
On the Stability of Plan Costs and
the Costs of Plan Stability

A Project Report

Submitted in Partial Fulfilment of the

Requirements for the Degree of

Master of Engineering

in

Computer Science and Engineering

By

M Abhirama

Computer Science and Automation

INDIAN INSTITUTE OF SCIENCE
BANGALORE – 560 012, INDIA

June 2009

Acknowledgements

I profusely thank my advisor, Prof. Jayant Haritsa, for his guidance throughout the course.

Starting with day one, he has been a constant source of inspiration and motivation.

My biggest thanks goes to my family for everything they’ve done for me.

I thank all my friends who made my stay at IISc two of the best years of my life. I also

thank my lab mates who made the time spent in lab memorable.

I also thank everyone who made my stay at the campus a pleasure.

i

Abstract

Modern query optimizers choose their execution plans primarily on a cost-minimization basis,

assuming that the inputs to the costing process, such as relational selectivities, are accurate.

However, in practice, these inputs are subject to considerable run-time variation relative to their

compile-time estimates, often leading to poor plan choices that cause inflated response times.

We present in this report a parametrized family of online plan generation and selection algo-

rithms that substitute, whenever feasible, the optimizer’s solely cost-conscious choice with an

alternative plan that is (a) guaranteed to be near-optimal in the absence of selectivity estimation

errors, and (b) likely to deliver comparatively stable performance in the presence of arbitrary

errors. The proposed algorithms have been implemented within the PostgreSQL optimizer, and

their performance evaluated on a rich spectrum of TPC-H and TPC-DS-based query templates

in a variety of database environments. Our experimental results indicate that it is indeed pos-

sible to identify robust plan choices that substantially curtail the adverse effects of erroneous

selectivity estimates. In fact, the plan selection quality provided by our online algorithms is

often competitive with those obtained through apriori knowledge of the plan search and opti-

mality spaces. Further, the additional optimization overheads incurred by our algorithms are

miniscule in comparison to the expected savings in query execution times. Finally, we also

demonstrate that with appropriate parameter choices, it is feasible to directly produce anorexic

plan diagrams, a potent objective in query optimizer design.

ii

Publications

1. M. Abhirama, S. Bhaumik, A. Dey, H. Shrimal and J. Haritsa,

“Stability-conscious Query Optimization”,

Technical Report TR-2009-01, DSL/SERC, Indian Institute of Science,

http://dsl.serc.iisc.ernet.in/publications/report/TR/TR-2009-01.pdf

iii

Contents

Abstract ii

List of Figures vi

List of Tables vii

1 Introduction 1

2 Problem Formulation 6

2.1 Cost Constraints on Plan Replacement . 8

2.2 Impact of Plan Replacement . 9

2.3 Motivational Scenario . 10

2.4 Error Resistance Metrics . 11

2.5 Problem Definition . 12

3 Stable Optimization 13

3.1 Plan Expansion . 13

3.1.1 Leaves and Internal Nodes . 14

3.1.2 Root Node . 16

3.2 Plan Selection . 17

4 Replacement Algorithms 20

4.1 Reducing Expansion Overheads . 22

4.2 Comparison with SEER . 23

iv

5 Experimental Results 25

5.1 Plan Stability Performance . 27

5.2 Plan Safety Performance . 29

5.3 Plan Diagram Characteristics . 29

5.4 Computational Overheads . 32

6 Related Work 34

7 Conclusions and Future work 35

References 37

v

List of Figures

2.1 Example Query and Selectivity Space . 7

2.2 Benefits of Plan Replacement (Q̂10, λl, λg = 20%) 10

3.1 Node Expansion Procedure . 19

4.1 Plan Expansion Algorithms (Q̂10) . 24

5.1 Frequency Distribution of SERF values . 28

5.2 Sample Plan Diagrams for DP, RootExpand and NodeExpand (AIDSQT18,

λl, λg = 20%, δg = 1) . 31

vi

List of Tables

3.1 Example Replacement at Root Node (Q̂10) 18

4.1 Constraints of Plan Replacement Algorithms 22

5.1 Plan Stability Performance . 27

5.2 Plan Safety Performance . 30

5.3 Plan Diagram Performance . 30

5.4 Time Overheads (in milliseconds) . 32

5.5 Memory Consumption (in MB) . 33

5.6 Impact of 4-stage Wagon Pruning . 33

vii

Chapter 1

Introduction

In modern database engines, query optimizers choose their execution plans largely based on the

classical System R strategy [19]: Given a user query, (i) apply a variety of heuristics to restrict

the combinatorially large search space of plan alternatives to a manageable size; (ii) estimate,

with a cost model and a dynamic-programming-based processing algorithm, the efficiency of

each of these candidate plans;

An implicit assumption in the above approach is that the inputs to the cost model, such

as selectivity estimates of predicates on the base relations, are accurate. However, it is com-

mon knowledge that in practice, these estimates are often significantly in error with respect

to the actual values encountered during query execution. Such errors arise due to a variety of

reasons [20], including outdated statistics, attribute-value-independence (AVI) assumptions and

coarse summaries. An adverse fallout of these errors is that they often lead to poor plan choices,

resulting in inflated query execution times.

Robust Plans. A variety of techniques have been presented in the literature to address the

above problem, including refined summary structures [2], feedback-based adjustments [20, 7],

and on-the-fly reoptimization of queries [16, 17, 4]. The particular approach we explore here is

to identify, at optimization-time, robust plans that are relatively less sensitive to selectivity er-

rors. In a nutshell, we “aim for resistance, rather than cure”. Specifically, our goal is to identify

plans that are (a) guaranteed to be near-optimal in the absence of errors, and (b) likely to be

comparatively stable across the entire selectivity space. If the optimizer’s standard cost-optimal

1

plan choice itself is robust, it is retained without substitution. Otherwise, where feasible, this

choice is replaced with an alternative plan that is marginally more expensive locally but ex-

pected to provide better global performance.

Our notion of stability is the following: Given an estimated compile-time location qe with

optimal plan Poe, and a run-time error location qa with optimal plan Poa, stability is measured

by the extent to which the replacement plan Pre bridges the gap between the costs of Poe and

Poa at qa. Note that stability is defined relative to Poe, and not in absolute comparison to Poa –

while the latter is obviously more desirable, achieving it appears to be only feasible by resorting

to query re-optimizations and plan switching at run-time. Further, the compile-time techniques

presented in this report can be used in isolation, or in synergistic conjunction with run-time

approaches.

An obvious issue with regard to the plan replacement approach is whether the additional

overheads involved in “second-guessing” the optimizer’s default choices are adequately offset

by the expected response time reductions in the presence of errors. We will demonstrate in

this report, through explicit implementation within the PostgreSQL optimizer, that it is indeed

feasible to achieve extremely attractive tradeoffs. Further, the run-time savings scale supra-

linearly in the database size, whereas the replacement overheads are largely independent of this

factor.

The EXPAND Family of Algorithms.

We propose here a family of algorithms, collectively called EXPAND, that cover a spectrum

of tradeoffs between the goals of local near-optimality, global stability and computational ef-

ficiency. Expand is based on judiciously expanding the candidate set of plan choices that are

retained during the core dynamic-programming exercise, based on both cost and robustness cri-

teria. That is, instead of merely forwarding the cheapest sub-plan from each node in the DP

lattice, a train of sub-plans is sent, with the cheapest being the “engine”, and viable alternative

choices being the “wagons”. The final plan selection is made at the root of the DP lattice from

amongst the set of complete plans available at this terminal node, subject to user-specified cost

and stability criteria.

While the local cost information is easily obtained through the existing optimization process,

2

global stability is assessed through two heuristics: The first, borrowed from [12], compares, at

the corners of the selectivity space, the costs of each wagon against the engine. The results are

used to estimate whether the wagon might be harmful in terms of being noticeably worse than

the engine with regard to global behavior. If this test is successfully passed, we bring into play

the second heuristic which compares the average of the corner costs of the wagon against that

of the engine to assess whether the wagon might be expected to actually improve the stability

performance. The plan with the highest expected benefit is selected as the final choice.

Implementing the above heuristics requires the ability to cost query plans at arbitrary loca-

tions in the selectivity space. This feature, referred to as “Foreign Plan Costing” (FPC) in [12],

is currently available in several industrial-strength optimizers, including DB2 [21] (Optimiza-

tion Profile), SQL Server [24] (XML Plan) and Sybase [25] (Abstract Plan).

From the spectrum of algorithmic possibilities in the EXPAND family, we examine a few

choices that cover a range of tradeoffs between the number and diversity of the expanded set of

plans, and the computational overheads incurred in generating and processing these additional

plans. Specifically, we consider (i) RootExpand, wherein the expansion is only carried out

at the terminal root node of the DP lattice, representing the minimal change to the existing

optimizer structure; and (ii) NodeExpand, wherein a limited expansion is also carried out at

select internal nodes in the DP lattice. In particular, we consider an expansion subject to the

same cost and stability constraints as those applied at the root node of the lattice.

To place the performance of these algorithms in perspective, we also evaluate: (i) (where

feasible) SkylineUniversal, an extreme version of NodeExpand wherein unlimited expansion

is undertaken at the internal nodes and the resultant wagons are filtered through a multidimen-

sional cost-and-stability-based skyline [6]. The end result is that the root node of the DP lattice

essentially receives the entire plan search space, modulo our wagon propagation heuristics. (ii)

SEER [12], our recently-proposed offline algorithm for determining robust plans, wherein apri-

ori knowledge of the parametric optimal set of plans (POSP) covering the selectivity space is

utilized to make the replacements. This scheme operates from outside the optimizer, treating it

as a black box that supplies plan-related information through its API.

Experimental Results. Our new online techniques have been implemented inside the Post-

3

greSQL optimizer kernel and their performance evaluated on a rich set of TPC-H and TPC-DS-

based query templates in a variety of database environments with diverse logical and physical

designs. The experimental results indicate that it is often possible to make plan choices that

substantially curtail the adverse effects of selectivity estimation errors. Specifically, while in-

curring additional time overheads of the order of 10-20 milliseconds, and memory overheads in

the range of 10-100MB, RootExpand and NodeExpand deliver plan choices that eliminate more

than two-thirds of the performance gap for a significant number of error instances. Equally im-

portantly, the replacement is almost never materially worse than the optimizer’s original choice.

In a nutshell, our replacement plans “often help substantially, but never seriously hurt” the

query performance.

The robustness of our online algorithms turns out to be competitive to that of (the offline)

SEER. Further, their performance is often close to that of SkylineUniversal itself. In short, Roo-

tExpand and NodeExpand are capable of achieving comparable performance to those obtained

with in-depth knowledge of the plan search and optimality spaces.

Finally, while NodeExpand incurs more overheads than RootExpand, it delivers anorexic

plan diagrams [11] in return. A plan diagram is a color-coded pictorial enumeration of the opti-

mizer’s plan choices over the selectivity space, and anorexic diagrams are gross simplifications

that feature only a small number of plans without materially degrading the processing quality

of any individual query. The anorexic feature, while not mandatory for stability purposes, has

several database-related benefits, as enumerated in detail in [11] – for example, it enhances the

feasibility of parametric query optimization (PQO) techniques [13, 14].

Another novel feature of NodeExpand is that, due to applying selection criteria at the inter-

nal levels of the plan generation process, it ensures that all the sub-plans of a chosen replacement

are near-optimal and stable with regard to the corresponding cost-optimal sub-plan. This is in

marked contrast to SEER, where only the complete plan offers such performance guarantees

but the quality of the sub-plans is not assured upfront.

A valid question at this point would be whether in practice the optimizer’s cost-optimal

choice usually turns out to itself be the most robust choice as well – that is, are current industrial-

strength optimizers inherently robust? Our experiments with PostgreSQL clearly demonstrate

4

that this may not be the case. Concretely, the proportion of query locations for which plan re-

placement took place was quite substantial – in the range of 30-50% for providing stability, and

in excess of 80% to additionally attain anorexic plan diagrams with NodeExpand. (This ob-

servation was corroborated by results obtained on a popular commercial optimizer with SEER,

where similar replacement percentages were seen.)

Finally, the plan replacement approach primarily addresses only selectivity errors that occur

on the base relations. However, since these base errors are often the source of poor plan choices

due to the multiplier effect as they progress up the plan-tree [15], minimizing their impact

could be of significant value in practical environments. Further, the approach can be used in

conjunction with run-time techniques such as adaptive query processing [10] for addressing

selectivity errors in the higher nodes of the plan tree.

Contributions. In summary, we present a framework in this report to analyze the production

of query execution plans that take into account both local-cost and global-stability perspectives.

The framework opens up a rich algorithmic design space, and we explore a part of it here in

the context of industrial-strength database environments. The initial results have turned out

to be rather promising with regard to substantially reducing the well-known adverse impact

of selectivity errors. Further, we expect that our strategies, which have been implemented in

PostgreSQL as a proof-of-concept, can easily be incorporated in commercial engines as well.

To the best of our knowledge, this is the first work to investigate the online identification of

stable plans that provide both guaranteed local near-optimality and enhanced global-stability in

an efficient manner.

Organization. The remainder of this report is organized as follows: In Chapter 2, we de-

scribe the overall problem framework and motivation. The EXPAND approach is outlined in

Chapter 3, and representative plan selection algorithms based on this approach are presented in

Chapter 4. The experimental framework and performance results are highlighted in Chapter 5.

Related work is reviewed in Chapter 6. Finally, in Chapter 7, we summarize our conclusions

and outline future research avenues.

5

Chapter 2

Problem Formulation

Before we begin, we would like to clarify that an implicit assumption in our study is that the

query optimizer provides a reasonably accurate model of run-time performance – while we are

aware that this assumption can often turn out to be off the mark in practice, improving the

quality of plan cost modeling is orthogonal to the issues analyzed in this report.

Consider the situation where the user has submitted a query and desires stability with regard

to selectivity errors on one or more of the base relations that feature in the query. The choice of

the relations could be based on user preferences and/or the optimizer’s expectation of relations

on which selectivity errors could have a substantial adverse impact due to incorrect plan choices.

Let there be n such “error-sensitive relations” – treating each of these relations as a dimension,

we obtain an n-dimensional selectivity space S. For example, consider the sample query Q̂10

shown in Figure 2.1(a), an SPJ version of Query 10 from the TPC-H benchmark [26] – this

query has four base relations (NATION (N), CUSTOMER (C), ORDERS (O), LINEITEM (L)), two

of which are deemed to be error-sensitive relations (ORDERS, LINEITEM). For this query, the

associated 2D error selectivity space S is shown in Figure 2.1(b).

For ease of presentation, we will assume hereafter that S is two-dimensional (our experi-

ments in Chapter 5 consider 3-D spaces as well). The space is represented by a finite dense grid

of points wherein each point q(x, y) corresponds to a query instance with selectivities x, y in the

X and Y dimensions, respectively. We use c(Pi, q) to represent the optimizer’s estimated cost

of executing a query instance q with plan Pi. The corners of the selectivity space are referred to

6

select C.custkey, C.name, C.acctbal, N.name, C.address
from Customer C, Orders O, Lineitem L, Nation N
where C.custkey = O.custkey and L.orderkey = O.orderkey and

C.nationkey = N.nationkey and
O.totalprice < 2833 and L.extendedprice < 28520

(a) Query Instance Q̂10

(b) Selectivity Space
Figure 2.1: Example Query and Selectivity Space

as Vk, with k being the binary representation of the location coordinates – e.g. the bottom-right

corner (1, 0), is V2.

Given a plan Pi, the region of S in which it is optimal is referred to as its endo-optimal

region; the region in which it is not optimal but its cost is within a factor (1 + λ) of the optimal

plan as its λ-optimal region (where λ is a positive constant); and the remaining space as its

exo-optimal region. These disjoint regions together cover S and are pictorially shown in Fig-

ure 2.1(b). We will hereafter use the notation endoi, λ-opti and exoi to refer to these various

regions associated with Pi. The endo-optimal and λ-optimal regions are collectively referred to

as the plan’s SafeRegion, denoted by safei.

7

2.1 Cost Constraints on Plan Replacement

Consider a specific query instance qe, whose optimizer-estimated location in S is (xe, ye). De-

note the cost-optimal plan choice at qe by Poe. Let the actual run-time location of the query be

denoted by qa(xa, ya), and the optimal plan choice at qa by Poa.

Now, if Poe were to be replaced by a more expensive plan Pre, clearly there is a price to

be paid when there are no errors (i.e. qa ≡ qe). Further, even with errors, if it so happens that

c(Pre, qa) > c(Poe, qa). We assume that the user is willing to accept these cost increases as

long as they are bounded within a pre-specified local cost threshold λl and a global stability

threshold λg (λg, λl > 0). Specifically, the user is willing to permit replacement of Poe with

Pre, iff:

Local Constraint: At the estimated query location qe,

c(Pre, qe)

c(Poe, qe)
≤ (1 + λl) (2.1)

For example, setting λl = 20% stipulates that the local cost of a query instance subject to

plan replacement is guaranteed to be within 1.2 times its original value. We will hereafter

refer to this constraint as local-optimality.

Global Constraint: In the presence of selectivity errors,

∀qa ∈ S such that qa 6= qe,
c(Pre, qa)

c(Poe, qa)
≤ (1 + λg) (2.2)

For example, setting λg = 100% stipulates that the cost of a query instance subject to

plan replacement is guaranteed to be within twice its original value at all error locations

in the selectivity space. We will hereafter refer to this constraint as global-safety.

While, in principle, λg can be set independently of λl, we expect that in practice λg ≥ λl

would be chosen.

Essentially, the above requirements guarantee that no material harm (as perceived by the user)

can arise out of the replacement, irrespective of the selectivity error.

8

2.2 Impact of Plan Replacement

Now, consider the situation where we are contemplating the decision to replace the Poe choice

at qe with the Pre plan. The actual query point qa can be located in any one of the following

disjoint regions of Pre that together cover S (see Figure 2.1(b)):

Endo-optimal region of Pre: Here, qa is located in endore, which also implies that Pre ≡ Poa.

Since c(Pre, qa) = c(Poa, qa), it follows that the cost of Pre at qa, c(Pre, qa) ≤ c(Poe, qa)

(by definition of a cost-based optimizer). Therefore, improved resistance to selectivity

errors is always guaranteed in this region. (If the replacement plan happens to not be

from the POSP set, as is possible with our algorithms, endore will be empty.)

λl-optimal region of Pre: Here, qa is located in the region that could be “swallowed” by Pre,

replacing the optimizer’s cost-optimal choices without violating the local cost-bounding

constraint. By virtue of the λl-threshold constraint, we are assured that c(Pre, qa) ≤ (1 +

λl)c(Poa, qa), and by implication that c(Pre, qa) ≤ (1 + λl)c(Poe, qa). Now, there are two

possibilities: If c(Pre, qa) < c(Poe, qa), then the replacement plan is again guaranteed to

improve the resistance to selectivity errors. On the other hand, if c(Poe, qa) ≤ c(Pre, qa) ≤
(1 + λl)c(Poe, qa), the replacement is certain to not cause any real harm, given the small

values of λl that we consider in this report.

Exo-optimal region of Pre: Here, qa is located outside safere, and at such locations, we can-

not apriori predict Pre’s behavior relative to Poe– it could range from being much better,

substantially reducing the adverse impact of the selectivity error, to the other extreme of

being much worse, making the replacement a counter-productive decision.

Explicitly establishing that the replacement of Poe is not a dangerous choice anywhere in exooe,

before going ahead with the substitution, is technically feasible using the FPC feature, as ex-

plained later in the report. However, it incurs unviable overheads. Therefore, we have to take

recourse to heuristics instead – the silver lining is that, as shown subsequently in our experimen-

tal results, there do exist simple heuristics that are both efficient and almost invariably correct

in their predictions.

9

2.3 Motivational Scenario

We now present a sample scenario to motivate how plan replacement could help to improve

robustness to selectivity errors. Here, the example query Q̂10 is input to the PostgreSQL op-

timizer; the optimizer estimates the query location qe in S to be (1%, 40%), its cost-optimal

choice at this location is plan P1, and the suggested replacement (by our NodeExpand algorithm

with λl, λg = 20%) is plan P2. If we plot the costs of these plans at a set of error locations qa –

for instance, along the principal diagonal of S, we obtain the graph shown in Figure 2.2(a). It is

clear in this figure that the replacement plan P2 provides substantial performance improvements

on P1. In fact, the error-resistance is to the extent that it virtually provides “immunity” to the

error since the performance of P2 is very close to that of the run-time optimal plan (generically

referred to as Poa in Figure 2.2(a)) at each of these locations.

To explicitly assess the above compile-time predicted performance improvements, we actu-

ally executed the P1, P2 and Poa plans at these various locations – the corresponding response-

time graph is shown in Figure 2.2(b). As can be seen, the broad qualitative behavior is in

keeping with the optimizer’s predictions, with substantial response-time improvements across

the board. The somewhat decreased immunity in a few locations is attributable to weaknesses

in the optimizer’s cost model rather than our selection policies, and as mentioned earlier, this is

an orthogonal issue that has to be tackled separately.

(a) Compile-Time (b) Run-Time

Figure 2.2: Benefits of Plan Replacement (Q̂10, λl, λg = 20%)

10

2.4 Error Resistance Metrics

Our quantification of the stability delivered through plan replacement is based on the SERF

error resistance metric introduced in [12]. For a specific error instance corresponding to esti-

mated query location qe and cost-optimal plan Poe, and a run-time location qa, the Selectivity

Error Resistance Factor (SERF) of a replacement Pre w.r.t. Poe is computed as

SERF (qe, qa) = 1− c(Pre, qa)− c(Poa, qa)

c(Poe, qa)− c(Poa, qa)
(2.3)

Intuitively, SERF captures the fraction of the performance gap between Poe and Poa at qa

that is closed by Pre. In principle, SERF values can range over (−∞, 1], with the following

interpretations: SERF in the range (0, 1], indicates that the replacement is beneficial, with values

close to 1 implying immunity to the selectivity error. For SERF in the range [−λg, 0], the

replacement is indifferent in that it neither helps nor hurts, while SERF values noticeably below

−λg highlight a harmful replacement that materially worsens the performance.

To capture the aggregate impact of plan replacements on improving the resistance to selec-

tivity errors in the entire space S, we compute AggSERF as:1

AggSERF =

∑
qe∈rep(S)

∑
qa∈exooe(S) SERF (qe, qa)∑

qe∈S
∑

qa∈exooe(S) 1
(2.4)

where rep(S) is the set of query instances in S whose plans were replaced, and the normalization

is with respect to the number of error locations that could benefit from improved robustness.

Apart from AggSERF, we also compute metrics MinSERF and MaxSERF, representing

the minimum and maximum values of SERF over all replacement instances. MaxSERF values

close to the upper bound of 1 indicate that some replacements provided immunity to specific

instances of selectivity errors. On the other hand, large negative values for MinSERF indicate

that some replacements were harmful. We measure the proportion of such harmful instances in

our experiments.

An important point to note here is that while it is not possible to provide meaningful assis-

tance in safeoe, we still need to consider the possibility that replacements may end up causing

1In [12], the aggregate impact was evaluated based on the locations where replacements were made, whereas
our current formulation is based on the locations where robustness is desired.

11

harm, reflected through negative SERF values, in these regions. This is taken into account in

our calculation of MinSERF by evaluating it over the entire selectivity space.

2.5 Problem Definition

With the above background, our stable plan selection problem can now be more precisely stated

as:

Stable Plan Selection Problem. Given a query location qe in a selectivity space S and a

(user-defined) local-optimality threshold λl and global-safety threshold λg, implement a plan

replacement strategy such that:

1.
c(Pre, qe)

c(Poe, qe)
≤ (1 + λl)

2. ∀qa ∈ S s.t. qa 6= qe,
c(Pre, qa)

c(Poe, qa)
≤ (1 + λg),

or equivalently, MinSERF ≥ −λg.

3. The contribution to the AggSERF metric is maximized.

In the above formulation, Condition 1 guarantees local-optimality; Condition 2 assures global-

safety; and Condition 3 captures the stability-improvement objective.

12

Chapter 3

Stable Optimization

In this section, we present the generic process followed in our EXPAND family of algorithms

to address the Stable Plan Selection problem. There are two aspects to the algorithms: First,

a procedure for expanding the set of plans retained in the optimization exercise, and second, a

selection strategy to pick a stable replacement from among the retained plans.

For ease of presentation and due to space limitations, we will assume that there are no

“interesting order” plans [19] present in the search space, and that the plan operator-trees do

not have any “stems” – that is, the root join node, which represents the combination of all the

base relations in the query, terminates the DP lattice. However, the algorithmic extensions for

handling these complexities are described in [1], and are included in our experimental study

(Chapter 5).

3.1 Plan Expansion

We now explain how the classical DP procedure, wherein only the cheapest plan identified

at each lattice node is forwarded to the upper levels, is modified in our EXPAND family of

algorithms – the pseudocode listing is given in Figure 3.1. For ease of understanding, we will

use the term “train” to refer to the expanded array of sub-plans that are propagated from one

node to another, with the “engine” being the cost-optimal sub-plan (i.e. the one that DP would

normally have chosen) and the “wagons” the additional sub-plans. The engine is denoted by

13

pe, while pw is generically used to denote the wagons (the lower-case p indicates a sub-plan

as opposed to complete plans which are identified with P). Finally, the notation x is used to

indicate a generic node in the DP lattice.

3.1.1 Leaves and Internal Nodes

Given a query instance qe, at each error-sensitive leaf (i.e. base relation) or internal node x in

the corresponding DP lattice, the following four-stage retention procedure is used on the set of

candidate wagons generated by the standard exhaustive plan enumeration process.

1. Local Cost Check: In this first step, all wagons whose cost is more than (1+λx
l) of the engine

pe are eliminated from consideration. Here, λx
l is an algorithmic cost-bounding parameter that

can, in principle, be set independently of λl, the user’s local-optimality constraint (which is

always applied at the final root node, as explained later).

2. Global Safety Check: In the next step, the LiteSEER heuristic [12] is applied on all the

(remaining) wagons, relative to pe. LiteSEER is based on the “safety function”

f(qa) = c(pw, qa)− (1 + λx
g)c(pe, qa) (3.1)

which captures the difference between the costs of pw and a λx
g -inflated version of pe at location

qa. If f(qa) ≤ 0 throughout the selectivity space S, we are guaranteed that, were the cheapest

sub-plan to be (eventually) replaced by the candidate sub-plan, the adverse impact (if any) of

this replacement is bounded by λx
g and is, in this sense, safe.

Verifying the safety check is possible by exhaustively invoking the FPC function at all loca-

tions in S. However, the overheads are unviably large since the cumulative effort is proportional

to the product of the number of sub-plans at the node and the number of points in S. Typical

values of this product are in excess of a million, making an exhaustive approach impractical.

To address this efficiency issue, the LiteSeer heuristic simply evaluates whether all the cor-

ners are safe, that is,

∀ qa ∈ Corners(S), f(qa) ≤ 0 (3.2)

In Figure 2.1(b), this corresponds to requiring that the replacement be safe at V0, V1, V2 and V3.

14

The intuition here is that if a replacement is known to be safe at the corners of the selectivity

space, then it is also highly likely to be safe throughout the interior region (the reasons for this

expectation are discussed in detail in [12]).

Note that λx
g is also an algorithmic parameter that can be set independently of λg (which is

always applied at the final root node, as explained later). As a practical matter, we would expect

the choice to be such that λx
g ≥ λx

l .

3. Global Benefit Check: While the safety check ensures that there is no material harm, it

does not really address the issue of whether there is any benefit to be expected if pe were to be

(eventually) replaced by a given wagon pw. To assess this aspect, we compute the benefit index

of a wagon relative to its engine as

ξ(pw, pe) =
c(pe, qa)

c(pw, qa)
qa ∈ Corners(S) (3.3)

That is, we use a CornerAvg heuristic wherein a comparison of the arithmetic mean of the

costs at the corners of S is used as an indicator of the potential assistance that will be pro-

vided throughout S. Benefit indices greater than 1 are taken to indicate beneficial replacements

whereas lower values imply superfluous replacements. Accordingly, only wagons that have

ξ > 1 are retained and the remainder are eliminated.

Our choice of the CornerAvg heuristic is movitated by the following observations:

• The arithmetic mean favors sub-plans that perform well in the top-right region of the

selectivity space since the largest cost magnitudes are seen there.1 We already know that

POSP plans in this region tend to have large endo-optimal regions [11] and are therefore

more likely to provide good stability as per the discussion in Section 2.2. Here, we assume

that this observation holds true for the sub-plans of near-optimal plans as well.

• The arithmetic mean ensures that the Skyline set of wagons, described next, completely

represents all the wagons in the candidate set.

4. Cost-Safety-Benefit Skyline Check: After the above three checks it is possible that there

may be some wagons that are “dominated” – that is, their local cost is higher, their corner costs

1Assuming that “plan-cost-monotonicity” (PCM) [11] holds, whereby plan costs rise with increased selectivi-
ties, as is usually the case in practice.

15

are individually higher, and their expected global benefit is lower – as compared to some other

wagon in the candidate set. Specifically, consider a pair of wagons, pw1 and pw2, with pw1

dominating pw2 at the current node. As these wagons move up the DP lattice, their costs and

benefit indices come closer together, since only additive constants are incorporated at each level

– that is, the “cost-coupling” and the “benefit-coupling” between a pair of wagons becomes

stronger with increasing levels. However, and this is the key point, the domination property

continues to hold, even until the root of the lattice, since the same constants are added to both

wagons.

Given the above, it is sufficient to simply use a skyline set [6] of the wagons based on

local cost, global safety and global benefit considerations. Specifically, for 2D error spaces, the

skyline is comprised of five dimensions – the local cost and the four remote corner costs (the

benefit dimension, when defined with the CornerAvg heuristic, becomes redundant since it is

implied from the corner dimensions).

A formal proof that the above skyline-based wagon selection technique is equivalent to

having retained the entire set of wagons is given in the Appendix.

When the multi-stage pruning procedure completes, the surviving wagons are bundled to-

gether with the pe engine, and this train is then propagated to the higher levels of the DP lattice.

A note about the sequencing of the four checks – in principle, Check 1 (Local Cost) could

be done after the global checks. However, it is carried out first since it is trivial to evaluate,

whereas the remaining three checks are all dependent on FPC computations, which are com-

paratively expensive, and therefore their invocations should be minimized. Further, Checks 2

to 4 require the engine to be identified before they can proceed, whereas Check 1 can be con-

tinually executed, using the lowest cost plan seen thus far in the enumeration process as the

(pseudo)-engine.

3.1.2 Root Node

When the final root node of the DP lattice is reached, all the above-mentioned pruning checks

(Cost, Safety, Benefit, Skyline) are again made, with the only difference being that both λx
l and

λx
g are now mandatorily set equal to the user’s requirements, λl and λg, respectively. On the

16

other hand, the choice of the benefit threshold, δg(δg ≥ 1), which determines what minimum

benefit is worth replacing for, is a design issue. Ideally, we would like to set it to a level

that ensures maximum stability without falling prey to superfluous replacements. However,

there is a secondary consideration – using a lower value and thereby going ahead with some

of the stability-superfluous replacements may help to achieve anorexic plan diagrams, which as

mentioned before, is a potent objective in query optimizer construction. We discuss this issue

in more detail in Chapter 5.

3.2 Plan Selection

At the end of the expansion process, a set of complete plans are available at the root node. There

are two possible scenarios:

1. The only plan remaining is the standard cost-optimal plan Poe, in which case this plan is

output as the final selection; or

2. In addition to the cost-optimal plan, there are a set of candidate replacement plans avail-

able that are all expected to be more robust than Poe (i.e. their ξ > δg). To make the

final plan choice from among this set, our current strategy is to simply use a MaxBenefit

heuristic – that is, select the plan with the highest ξ.2

Constant Ranking Property. An important property of the above selection procedure, borne

out by the definition of ξ, is that it always gives the same ranking between a given pair of

potential replacement plans irrespective of the specific query qe in S that is currently being

optimized. This is exactly how it should be since the stability of a plan vis-a-vis another plan

should be determined by its global behavior over the entire space.

Example Replacement. To make the plan replacement procedure concrete, consider the ex-

ample situation shown in Table 3.1, obtained at the root of the DP lattice for query Q̂10 using

the NodeExpand algorithm with λl, λg = 20%, δg = 1. We present in this table the engine (P1)

2In the unlikely event of ties, they can be broken by choosing the plan with the least local cost from this set.

17

and seventy three additional wagons (P2 through P74), ordered on their local costs. The corner

costs and benefit indices of these plans are also provided, and in the last column, the check (if

any) that resulted in their pruning. As can be seen, each of the checks eliminates some wagons,

and finally, only two wagons (P9, P19) survive all the checks. From among them, the final plan

chosen is P19 which has the maximum ξ = 1.26, and whose local cost (334801) is within 4% of

P1 (322890).

Plan Local V0 V1 V2 V3 ξ Pruned
No Cost Cost Cost Cost Cost by
P1 322890 202089 224599 846630 1271678 1.00
P2 322901 202101 224610 846642 1271689 0.99 Benefit
P3 323026 202091 224593 905309 1247883 0.98 Benefit
P4 324203 202089 224604 846636 1952627 0.78 Safety
. .
P9 329089 208207 230766 356555 1280663 1.22
P10 329100 208219 230777 356567 1280674 1.22 Skyline
P11 329229 202090 224928 846959 4563459 0.43 Safety
. .
P19 334801 214078 236628 362417 1204051 1.26
P20 335428 208208 231095 356884 4572444 0.47 Safety
P21 337838 208218 231097 356886 9354574 0.25 Safety
. .
P32 390748 202208 500856 1866554 12495404 0.17 Cost
P33 395288 202096 228361 850384 38862955 0.06 Cost
. .
P73 > 1012 > 108 > 1012 > 109 > 1013 < 0.1 Cost
P74 > 1012 > 108 > 1012 > 109 > 1013 < 0.1 Cost

Table 3.1: Example Replacement at Root Node (Q̂10)

18

Expand (Node x, λx
l , λ

x
g , δg)

Node x : A node in the DP-lattice
λx

l : Local-optimality threshold for node x (set as per Table 4.1)
λx

g : Global-safety threshold for node x (set as per Table 4.1)
δg : Global-benefit threshold (set as per Table 4.1)

1: x.P lanTrain← φ
2: x.ErrorSensitive← FALSE
3: if SubTree(x) contains at least one error-sensitive relation then
4: x.ErrorSensitive← TRUE
5: end if
6: if x.ErrorSensitive = FALSE then
7: {Standard DP}
8: x.P lanTrain← Optimizer’s cheapest plan for computing x
9: Return x.P lanTrain
10: else
11: {Expansion Process}
12: if x.level = LEAF then
13: x.P lanTrain← All possible access paths for base relation i
14: else
15: for all pairwise node combinations that generate Node x do
16: Let A and B be the lower level nodes combining to produce x
17: Let A.P lanTrain and B.P lanTrain be the plan-trains of
18: A and B, respectively.
19: for each pA in A.P lanTrain do
20: for each pB in B.P lanTrain do
21: x.P lanTrain← x.P lanTrain ∪ {Plans formed by
22: joining pA and pB in all possible ways}
23: end for
24: end for
25: end for
26: end if
27:
28: {4-stage Pruning Process}
29: Let pe be the engine of x.P lanTrain
30: {1. Local Cost Check}
31: for each wagon plan pw ∈ x.P lanTrain do
32: if cost(pw, qe) > (1 + λx

l)cost(pe, qe) then
33: x.P lanTrain← x.P lanTrain− {pw}
34: end if
35: end for
36: {2. Global Safety Check}
37: for each wagon plan pw ∈ x.P lanTrain do
38: for each point qa ∈ Corners(S) do
39: if cost(pw, qa) > (1 + λx

g)cost(pe, qa) then
40: x.P lanTrain← x.P lanTrain− {pw}
41: break
42: end if
43: end for
44: end for
45: {3. Global Benefit Check}
46: for each wagon plan pw ∈ x.P lanTrain do
47: pw.ξ← Σqa∈Corners(S)cost(pe,qa)

Σqa∈Corners(S)cost(pw,qa)

48: if x.level = ROOT and pw.ξ ≤ δg then
49: x.P lanTrain← x.P lanTrain− {pw}
50: else if x.level 6= ROOT and pw.ξ ≤ 1 then
51: x.P lanTrain← x.P lanTrain− {pw}
52: end if
53: end for
54: {4. Skyline Check}
55: x.P lanTrain← Cost-Safety-Benefit Skyline (x.P lanTrain)
56:
57: if x.level = ROOT then
58: x.P lanTrain← Plan with Maximum ξ in x.P lanTrain
59: end if
60:
61: Return x.P lanTrain
62: end if

Figure 3.1: Node Expansion Procedure
19

Chapter 4

Replacement Algorithms

We can obtain a host of replacement algorithms by making different choices for the λx
l and

λx
g settings in the generic process described above. For example, we could choose to keep

them constant throughout the lattice. Alternatively, high values could be used at the leaves,

progressively becoming smaller as we move up the tree. Or, we could try out exactly the

opposite, with the leaves having low values and more relaxed thresholds going up the tree.

In essence, a rich design space opens up when stability considerations are incorporated into

classical cost-based optimizers.

We consider here a few representative instances that cover a range of tradeoffs between

the number and diversity of the candidate replacement plans, and the computational overheads

incurred in generating and processing these candidates.

RootExpand. The RootExpand algorithm is obtained by setting both λx
l and λx

g to 0 at all

leaves and internal nodes,1 while at the root node, these parameters are set to the user’s con-

straints λl, λg, respectively. This is a simple variant of the classical DP procedure, wherein DP

is used as-is starting from the leaves until the final root node is reached. At this point, the com-

peting (complete) plans that are evaluated at the root node are filtered based on the four-check

sequence, and a final plan selection is made from the survivors using the procedure described

in Section 3.2.

The functioning of RootExpand is pictorially shown in Figure 4.1(a) for the example query

1For λx
l = 0, the value of λx

g is actually immaterial since it never comes into play.

20

Q̂10 with λl, λg = 20%. In this picture, the value above each node signifies the cost of the op-

timal sub-plan to compute the relational expression represented by the node – for example, the

cheapest method of joining ORDERS (O) and LINEITEM (L) has an estimated cost of 313924.

At the root node, the second-cheapest plan, NCOL(2), is chosen in preference to the standard

DP choice NCOL(1), due to locally being well within 20% of the lowest cost of 322890, and

having a BenefitIndex of ξ = 1.23.

SkylineUniversal. The SkylineUniversal algorithm is obtained by setting both λx
l and λx

g to

∞ at the leaves and internal nodes. It represents the other end of the spectrum to RootExpand

in that it propagates, beginning with the leaves, all wagons evaluated at a node to the levels

above. That is, modulo the Skyline Check, which only eliminates redundant wagons, there is

absolutely no other pruning anywhere in the internals of the lattice, resulting in the root node

effectively processing the entire set of complete plans present in the optimizer’s search space

for the query.

A pictorial representation of SkylineUniversal is shown in Figure 4.1(b) for the same ex-

ample scenario. In this picture, unfettered expansion is carried out specifically at the nodes

that contain one or more error-sensitive relations in their sub-trees, symbolized by the double

boxes. Whereas, the standard DP procedure is used in the remainder of the lattice, and this is

the reason for only single plans being forwarded, for example, in the N-C sub-lattice component

– both leaves, NATION and CUSTOMER, are not error-sensitive relations. The labels above the

error-sensitive nodes indicate the various wagons that have survived the four-check procedure,

along with their local costs and benefit indices. For example, CO(2) has a cost of 31243 and ξ

= 3.24.

In this example, the number of plans enumerated at the root node NCOL is 1099 and 10 of

them successfully pass the four-stage check. The plan finally chosen is NCOL(3) which has

a cost of 328820 (about 2% more expensive than the cost-optimal NCOL(1)) and provides the

maximum BenefitIndex of ξ = 1.38.

NodeExpand. The NodeExpand algorithm strikes the middle ground between the replacement

richness of Universal and the computational simplicity of RootExpand, by “opening the sub-

plan pipe” to a limited extent. Specifically, the version of NodeExpand that we evaluate here

21

sets λx
l = λl, λ

x
g = λg at all error-sensitive nodes – that is, the root node’s cost constraints

are inherited at the lower levels as well. These settings are chosen to ensure that the sub-plans

also provide the same local-optimality and global-safety guarantees as the complete plan, a

feature that we expect would prove useful in real-world environments with issues such as run-

time resource consumption. Further, as a useful byproduct, these settings also help to keep the

expansion overheads under control during optimization.

An example of NodeExpand is shown in Figure 4.1(c), where 3 plans survive the four-stage

check at the root, and NCOL(3) whose BenefitIndex of 1.26 is the highest, is chosen as the final

selection.

The constraints imposed by the three expansion algorithms presented above are summarized

in Table 4.1 – standard DP is also included for comparative purposes.

Optimization Leaf Node Internal Node Root Node
Algorithm λx

l , λx
g λx

l , λx
g λx

l , λx
g δg

Standard DP 0 0 0 –
RootExpand 0 0 λl,λg ≥ 1
NodeExpand λl,λg λl,λg λl,λg ≥ 1

SkylineUniversal ∞ ∞ λl,λg ≥ 1

Table 4.1: Constraints of Plan Replacement Algorithms

4.1 Reducing Expansion Overheads

As discussed above, the EXPAND algorithms permit, in general, a train of wagons to be prop-

agated from each node to the upper levels in the lattice. Due to the multiplicative nature of

the DP tree, the computational and resource overheads arising out of these additional wagons,

if not carefully regulated, can quickly spiral out of control. We have already discussed how

expansion is not carried out at the error-insensitive nodes of the DP lattice. We now describe

another optimization that also serves to substantially reduce the overheads.

Inheriting Engine Costs for Wagons. When two plan-trains arrive and are combined at a

node, the costs of combining the engines of the two trains in a particular method is exactly

22

the same cost as that of combining any other pair from the two trains. This is because the

engines and wagons in any train all represent the same input data. Therefore, we need to only

combine the two engines in all possible ways, just like in standard DP, and then simply reuse

these associated costs to evaluate the total costs for all other pairings between the two trains.

Further, the inheritance strategy can be used not just for the local costs, but for the remote

FPC-based corner costs as well.

4.2 Comparison with SEER

In our earlier SEER approach [12], we had attempted to identify robust plans through the

anorexic reduction of plan diagrams. There are some critical differences between this ear-

lier “offline reduction” approach and our current “online production” work:

(i) Our techniques are applicable to ad-hoc individual queries, whereas the SEER approach

is useable only on form-based query templates for which plan diagrams have been previously

computed.

(ii) Unlike SEER, our choice of replacement plans is not restricted to be only from the paramet-

ric optimal set of plans (POSP). In principle, it could be any other plan from the optimizer’s

search space that satisfies the user’s cost constraints. For example, a very good plan that is al-

ways second-best by a small margin over the entire selectivity space. In this case, SEER would,

by definition, not be able to utilize this plan, whereas it would certainly fall within our ambit.

This is confirmed in our experimental study (Chapter 5), where we find that non-POSP plans

do regularly feature in the set of recommended plans.

(iii) Finally, as previously mentioned, since SEER considers only POSP plans, it is possible that

a chosen replacement may be internally composed of sub-plans that are either not near-optimal

or not stable with regard to the corresponding cost-optimal sub-plan. In contrast, an attractive

feature of NodeExpand is that it ensures performance fidelity of the replacement throughout its

operator tree.

23

(a) RootExpand (λl, λg = 20%)

(b) SkylineUniversal (λl, λg = 20%)

(c) NodeExpand (λl, λg = 20%)

Figure 4.1: Plan Expansion Algorithms (Q̂10)24

Chapter 5

Experimental Results

The replacement algorithms described in the previous sections were implemented in Post-

greSQL 8.3.6 [23] operating on a Sun Ultra 24 workstation with 3 GHz processor, 8 GB of

main memory, 1.2 TB of hard disk, and running Ubuntu Linux 8.04. In this section, we first

outline the experimental framework used to evaluate the performance characteristics of these al-

gorithms, and then highlight the results of the study. The user-specified cost-increase threshold

in all our experiments was λl, λg = 20%, an acceptable value in practice as per our discussions

with industrial development teams, and also a value found sufficient to provide anorexic plan

diagrams in popular commercial optimizers [11, 12]. With regard to the benefit threshold δg,

the default value is the minimum of 1, but we discuss the implications of alternative settings.

Query Templates and Plan Diagrams. To assess performance over the entire selectivity space,

we took recourse to parametrized query templates – for example, by treating the constants as-

sociated with O.totalprice and L.extendedprice in Q̂10 as parameters. These templates, listed

in [1], are all based on queries appearing in the TPC-H and TPC-DS benchmarks, and cover

both 2D and 3D selectivity spaces. They feature a variety of advanced SQL constructs including

groupings, orderings, nested queries, correlated predicates, aggregates, functions, etc., and the

optimization process involves handling complexities such as interesting orders and stemmed

operator trees. The TPC-H database contains uniformly distributed data of size 1GB, while the

TPC-DS database hosts skewed data that occupies 100GB.

For each of the query templates, we produced plan diagrams with the Picasso visualiza-

25

tion tool [28], at a uniformly distributed resolution of 100 in each dimension, resulting in ten

thousand queries for 2D templates, and a million queries with 3D templates.

Physical Design. We considered two physical design configurations in our study: PrimaryKey

(PK) and AllIndex (AI). The PK configuration represents the default physical design of the

database engine, wherein a clustered index is created on each primary key. AI, on the other

hand, represents an “index-rich” situation with (single-column) indices available on all query-

related schema attributes.

Performance Metrics. A variety of performance metrics are used to characterize the behavior

of the various replacement algorithms:

1. Plan Stability: The overall effect of plan replacements on stability is measured through the

AggSERF, MaxSERF and MinSERF statistics. Further, we track REP%, the percentage

of locations where the optimizer’s original choice is replaced, and Help%, the percentage

of error instances for which replacements were able to reduce the performance gap by

a substantial margin, specifically, more than two-thirds. Lastly, we also quantify the

percentage of query locations where MinSERF goes below zero.

2. Plan Diagram Cardinality: This metric tallies the number of unique plans present in the

plan diagram, with cardinalities that are less than or around ten considered as anorexic

diagrams [11, 12]. We also tabulate the number of non-POSP plans selected by our

techniques.

3. Computational Overheads: This metric computes the average overheads incurred, with re-

gard to both time and space, by the various replacement algorithms, relative to those

incurred by the standard DP procedure.

Query Template Descriptors. In the subsequent discussion, we use QTx to denote a query

template based on Query x of the TPC-H benchmark, and DSQTx to refer to a query template

based on Query x of the TPC-DS benchmark. By default, the query template is 2D and evaluated

on a PK physical design. An additional prefix of 3D indicates that the query template is three-

dimensional, while AI signifies an AllIndex physical design.

26

Query RootExpand NodeExpand SkylineUniversal SEER
Temp- REP Agg Max Help REP Agg Max Help REP Agg Max Help REP Agg Max Help

late % SERF SERF % % SERF SERF % % SERF SERF % % SERF SERF %
QT5 84 0.54 1 55 85 0.54 1 55 85 0.54 1 55 47 0.61 1 64
QT8 42 0.11 1 1 84 0.13 1 3 – – – – 39 -0.09 1 1

QT10 32 0.20 1 19 98 0.21 1 20 98 0.21 1 20 37 0.21 1 20
AIQT5 87 0.37 1 36 99 0.37 1 38 – – – – 87 0.38 1 39
3DQT8 47 0.17 1 16 69 0.18 1 18 – – – – 59 0.17 1 18
3DQT10 30 0.37 1 67 99 0.39 1 71 99 0.39 1 71 24 0.38 1 41

AI3DQT8 30 0.18 1 21 98 0.19 1 21 – – – – 55 0.12 1 15
AI3DQT10 30 0.11 1 13 99 0.13 1 19 – – – – 55 0.11 1 13

DSQT7 93 0.28 1 28 93 0.28 1 28 93 0.28 1 28 46 0.28 1 28
DSQT18 12 0.31 1 33 58 0.48 1 49 – – – – 57 0.48 1 49
DSQT26 30 0.48 1 50 30 0.49 1 50 30 0.49 1 49 29 0.49 1 49

AIDSQT18 11 0.03 1 3 75 0.07 1 5 – – – – 68 0.04 1 8

Table 5.1: Plan Stability Performance

5.1 Plan Stability Performance

The stability performance results of the RootExpand, NodeExpand, SkylineUniversal and SEER

algorithms are enumerated in Table 5.1 for a representative set of a dozen query templates

from our study that cover a spectrum of error dimensionalities, benchmark databases, physical

designs and query complexities.

Our initial objective here was to evaluate whether there is really tangible scope for plan

replacement or whether the optimizer’s plan itself is usually the robust choice. We see in the

table that the percentage of query points where plan replacement does occur with RootExpand

and NodeExpand is quite substantial, even reaching in excess of 90% for some templates (e.g.

DSQT7)! On average across all the templates, the replacement percentage was around 40% for

RootExpand and 80% for NodeExpand.

Not all of the above replacements are required for achieving stability, and the stability-

superfluous replacements could be eliminated by setting higher values of δg. For example, in

AIQT5, δg = 1.05 achieves the same stability as the default δg = 1 and brings the replacement

percentage down from 99% to only 32% for NodeExpand. However, the additional replace-

ments are useful from a different perspective – they help to produce anorexic plan diagrams, as

seen later in this section. For example we see that by setting δg to a higher value for AIQT5, the

number of plans jumps up from 7 to 20 showing the loss of anorexia in plan diagrams.

Moving on to the stability performance, we observe that the AggSERF values of both Roo-

tExpand and NodeExpand are usually in the range of 0.1 to 0.6, with the average being about

27

0.3, which means that on average about one-third of the performance handicap due to selectiv-

ity errors is removed. Further, a deeper analysis leads to an even more positive view: Firstly,

consider the Help% statistics, where we see that, for several templates, a significant fraction

of the error population do receive substantial assistance. For example, AIQT5 has the perfor-

mance gap closed by more than two-thirds in about 40 percent of its error situations. A sample

frequency distribution of the positive SERF values obtained with 3DQT10, which has the best

Help% of over 70%, is shown in Figure 5.1. It is clearly evident in this graph that a sizeable

fraction (~20%) receive SERF in excess of 0.9 – i.e., effectively achieve immunity from the

errors.

Figure 5.1: Frequency Distribution of SERF values

Second, notice that the AggSERF performance of the offline SEER is largely similar to that

of RootExpand and NodeExpand. In our prior study [12], SEER had produced better results for

these same templates – the difference is that those experiments were carried out on a popular

commercial optimizer, considerably more sophisticated than PostgreSQL. It therefore supported

a much richer space of quality replacements. Our expectation is that when our algorithms are

implemented in such high-end optimizers, both the AggSERF and Help% values will noticeably

increase.

Third, we see that the performance of RootExpand and NodeExpand, in spite of considering

a much smaller set of replacement candidates, is virtually identical to that of SkylineUniversal in

28

the templates where it was able to successfully complete (the templates for which the algorithm

ran out of memory are shown with -).

Finally, looking at the MaxSERF metric, we find that in all the templates, there do exist error

situations wherein complete immunity (MaxSERF = 1) is obtained from the error, testifying to

the inherent power of the replacement approach.

However, on the down side, there certainly are templates such as AIDSQT18, where the

AggSERF values are extremely low – however, our investigation suggests that this is more a

characteristic of the templates than a flaw in our approach since even the yardstick algorithms,

SEER and SkylineUniversal, are unable to achieve useful improvements on these templates.

Taken in toto, the above results suggest that the controlled expansion technique is highly

competitive with algorithms that possess complete knowledge of the optimality and search

spaces. This leads us to speculate that our approach is successful in extracting most of the

benefits, where available, of plan replacement.

5.2 Plan Safety Performance

We now shift our attention to the MinSERF metric to evaluate the safety aspect of plan re-

placement. The results are presented in Table 5.2 and we see that for both RootExpand and

NodeExpand: (a) only a few templates have negative values below −λg (-0.2), (b) even in these

cases, the harmful replacements (shown as Harm%) occur for only a miniscule percentage of

error locations (less than 1% for 2D templates and less than 5% for 3D templates), and (c) most

importantly, their magnitudes are small – the lowest MinSERF value is within -5. (The reason

that even SEER, which is supposed to guarantee safe replacements, has a few minor negative

MinSERF values is that, in order to maximize its scope for replacement, we implemented it also

with the LiteSeer heuristic.)

5.3 Plan Diagram Characteristics

We now move on to investigating the nature of the plan diagrams obtained with the replacement

algorithms. These results are shown in Table 5.3 for the various query templates and replace-

29

Query RootExpand NodeExpand SkyUniv SEER
Tem- Min Harm Min Harm Min Harm Min Harm
plate SERF % SERF % SERF % SERF %
QT5 0 0 0 0 0 0 -0.01 0
QT8 0 0 0 0 – – 0 0
QT10 -0.24 0.25 -0.24 0.01 -0.24 0.51 -0.25 0.20

AIQT5 0 0 0 0 – – 0 0
3DQT8 -1.05 0.01 -2.30 0.01 – – 0 0
3DQT10 -1.08 1.93 -0.78 2.15 -0.78 2.15 -0.76 0.01

AI3DQT8 -4.88 0.43 -2.80 4.30 – – 0 0
AI3DQT10 -2.08 1.74 -4.20 0.54 – – -0.69 0.01

DSQT7 0 0 0 0 0 0 0 0
DSQT18 0 0 0 0 – – 0 0
DSQT26 0 0 0 0 0 0 0 0

AIDSQT18 0 0 0 0 – – 0 0

Table 5.2: Plan Safety Performance

Query DP RootExpand NodeExpand SkyUniv SEER
Tem- Plans Plans Non- Plans Non- Plans Non- Plans
plate POSP POSP POSP
QT5 11 3 0 3 0 3 0 2
QT8 18 15 11 3 0 – – 2

QT10 15 7 1 3 0 3 0 2
AIQT5 29 13 3 7 4 – – 4
3DQT8 43 22 17 3 0 – – 2
3DQT10 30 12 2 5 1 5 1 3

AI3DQT8 70 51 41 14 12 – – 7
AI3DQT10 83 37 5 26 17 – – 7

DSQT7 12 3 1 2 1 2 1 2
DSQT18 17 23 8 2 1 – – 2
DSQT26 13 9 7 2 1 2 1 2

AIDSQT18 28 31 7 3 1 – – 3

Table 5.3: Plan Diagram Performance

ment algorithms – to put the values in context, we also show the number of plans obtained with

the standard DP-based optimizer.

Plan Diagram Cardinality. We see in Table 5.3 that RootExpand generally has rather large

plan cardinalities, sometimes eliminating only a few plans (e.g. in QT8, the 18 plans of DP are

brought down to 15), or worse, occasionally even increasing the number of plans beyond that

of DP (e.g. in AIDSQT18, DP has 28 plans whereas RootExpand features 31 plans)!

The NodeExpand algorithm, on the other hand, consistently delivers anorexic plan dia-

grams, with the number of plans in the neighbourhood of ten for virtually all the templates. In

fact, its plan cardinality is often comparable to that of SEER – this is quite gratifying since it is

obtained in spite of having (a) a much richer space from which to choose replacements, and (b)

no prior knowledge of the choices made at other points in the space.

A sample set of plan diagrams produced on the AIDSQT18 template by DP, RootExpand

30

(a) DP: 28 plans (b) RootExpand: 31 plans (c) NodeExpand: 3 plans
Figure 5.2: Sample Plan Diagrams for DP, RootExpand and NodeExpand (AIDSQT18,
λl, λg = 20%, δg = 1)

and NodeExpand are shown in Figures 5.2(a) – 5.2(c). 1 These pictures vividly demonstrate

that NodeExpand delivers anorexic diagrams in addition to good plan robustness, whereas Roo-

tExpand is only capable of providing the latter.

An isolated exception to NodeExpand’s anorexic performance is AI3DQT10 where 26 plans

feature, whereas SEER is able to restrict it to 7. However, this can be remedied if λx
l and λx

g

are increased to 100% (from the default 20%) at the internal nodes – that is, if the size of

the sub-plan pipe is increased, we again obtain anorexic diagrams with the number of plans

coming down to 16. The tradeoffs here are (a) a marginally reduced AggSERF of 0.07, (b)

weakened sub-plan performance guarantees, and (c) about 10% increased memory consumption

to accomodate the larger pipe.

Yet another observation is of relevance here – the top 10 plans, area-wise, of the above-

mentioned 26 plans, collectively cover more than 99% of the plan diagram. This means that the

remaining plans occur in very few locations and if we assume that all queries are equally prob-

able, these small-area plans are unlikely to be encountered in practice, thereby approximating

anorexia. With standard DP on the other hand, 70 of the 83 plans are required for a similar area

coverage!

Non-POSP plans. We note in Table 5.3 that for each of the expansion algorithms, the fraction

1We recommend viewing these diagrams directly from the color PDF file, or from a color print copy, since the
greyscale version may not clearly register the various features.

31

Query Optimization Time (ms)
Template DP RootExpand NodeExpand

QT5 5.4 7.5 (+2.1) 18.9 (+13.5)
QT8 6.0 9.6 (+3.6) 17.8 (+11.8)
QT10 1.5 3.3 (+1.8) 4.8 (+3.3)

AIQT5 6.8 9.7 (+2.9) 20.9 (+14.1)
3DQT8 6.0 20.1 (+14.1) 26.4 (+20.4)
3DQT10 1.5 5.6 (+4.1) 8.1 (+6.6)

AI3DQT8 7.0 27.0 (+20.0) 28.0 (+21.0)
AI3DQT10 1.9 8.2 (+6.3) 10.6 (+8.7)

DSQT7 2.2 3.8 (+1.6) 6.6 (+4.4)
DSQT18 5.0 8.4 (+3.4) 15.7 (+10.7)
DSQT26 2.1 3.5 (+1.4) 6.6 (+4.5)

AIDSQT18 8.6 15.5 (+6.9) 29.8 (+21.2)

Table 5.4: Time Overheads (in milliseconds)

of non-POSP plans in their respective plan diagrams can be quite significant, especially in the

heavily-indexed AI environments. As a case in point, with AI3DQT8, there are 41 non-POSP

plans out of 51 for RootExpand, occupying 78% of the space, while NodeExpand has 12 on 14,

covering more than 90% area.

Usually, the non-POSP fraction is highest for RootExpand and this is attributable to POSP

replacements often not being available for consideration at the root node as they have been

pruned earlier in the DP lattice (our measurements suggest that this situation occurs in about

half the cases).

5.4 Computational Overheads

We now turn our attention to the price to be paid for providing plan stability and anorexic di-

agrams in terms of increased optimization overheads. The time aspect is captured in Table 5.4

where the per-query optimization times (in milliseconds) are shown for DP, RootExpand and

NodeExpand – the additional increase in overheads relative to DP are also shown in parenthe-

ses. The results indicate that the performance of both replacement algorithms is within 10 to

20 milliseconds of DP for all the templates. This good performance can be attributed to the

techniques incorporated for controlling expansion overheads (Section 4.1).

The numbers in Table 5.5 indicate the additional memory consumption is well within 10MB

(for RootExpand) and 100MB (for NodeExpand) over all the query templates. These overheads

appear quite acceptable given the richly-provisioned computing environments in vogue today.

32

Query Memory Overhead (MB)
Template DP RootExpand NodeExpand

QT5 2.0 2.6 (+0.6) 6.2 (+4.2)
QT8 2.0 2.8 (+0.8) 14.8 (+12.8)
QT10 1.6 1.9 (+0.3) 3.9 (+2.3)

AIQT5 2.7 3.5 (+0.8) 11.8 (+9.1)
3DQT8 2.0 5.2 (+3.2) 29.5 (+27.5)
3DQT10 1.6 2.5 (+0.9) 5.0 (+3.4)

AI3DQT8 2.8 6.8 (+4.0) 70.5 (+67.7)
AI3DQT10 1.7 3.6 (+1.9) 7.3 (+5.6)

DSQT7 1.7 2.2 (+0.5) 4.1 (+2.4)
DSQT18 2.0 2.9 (+0.9) 31.0 (+29.0)
DSQT26 1.7 2.1 (+0.4) 4.0 (+2.3)

AIDSQT18 3.2 4.0 (+0.8) 17.0 (+13.8)

Table 5.5: Memory Consumption (in MB)

Further, note that this memory consumption is incurred only for a very brief period of time,

much less than one-tenth of a second, as per the statistics in Table 5.4.

Pruning Analysis. As presented in Chapter 4, our expansion algorithms involve a four-

stage pruning mechanism, comprising of Cost, Safety, Benefit and Skyline checks. We show in

Table 5.6, a sample instance of the collective ability of these checks to reduce the number of

wagons forwarded from a node to a limited viable number. In this table, obtained from the root

node of a QT8 instance located at (30%, 30%) in S, we show the initial number of candidate

wagons, and the number that remain after each check. As can be seen, there are almost 450

plans at the beginning, but this number is pruned to less than 10 by the completion of the last

check.

Initial After
of Local Global Global C-S-B

Wagons Cost Safety Benefit Skyline
446 214 194 139 6

Table 5.6: Impact of 4-stage Wagon Pruning

33

Chapter 6

Related Work

Over the last decade, a variety of compile-time strategies have been proposed for identifying

robust plans, including the Least Expected Cost [8, 9], Robust Cardinality Estimation [3] and

Rio [4, 5] approaches. These techniques provide novel and elegant formulations, but, as de-

scribed in detail in [12], are limited on some important counts: First, they do not all retain a

guaranteed level of local optimality in the absence of errors. That is, at the estimated query

location, the substitute plan chosen may be arbitrarily poor compared to the optimizer’s orig-

inal cost-optimal choice. Second, these techniques have not been shown to provide sustained

acceptable performance throughout the selectivity space, i.e., in the presence of arbitrary errors.

Third, they require specialized information about the workload and/or the system which may

not always be easy to obtain or model. Finally, their query capabilities may be limited compared

to the original optimizer – e.g., only SPJ queries with key-based joins were considered in [3, 4].

Both our previous offline SEER technique, and the online algorithms proposed in this report,

address the above limitations through a confluence of (i) mathematical models sourced from

industrial-strength optimizers, (ii) combined local and global constraints, and (iii) generic but

effective heuristics. The salient differences between SEER and EXPAND were discussed in

detail earlier in the report (Section 4.2).

34

Chapter 7

Conclusions and Future work

We have investigated, in this report, the systematic introduction of global stability criteria in the

cost-based DP query optimization process, with a view to minimizing the impact of selectivity

errors. Specifically, we proposed the Expand parametrized family of algorithms for striking the

desired balance between the competing demands of enriching the candidate space for replace-

ment plans, and the computational/resource overheads involved in this process. The Expand

approach is based on expanding the set of plans sent from each node in the DP lattice to the

higher levels, subject to a four-stage checking process that ensures only plausible candidates

are forwarded, and simultaneously restrict the expansion overheads to an acceptable level.

We considered three plan replacement algorithms: RootExpand, NodeExpand and Sky-

lineUniversal, that cover the spectrum of design tradeoffs. These were implemented in the

PostgreSQL kernel, and evaluated through an extensive set of experiments on benchmark en-

vironments, which covered a variety of logical and physical designs. Our results showed that

a significant degree of robustness can be obtained with relatively minor conceptual changes to

current optimizers, especially those that already support a foreign-plan-costing feature. Among

the replacement algorithms, NodeExpand proved to be an excellent all-round choice, simulta-

neously delivering good stability, anorexic plan diagrams, and acceptable computational over-

heads. The typical situation was that its plan replacements were often able to reduce by more

than two-thirds of the adverse impact of selectivity errors for a substantial number of error sit-

uations, in return for investing relatively minor additional amounts of optimization time and

35

memory.

In our future work, we plan to investigate statistical and machine-learning-based techniques

for identifying customized assignments to the node-specific cost, safety and benefit thresholds in

the Expand approach. Further, while we have assumed that the errors are uniformly distributed

over the selectivity space, it would be interesting to consider the more generic case where the

error locations have a skewed distribution.

36

References

[1] M. Abhirama, S. Bhaumik, A. Dey, H. Shrimal and J. Haritsa, “Stability-conscious Query Opti-
mization”, Technical Report TR-2009-01, DSL/SERC, Indian Institute of Science, 2009.

[2] A. Aboulnaga and S. Chaudhuri, “Self-tuning Histograms: Building Histograms without Looking
at Data”, Proc. of ACM SIGMOD Intl. Conf. on Management of Data, May 1999.

[3] B. Babcock and S. Chaudhuri, “Towards a Robust Query Optimizer: A Principled and Practical
Approach”, Proc. of ACM SIGMOD Intl. Conf. on Management of Data, June 2005.

[4] S. Babu, P. Bizarro and D. DeWitt, “Proactive Re-Optimization”, Proc. of ACM Sigmod Intl. Conf.
on Management of Data, June 2005.

[5] S. Babu, P. Bizarro and D. DeWitt, “Proactive Re-Optimization with Rio”, Proc. of ACM SIGMOD
Intl. Conf. on Management of Data, June 2005.

[6] S. Borzsonyi, D. Kossmann and K. Stocker, “The Skyline Operator”, Proc. of 17th IEEE Intl. Conf.
on Data Engineering (ICDE), April 2001.

[7] S. Chaudhuri, V. Narasayya and R. Ramamurthy, “A Pay-As-You-Go Framework for Query Exe-
cution Feedback”, Proc. of 34th Intl. Conf. on Very Large Data Bases (VLDB), August 2008.

[8] F. Chu, J. Halpern and P. Seshadri, “Least Expected Cost Query Optimization: An Exercise in
Utility”, Proc. of ACM Symp. on Principles of Database Systems (PODS), May 1999.

[9] F. Chu, J. Halpern and J. Gehrke, “Least Expected Cost Query Optimization: What Can We Ex-
pect”, Proc. of ACM Symp. on Principles of Database Systems (PODS), May 2002.

[10] A. Deshpande, Z. Ives and V. Raman, “Adaptive Query Processing”, Foundations and Trends in
Databases, 2007.

[11] Harish D., P. Darera and J. Haritsa, “On the Production of Anorexic Plan Diagrams”, Proc. of 33rd
Intl. Conf. on Very Large Data Bases (VLDB), September 2007.

[12] Harish D., P. Darera and J. Haritsa, “Robust Plans through Plan Diagram Reduction”, Proc. of 34th
Intl. Conf. on Very Large Data Bases (VLDB), August 2008.

[13] A. Hulgeri and S. Sudarshan, “Parametric Query Optimization for Linear and Piecewise Linear
Cost Functions”, Proc. of 28th Intl. Conf. on Very Large Data Bases (VLDB), August 2002.

[14] A. Hulgeri and S. Sudarshan, “AniPQO: Almost Non-intrusive Parametric Query Optimization for
Nonlinear Cost Functions”, Proc. of 29th Intl. Conf. on Very Large Data Bases (VLDB), September
2003.

[15] Y. Ioannidis and S. Christodoulakis, “On the Propagation of Errors in the Size of Join Results”,
Proc. of ACM SIGMOD Intl. Conf. on Management of Data, May 1991.

[16] N. Kabra and D. DeWitt, “Efficient Mid-Query Re-Optimization of Sub-Optimal Query Execution
Plans”, Proc. of ACM SIGMOD Intl. Conf. on Management of Data, May 1998.

37

[17] V. Markl, V. Raman, D. Simmen, G. Lohman, H. Pirahesh and M. Cilimdzic, “Robust Query
Processing through Progressive Optimization”, Proc. of ACM SIGMOD Intl. Conf. on Management
of Data, June 2004.

[18] N. Reddy and J. Haritsa, “Analyzing Plan Diagrams of Database Query Optimizers”, Proc. of 31st
Intl. Conf. on Very Large Data Bases (VLDB), August 2005.

[19] P. Selinger, M. Astrahan, D. Chamberlin, R. Lorie and T. Price, “Access Path Selection in a Rela-
tional Database System”, Proc. of ACM SIGMOD Intl. Conf. on Management of Data, June 1979.

[20] M. Stillger, G. Lohman, V. Markl and M. Kandil, “LEO, DB2’s LEarning Optimizer”, Proc. of
27th VLDB Intl. Conf. on Very Large Data Bases (VLDB), September 2001.

[21] http://publib.boulder.ibm.com/infocenter/db2luw/ v9/index.jsp?topic=/com.ibm.db2.udb.admin.doc/doc/t0024533.htm

[22] http://postgresql.org

[23] http://www.postgresql.org/docs/8.3/static/release-8-3-6.html

[24] http://msdn2.microsoft.com/en-us/library/ms189298.aspx

[25] http://infocenter.sybase.com/help/index.jsp? topic=/com.sybase.dc34982 1500/html/mig gde/BABIFCAF.htm

[26] http://www.tpc.org/tpch

[27] http://www.tpc.org/tpcds

[28] http://dsl.serc.iisc.ernet.in/projects/PICASSO/picasso.html

38

Appendix

In Chapter 3, we described a four-stage pruning procedure that is invoked at each node. The last

check in this procedure selectively retains only the skyline set of wagons based on cost-safety-

benefit considerations. We prove here that the final plan choices made by the optimizer using

this restricted set of wagons is exactly equivalent to that obtained by retaining the entire set of

wagons – that is, there is no “information loss” due to the pruning.

Theorem 1 A sub-plan pw eliminated by the Skyline check cannot feature in the final replace-

ment plan Pre selected by the optimizer in the absence of this check.

Proof: We demonstrate this proof by negation. That is, assume in the absence of the Skyline

check, the final plan Pre does contain a wagon pw1 eliminated by this check. Let the elimination

have occurred due to domination by pw2 on the dimensionality space comprised of LocalCost,

Cost(V1), Cost(V2), Cost(V3), . . . Cost(V2n − 1), BenefitIndex.

Now, let us assess the relationship that develops between pw1 and pw2 had both been retained

through the higher levels of the DP lattice. For example, at the next higher node x, the costs

and benefits of the wagons will be

Wag- Local Corner Benefit

on Cost Costs Index

w1 c(pw1, qe) + ∆e c(pw1, Vi) + ∆Vi
c(pw1, Vi) +

∑
∆Vi

w2 c(pw2, qe) + ∆e c(pw2, Vi) + ∆Vi
c(pw2, Vi) +

∑
∆Vi

where the deltas are the incremental costs, at the local and corner locations, of computing node

x. Note that these incremental costs will be the same for the two wagons since they both

represent the same input data and can therefore use the same strategy for computing x.

39

From the above, it is clear that the relative values along all skyline dimensions have indeed

come closer together due to the presence of the additive constants – that is, there is a tighter

“coupling”. However, there is no “inversion” on any dimension due to which the domination

property could be violated. This is because, as is trivially obvious, given two arbitary numbers

vi and vj with vi > vj , and a constant a, it is always true that vi + a > vj + a.

By induction, the above relationship would continue to be true all the way up the lattice to

the root node. Now, in the final selection, the MaxBenefit selection heuristic chooses the wagon

with the maximum benefit. Therefore, it would still be the case that the plan with pw2 would be

preferred over the identical plan with pw1 instead since the benefit of the former is greater than

that of the latter. Hence our original assumption was wrong.

40

