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Abstract

Query optimizers are an integral component of widely used relational database management

systems. The performance of these systems is highly affected by the efficiency of query opti-

mizers. Picasso, a tool proposed in [7], has elucidated some problems in the existing relational

query optimizers in a graphical way. A plan diagram [2] is a pictorial enumeration of the

execution plan choices of a database query optimizer over the relational selectivity space. Us-

ing Picasso, an analysis of plan diagrams on a suite of industrial strength query optimizers for

queries based on the TPC-H benchmark [24] can be found in [7]. These diagrams provide a

variety of striking and interesting revelations, including that current optimizers make extremely

fine-grained plan choices; that the plan optimality regions may have highly intricate patterns

and irregular boundaries.

Picasso was available on three industrial strength query optimizers, DB2, Oracle and MS

SQL Server. We have now ported it on two more query optimizers: Sybase and PostgreSQL.

This has completed the spectrum of commercially and widely used databases. We have done

an analysis of plan-cardinality diagrams [7] that has revealed that the optimizer’s estimate of

cardinality ar off by huge margin. The number of plans that optimizer chooses was observed

to increase with the query grid resolution [7]. Another interesting observation was thatcost

increase threshold [7] value of 10% produced most of the reduction possible for a plan diagram.
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Chapter 1

Introduction

SQL the standard database query language is declarative in nature. It tells the database system

what to do but does not specify how to do. For example consider the query shown in Figure 1

which fetches the name of employee and his depart name who earn less than 8000, it does not

specify how to join the tables emp and dept, whether to use Nested-Loops join, Sort-Merge join

or Hash join. Also the join order has been left unspecified.

select
empName, deptName

from
emp, dept

where
emp.deptNo = dept.deptNo
and salary < 8000

Figure 1.1: Example Query

In a database system it is the responsibility of module called Query optimizer to come up

with strategies, known as execution plans, for executing the given SQL query. But this process

of query optimization is computationally intensive and hence makes query optimizer a vital

component of modern database systems. The performance of the system is highly dependent

on the performance and functionality of the optimizer. The difference between the cost of best

1
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execution plan and any other randomly chosen plan could be in orders of magnitude. Hence

query optimization is a necessary step.

Most of the current query optimizers are cost based, with few rules included. The optimizer

takes the given query and with the help of system catalogs and cost model comes up with

a minimum cost plan. The efficiency of plan is measured in terms of query response time.

Coming up with an efficient plan is important as the difference between the cost of the best

execution plan and a sub-optimal plan could be enormous. An efficient optimizer should come

up with a good execution plan without consuming too much time. As the complexity of query

increases the time required to optimize it also increases. The need for an efficient optimizer is

indubitably evident from the complex queries of TPC-H decision support benchmark [24].

The optimal plan choice given by a cost based query optimizer is mainly a function of

the selectivities of the relations participating in the query, for a given database and system

configuration. Selectivity is the estimated number of relevant tuples or rows of a relation that

are relevant for producing the result of the query.

1.0.1 The Picasso Tool

Recently a tool called Picasso was introduced in [7]. Picasso is a JAVA tool which when sup-

plied with a query template and a relational engine, automatically generates the associated plan,

plan-cost and plan-cardinality diagrams.

A “plan diagram” is a color-coded pictorial enumeration of the execution plan choices of a

database query optimizer over the relational selectivity space. For a query shown in Figure 1.0.1,

based on Query 3 of the TPC-H benchmark, with selectivity variations on the ORDERS and

LINEITEM relations an example plan diagram, selected by the OptB optimizer, is shown in

Figure 1.3(a).

The diagram displays 6 optimal plans over the selectivity space. The area covered by each

plan in this region has been indicated next to the plan number in the legend.

Complementary to the plan diagram is a “plan-cost diagram”, shown in Figure 1.3(b), which

is a three-dimensional visualization of the estimated plan execution costs over the same rela-

tional selectivity space as the plan diagram. The costs are normalized to the maximum cost over
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select
l orderkey,
sum(l extendedprice *
(1 - l discount)) as revenue,
o orderdate,
o shippriority

from
customer,
orders,
lineitem

where
c mktsegment = ’BUILDING’
and c custkey = o custkey
and l orderkey = o orderkey
and o totalprice <= :1
and l extendedprice <= :2

group by
l orderkey,
o orderdate,
o shippriority

order by
revenue desc,
o orderdate

Figure 1.2: Query Template

the space, and the diagram has been drawn using the plan color encoding.

Query optimizers apart from estimating the cost of executing the query also try to esti-

mate the result cardinality. Cardinality is defined as the number of tuples that comprise the

result. Providing a third dimension to the analysis of query optimizer, Picasso generates “plan-

cardinality diagram” which is a three-dimensional visualization of the estimated result cardi-

nalities over the same relational selectivity space as the plan diagram. Figure 1.4(a) shows

the plan-cardinality diagram. The plan-cardinality diagrams are also encoded using plan color

encoding.
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1.0.2 Plan Diagram Cardinality Reduction by Swallowing

Picasso demonstrated that it is possible to replace many of the small-sized plans by larger-sized

plans in the optimal plan set, without unduly increasing the cost of the query points associated

with the small plans. That is, small plans can be “completely swallowed” by their larger siblings,

leading to a reduced plan set cardinality, without materially affecting the associated cost.

The experiments in [7] were done by setting λ, the cost increase threshold, to 10 percent.

Very significant reductions in plan cardinality were obtained in the process. On average over

dense queries, the reductions were of the order of 60% across all three optimizers. The reduced

plan diagram for example query is shown in Figure 1.4(b).

1.0.3 Organization

In Chapter 2 we will briefly discuss the related work.

We will discuss the details of porting Picasso to new database system in Chapter 3. Sec-

tion 3.1 will describe the testbed environment. In Section 3.2 we will present the porting of

Picasso on Sybase. Porting on PostgreSQL is discussed in Section 3.3. And then in Section 3.4

we will briefly analyze OptD results and Section 3.5 will describe the results obtained on OptE.

Cardinality estimations of various databases have been analyzed in Chapter 4. Chapter 5

discusses the analysis of plan cardinality. In Section 5.1 we have given an analysis of variation

of plan cardinality with respect to resolution. The analysis of plan cardinality reduction with

increase in the cost threshold is explored in Section 5.2.

Finally in Chapter 6 we summarize our conclusions and discuss some future avenues.
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(a) Plan Diagram

(b) Plan-Cost Diagram

Figure 1.3: Query 3P OptB
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(a) Plan-Card Diagram

(b) Reduced Plan Diagram

Figure 1.4: Query 3P OptB



Chapter 2

Related Work

Various plan, plan-cost and plan-cardinality diagrams of three industrial strength query optimiz-

ers have been analyzed in [7] on TPC-H based queries. The results can be seen on the Picasso

webpage [11]. The summary of observations made in [7] is presented here:

Fine-grained Choices: Modern query optimizers often make extremely fine-grained plan

choices, exhibiting a marked skew in the space coverage of the individual plans. For

example, 80 percent of the space is usually covered by less than 20 percent of the plans,

with many of the smaller plans occupying less than one percent of the selectivity space.

Using the well-known Gini index [13], which ranges over [0,1], to quantify the skew, it

was found that all the optimizers exhibit a marked skew in excess of 0.5 for most queries,

on occasion going even higher than 0.8.

Overall, this leads to the hypothesis that current optimizers may perhaps be over-

sophisticated in that they are “doing too good a job”, not merited by the coarseness of the

underlying cost space. Moreover, if it were possible to simplify the optimizer to produce

only reduced plan diagrams, it is plausible that the considerable processing overheads

typically associated with query optimization could be significantly lowered.

Complex Patterns: The plan diagrams exhibit a variety of intricate tessellated patterns, includ-

ing speckles, stripes, blinds, mosaics and bands, among others. These complex patterns

appear to indicate the presence of strongly non-linear and discretized cost models, again

7
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perhaps an over-kill.

Non-Monotonic Cost Behavior: There were quite a few instances where, although the base

relation selectivities and the result cardinalities are monotonically increasing, the cost dia-

gram does not show a corresponding monotonic behavior. Sometimes, the non-monotonic

behavior arises due to a change in plan, perhaps understandable given the restricted search

space evaluated by the optimizer. But, more surprisingly, we have also encountered situ-

ations where a plan shows such behavior even internal to its optimality region.

Validity of PQO: A rich body of literature exists on parametric query optimization (PQO) [1,

3, 4, 9]. The goal here is to apriori identify the optimal set of plans for the entire relational

selectivity space at compile time, and subsequently to use at run time the actual selectivity

parameter settings to identify the best plan – the expectation is that this would be much

faster than optimizing the query from scratch. Much of this work is based on a set of

assumptions that do not hold true, even approximately, in the plan diagrams produced by

the commercial optimizers.



Chapter 3

Porting Picasso to New Databases

3.1 Testbed Environment

3.1.1 Database and Query Set

The database was created using the synthetic generator supplied with the TPC-H decision sup-

port benchmark, which represents a commercial manufacturing environment, featuring the fol-

lowing relations: REGION, NATION, SUPPLIER, CUSTOMER, PART, PARTSUPP, ORDERS and

LINEITEM. A gigabyte-sized database was created on this schema, resulting in cardinalities of

5, 25, 10000, 150000, 200000, 800000, 1500000 and 6001215, for the respective relations.

All query templates were based on the TPC-H benchmark, which features a set of 22 queries,

Q1 through Q22. Out of these 22 queries we have taken 17 queries. Two of the queries were

one dimensional hence not used and three others which we left were not convertible to Picasso

compatible format. To ensure coverage of the full range of selectivities, the relational axes in

the plan diagrams are chosen only from the large-cardinality tables occurring in the query (i.e.

NATION and REGION, which are very small, are not considered). An additional restriction is that

the selected tables should feature only in join predicates in the query, but not in any constant

predicates. For a given choice of such tables, additional one-sided range predicates on attributes

with high-cardinality domains in these tables are added to the queries to support a fine-grained

continuous variation of the associated relational selectivities.

9
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While plan and cost diagrams have been generated for most of the benchmark queries, we

focus in the remainder of this paper only on those queries that have “dense” plan diagrams –

that is, diagrams whose optimal plan set cardinality is 10 or more, making them interesting for

analysis – for at least one of the commercial optimizers. For computational tractability, a query

grid spacing of 100 x 100 is used, unless explicitly mentioned otherwise. Further, for ease of

presentation and visualization, the query workloads are restricted to 2-dimensional selectivity

spaces.

3.1.2 Relational Engines

The relational engines already evaluated in [7] are IBM DB2 v8.1 [17], Oracle 9i [19] and

Microsoft SQL Server 2000 [18]. The new relational engines that have been evaluated in this

report are Sybase ASE 15.0 [22] and PostgreSQL 8.0 [20].

3.1.3 Computational Platform

A vanilla platform consisting of a Pentium-IV 2.4 GHz PC with 1 GB of main memory and 120

GB of hard disk, running the Windows XP Pro operating system, was used in our experiments.

The relational engines were all installed with their default configurations for all parameters.

3.2 Picasso on Sybase

Sybase, Inc. has recently introduced Sybase Adaptive Server Enterprise (ASE) 15 [22] to meet

the increasing demands of large databases and high transaction volumes, while providing a cost

effective database management system. ASE 15 features new query processing technology that

drastically increases performance thresholds and reduces hardware resource consumption.

Sybase was the remaining commercial query optimizer on which Picasso was not available.

Hence to complete the spectrum of industrial strength and widely used database available with

Picasso we worked on Sybase ASE 15.0. In this section we will discuss the various challenges

that we faced for porting Picasso on Sybase.

The main tasks involved for this successful porting were:
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• Find the statistics that Sybase maintains about the database.

•Extract relevant portions of the plan output generated by Sybase. There are mainly two vari-

ants of output: plain text and XML.

3.2.1 Statistics Access

All the statistics about any relation is present, as expected, in relational form in Sybase [14].

That means the meta-data about a relation is itself represented in a relation. The commonly

required statistics of a relation are its cardinality the distribution of data in a column. We also

need attributes of a table and their types. But the way this data is stored in Sybase is very

complicated. We will elaborate this problem later.

To get information about a relation the system tables used were systypes, sysobjects,

syscolumns [14]. The systabstats and sysstatistics [14] tables store statistics for all tables,

indexes, and any un-indexed columns for which the user has explicitly created statistics. In

general terms:

• systabstats stores information about the table or index as an object, that is, the size, number

of rows, and so forth. It is updated by query processing, data definition language, and update

statistics commands.

• sysstatistics stores information about the values in a specific column. It is updated by data

definition language and update statistics commands

The optdiag utility displays statistics from the systabstats and sysstatistics tables. Optdiag

can also be used to update sysstatistics information. We can use optdiag to display statistics for

an entire database, for a single table and its indexes and columns, or for a particular column.

Histograms are created when update statistics command is executed. Optdiag utility can be

used to display summary data about histograms. Histogram output is printed in columns,

•Step, the number of the steps.

•Weight, weight of each step.
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•Operator, < , <=, or =, indicating the limit of the value. Operators differ, depending on

whether the cell represents a range cell or a frequency cell.

•Value, upper boundary of the values represented by a range cell or the value represented by a

frequency count.

The problem with sysstatistics table is that the column names are like c0..c79 of type

varbinary which is not interpretable. There is no documentation which gives any idea about

what there columns store. This problem was overcome by using a stored procedure called

hist values provided by Sybase forum [23] which simulates these histogram tables. It takes the

relation name and the attribute name as parameters and produces a nice interface, called his-

togram table with the same columns as mentioned earlier in the optdiag output, for accessing

the histogram values.

3.2.2 Extracting Plan Information

Sybase like every other database system provides the user the facility to view the plan the opti-

mizer has chosen as the best plan for executing the given SQL query. Whereas some databases

choose to represent this information in relational format, following everything is a relation con-

cept, others like Sybase provide this information in a textual format. We have to execute the

following command to get the plan information:

set option show abstract plan on

Also if you do not wish to execute the query you can use the command:

set noexec on

Sybase generates this information in textual format and not in tables. So we had to come up

with a parser to get the relevant information about a plan. But we were able to partially save this

trouble of writing the parser as Sybase provides a XML output of the plan information. Thus we

could easily use already available SAX(Simple API for XML) [21] parser and get the relevant

information.
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Here are a set of commands one needs to execute to get the XML output. The output has

been shown later.

dbcc traceon(3604)

use tpch

set plan for show best plan xml

to client on

set noexec on

go

select * from REGION go exit

XML Output

----------------------------------------------------------

<Optimizer-Trace>

<Best-Global-Plan>

<Pop>

<PopEmit>

<PopIndScan>

Gtt0(REGION)

Gti0(REGION 6045)

</PopIndScan>

</PopEmit>

</Pop>

</Best-Global-Plan>

</Optimizer-Trace>

The XML output consists of various tags and the nesting of elements is used to represent

hierarchy. The various operations in Sybase XML output are preceded by the word Pop. The

plan output here displays that an index scan of table REGION using index REGION 6045 has

been done to retrieve data.
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As we mentioned earlier that we were able to save the trouble of writing parser partially. It

is due to the fact that the XML output provides only the plan tree information but in order to get

the cost and cardinality of each operator we had to use the textual output displayed in the long

format. The following command is used to generate textual output with full details:

set option show best plan long

The relevant portion of the output for this command is shown here,

FINAL PLAN ( total cost = 54.5 ):

lio=2 pio=2 cpu=5

( PopEmit

proj: REGION.R_COMMENT , REGION.R_NAME , REGION.R_REGIONKEY

.

.

cost: 0

I/O estimate : [

rowcount=5

.

.

( PopIndScan index: Gti0( REGION_6080021661 )

table: Gtt0( REGION )

.

.

.

cost: 54.5

I/O estimate : [

rowcount=5
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explain select
l shipmode

from
orders, lineitem

where
o orderkey <= l orderkey
and o totalprice <= 158085
and l quantity < 39;

QUERY PLAN
---------------------------------------------------------------

Hash Join
(cost=55594.39..349199.94

rows=283799 width=14)
Hash Cond: ("outer".l orderkey =

"inner".o orderkey)
-> Seq Scan on lineitem

(cost=0.00..261789.26
rows=510824 width=18)

Filter: ((l quantity <
39::numeric))

-> Hash
(cost=50255.00..50255.00

rows=833356 width=4)
-> Seq Scan on orders

(cost=0.00..50255.00
rows=833356 width=4)

Filter:(o totalprice <
158085::numeric)

(7 rows)

Figure 3.1: Explain Command in PostgreSQL

3.3 Picasso on PostgreSQL

PostgreSQL is an industrial strength Object Relational Database Management System (OR-

DBMS). It supports a large part of the SQL-2003 standard and offers many modern features
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like complex queries, foreign keys, triggers, views, transactional integrity, multi-version con-

currency control, etc. Picasso was ported on PostgreSQL and an analysis was done of its query

optimizer through various plan, cost and cardinality diagrams as shown in [5]. This is the first

open-source database which has been analyzed using Picasso. The main tasks were similar to

those which we enlisted in case of Sybase:

•Access the statistics that PostgreSQL maintains about the database.

•Extract relevant portions of the textual plan output.

3.3.1 Statistics Access

The most important catalog tables that were required are pg class, pg am, pg statistic, pg type,

pg stats , pg tables and pg indexes. Another important catalog entry is that of the histograms.

PostgreSQL maintains a histogram catalog which is a mixture of end-biased [10] and equi-

depth [10] histograms. Here, the histograms are stored in the pg stats catalog table, which

stores both the most frequently used values as well as rest of the values.

3.3.2 Extracting Plan Information

Like any other database the plan chosen by the PostgreSQL optimizer is available for the user

viewing. But like Sybase the output is textual. In order to get the plan information PostgreSQL

has provided explain command. Example is as shown in Figure3.1.

To get the relevant information from the plan a parser was written. The parser is very naive

and has been developed using Java String class functions [15].

3.4 Result Analysis of OptD

An analysis of various interesting diagrams on OptD has been presented in this section:
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3.4.1 Plan Cardinality Analysis

Average plan cardinality in case of OptD is 14.4%, see Table 3.1, over dense queries which is

lower than other optimizers considered for analysis.

3.4.2 Duplicates and Islands

There were instances of plan diagrams where duplicates and islands were observed in case of

OptD like other optimizers. Total number of duplicates and islands present in plan diagrams for

OptD has been shown in Table 3.3. It has least number of duplicates, 45, amongst all optimizers

which further reduces to 10 after plan diagram reduction.

3.4.3 Plan Cardinality Reduction

Plan cardinality reduction experiments as in [7] were performed for OptD and results are shown

in Table 3.2. The cost increase threshold λ was set to 10%. Very significant reductions were

obtained on OptD with average over dense queries being 80%. And like other optimizers the

average cost increase, shown in second column of Table 3.2, is much less than the threshold

value of 10%. Although the plan diagrams of OptD were simple as compared to other optimizers

still the amount of reduction achieved suggests that there is still lot of room for improvement in

the optimizer design.

3.5 Result Analysis of OptE

After the porting of Picasso on OptE was accomplished the most important work was to analyze

the diagrams generated by Picasso. We will discuss various observations made in this section.

3.5.1 Plan Space Coverage Skew

We start our analysis by considering the skew in the space coverage by optimal plan set cho-

sen by the optimizer over the entire selectivity space. Table 3.1 displays the results for OptE

along with other optimizers on queries based on TPC-H which were found dense in any of the
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Figure 3.2: Aggregate Plan Cardinality over all TPC-H queries

optimizers. The non-dense queries have been shown in gray color. The data for OptA, OptB

and OptC is from [7]. The first column that shows cardinality of the optimal plan set reveals

something quite astonishing. As evident from the table in case of OptE only one query, Query

10P, qualifies as dense query (having 10 or more plans in the plan diagram). The plan diagram

for Query 10P is shown in Figure 3.3. That too it is a borderline case as it has only 11 plans.

This has made OptE to fall in an altogether different league of commercial optimizer as till date

whichever commercial optimizer we had investigated each one had the plan cardinality average

more than 20. Figure 3.5 shows the aggregate plan cardinality for all the databases over all

queries (dense as well as non-dense). Here it is surprising that OptE is about one-third of OptA.

Consider the case of Query 9P for which all commercial optimizers have plan cardinality in

excess of 40 but for OptE this number is only 4!

One reason for low plan cardinality of OptE may be due to the fact that we are considering

plans at a very coarse level. There are certain sub-operator level details which are not provided

by the output. Thus it might be the case that when we consider two plans as same they might be

differing at the lower level of information. These details are present in the long textual output

but the problem is we do not have a parser to obtain the information from that output.

When the fraction of optimal plan set required to cover 80% area is considered for OptE, we

see that the average (over all queries) is around 35% as shown in second column of Table 3.1.
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Figure 3.3: Plan Diagram (Query 10P OptE)

Third column of Table 3.1 is for Gini index [13]. Gini index is bounded on the interval [0, 1],

with 0 representing no skew and 1 representing extreme skew. Here OptE is consistent with

other database optimizers and has Gini index values in excess of 0.5 which represents high

skew.

3.5.2 Plan Cardinality Reduction

While introducing the Picasso tool we discussed that an algorithm for plan cardinality reduction

was presented in [7]. With similar objective in mind we proceeded with OptE experiments for

plan cardinality reduction. The results are shown in Table 3.2. The cost increase threshold λ

was set to 10%. Very significant reductions were obtained on OptE, like other optimizers, with

average over all queries being 53%. And like other optimizers the average cost increase, shown

in second column of Table 3.2, is 1.2% which is much less than the threshold value of 10%.
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Figure 3.4: Plan Diagram (Query 21P OptE)

3.5.3 Relationship to PQO

The assumptions which form the basis of Parametric Query Optimization do not hold true in

practice for various commercial optimizers as discussed in Chapter 2. Similar cases of violation

have been observed in OptE as well.

•Plan Convexity is violated by plan P1 and P2 in Figure 3.4.

•Plan Uniqueness is violated in Figure 3.4 by plan P1 which appears twice.

•Plan Homogeneity is violated by plan P5 which forms islands within plan P1 as illustrated in

Figure 3.5.

3.5.4 Interesting Pictures Gallery

We came across some interesting diagrams during this analysis which are presented in this

section.
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Figure 3.5: Plan Diagram (Query 16P OptE)

Databases # Duplicates # Islands
Original Reduced Original Reduced

OptA 136 14 38 3
OptB 80 15 1 0
OptC 55 7 8 3
OptD 45 8 10 2
OptE 151 43 131 35

Table 3.3: Duplicates and Islands

Duplicates and Islands

Table 3.3 gives the total number of duplicates and islands present in plan diagrams for each

optimizer over all the queries of TPC-H benchmark. OptE has more number of duplicates and

islands than any other database. After plan reduction has been applied we see a drastic amount

of reduction in duplicates and islands almost one-third in case of OptE. By duplicate we mean

that the same plan may appear at a different disjoint location. Plan P1 is present at two places

in Figure 3.4. Also we can see Plan P5 present as an island in the sea of Plan P1 in Figure 3.5.
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Figure 3.6: Plan-Cost Diagram (Query 10P OptE)

Plan Switch Point

In many plan diagrams of all the optimizers we saw a line running parallel to selectivity axis

through the entire selectivity space with a plan switch occurring for all plans bordering the line,

as we move across the line. In Figure 3.3 we have a line at 25% selectivity of CUSTOMER table.

The change across the line is in the join order and join operator. On left side of the line we

have NATION . hashjoin / CUSTOMER . hashjoin / ORDERS which is reordered to CUSTOMER .

mergejoin / ORDERS . hashjoin / NATION on right side of the line.

Non-Monotonic Cost Behavior

We had observed non-monotonic cost behavior in all optimizers. OptE also exhibits this behav-

ior but not to a large extent. In Figure 3.6 we can see that Plan P10 is having a dip.

Fence Pattern

For Query 5P we got Figure 3.7 and it had an unusual pattern which resembles the fence. We

can see Plan P2 interleaved within Plan P1 as vertical bars of equal size. The difference between
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Figure 3.7: Plan Diagram (Query 5P OptE)

the plans was that SUPPLIER table was outer relation in a join in one of the plans but switched

to inner relation in the other. Also worth mentioning is the fact that the costs of Plan P1 and P2

do not differ much! After reduction we got a single plan.

Confetti Pattern

Figure 3.8 was obtained by Picasso with Query 11P on OptE. We can see a curve above which

there is Plan P2 sprinkled all over P1 and Plan P6 sprinkled on P5. The difference between the

plans is in the order of sequence and sort operators. But again the cost is almost flat across

whole selectivity space!
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Figure 3.8: Plan Diagram (Query 11P OptE)



Chapter 4

Cardinality Estimate Analysis

We mentioned earlier that the query optimizers try to estimate the result cardinality of the given

query. The plan-cardinality diagrams generated for same query over different query optimiz-

ers were quite different and hence we did some analysis on the cardinality estimates of query

optimizers. We have analyzed inter-optimizer and intra-optimizer estimates. Inter-optimizer

comparison was possible as the unit of estimation for cardinality is same, number of tuples,

across all optimizers unlike cost. For intra-optimizer we have used OptA and worked on differ-

ent optimization levels.

We will first discuss the inter-optimizer differences. Figure 4.1 summarizes our results. We

have considered queries which had high estimated cardinality value. So the queries which have

simple aggregate function like count and have lots of group by which produce low cardinal-

ity output have not been included in the analysis. The queries have been numbered like 2min,

2max, 3min and 3max etc. Query 2min represents Query 2P from TPC-H which results in min-

imum cardinality estimate over whole selectivity space. Similarly Query 2max is for maximum

cardinality estimate. The x-axis in Figure 4.1 is for queries and for each query we have 5 bars

representing OptA, OptB, OptC, OptD and OptE. The y-axis represents the estimation done by

optimizer as a percentage of actual result cardinality on a log scale.

One can easily observe that there is no consensus amongst the optimizers on the estimated

result cardinality. The difference in their estimates is huge and also off by a considerable margin

from the actual cardinality! Only in one case, Query 14max, all the optimizers estimated the

27
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Figure 4.1: Cardinality Estimation Errors

cardinality very accurately as shown by the log scale value 2 which represents 100%. Also all

the optimizers do both under-estimation and over-estimation of the result cardinality.

Another surprising result was obtained when we did intra-optimizer analysis for cardinality

estimate. As we mentioned earlier we have used 3 different levels of optimization for OptA. It

seemed very unlikely that the cardinality estimation module will behave differently in different

optimization levels. But we observed very huge differences in the estimates of OptA at lowest

and default. But default level and highest level estimates matched which was the expected

behavior. We have shown in Figure 4.2(a) and 4.2(b) the plan-cardinality diagrams for Query

21P on OptA lowest level and default level respectively. The diagram for highest level is same

as default level and hence is not shown here. We can easily see that there is quite enormous

difference in the OptA’s estimate for different optimization levels. A very startling fact is that

lowest optimization level estimates are much more accurate for this query than other levels

considered.
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(a) Lowest level

(b) Default level

Figure 4.2: Plan-Cardinality Diagram (Query 21P OptA)



Chapter 5

Results on Plan Cardinality

5.1 Plan Cardinality Distribution

Figure 5.1: Plan Cardinality Distribution (Over all queries)

In Picasso [7] the diagrams were generated by varying the selectivity on two different rela-

tions. The diagrams presented in that paper were obtained by varying selectivity from [0.5%,

0.5%] to [99.5%, 99.5%]. To achieve this 100 queries were fired along each dimension, making

30
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it 10,000 queries in all. As mentioned in [7] there was a significant increase in number of plans

if finer resolution was used. This observation led us to a series of experiment across 5 different

industrial strength optimizers.

The general trend observed was that all optimizers exhibited an increase in the plan cardi-

nality with the increase in resolution as shown in Figure 5.1. The x-axis represents the query

grid resolution and y-axis the plan cardinality. For this experiment the query grid granularities

used were 10x10, 30x30, 100x100, and 300x300 where, in N x N, N represents the number of

queries fired in each dimension. The number of plans displayed in the graph is cumulative sum

over all queries based on TPC-H.

It is interesting to see the behavior of OptA. As it is evident from the graph the skew in plan

cardinality is maximum in OptA and it seems impossible to claim that after a certain resolution

there will not be any increase in the plan cardinality. Although the plan cardinality in case

of OptE is low still if percentage wise increase in plan cardinality is considered then OptE is

comparable to other databases. Thus it can be concluded that optimizers are really making very

fine grained choices.

5.2 Plan Cardinality Reduction Statistics

We have been discussing about plan diagram reduction technique throughout this report. It

is one of the important aspects of Picasso as it provides some direction which may lead to

simplification of optimizer design.

We had discussed about cost increase threshold denoted by λ. It was set to 10% for all the

previous experiments. Now a question to ask is, ”Is there a value of λ which gives maximum

achievable reduction?”. To answer this intriguing question we plotted the number of plans

against the cost increase threshold. Figure 5.2 displays the graph. The x-axis is the cost increase

threshold and y-axis is the number of plans. The experiment was done on all five optimizers we

have discussed so far.

The value of λ = 0 represents original plan diagram without any reduction. We see that

there is sharp fall in number of plans as we increase the threshold. Most of the plan diagrams
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Figure 5.2: Reduction Statistics (Over all queries)

had single plan after reduction with 70% threshold. As visible from Figure 5.2 the knee of

the graph for all databases is around 10%. This highlights the fact that even if we increase

threshold beyond 10% there is not much reduction benefit obtained than what is achieved with

10% threshold.



Chapter 6

Conclusions and Future Work

The unnecessary complexity prevailing in the current commercial query optimizers was pointed

out by various Picasso diagrams. Sybase and PostgreSQL the two remaining widely used

databases were made available on Picasso, which has completed the spectrum of industrial

strength query optimizers.

Heavy skew in plan space coverage area was observed in both OptD and OptE. OptE had

some peculiar diagrams like fence and confetti pattern. Although not much variation in cost

diagram behavior has been observed in case of OptE. OptE had surprisingly very low plan

cardinalities!

Cardinality estimates made by all optimizers were found to be off by huge margin. In case

of OptA the estimates varied with optimization levels. Also we saw the distribution of plan

cardinality as we vary the resolution and it seems that optimizers are trying to make very fine-

grained choices. Also 10% cost increase threshold seems to be reasonable enough as shown in

the discussion since beyond that point not much reduction is achieved.

In future we would like to see the results on 1000x1000 resolution as it will be finest possible

resolution practically. Since Sybase allows user to feed the plan which the user wants, in form

of abstract plans, we can try feeding plans of other databases into Sybase and cost them for

comparison. Also if TPC-DS [6], a new decision support system benchmark, is released then

it will be of great interest to run Picasso on that dataset as it has very complex queries.

33



Bibliography

[1] R. Cole and G. Graefe, “Optimization of dynamic query evaluation plans”, Proc. of ACM

SIGMOD Intl. Conf. on Management of Data, May 1994.

[2] A. Ghosh, J. Parikh, V. Sengar and J. Haritsa, “Plan Selection based on Query Clustering”,

Proc. of 28th Intl. Conf. on Very Large Data Bases, August 2002.

[3] A. Hulgeri and S. Sudarshan, “Parametric Query Optimization for Linear and Piecewise

Linear Cost Functions”, Proc. of 28th Intl. Conf. on Very Large Data Bases, August 2002.

[4] A. Hulgeri and S. Sudarshan, “AniPQO: Almost Non-intrusive Parametric Query Opti-

mization for Nonlinear Cost Functions”, Proc. of 29th Intl. Conf. on Very Large Data

Bases, September 2003.

[5] P. Mandal, “PostgreSQL on Picasso : Implementation and Analysis”, Mid-term project

report, Dept. of Computer Science and Automation, IISc Bangalore, December 2005

[6] M. Poess, B. Smith, L. Kollar, and P. Larson, “TPC-DS, Taking Decision Support Bench-

marking to the Next Level”, Proc. of ACM SIGMOD Intl. Conf. on Management of Data,

June 2002

[7] N. Reddy and J. Haritsa, “Analyzing Plan Diagrams of Database Query Optimizers”, Proc.

of 31st Intl. Conf. on Very Large Data Bases, September 2005.

[8] N. Reddy, “Next Generation Relational Query Optimizers”, Master’s Thesis, Dept. of

Computer Science and Automation, IISc Bangalore, June 2005.

34



BIBLIOGRAPHY 35

[9] Y. Ioannidis, R. Ng, K. Shim, and T. Sellis, “Parametric Query Optimization”, Proc. of

18th Intl. Conf. on Very Large Data Bases, August 1992.

[10] Y. Ioannidis, V. Poosala. “Histogram-Based Solutions to Diverse Database Estimation

Problems”. Data Engineering Bulletin, 1995.

[11] http://dsl.serc.iisc.ernet.in/projects/PICASSO

[12] http://dsl.serc.iisc.ernet.in/projects/PLASTIC

[13] http://en.wikipedia.org/wiki/Gini coefficient

[14] http://infocenter.sybase.com/

[15] http://java.sun.com/j2se/1.4.2/docs/api/index.html

[16] http://publib.boulder.ibm.com/infocenter/db2luw/

v8//index.jsp

[17] http://www-306.ibm.com/software/data/db2/udb/v8/

[18] http://www.microsoft.com/sql/techinfo/productdoc/

2000/books.asp

[19] http://www.oracle.com/technology/products/

oracle9i/index.html

[20] http://www.postgresql.org

[21] http://www.saxproject.org/

[22] http://www.sybase.com/products/

informationmanagement/adaptiveserverenterprise

[23] http://www.sybase.com/support/newsgroups

[24] http://www.tpc.org/tpch


