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Abstract

A fundamental requirement for testing the performance of database systems is to regenerate

real databases synthetically such that certain pivotal characteristics of the original database

are retained. The literature has several techniques which aim to achieve this by objectifying

similar number of row cardinality at each operator of query execution for a given workload of

query on the two databases. Hydra is the state-of-the-art work on this, which can generate a

database summary with a run time independent of the size of the database to be regenerated.

From this summary, tuples can be generated during query execution. However, it is limited

on the workload size that is taken as input due to the underlying linear programming (LP)

technique used in it which leads it to overwhelm the memory.

This work is derived from the basic principles of Hydra with a core focus on how the LP is

formulated and solved. Instead of directly using a library for solving the LP, we propose the use

of the classical column generation technique which omits the requirement to store huge number

of columns of the coefficient matrix, which is given as the input to LP solver, thereby saving

significant memory. The column generation problem is solved as an integer linear problem,

the constraints of which are formed by using the Quine-McCluskey (QM) algorithm. We also

propose optimizations over the QM algorithm for our particular case.

Hydra has a workload decomposition module over its LP formulation module which reduces the

complexity of the problem. This module is not compatible with the optimizations proposed in

this work. To show merit of the ideas presented, we compare our work without the decompo-

sition module. In our experiments, it was found that the proposed technique is more efficient

in terms of memory and can run for test cases where Hydra fails. However, Hydra with the

optimization proved to be more space efficient than our approach.

Finally, we propose the use of Dantzig Wolfe decomposition as an approach to make the opti-

mization proposed and the one already present compatible with each other.
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Chapter 1

Introduction

Generating synthetic databases (DB) are often required for applications like testing of engines,

performance impacts of planned upgrades, etc. We are particularly interested in regenerating

a synthetic database from a fixed set of queries whose output row cardinality, along with the

cardinalities at each intermediate operation for a given query execution plan to obtain the

result, is known. The aim is to have the same (or very similar) row cardinalities at each

operation of query execution when the same queries are run on the synthetic DB, to mimic the

runtime performances of the DB. It is to be noted that no data from the original database is

ever transferred to regenerate the database. The number of constraints that can be processed is

limited by the amount of memory in the system. Our work focuses on scaling up the number of

constraints with known row cardinality that is supported on the system, by making the solving

technique more space efficient.

1.1 Workload Dependent Data Generation

The class of workload dependent data generation deals with generating database which is vol-

umetrically, i.e. in the number of rows, similar to the original database for a given workload.

The concept of cardinality constraints (CC) for capturing volumetric similarity was proposed

by DataSynth[12]. A CC expresses that the output of a given relational expression over the

generated database should feature the specified number of rows.

Workload dependent data generation frameworks [12, 7] take a database schema and An-

notated Query Plans (AQPs) as input. An AQP is the annotated query execution plan of a

given query which is represented as a tree. The leaves of the tree are tables that are involved in

the query, and each upward edge signifies an operation (e.g., filter, join) on the current node,

which is paired with a number representing the cardinality (number of rows returned) of the
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Figure 1.1: Example of CC Formation

result. As output, they produce a synthetic database that has similar volumes of data at each

operators in the AQP.

From each annotated number, we can form a CC. An example of how CCs are formed is

shown in Figure 1.1 for clarity. Figure 1a shows an example database schema on which an

example query is run, and the resultant AQP is shown in Figure 1c. The CCs formed from the

AQP are shown in Figure 1d.

1.2 Hydra

Based on the CCs retrieved from the AQPs, the space represented by the domain of the at-

tributes of a denormalized table is partitioned into disjoint regions such that the CCs from the

AQPs can be characterized to form a linear program (LP). The regions so formed may not be

of a regular shape like rectangle and can even be non-convex. One such LP is formed per table.

The partitioning is such that each point in a single region satisfies exactly the same CCs.

Consider the CCs given in Figure 1.2. The space represented by the CCs is given in Fig-

ure 1.3.

• 10 ≤ Age < 65 ∧ 10k ≤ Salary < 80k; Cardinality : 210

• 50 ≤ Age < 85 ∧ 40k ≤ Salary < 70k; Cardinality : 260

• 20 ≤ Age < 40 ∧ 30k ≤ Salary < 70k; Cardinality : 50

• 30 ≤ Age < 80 ∧ 40k ≤ Salary < 60k; Cardinality : 200

Figure 1.2: Example CCs on Age and Salary

The CC salary between 40000 and 60000 and age between 30 and 80 is represented in the

blue bounding box (fourth CC in Figure 1.2). Note that inside each CC, there may be multiple

2



regions present where each region is labeled according to the CCs it satisfies. For example,

region {1} is satisfied only by CC1 while region {1, 3, 4} satisfies CC1, CC3, and CC4. For each

constraint, an equation can be formed consisting of the regions present inside it and equating

it with the cardinality of the CC.

Figure 1.3: CCs from Figure 1.2 Represented in Attribute Space

For example, the CC discussed earlier can be represented as x1,3,4 + x1,4 + x1,2,4 + x2,4 =

200, where 200 is the cardinality of CC4 and xi represents the cardinality of region i. Likewise,

there will be one equation for each constraint, and it can be represented in matrix form as

shown in Figure 1.4. This matrix is called the coefficient matrix. The fourth row of the matrix

corresponds to the constraint discussed.

The number of columns in the coefficient matrix is equal to the number of regions (each

region has an associated variable), and the column corresponding to a variable has the informa-

tion of the CCs, which the region corresponding to the variable satisfies. For example, consider

column 2 corresponding to the variable x1,3; the entries at positions 1 and 3 are equal to 1 while

the rest of the entries in the column are 0. Note that for m CCs, there can be a maximum of
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2m columns representing the power set of the set of CCs, and thus the size of the coefficient

matrix can be of dimensions m× 2m in the worst case. Another interesting thing to note here

is that all the entries in the coefficient matrix are either 0 or 1, which makes the problem a

special case. This special case is exploited by introducing Boolean logic operators to represent

the columns, required as part of the column generation module section 2.2.


1 1 1 1 1 1 0 0
0 0 0 0 1 1 1 1
0 1 1 0 0 0 0 0
0 0 1 1 0 1 1 0





x1
x1,3
x1,3,4
x1,4
x1,2
x1,2,4
x2,4
x2


=


210
260
50
200



Figure 1.4: Equations Formed from Figure 1.3 in Matrix Form

Hydra formulates this as a linear programming problem such that each CC forms a con-

straint without any optimization function. Note that the problem so formed is almost always

underdetermined (i.e., the number of variables is more than the number of equations) and is

always feasible since we know that there exists at least one solution.

1.2.1 Limitations

Hydra uses Z3[10] solver to find a feasible solution to the LP. All the constraints are explicitly

added row-wise in the solver. Apart from that, the boundaries of the regions formed from the

problem are also stored in the memory as multidimensional arrays and take significant space.

It has been observed that for workloads with 200+ queries, the memory runs out on a machine

with 16GB main memory. The fact that the coefficient matrix has only 0s or 1s is not exploited

while solving the LP, and we wish to benefit from the limited domain of the numbers.

1.3 Modified LP Solver

We propose a modified LP solver that does not have the requirement to store the whole coeffi-

cient matrix and diminishes the space requirements without compromising on the quality of the

solution. We also propose modifications to eliminate the requirement to store all the regions at

the same time and generate them on the fly when needed.

The original and proposed architectures are shown in Figure 1.5 and Figure 1.6, respectively.

It is to be noted that we are using the same pre-processing and post-processing steps as Hydra

4



Figure 1.5: Original Hydra Architecture

Figure 1.6: Proposed Architecture

while modifying the LP formation and solving methodology.

Step I: In the first step, a modified version of the QM[8] algorithm is used to minimize a

Boolean expression, to represent all the columns in the LP in a compact manner. The terms

in the expression are constructed from the regions formed for a given workload. All the regions

5



are known after doing region partitioning (1.5) in Hydra. However, we wish not to use that

module because it stores how each region looks and takes up memory. Instead, we propose to

probe regions to check for their presence. Since there can be 2m regions for m CCs, probing in

a naive way, which can have 2m probings in the worst case, is impractical. We do probing in

a systematic manner such that the results of certain probes may eliminate the requirement to

probe other regions.

Step II: The minimized expression formed is used to form integer linear programming (ILP)

constraints. These constraints signify how the columns of the coefficient matrix may look.

Since all the columns of the coefficient matrix are not stored, these constraints are useful while

generating new columns. Only the constraints are formed and stored in this step, and no ILP

is solved. Note that the above two steps are done exactly once.

Steps III-IV: The ILP constraints thus formed are then passed on to the LP solver, which

we have implemented using the Simplex algorithm and column generation technique. Only

m columns of the coefficient matrix (this submatrix is called the basic matrix) and exactly

m variables are stored at each point. In each non-terminating iteration of simplex, a new

column is found to replace one of the columns already present. To find a new column, an

ILP optimization function is solved (step 4), the constraints of which are always the same

and are taken from the previous step, and a new optimization objective is formed by doing

computations that are fundamental to the simplex algorithm. The column so generated is

checked for potentially replacing one of the existing columns. The algorithm terminates when

a newly generated column cannot replace the existing columns.

1.4 Related Work

The area of synthetic data generation has received attention over the past three decades. The

work on synthetic data generation can be broadly classified into two categories; one not con-

sidering the query workload and the other dependent on the workload. In the former method,

the approaches are majorly mathematical, where data distributions are used for generating

databases(e.g. [13, 14]). In [16], the Data Generation Language is used to generate synthetic

distribution using iterators. Here, the construction of a dependent table is bottlenecked by

access to the referenced table. Several improvements [18, 23] were made to this technique with

respect to the generation speed.

A lot of work has been done in the category of synthetic data regeneration dependent on work-

loads. RQP [17] takes a query and the result of the query as the input and reverse engineers

6



the original database table. QAGen [11] used cardinalities from a query plan tree. It first

constructs a symbolic database (DB) and adds constraints derived from the query plan trees

over the symbols. In a symbolic database the values in the DB are symbols or variables and

constraints are put over the symbols according to the query. A Constraint Satisfaction Program

(CSP) is used to get instantiation for the symbols used. This method is able to handle complex

operators, as the CSP can handle generic constraints. However, a major limitation is the size

of the table of the number of rows supported as the complexity of CSP grows rapidly with it.

It more so concerns in today’s world where DBs in Terabytra or petabytes are common. Also,

the approach creates a DB of the size of the original table, and a table per query which further

limits its usage. For example, for 15 queries on a single table, 15 tables will be generated with

sizes proportional to the size of the original table, thus inflating the memory requirement. The

limitation was somewhat addressed in MyBenchmark[15] which initially produces one symbolic

table per query and later tries to merge them into a smaller number of tables, ideally 1. The

merging of the DBs is done by reducing the problem to finding the classical maximum bipartite

matching problem solution, which itself is solved in literature by reducing it to the classical

maximum flow problem in graph theory. Push-relabel algorithm is used for solving the maxi-

mum flow problem. After the merging process, the number of tables can range from 1 to the

original number of tables. However, they have experimentally shown that this number is usually

low on the standard workloads of TPC-C,TPC-E, TPC-W, TPC-H. The work also proposes

randomization and approximation with an error tolerance over the methods. The number of

ways of joining the DBs is exponential and is the nth Catalan number of n tables and hence

is large. Their preliminary result on this work considered only left-deep plans for joining (the

DBs). They later improved it to accommodate bushy plans which allows the use of parallel

processing. Although much more promising than QAGen with fine theory, the work is again

limited by the number of tuples in the DB since the number of vairables in the CSP is dependent

on it. The push-relabel algorithm used has a cubic time complexity on the number of nodes

(which is dependent on the number of rows). Thus, for DBs having several billion tuples, this

method can be too time-consuming and infeasible.

DataSynth [12] proposed Cardinality Constraints(CC) as means of expressing data charac-

teristics. DataSynth provided a framework for producing a database that adheres to a set of

CCs. In this framework, a denormalized table is constructed for each table, which comprises

non-key attributes of this table and the non-key attributes of tables that it is connected to

through referential integrity. The join expression is replaced by a single denormalized table

using this construction, assuming only PK-FK joins. Next, the data space of the denormalized

7



Figure 1.7: Regions in DataSynth

table is partitioned into a group of regions such that domain points in each region satisfy the

same set of CCs. The regions are found simply by extending the boundary projections on the

axes of the attribute space. Consider the example of CCs given in Figure 1.2, the regions for

this problem is shown in Figure 1.7. Each rectangular box (formed by dotted lines) forms a

region. The regions in this setting are trivially known and it is to be noted that the number

of regions in this is not the minimum possible. E.g. there can be more than one region that

satisfies the same CCs. An LP is formulated after this with a variable for each region where

the variable signifies the cardinality of the region. The solution of the LP is used to generate a

denormalized table in a probabilistic manner, which is used to generate the base tables. This

method is independent of the number of tuples in the output of CCs, which merely remains as

a number and thus independent of the size of the DB to be mimicked. However, it is limited

in the query workload size that is supported due to its explosion in the number of variables

because of the trivial region formation approach. The probabilistic way of generating tuples

8



also introduces some error, where the error is defined as the output cardinality mismatch in the

CCs, the details of which can be found in [12]

Hydra [7] extended the above framework to provide scalability to the generation process.

We discuss some of the primary changes which address the issues highlighted above. Firstly,

Hydra proposes a new approach to partition the regions, drastically reducing the number of

variables required in the LP. The formulation is optimal in terms of the number of regions that

are formed, i.e., all the points that satisfy the same CCs belong to the same region. The regions

formed after partitioning the space by CCs in Figure 1.2 is shown in Figure 1.3. The regions

are labelled according to the CCs it satisfies. Notice that the regions are no longer (hyper)

rectangles, and not even convex anymore. Another major change was in the data generation

process which was made deterministic, resulting in fewer errors. It also provided dynamic data

generation by constructing a database summary used for on-the-fly tuple generation during

query execution.

1.5 Our Contributions

Our work is derived from [7] with a focus on reducing the memory required. The proposed

modifications are as follows:

• Use of Column Generation Algorithm: In the earlier work, the Z3 library [1] was

directly used after the formulation of LP. This way of solving had two specific bottlenecks:

the region partitioning algorithm and the LP solver.

We have proposed the use of Column Generation to reduce the memory footprint required

for the LP solver. The memory required is traded for extra computations, which may

result in extra compute time.

• Constraint generation for Column Generation: The constraints of how the columns

look are known trivially in typical Column Generation problems.

In our case we generate the ILP constraints from the columns. This is possible only

because the columns have Boolean values and could not have been done for any set of

general columns.

Also, the space consumption of enumeration of all the columns at the same time is equiv-

alent to the space required without column generation. We propose to

• Use of QM Algorithm for Generating ILP Constraints: QM Algorithm is used to

9



minimize Boolean expressions, which are typically present in digital circuits.

Due to the Boolean domain in our problem, we are able to represent the columns in our

problem minimally using the algorithm. The bridge between minimal Boolean representa-

tion and ILP constraints is formed by transducing the former to the latter by representing

logical operations like and, or, not, using ILP constraints. The conversion, though done

independently, can also be found on the web.

• Modification over QM Algorithm: The QM algorithm in the domain’s terminology

requires all the minterms (which analogically are columns/ regions in Hydra) present at

the same time. This would mean storing all the columns/ regions if this were to be used

as-is.

We analyze the algorithm and propose a modification to it so that not all the regions are

required at the same time. We do so by using the CC intersection monotonicity property

section 3.2.

• Implementation of the ideas: All the proposed ideas were implemented from scratch

covering various edge cases. The module was successfully integrated into the existing

Hydra pipeline.

1.6 Organisation

In chapter 2 we briefly discuss the mathematical background required to understand our work

which includes an introduction to the Simplex algorithm and column generation technique in

section 2.1 and section 2.2, respectively. It is followed by showing how we can generate mini-

mized Boolean constraints to represent all the columns, given the columns, in subsection 2.3.1.

The conversion of Boolean constraints to linear constraints so maintain compatibility with LP

theory is shown in subsection 2.3.2. In subsection 2.3.4, we address the issue of degeneracy

and cycling that are inherent issues to both simplex and column generation and occur in our

experiments as well.

Until chapter 2, we assume that all the columns are available to feed into Boolean expres-

sion minimizer to get the Boolean constraints for the columns. Thus, step I mentioned in the

previous section is not discussed, which is a modification to Boolean expression minimization

algorithm, namely the QM algorithm. chapter 2 is complete in itself in the terms that the

system can run completely with the modifications proposed.

10



chapter 3 first introduces the QM algorithm and then talks about the modifications made

to the QM algorithm for our specific case so that the minterms (or equivalently the columns)

are not required as input. We exploit the monotonicity property of CC intersection, i.e. if a

given number of CCs do not intersect at all, then no superset of these CCs can intersect to do so.

In chapter 4, we discuss the system and implementation details, followed by the results.

In the discussions throughout the thesis, we have not considered an optimization already

present in Hydra, which decomposes the LP, namely the subview optimization, by which the

LP simplifies in terms of the number of variables. Experimentally, it was found to be better

than just the optimizations proposed in this thesis. Note that the optimizations proposed here

work better than Hydra without subview optimization. In chapter 5, we propose the theory to

use both optimizations at the same time.
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Chapter 2

Modified Solver

2.1 Prerequisites: Simplex Algorithm

One of the most popular algorithms to solve an LP is the simplex method. In its standard

form, the simplex algorithm solves the following problem:

maximize

cTx

subject to

Ax = b

x ≥ 0

where, A ∈ Rm×n, x ∈ Rn×1, b ∈ Rm×1, c ∈ Rn×1

Here, the x vector is variable, the value of which we need to find. The c vector denotes the

optimization coefficient for x. The coefficient matrix (A), along with the RHS values (b vector),

specify the constraints on the optimization function.

Let the number of constraints be m, and the number of variables be n. The feasible space

represented by the constraints forms a convex polytope. Each variable has its dimension in the

space. Each corner point in the polytope has at most m non-zero dimensions (variables) and

at least n-m dimensions (variables) as 0. The solution corresponding to these feasible corner

points is called a basic feasible solution (BFS).

Definition 2.1 (Basic Feasible Solution) A solution to the simplex problem where at most

m of the n variables take non-zero values.

We state the fundamental theorem of LP below, considering the LP in the standard form.
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Fundamental theorem of LP

• If there exists a feasible solution to the LP, then there exists a basic feasible solution(BFS).

• If there exists an optimal solution (with respect to the optimization function) to the LP,

then there exists an optimal BFS.

Thus, there is at least one optimal solution for the given problem where at most m variables

have non-zero values and simplex tries to find it. The simplex method is an iterative algorithm

that starts at a BFS and iterates over other BFS till an optimal BFS is found. So, at all points,

we are concerned only about m variables, called basic variables, and the rest of the variables

that necessarily have 0 value are called non-basic variables. This can be mathematically stated

as below-

Ax =
[
AB AN

] [ xB

xN

]
= b

For BFS, xN = 0

Ax =
[
AB AN

] [ xB

0

]
= b

The subscripts B and N in the above equations refer to the basic and non-basic components

of the respective matrix/ vector.

2.1.1 Phase 1 Simplex Algorithm in Hydra

The simplex algorithm needs a BFS to start with. However, finding a BFS is not trivial, and

one of the ways to find it is using the phase 1 algorithm of Simplex. In this method, the

problem to find a BFS is itself solved as an optimization problem. Artificial variables that were

not originally part of the problem are introduced. A trivial solution to the artificial problem

can be obtained with an optimization function to remove it, so that a BFS can be found for

the original LP.

In the next subsections, we discuss the various phases of the simplex algorithm with respect

to Hydra.
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2.1.2 Initialization for phase 1 simplex

An artificial variable that was not originally part of the problem is introduced per constraint.

A trivial solution to finding BFS with the new formulation will be to assign the right-hand

side value of each constraint to the corresponding artificial variable. For example, let us say we

added an artificial variable a1 for constraint 1, the solution will have a1 = b1 where b1 is the first

value in the b vector. Thus AB matrix (matrix consisting of the columns corresponding to the

basic variables) would be an identity matrix. However, it is to be noted that the solution is in

terms of variables that were not a part of the original problem. Thus, an optimization function

is added, forcing the artificial variables to take 0. One of the ways of doing it would be to put

an optimization function as maximize dTa, where d is a vector having all −1s (any negative

value works equally well) and a is the vector of artificial variables. This can be represented

mathematically as follows-

[
Aoriginal Aartificial

] [ x

a

]
=
[
A I

] [ x

a

]
= b

Note that some of the columns of the identity matrix could be present in the original problem

itself, and no artificial variable or columns are introduced for such columns. Thus, the above

mathematical formula represents a system where no column of the identity matrix was already

present.

2.1.3 Iteration

In each iteration of the simplex, an entering variable (and its corresponding column) is chosen,

which will ‘enter’ the basis, and a leaving variable (and its corresponding column) is chosen to

‘leave’ the basis, thus updating the basis. This updating of the basis is done till none of the

termination conditions (described in the next section) are met.

Let cB denote the optimization coefficients for the basic variables. cB×A−1
B ×Ai is calculated,

where Ai denotes the ith column of the A matrix. Any column (and its corresponding variable)

with a negative value of cB × A−1
B × Ai - ci can enter the basis, where ci is the optimization

coefficient of the entering column. Since there can be multiple such columns, any column can

be chosen either in a deterministic or random manner. Some of the deterministic rules based

on heuristics are the largest coefficient rule, largest increase rule, and first negative value. The

details of these rules can be found in [9].
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To find the leaving variable index, the entries of b vector are divided by the entries of the

entering column and the index having the least non-negative value leaves the basis. Note that

there are n−m choices for an entering column and m choices for the leaving column.

2.1.4 Termination

The termination of the iterations can happen when any of the following is detected -

• Alternate optimum

• Unboundedness

• Infeasibility

• Cycling

• No entering column

Since Hydra is not particularly interested in the type of solution and any solution giving

the BFS would do, the iterations can stop when we detect that the algorithm is iterating on

alternate optimums. Unboundedness is the case when the optimal value is either ∞ or −∞.

Infeasibility is detected when there are no values of x such that all the constraints are satisfied.

Both the cases can never occur in Hydra, as the constraints are generated from a real database

which has itself as the solution. The fourth case of cycling is said to happen when we reach the

same basis after some iterations. If the entering and leaving variables are chosen in deterministic

ways, then the same basis will be reached after some iterations. One way to overcome cycling

is to use Bland’s rule, which has rules for entering and leaving variables in case of ties based

on their indexing. More details about it can be found in [9]. We encounter cycling in our

experiments done using column generation, and the details of how the cycle was broken are

given in subsection 2.1.5. If no column can enter the basis, then the current solution is the

optimal solution and the iterations are terminated.

A high level simplex algorithm is shown in algorithm 1.
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Algorithm 1: Phase 1 Simplex Algorithm

Result: BFS of the problem
1 basis = Identity matrix
2 optimizationCoefficient = [0]*numVariables
3 for Column in Identity matrix do
4 if Column is not part of Original problem then
5 Set negative Optimization coefficient for the corresponding variable
6 end

7 end
8 potentialColumn = getEnteringColumn(basis, optimizationCoefficients)
9 while potentialColumn can enter the basis do

10 leavingIndex = findLeavingIndex(basis, potentialColumn)
11 basis[leavingIndex] = potentialColumn
12 potentialColumn = getEnteringColumn(basis, optimizationCoefficients)

13 end

2.1.5 Degeneracy and Cycling

Degeneracy is said to happen when there are multiple potential leaving variables. In such a

case, one of the basic variables takes zero value in the next iteration. When degeneracy occurs,

there is no improvement in the objective value function in the next iteration. The algorithm

comes out of degeneracy by itself to move towards the optimum, and thus the computations

are simply wasted, but it does not affect the convergence of the algorithm. There are no proven

ways to avoid degeneracy.

Cycling is said to happen if we get to the same set of basis after some iterations. In contrast

to degeneracy, the algorithm gets stuck in this case and does not terminate. Cycling can be

overcome in simplex, and one of the ways to do so is using Bland’s rules which orders all the

columns and takes the ordering into account. Interested readers may refer to [9] for details.

We encounter the issue of both cycling and degeneracy in our experiments. While degen-

eracy only causes performance degradation with respect to running time and gets out of the

degeneracy condition in subsequent iterations, cycling is like an infinite loop and requires special

treatment. The details are present in subsection 2.3.4.
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2.2 Prerequisites: Column Generation

Column generation is a technique used to solve simplex algorithm where the number of vari-

ables is too large and the columns can be represented mathematically as some pattern, set or

permutations. It is to be noted that the representation should cover all the possible columns in

the original problem, but the representation should not consist of any column that was not in

the original problem. Continuing from the context of the previous section, instead of storing all

the columns, we represent all the “permitted” columns in a symbolic sense with variables e1, e2,

e3 ... em (vector e) and thus to find an entering variable, instead of calculating cBA
−1
B A− ci, we

would rather need to find a possible value of column e such that cBA
−1
B e− ci has an entry that

is less than 0, where AB is the basic matrix, cB is the coefficient of optimization for basic vari-

ables. If we have a way of representing all the set of permitted columns mathematically(using

constraints), then we can find an entering column by minimizing cBA
−1
B e (so that we can get

a negative entry in cBA
−1
B e − ci) such that those constraints are satisfied. Now the problem

has reduced to finding a way to represent all the permitted columns. It is to be noted that the

new optimization problem of finding a new column deals in only m variables. We can incur

more computational costs when solving an LP using column generation but save on the space

required to store all the columns (sans columns in the basis).

For more details and example on the column generation problem, please refer to [9].

2.3 Modified LP Solver for Hydra

2.3.1 Representing Columns in Hydra like Systems

It is to be noted that even though column generation is a well-established technique, it is tradi-

tionally not used without knowing the constraints on the columns beforehand. The integration

of the method with Hydra is not trivial. In typical cases, the constraints required representing

all the permissible columns, are already known (e.g. in the classical cutting stock problem),

but in the case of Hydra we generate constraints given the columns. Hydra uses the ‘region

partitioning’ algorithm [7], which splits the space of attributes of a table as explained in sec-

tion 1.2 and thus generates all the possible columns. We wish to generate constraints on these

columns so that the new LP Solver is compatible with the column generation method. Such

a representation would help in saving the memory used in the LP Solver. Another memory

bottleneck occurs while computing the regions using region partitioning algorithm; the same

has been addressed in chapter 3.
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Recall from section 1.2 that we have a column (and its corresponding variable) for each

region in the attribute space. Following the theory from the simplex algorithm, we can say

that at most m of those regions will have non-zero cardinalities, and thus the solution obtained

would be skewed in terms of the distribution of tuples.

The first thing to note while forming constraints for the columns present is that all the

values are either 0 or 1. We exploit this very fact of values being boolean to form constraints.

It is to be noted that for the system to work with column generation, the constraints should

be represented as linear constraints, so that the system can work with the column generation

module. This would not have been possible for generic column sets if the domain of the values

of columns were non-boolean, e.g., real numbers or integers.

So, representing all the columns as constraints reduces to finding a way to represent boolean

terms, with the terms derived from columns. For example, if the column is [1, 0, 1, 0], the

corresponding term would simply be ‘1010’. These terms are called minterms in the context

of digital logic. Now, we would like to represent all the derived minterms in a compressed or

minimized format. This is the same as solving the problem of boolean expression minimization,

a well-studied problem in digital logic, assuming that we can convert minimized boolean ex-

pressions as linear constraints. One of the most popular algorithms which are scalable in terms

of length of minterms (or length of columns) and implementable on a computer is the QM

algorithm. A brief about the algorithm is written in section 3.1, and more details can be found

in [8]. We can use the QM algorithm directly in this approach. However, to address memory

issues arising from region partitioning, we also propose modifications on the QM algorithm for

our particular case (where the minterms are obtained from Hydra). In the next section, we

show, how to convert minimized boolean expressions to linear constraints.

2.3.2 Logical Boolean Expressions as ILP Constraints

Column generation is a technique used to solve a simplex algorithm where the number of

variables is too large. The columns can be represented mathematically as some pattern, set, or

permutations. Continuing from the context of the previous section, instead of storing all the

columns, we represent all the “permitted” columns in a symbolic sense with variables e1, e2, e3 ...

em (vector e) and thus to find an entering variable, instead of calculating cBB
−1A−c, we would

rather need to find a possible value of column e such that cBA
−1
AB
e−ce has an entry which is less

than 0. If we have a way of representing all the set of permitted columns mathematically(using
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constraints), then we can find an entering column by minimizing cBA
−1
B e (so that we can get a

negative entry in cBA
−1
B e− ce) such that those constraints are satisfied. Now the problem has

reduced to finding a way to represent all the permitted columns. It is to be noted that the new

optimization problem of finding a new column deals in only m variables.

We wish to form linear integer constraints on the symbolic entering so that we can use the

existing ILP solving technqiues to solve the problem. Let us first take a look at how linear

constraints can be used to represent boolean operations. Boolean operations are relevant as all

the values in the coefficient matrix are either 0 or 1. We want to establish the fact that ‘logical

and’ (∧), ‘logical or’ (∨), and ‘logical not’ (¬) operations can be mimicked for any number

of boolean variables using integer linear programming (ILP). To do so, we make the variables

boolean by using ILP and restricting the domain of all the variables between 0 and 1.

Now, to put a constraint that y = e1 ∧ e2 ∧ ... ∧ en, we can add two linear constraints :

Σei − n× Y ≤ n− 1

Σei − n× Y ≥ 0

Proof : It is sufficient to show that when Y=1, all the ei are 1 and when y=0 at least one of the

Ei = 0. It is to be noted that Σei ranges from 0 to n. If Y=1, then from the second equation

Σei ≥ n which implies that all ei = 1 (since ei ≤ 1). Y = 0 from the first equation Σei ≤ n− 1

implies that not all the ei values are equal to 1.

Similarly to put a logical or condition such that y = e1 ∨ e2 ∨ .... ∨ en, we can add two linear

constraints like:

n× Y − Σei ≤ n− 1

n× Y − Σei ≥ 0

Proof : Y = 1 from first equation Σei ≥ 1 implies that at least one of ei = 1. Similarly Y = 0

from the second equation Σei ≤ 0 implies that all the variables are 0.

To put a constraint that y = ¬e (not e). We can put a constraint e + Y = 1. Note that ‘e’ and

‘Y’ are integers and range from 0 to 1, thus exactly one of ‘e’ and ‘Y’ is equal to 1 at a time.

Building on the basics, any compound formula derived using ∧ and ∨ and ¬ can be represented

using ILP (potentially using temporary variables).

For example to represent z = (e1∧e2)∨(e3∧e4∧e5), we can write the following ILP. Temporary

variables Y1 = e1∧E2 and Y2 = e3∧E4∧e5 have been used here. We use one temporary variable

for each conjuction.
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Var1 Var2 Var3 Var4 output
0 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 1 1 0
0 1 0 0 1
0 1 0 1 1
0 1 1 0 0
0 1 1 1 0
1 0 0 0 1
1 0 0 1 1
1 0 1 0 1
1 0 1 1 1
1 1 0 0 1
1 1 0 1 1
1 1 1 0 0
1 1 1 1 0

Figure 2.1: Truth Table Formed from Example in Figure 1.4

Writing boolean expressions with disjunctions (∨) between conjunctions (∧) of variables is

called the sum of product (SOP). We wish to represent the permitted columns in Hydra in

SOP form and then form ILP constraints on them. We can reduce our problem of representing

new columns to minimize boolean expressions so that we can form an ILP in the way shown

above. We introduce boolean variables equal to the number of entries in a column. For each

permissible column (consisting of only 0s and 1s), we put a 1 in the truth table of boolean

function and then reduce this boolean function.

Continuing from the example in Figure 1.3, the permitted columns are [1,0,0,0], [1,0,1,0],

[1,0,1,1], [1,0,0,1], [1,1,0,0], [1,1,0,1], [0,1,0,1], [0,1,0,0] which are the columns of the coeffi-

cient matrix and is also shown in Figure 1.4. The corresponding truth table for this is shown

in Figure 2.1.

2.3.3 Artificial Variable Reducer

An LP problem in Hydra can be thought of as finding a non-negative solution to Ax = b,

where A is the coefficient matrix for the equations, x is the vector of variables, and b is the

vector of right-hand side (RHS) values. Since in each iteration at most one artificial variable

can be removed, the processing time of the simplex method depends on the number of artificial
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variables present. We use the special property of LP in Hydra of having only 0, or 1 as a

coefficient to reduce this number.

The aim is to assign values to the variables such that there is a BFS, either with or without

an artificial variable for an equation. Note that there can be at most one artificial variable

per equation. As a preprocessing step, the algorithm first finds equations with RHS equal to

0 and assigns all the variables as 0 in them. Since these variables have been assigned a value,

they are removed from any other equation they come in. In the next steps the algorithm picks

equations having minimum b(call it bi) value, greater than 0, and assigns a variable(call it xij)

with that value, if an unassigned variable in the corresponding equation is present, otherwise

an artificial variable(ai) is introduced in the corresponding equation. If a variable is assigned a

value, then all the other remaining variables in the corresponding equation become 0 and the

variable is removed from every other equation it appears in by subtracting the value of RHS

with the value of this variable. Note that at no point RHS value becomes negative, this is so

because we are always taking the minimum bi, thus also making sure that all the variables get
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positive values.

Algorithm 2: Artificial Variable Reducer

1 Input Cardinality constraints

Result: Assigned variables, artificialVars

2 artificialVars = φ

3 for equations with RHS = 0 do

4 assign variables = 0

5 remove variables from other equations

6 end

7 while min. bi > 0 exists do

8 if an unassigned variable xij exists then

9 xij = bi;

10 assign remaining variables = 0

11 remove remaining variables from other equations;

12 for equation k having xij do

13 bi -= xij

14 remove xij from eqn. k

15 end

16 else

17 add an artificial variable ai ;

18 assign ai = bi

19 add ai to artificialVars

20 end

21 end

2.3.4 Removing Cycling in Column Generation

The issue of cycling (subsection 2.1.5) has been encountered in our case as well. Bland’s rules

are applicable only for the simplex algorithm where the columns are enumerated and the enter-

ing columns can be ordered (by their indexing), but in column generation, we have information

only of the columns in the basis plus the entering column only. In theory, since all the columns

are equivalent to boolean values, we can choose the ordering to be dictated by the value it

represents. For example, consider two columns [1, 0, 1, 0] and [1, 0, 0, 1], the first column

represents the number 10 in decimal (considering left most value to be the most significant bit)

and the second value denotes 9; thus the latter would come before the former in the ordering.
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This fact can be used if we can generate all the possible entering columns.

A workaround to finding all the entering columns is devised by spending more computations

when a cycle is detected. Recall that in column generation, an entering column can be found

by finding a column having f = cB×A−1
B ×e - ei value less than 0, where e is the representative

entering column. If there were no cycling, to generate an entering column, simply putting an

optimization function that minimizes f with the constraints generated to represent columns

would do. To generate all the possible entering columns, we first minimize f to find the first

entering column. Let the value of f found be f1. To find the next possible entering column,

the same constraints and the same optimization function are put with an additional constraint

that f > f1. Other constraints and optimization objectives ensure that we find an entering

column, and the last constraint ensures that no repeated columns are returned. Similarly, to

generate ith additional column, constraint f > fi is put, this is done till there are no more

columns possible. In our implementation, instead of finding values the ordering of the entering

columns, we simply pick any random column, and it successfully breaks the cycle.
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Chapter 3

Adapted Boolean Expression

Minimizer

3.1 Prerequisites: QM Algorithm

Boolean functions are used extensively in digital circuits, which have wide ranging applications.

Such functions are minimized before their use for performance and cost optimization without

compromising on the quality of the solution. ‘Don’t care’ terms which can represent either 0 or

1 at the same time which are usually present while minimizing circuit problems are not present

in our functions . One of the common ways to minimize boolean functions includes minimizing

using boolean identities like idempotent, distributive, and absorption laws. Another popular

way to do the same is using Karnaugh maps, also popularly knows as K-map. However, both

the techniques are not scalable with respect to the number of variables, thus for solving large

problems, the Quine-McCluskey algorithm (QM) is used. In this section, we discuss the impor-

tant steps of the QM algorithm, followed by our modifications to it to make it more efficient in

the context of our problem in the next section.

QM Algorithm [8] was first proposed by W. V. Quine in 1952 and later improved by E.

J. McCluskey Jr in 1956. The algorithm can work with any number of variables and can be

implemented on a computer, the running time and space required depend on the number of

variables. We will first describe the setup of the problem with the expected input and output

with an example, alongwith defining some terms in our context for ease of understanding.

• Input variables - A set of boolean variables defining the domain of the problem and the

length of each (min)term of input.
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• Minterm - A product term having all the input variables either in normal or comple-

mented form.

• Implicant - An implicant is a term which when set (equal to 1) also implies that the

output is 1. Every minterm is an Implicant.

• Prime Implicants (PIs) - An implicant of the given function which cannot be covered

by an implicant having fewer variables (normal or complemented), i.e., the removal of

any variable from from this term would make it a non-implicant. A PI can potentially

represent several minterms.

• Essential Prime Implicants (EPIs) - Prime implicants covering minterms which are

not covered by any other PIs, thus the inclusion of these PIs are absolutely necessary.

The algorithm requires to know all the minterms or equivalently the presence of the columns

which are permitted in the analogical world of Hydra. Consider the example given in section 1.2.

The permitted columns in it are [1,0,0,0], [1,0,1,0], [1,0,1,1], [1,0,0,1], [1,1,0,0], [1,1,0,1], [0,1,0,1],

[0,1,0,0]. We have 4 input variables in this problem which is equal to the length of each column.

The boolean expression that we want to minimize is:

z = 1000 ∨ 1010 ∨ 1011 ∨ 1001 ∨ 1100 ∨ 1101 ∨ 0101 ∨ 0100.

There are 8 minterms in the expression, each representing a column. The minimized expression

of this problem is:

z = 10xx ∨ x10x

where x signifies that the position can be both 0 or 1. The PIs are 10xx, x10x, and 1x0x.

The EPIs are 10xx and x10x. 1x0x is a PI but not EPI since all the terms covered by it,

i.e, 1000, 1001, 1100, 1101, are covered by some other PI. All the EPIs are always part of the

minimized expression while a subset of PIs which are not EPIs are selected. The selection is

equivalent to solving the classical Set Cover problem.

A high-level QM algorithm is given in Algorithm 3. We explain the important details of it

which are relevant to our work. In the first step, all the minterms are grouped according to

the number of 1s present in it. For example, in the running example, the groups would be as

follows -

• group 0 - {}

• group 1 - {1000, 0100}
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• group 2 - {1010, 1001, 1100, 0101}

• group 3 - {1011, 1101}

• group 4 - {}

The ith group can have a maximum of
(
n
i

)
elements. Iteratively the elements from consecu-

tive groups are ‘merged’ to form new elements and deleting the old ones till no more merging is

possible, at which point the remaining terms are the Prime Implicants. Two terms are merged

if and only if they have all the values same except at one position, and after merging a ‘-’ is

placed in place of the differing bit and is added to the appropriate group for the next iteration

and the terms which merged are deleted. For example, terms 0100 and 1001 cannot be merged

as they are differing at 3 positions but 0100 (from group-1) and 0101 (from group-2) can be

merged to form a new element 010- which will then be put to group-1 (since it has one bit set).

In the modified QM Algorithm (MQM) presented in section 3.2, we modify lines 4-6 of

Algorithm 3 so that ‘region partitioning’ algorithm can be skipped which takes up a lot of

memory while finding all the regions. The rest of the steps remain the same. Till the 24th

line, PIs are found, and then first the EPIs are found and then a subset (which need not be

a proper subset) from PIs that are not EPIs are selected as part of the minimized expression.

This minimized expression is passed on to the column generation module which first makes

linear constraints from the minimized expression and then solves the LP.
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Algorithm 3: QM Algorithm

Result: Minimized Boolean Expression

input: Minterms

1 numVars = number of variables

2 groups[numVars + 1] = dictionary

3 primeImplicants = []

4 for minterm in Minterms do

5 numOnes = getNumberOfSetBits(minterm)

6 groups[numOnes].add(minterm)

7 end

8 while true do

9 for i=0..numvars do

10 groupI = groups[i]

11 groupJ = groups[i+1]

12 for termI in groupI do

13 for termJ in groupJ do

14 if Difference of 1s in termI and termJ ==1 then

15 newTerm = combine(termI, termJ)

16 groups[i+1].add(newTerm) // Considered in next iteration of while

loop

17 end

18 end

19 if termI does not combine with any termJ then

20 primeImplicants.add(termI)

21 end

22 end

23 end

24 if No terms are merged then

25 break

26 end

27 end

28 essentialPIs = getEssentialPIs(primeImplicants, minterms)

29 reducedPIs = getReducedPIs(essentialPIs, primeImplicants, minterms)

30 return essentialPIs + reducedPIs
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3.2 Modified QM with Minterms on the Fly

Using the QM algorithm, we would get the constraints formed on the entering column, and

using the minimization objective function mentioned in section 2.2 with these constraints, we

can find an optimized entering column which is equivalent to solving one iteration of simplex

in the original problem. We propose a modification to the algorithm so that all the minterms

need not be known at the same time, thus eliminating the need to do region partitioning. We

propose to generate minterms (equivalently regions) on the fly. This is derived from the obser-

vation that absence of certain intersection of CCs imply the absence of certain columns. We

would like to point that the absence or presence of certain regions (or columns) do not imply

the absence or presence of any other region (or column). This is summarized in Figure 3.1. For

m CCs (or m variables), all the 22m possibilities of columns are permitted1.

Observation Implication
Region is present No Implication
Region is absent No Implication
Intersection Region is present No Implication

Intersection Region is absent
No superset Intersection Region
can be present

Figure 3.1: Implications from Observations

But if we know that certain combination of CCs do not intersect at all, then we can squeeze

out more information about the columns that are possible. A column with entries as 1 and 0

imply the overlap between CCs having entries as 1 and the negation of CCs having entries as

0. E.g the column [1,1,0,0] is equivalent to the region {1,2} and can be interpreted as the inter-

section of CC1 ∧ CC2 ∧ ¬CC3 ∧ ¬CC4, where ¬ is the negation operator and ¬CCi represents

all the space that is not covered by CCi. We now introduce the concept of intersection regions

(regionl ). We call a region as ‘intersection region’ if while computing it, we do not consider all

the CCs (a normal region has information about either the presence or absence of all the CCs)

and it is labelled using only a subset of CCs. Also, while computing regionl , we never check

for the absence of a CC. For example, an intersection region can be formed by CC1 and CC2

but not with CC1 and ¬CC2. The presence of a regionl does not give any extra information,

but the absence of it does. The absence of a regionl implies the absence of all the (normal and

intersection) regions where the CCs involved in the regionl are all present, i.e., any superset

1There can be 2m regions and each can either be present or absent
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region having these CCs and more. For example, if we search for the regionl of CC1, CC2

and find it absent, then no region can have {1, 2} together in its label, i.e region {1, 3} or

region {2, 3} is possible but region {1, 2} or region {1, 2, 3} are impossible. In columnar world

it means any column of the type [1,1,x,x] is not permitted, where x can take value of either 0 or 1.

We use the above idea while forming the groups in the QM algorithm. Instead of knowing

all the minterms in the very beginning and forming groups, we generate groups on the fly as

and when needed by ‘probing’ regions (in case its corresponding intersection region exists). For

group-1 we need to find the presence or absence of regions satisfying exactly one CC, e.g {1},
{2} etc. To find (probe) if region {1} is present or not, we need to find if there exists a region

which satisfies CC1 but not CC2, CC3, CC4 (assuming 4 CCs). All the regions of group-1 are

necessarily probed. While probing for group-2, we also check if intersection regions are absent

(intersection regions for CCs in group-1 are trivially present), if they are absent we won’t be

probing the relevant regions (and intersection regions) in subsequent groups. The dependency

of intersection regions can be represented as a lattice structure. The lattice structure formed for

the CCs in Figure 1.3 is shown in Figure 3.3. Notice that each layer in this structure represents

a group in the QM algorithm. The light green (or orange) circle below a intersection region

signifies the need to probe the intersection region (or not). The green arrow (or red sign) above

the region signifies its presence (or absence).

There are no circles below the 1-sized and 2-sized combinations because they need to be

necessarily checked and there is no decision to be taken. We notice that in Figure 1.3, CC2

and CC3 do not intersect (see Figure 3.2), thus we put a red sign on the top of region {2, 3}l
in the lattice structure. The absence of {2, 3}l (intersection region formed from CC1, CC2) also

implies the absence of {1, 2, 3}l (and thus of {1, 2, 3} as well) and {2, 3, 4}l and they need not

be probed. Similarly, {1, 2, 3, 4}l need not be probed since {1, 2, 3}l (or {2, 3, 4}l) is not present.

In the columnar world, it is equivalent of saying that no column of type [x,1,1,x] can exist where

x can be either 0 or 1. It is to be noted that the absence of a region in group i eliminates the

need to probe i regions in the next group (if i ≤ n/2) which is supposed to have a snowballing

effect, and the effect is larger when the absence is detected in the earlier stages.

This approach of region probing is helpful because it removes the need for doing region

partitioning. Region partitioning is the algorithm used in Hydra to partition the whole space of

attributes into regions. Also, each region and its structure are explicitly stored in the memory,

but after on the fly generation, only regions (corresponding to the columns of basic solution)

having non-zero cardinalities need to be generated. It is to be noted that even with this opti-
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Figure 3.2: Intersection Region of {2, 3} Based on Figure 1.3

Figure 3.3: Lattice Structure Formed by regionsl

mization, the number of regions probed can be exponential giving the algorithm an exponential

time complexity. The memory required may also be exponential in the worst case as all the

elements of a group are produced at a time (if required) which can in the worst case go up to(
n

n/2

)
. However, there is also an option to sacrifice time for memory by not producing the whole

group at once. In our implementation, we produce the whole group at a time.
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Algorithm 4: Iterative region generator

Input: basicRegions

Output: regions

1 basicRegions = getCCInSpace()

2 intersectionRegions = basicRegions

3 while intersectionRegions.size() != 0 do

4 intersectionRegions = getNextIntersectionRegions (basicRegions,

intersectionRegions)

5 regions = getRegions (basicRegions, intersectionRegions)

6 end

7 Function getNextIntersectionRegions(basicRegions,

currentIntersectionRegions):

8 List<Region> intersectionRegions;

9 Map<regionLabel, Boolean> isIntersectionLabelPresent;

10 Map<regionLabel, Region> labelToRegion;

11 for region in currentIntersectionRegions do

12 List<Region> supersetRegions = getSupersetRegions(region)

13 for supersetRegion in supersetRegions do

14 if supersetRegion is not empty then

15 isIntersectionLabelPresent.add(supersetRegion.label, true)

16 labelToRegion.put(supersetRegion.label, supersetRegion)

17 else

18 isIntersectionLabelPresent.add(supersetRegion, false)

19 end

20 end

21 end

22 for {label, region} in labelToRegion do

23 intersectionRegions.add(region)

24 end

25 return intersectionRegions
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1 Function getRegions(basicRegions, currentIntersectionRegions):

2 List<Region> newRegions

3 for region in intersectionRegions do

4 potentialRegion = region for i = 1...numCC do

5 if i not in region.label then

6 potentialRegion -= basicRegions[i]

7 end

8 end

9 if potentialRegion is not empty then

10 newRegions.add(potentialRegion)

11 end

12 end

13 return intersectionRegions
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Chapter 4

Implementation Details and

Experimental Evaluation

4.1 System and Implementation Details

We have implemented the new solver design, including the main LP solver (using simplex al-

gorithm), column generation (ILP) module, the modified QM algorithm (using the intersection

monotonicity property) to replace the existing modules of region partitioning and the existing

LP solver, namely Z3 solver. The new implementation has been done in approximately 1500

lines of code in Java and has been completely integrated with the existing Hydra code base.

Google OR-Tools [2] has been used for column generation in each iteration of the simplex al-

gorithm. All the numerical computations are done in fractions for numerical stability. In the

next subsection, we compare our performance against Hydra.

The AQPs for our system were obtained from queries on the TPC-DS [3] decision-support

benchmark database. We have taken the same workload or set of queries as in Hydra [7]. The

workload in Hydra featured 131 distinct queries distributed over tables, which were created by

customizing the 99 queries of the TPC-DS benchmark, such that only non-key filter predicates

and PK-FK joins were retained, and all nested queries were separated into independent sub-

queries. Although not relevant to our work, the AQPs for these were generated on PostgreSQL

[6] engine. In our experiments, we focus on individual tables and pick CCs only for them.

The TPC-DS benchmark is a popular and widely accepted evaluation standard for complex

queries in the database community. The design has been made keeping large volumes of data

and real-world business questions in mind [5]. There has been an evolution of the benchmarks,

and TPC-DS is one of the active ones as of today [4]. More details about the benchmark can
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be found in [5].

All the experiments were run on DELL system, having 16GB of memory and 2.8GHz 8 core

processor running Ubuntu 18.04. The memory allocated for running the Java process in all the

cases was 13 GB.

4.2 Results

In this section, we compare the memory and time taken for our proposed method and Hydra

without the subview optimization for a fair comparison of the methods. We also show the time

break up between the QM algorithm and LP Solving in the new solver, which takes up the

majority of the time. We do this experiment for two different tables from the original Hydra

paper on queries also taken directly from the paper. We do the experiments with the number

of CCs as an independent variable, with 5 CCs as the step size. When the number of CCs are

incremented from x to x + 5, all the CCs in the former case are present in the latter case as

well. In other words, we consider a superset of the CCs while increasing the number of CCs.

The considered test cases for comparing the methods are the same and were allotted an equal

amount of resources.

4.2.1 Peak Memory Usage Comparison

Graphs Figure 4.1 and Figure 4.2 show the peak memory usage for two tables with the increase

in the number of CCs.

Figure 4.1: Memory Comparison for Table 1

Hydra runs out of memory while partitioning the attribute space to form regions. The

main memory bottleneck for our method is in the QM algorithm module, specifically the lattice
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Figure 4.2: Memory Comparison for Table 2

traversal, to find the regions.

Inferences and analysis: It can be observed that the memory requirements for Hydra

increase much faster with the number of CCs. Also, there is no strict theoretical relationship

of memory consumption between the two methods, as shown in Figure 4.1 for 15 CCs and Fig-

ure 4.2 for 10 CCs, where the proposed method takes more memory. Note that the extra memory

consumption is not due to the column generation module, which deals in a lesser number of

columns strictly, but due to the lattice structure computation (Figure 3.3) in the QM algorithm.

The crash can occur at different points on different tables due to other factors that have

not been closely discussed, like the number of attributes in the table, the physical shape of the

regions, etc. Recall that regions are multidimensional physical structures with the dimension

being equal to the number of attributes, and they need not be any regular simple structures

like a rectangle (e.g. region {1, 3} in (Figure 1.3)). The number of attributes for table 1 is 20,

while that for table 2 is 35, which can be the reason for an early crash in the latter case.

The peak memory usage for our method is monotonically increasing but not strictly mono-

tonical. The memory bottleneck for our module is in the QM algorithm component, as the

lattice structure of intersection regions is traversed. Since we process one layer of lattice at

a time, the peak memory usage is somewhat dictated by the highest number of regionl in a

layer, which may or may not increase with the number of CCs. For example, consider a case

where one in which we have regionl {1}, {2}, {3}, {1, 2}, where the first three regionl belong

to layer 1 and the last regionl belongs to layer 2. Now, consider two cases, one in which with

35



the increase in the number of CCs regionl {4} gets added while in another regionl {1, 3} gets

added (in addition to the old regionl ). In the first case, the number of regionl in layer 1 and

layer 2 are four and one respectively, and in the second case, it is three and two. Since the

peak memory usage would be approximately defined by the maximum regionl in a layer, there

would not be an increase in peak memory usage in the second case while there would be an

increase in the first case. This behaviour of roughly equal memory usage is also seen in table

2, when increasing from 15 to 20 CCs.

4.2.2 Time Comparison

Figure 4.5 and Figure 4.6 show the break up of total time for the column generation method

for QM algorithm and Column generation. The crashes that are shown are due to memory

limitations mentioned in subsection 4.2.1. The times are plotted on a logarithmic scale.

Figure 4.3: Time Comparison for Table 1

Inferences and analysis: The times of both methods do not have any significant differ-

ences. Also, since the process of regenerating DB is an offline process, the difference becomes

insignificant. There is an ‘outlier’ value for Hydra in table 1 with 10 CCs. This is because the

LP Solver converged to a solution quicker in that case. Since Simplex is an iterative algorithm

where ‘steps’ are made to improve the optimization value at each step (except when degener-

acy or cycling is detected), and the improvement depends on the combination of variables (or

columns) in the current basis, the number of iterations and thus the running time depends on

how the basis changes. In this particular case, the steps taken by the algorithm were good, but

in general, it can be expected that with more variables, the solver should take more time.

Depending on the heuristics applied and the steps taken in each iteration, the algorithm
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Figure 4.4: Time Comparison for Table 2

may converge fast or slow for Hydra. However, for Column Generation, the time variability

would be low firstly due to the smaller size of LP being solved and secondly because the QM

takes the bulk of the time, which is expected to increase with the number of CCs. The time

portion taken by both the modules is shown in Figure 4.5 and Figure 4.6.

Figure 4.5: Time Break Up for Colgen for Table 1

The break of time clearly shows that most of the time is spent minimizing boolean expres-

sions using the QM algorithm. It was noticed that the majority of time in QM algorithm was

spent in finding the regions by traversing the lattice structure. Note that the y-axis has been

plotted on a log scale.
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Figure 4.6: Time Break Up for Colgen for Table 2

4.2.3 Accuracy Comparison

It is to be noted that the number of tuples returned for each CC should be a positive integer;

otherwise, it is not meaningful. In Hydra, the problem is formulated as an Integer Linear

Program, which returns only optimal integral solutions, which is what we want. At the same

time, in the new LP, only the column generation part is integral (in fact boolean), while the

main LP can return non-integer values because it has been formulated for Simplex Algorithm.

Note that the solution, even in the new solver, cannot be negative as positive values are assumed

in the standard formulation of simplex itself. Experimentally, it was found that almost all the

values had 0 error, and a very few had minimal (absolute values ≤ 5) errors in the new solver.

The small errors on a relative basis (to the actual values) are negligible and are harmless with

respect to the objective of performance testing.

4.2.4 Time and Memory with Increase in Number of Tuples

Although the time and space requirements are independent of the numbers in RHS of the CCs

in both Hydra and the proposed method, i.e., row cardinality, we anyway did a sanity check

to ensure that is the case. The experiments were done with each row cardinality scaled up 10

times.

Figure 4.7 and Figure 4.8 confirm data scale independence for memory and scale, respec-

tively.
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Figure 4.7: Memory Comparison with Scale 10

4.2.5 Comparison with Hydra With optimization

All the experiments done on Hydra with relation (LP) decomposition optimization (Figure 1.5)

for the scales shown in subsection 4.2.1 and subsection 4.2.2 resulted in runtimes lower than 10

seconds and peak memory usage of less than 1 GB.

The result is so because the LP is broken into smaller segments, and then the memory-intensive

‘region partitioning’ step is done in each segment. This optimization of decomposition is not

compatible with the optimizations proposed in the thesis, and for a fair comparison of the ideas

presented, we make a comparison without optimization in Hydra. The incompatibility comes

from the presence of non-boolean values in the optimization in Hydra. Along with 0 and 1, -1

also occurs in the coefficient matrix of the LP, due to which column generation module cannot

be used as-is since the representation of columns is done only for boolean values.

However, to address this issue, we have proposed a theory as an approach to make both the

optimizations (decomposition and methods proposed here) compatible in subsection 5.1.3.
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Figure 4.8: Time Comparison with Scale 10
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Chapter 5

Extension

5.1 Theoretical Extension

5.1.1 Prerequisite: Dantzig Wolfe Decomposition Algorithm

Dantzig Wolfe Decomposition algorithm (DW) (referred from [9]) is a more efficient method (in

terms of time) for solving LPs which have a special block angular structure. In this structure,

many of the constraints are clustered (the clusters are foreknown to solving). All of the con-

straints in a cluster have a non-zero coefficient for only a few variables. The same rule applies

for the remaining constraints and they cannot have non-zero coefficients for variables already

within some cluster. Each such cluster is called a subproblem. There can be equations that

do not fit the above definition and can have non-zero coefficient values for any variable; those

constraints are part of the master problem.

The matrix below shows the same visually. Here A is the original matrix divided into k seg-

ments, where Ai form the subproblems and L forms the master problem.

A =



L1 L2 · · · Lk

A1

A2

. . .

Ak


(5.1)

We say that the x ∈ Rn is divided into N-segments,x1 ∈ Rn1 ,x2 ∈ Rn2 ...xk ∈ Rnk , where

xi ∈ Rni is the vector of variables associated with the ith segment having ni variables.
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We have two types of constraints:

1. Subproblem: These are the intra-segment constraints that only exist on a set of variables

corresponding to a single segment. Each Ai in the above formulation forms a subproblem.

2. Master Problem: These are the inter-segment constraints that exist over variables corre-

sponding to more than one segment(denoted by L). These can also be termed coupling

or connecting constraints.

Note that if we do not have any master constraints, then all the subproblems are disjoint

(since they do not have any common variables) and can be solved independently for optimiza-

tion function defined on their subset of variables. This independence and disjunction property

of subproblems form the intuition behind the algorithm. Assume that the master constraints

are not present, then the subproblem forms a space in the form of a convex polytope (like in

Simplex) and each subproblem will have a set of corner points defined on its variables. Now

if we add the master constraints, it will reduce the feasible space but linearly only. Due to

the addition of new constraints, the space will have new corner points, but the new corner

points can be written as a convex combination of the old corner points (corner points for each

subproblem without the master subproblem).

If we write the original problem as:

maximize

cTx

subject to

Ax = b

x ≥ 0

x ∈ X

where X is composed of all combinations of corner points in the subproblems, e.g., if there

are 3 subproblems having 3, 5, 7 corner points, the total number of corner points in X will be

3*5*7 = 105. Let us denote the corner point X by breaking it into disjunct parts according

to the subproblems. If the corner points of problem i is represented as Xi, then X can be

represented as {X1, X2, .., Xk}. Since x can be represented as a convex combination of Xis, we
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can write

x =
k∑

i=1

λi ×Xi

where
k∑

i=1

λi = 1

λi ≥ 0

(since the combination is convex)

Assuming that all the corner points for the subproblems are known, we can reformulate the

problem with λi as the variables, as shown below.

maximize
k∑

i=1

cT (Xiλi)

subject to
k∑

i=1

AXiλi = b

k∑
i=1

λi = 1

λ ≥ 0

Note that it was assumed that all the corner points of all the subproblems were pre-

computed, but that is costly to compute and store and thus is not done. Instead, in each

iteration a corner point is generated for each subproblem using the column generation tech-

nique. Solving multiple smaller subproblems is better than solving the problem as a whole by

applying the Simplex Algorithm without breaking down the problem. Also, since the subprob-

lems are independent, parallel processing can be easily used. The advantage of DW is that at

step, we are solving an optimization problem in the fewer number of variables and constraints

for each subproblem.

5.1.2 Prerequisite: Subview Optimization in Hydra

We have compared our method with Hydra in the whole thesis where the coefficient matrix

has only boolean values. Hydra has an optimization on top of this LP formulation to form

an alternate LP with an equivalent solution with respect to the cardinalities returned. It first
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constructs a graph with the attributes of the table as vertices and edges are present between

two vertices if there is a query involving a pair of attributes. If more than two attributes are

involved in the query, then edges are put between every pair of the involved attributes. Any

cycles in the graph having a length greater than 3 are broken by adding artificial edges in the

‘diagonal’ of the cycle. In this graph, maximal cliques are found and equations for the concerned

CCs are added. The equations that are added are like the equations that have been discussed

throughout the thesis, i.e., having boolean values. This method would decompose the LP in

independent components except for the fact that two cliques may share one or more attributes

and the solutions from the two LPs (from the two cliques) may give incosistent results for

the common attributes. To ensure consistency in the solution additional constraints are added

across cliques which are known as consistency constraints. The coefficient of variables in the

coefficient matrix can take values from 0, -1, 1. We do not discuss the additional details of

consistency constraints here; the details can be found in [7].

5.1.3 Applying Dantzig Wolfe to Hydra

As pointed in subsection 5.1.2, the coefficients in the matrix do not remain as boolean after

the subview optimization and the modifications presented in this thesis cannot be directly used

with the subview optimization. However, the structure of the LP follows the structure of DW

(subsection 5.1.1), where the consistency constraints are the master constraints (connecting the

cliques) and the intra clique constraints form the subproblem. All the theory and results shown

in the thesis correspond to solving a subproblem in this proposed framework.

5.2 Implementational Improvements

5.2.1 Parallel Programming

The two most time-consuming parts of the whole pipeline are the Modified QM algorithm

(MQM) and the Column Generation module. Both the modules have tasks that can be termed

as ‘embarrassingly parallel’.

The first step of the MQM, i.e. grouping of terms is already implemented in parallel (Algorithm

4 and Algorithm 5), which is the bottleneck of the algorithm when the lattice is ‘dense’. Recall

that this part replaces lines 4-6 in Algorithm 3. The rest of the algorithm from line 8 onwards

can be parallellized.

Although the CG module is easily parallellizable, little benefit is expected out of it due to the

scale of the problem being solved. The time requirement for CG is majorly due to the number

of iterations and lesser due to the time taken in each iteration.
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5.2.2 Alternate Algorithm for Lattice Traversal

There are several ways to travel the lattice structure mentioned in section 3.2. While going

from one level to the next we can have the following strategies-

• Check for all the supersets of the intersection regions in this level

• Use a candidate generation and pruning strategy to check for only the necessary supersets

like in [18].

We are using the first approach currently, and a change may speed up the execution. To get

an intuition on how the second algorithm may be more efficient, consider the following example

where the presence of intersection regions {1, 2} and {2, 3} has been detected while {1, 3} is

absent. In the first case, intersection region {1, 2, 3} will be checked while in the second case,

firstly {1, 2, 3} will be made as a potential candidate in the candidate generation step and will

be removed in the pruning stage after detecting that {1, 3} is absent (thus {1, 2, 3} can not

be present. This implementational change should save computation time for the regionl that

are not checked. Note that the amount of memory that can be saved is depends on the lattice

structure. In the first case the labels of the regions (but not the whole regions) which might

not be calculated in the second approach are stored.
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Chapter 6

Conclusion and Future Work

We have approached the problem of Database regeneration for mimicking the output cardinal-

ities at each operation of processing with respect to pre-defined workload and AQPs, with the

objective of making the system more memory efficient. We have dived into Linear Program-

ming (LP) theory and considered the special case of LP in our case. We proposed the use of

the column generation technique, which eliminates the requirement to store the complete coef-

ficient matrix of the LP by using linear constraints. The constraints are generated by solving

a boolean expression minimization (BEM) problem which takes the columns as input. We also

propose modification over the QM algorithm, which is used to solve BEM using monotonicity

property of set intersection.

No LP decomposition is done to make the LP simpler in our approach. For a fair comparison

we compared our method with Hydra without decomposition algorithm. In the experiments,

it was seen that the requirement of memory for the latter case grows faster than the former.

Comparison with the decomposition algorithm in Hydra proved to better than our approach in

terms of memory.

We have proposed the use of Dantzig Wolfe decomposition (subsection 5.1.3) as future work

to combine the benefits of both the optimizations proposed in this thesis and already present in

Hydra. We have also proposed implementational improvements (section 5.2) which are expected

to have better run times.
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