improvement of 32 percent for CCs with one joins, 27

percent for CCs with two joins, 19 percent for CCs with three joins, and a marginal 3 percent

for CCs with four joins. We can note that as the number of joins increases, the improvement

keeps reducing, as should be expected due to the progressively reduced quality of the input

statistics.

Figure 7.8: Base Filter accuracy for Unified Workload Scenario

Figure 7.9: Join Nodes accuracy for Unified Workload Scenario
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7.10.2 Split Workload Scenario

The UMBRAE values obtained by HF-Hydra over the 55 queries from WTest is presented here

for the four sub-workloads created by our workload-division strategy run over WExtended. Unlike

the unified workload scenario, a unified database from Hydra to serve as the reference baseline is

not possible for WExtended. Also, from Table 7.1, we can see that about a quarter of constraints

from WExtended has gone into each sub-workload. Hence, to lay grounds for a fair comparison, we

picked up a subset of half, i.e. 100 AQPs from WExtended each chosen at random and used that

to get a database from Hydra to serve our baseline model. As earlier, for clearer understanding,

the results for base filters and join nodes are shown separately, and the join nodes are broken

up to show accuracy for CCs involving 1-4 joins.

Using the procedure discussed in section 6.5 for test query forwarding, we assigned all the

queries from WTest to the sub-workloads where it is likely to achieve maximum volumetric sim-

ilarity. The number of queries that each sub-workload was assigned is quantified in Table 7.11.

W1 W2 W3 W4

14 10 17 14

Table 7.11: Best Assignment for WTest

Also, to showcase the effectiveness of our test query forwarding logic, we also depict the effect

of the reverse, i.e., each test query mapped to the sub-workload where it is likely to achieve the

worst volumetric similarity. This is done by tweaking the same logic from section 6.5, but this

time choosing the sub-workload with minimum points instead of maximum. For this case, the

number of queries that each sub-workload was assigned is quantified in Table 7.12.

W1 W2 W3 W4

15 13 13 14

Table 7.12: Worst Assignment for WTest

The performance of each sub-workload with respect to filter nodes, both in the best and

worst case assignments is shown in Figure 7.10. Also, the performance of each sub-workload

with respect to join nodes, both in the best and worst case assignments are shown in Fig-

ures 7.11, 7.12, 7.13, 7.14.

A point here to note that we intend to show the net effect in a sub-workload for both best

and worst case assignments. The actual subset of queries from WTest assigned to a specific
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workload in both the best and worst is very likely to be different, and so the number of filter

and join edges that feature in each sub-workload will also be different. This can be especially

true for higher order joins, as not all queries from our WTest feature four joins. This can be

evidently seen from Figures 7.11 and 7.12 that there were no four join nodes in the worst case

assignment scenario for W1 as well as best case assignment for W2. This is marked by NA in

the figure.

From figure 7.10, we can see that for each sub-workload, the overall accuracy improvement

over the baseline for Filter nodes is close to 30 percent on average. We can also clearly see the

severe accuracy degradation in the worst case assignment in each case. Specifically, for W1 and

w3, the performance is worse than the baseline itself, and for W4, the performance is almost

the same as the baseline.

Figure 7.10: Base Filter accuracy for Split Workload Scenario

Coming to performance in the join nodes, from Figures 7.11, 7.12, 7.13, 7.14, we can observe

that the overall accuracy improvement over the baseline is close to 20 percent in average. We

can observe a lot of cases wherein the best case and worst case performance of HF-Hydra in the

sub-workloads, especially in the higher order joins, to be identical to that of the baseline. This

is because we observed that for many higher order joins, the cardinality of both the cases of

Hydra and HF-Hydra turned out to be zero. So numerically, it denotes identical performance

as that of the baseline. This is again due to the progressively reduced quality of the input

statistics, as seen in the results of unified workload scenario itself.
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We can also in general, observe that for both filters and joins, the accuracy improvement

is not as great as it was for the unified summary case in the previous subsection. One obvious

reason is that with a reduced number of constraints in a sub-workload, the summary would

not be rich as it otherwise would be with information from all the training queries. Secondly,

while forwarding the test query, we chose only one of the sub-workload likely to give maximum

volumetric similarity, and so, we inevitably lose out on the performance of some edges of the

query which may have had better intersections with sub-domains of the other sub-workloads.

Figure 7.11: Join Nodes accuracy for Sub Workload W1
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Figure 7.12: Join Nodes accuracy for Sub Workload W2

Figure 7.13: Join Nodes accuracy for Sub Workload W3
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Figure 7.14: Join Nodes accuracy for Sub Workload W4

7.11 Optimal Number of Sub-Workloads

Recall that we mentioned in sub-section 6.4.1 that, with our attribute intervalisation procedure,

and eventual sub-workload splitting, we do not guarantee any minimality. However, to inves-

tigate how far we were from the optimal number of sub-workloads, we tried workload division

by brute force, and figured out that for our WExtended, 3 sub-workloads were sufficient to have

each workload feasible. But interestingly, the solving time for two of them was very high. We

present these figures in Table 7.13.

W1 W2 W3

Total Variable Count 7,030 69,598 40,810

Total Time taken by Solver 1 min 36 sec 2 hr 41 min 26 sec 52 min 23 sec

Table 7.13: Optimal Number of Sub-Workloads for WExtended

This clearly shows that, not only the number of variables, but also a careful consideration

of the nature of the equations, and other aspects like including the underlying data statistics

of the attributes comprising the workload are essential to be included in our workload-splitting

algorithm, and so we consider them as interesting future work.
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Chapter 8

Conclusion and Future Work

Testing database engines efficiently is a critical issue in the industry, and the ability to accurately

mimic client databases forms a key challenge in this effort. A rich body of literature exists on

data regeneration, beginning with workload-independent followed by workload-dependent tech-

niques. Specifically, workload-dependent techniques aim at producing volumetric similarity to

seen (training) query workloads. A common limitation in these contemporary techniques is that

they run into issues of scale or efficiency at one stage or the other in the regeneration pipeline.

This is partly due to their focus on materialized static solutions, making them impractical at

large volumes. Also, in testing applications, generalization to new queries can be necessary re-

quirement at the vendor site. Hence, reasonable volumetric similarity on any unseen (testing)

query workload is critical as well. This ability to provide robustness to test queries has not

been explicitly addressed in generators proposed in the literature.

Hydra is a recently proposed workload-aware data regenerator, which ensures volumetric

similarity on training queries. Hydra consciously addresses data scale and efficiency issues

through the entire regeneration pipeline. Hydra constructs a database summary, which is then

used to dynamically regenerate the database, on-the-fly during query execution. Also, the

summary construction is independent of the data scale. Hence, Hydra can practically cater to

client databases with large volumes, unlike many of its competitors.

Notwithstanding these desirable characteristics, Hydra suffers from critical limitations: (a)

limited scope of SQL operators in the training query workload, (b) lack of scalability with

respect to the size of the training query workload, and (c) poor volumetric similarity on test

queries. The inherent scalability limitation in the size of the training query workload stems

from the computational limitation of the theorem prover. The consequences are restrictions on

the training workload size, as well as inaccurate similarities for test queries. Robustness on test

queries is further adversely affected by design deficiencies such as a lack of preference among
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candidate synthetic databases, and restricted domain value representations in the generated

data.

8.1 Conclusion

In this thesis, we presented High-Fidelity Hydra (HF-Hydra), an enhancement over Hydra,

to address the critical limitations of Hydra. In the first segment of the thesis, we discussed

extending the ambit of Hydra’s operator coverage which is restricted to only equality and range

predicates in filter constraints, to also include the LIKE operator. We proposed a solution to

discover and handle intersections. We then transformed the LIKE predicates into equivalent

equality filter predicates, which can be eventually processed by the existing setup.

In the next segment of the thesis, we looked into the specialized case that focuses only

on handling training queries. Here, HF-Hydra provided an extreme solution wherein for each

query in the workload, a different database summary was produced. The idea here was that

with dynamic generation in action, when a training query is fired, the summary for that query

is picked to generate tuples on the fly. With this approach, we bypassed the inherent scalability

limitation and managed to handle any number of training queries. We also extended support

for projection-based SQL operators in this scenario.

In the subsequent segment of the thesis, we discussed the framework of HF-Hydra that

addressed the general case, where the focus was also to provide robustness for test queries.

We modeled the metadata statistics as constraints and augmented them to obtain a refined

region-partitioning of the data space. With optimization functions in our LP formulation, the

optimizer was leveraged to make a focused choice among the candidate databases. Finally, a

summary was constructed, and for each region therein with a non-zero cardinality assignment,

we generated tuples adhering to the optimizer’s distribution model, with greater diversity in

the represented domain values.

In the last segment of the thesis, we proposed a workload-division strategy to produce a

few sub-workloads, and a summary was produced for each sub-workload. We used the heuristic

of whether the number of variables that are produced from the constraints in a sub-workload

was under the limit that the solver could easily handle. When a test query was fired, we

then deterministically directed the test query to be executed on the data generated from the

sub-workload where the volumetric similarity was likely to be maximum.

Finally, we saw a detailed experimental evaluation discussing each scenario with a diverse set

of workloads derived from the TPC-DS benchmark, and confirmed that HF-Hydra takes a sub-

stantive step forward with regard to creating expressive, robust and scalable data regeneration

frameworks, with organic relevance to testing deployments.
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8.2 Future Work

Following are some areas with future research scope regarding the design of HF-Hydra:

1. Extend the ambit of HF-Hydra to support projection-inclusive constraints in the frame-

work of providing robustness to test queries as well. Also we would like to work on

extending support to queries with other operators like Union, Group-By and also Having

clause.

2. Include more input characteristics of the client database and model in the form of CCs to

help in obtaining a better inter-region solution. While doing so, we need to make sure that

we don’t compromise on the data privacy of the client. Also, the additional information

we demand should be practical to construct and ship to the vendor.

3. We have used the native optimizer of the Postgres engine as our cardinality estimator

to get the estimates for the SQL queries for the regions in HF-Hydra. We would like

to try and incorporate the recently proposed selectivity estimation algorithms based on

machine-learning techniques (e.g., NARU [31], MSCN [18], SDV [21]) into the HF-Hydra

framework.

4. We currently use the solver as a black box to get a feasible solution for the LP. Instead,

we would like to develop an invasive algorithm with guarantees, to guide the solver to

prefer one solution over the other, so that would eventually help in better inter-region

distribution, thus increasing the fidelity in the generated synthetic database with respect

to the original client database.

5. Currently, our workload-division strategy uses the heuristic of number of variables to

perform the splitting of constraints into sub-workloads. We would like to design an

algorithm to include into consideration the nature of the system of equations that are

formed, and also the underlying data statistics of the attributes comprising the workload.

6. We would like to enhance our workload-division strategy to explore other methods for

dividing the domain space into associated sub-workloads, as well as provide provable

guarantees of minimality with respect to the number of sub-workloads produced.
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