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Abstract

Picasso[5] is a tool developed in DSL which producesplan diagrams, plan-cost diagramsand

plan-cardinality diagramsfor relational query optimizers collectively called asPicasso dia-

grams. Plan diagramis a pictorial enumeration of the execution plan choices of a database

query optimizer.Plan-cost diagramis similar toplan diagram, but shows the estimated cost of

executing the query over the selectivity space of the query.Plan-cardinality diagramis sim-

ilar to plan-cost diagramexcept that it shows the cardinality of result set instead of cost of

execution.

Picasso code was released to the public which has its origin at Plastic[4] project. But the

code proved to have become overly complex due to its evolution from a different project. There-

fore the tool is re-architected and re-designed for better functionality, performance, features and

extensibility. The architecture, design, implementation issues and features of thePicassotool

will be discussed in the rest of the report.
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Chapter 1

Introduction

Database Management Systems support declarative access to data rather than procedural access.

Users specify only the ’what’ part of data access and not the ’how’ part. This implies that DBMS

systems has to come up with a strategy to access data which produces the desired output. One

important problem in this regard is the abundance of strategies, called plans, and orders of

magnitude performance difference between best and worst plans, which makes selecting the

right plan a very important task. This is even more critical in recent times due to the high

degree of query complexity characterizing current data warehousing and mining applications,

as shown by TPCH benchmark[24]. An example of a query execution plan is shown in Figure

1.2.

Query optimization is a hard problem[1]. Attempts to build query optimizers based on

rules or direct synthesis have not produced any usable results so far. While commercial query

optimizers each have their own proprietary methods to identify the best plan, the de-facto stan-

dard underlying strategy is based on the classical System R optimizer paper[2]. The proposed

method is : Given a user query, apply a variety of heuristics to restrict the combinatorially

large search space of plan alternatives to a manageable size; estimate, with a cost model and

a dynamic-programming-based processing algorithm, the efficiency of each of these candidate

plans; finally, choose the plan with the lowest estimated cost.

Query optimization using this cost-based approach is expensive and takes fair amount of

1



CHAPTER 1. INTRODUCTION 2

computational resources even for medium sized queries[3]. Therefore understanding and char-

acterizing query optimizers to improve performance is very important.

The de-facto query language for relational database is SQL. SQL stands for structured query

language.Commercial database systems many a time use a dialect of SQL with slight syntactic

variations. An example SQL query is given in Figure 1.

select l shipmode
from orders, lineitem
where o orderkey = l orderkey

and o totalprice <= 100
and l quantity <= 20

group by l shipmode
order by l shipmode

Figure 1.1: Sample SQL Query

Figure 1.2: Execution Plan
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1.1 The Picasso Tool

Even though query optimizer is an important part of any relational database that supports declar-

ative query language like SQL, there is a surprising lack of tools to characterize, evaluate or

understand the behavior of cost-based query optimizers. Picasso [6] is a tool developed in DSL

[10] which can be used to analyze and characterize relational query optimizers.

SQL queries with range predicates in it tend to produce numerous optimal plans depending

on the constants involved in the predicate. Given a relational query optimizer and query with

range predicates Picasso can generate a variety of diagrams that throws light into how the op-

timizer is functioning. The diagrams include plan diagrams, reduced plan diagrams, plan-cost

diagrams and plan-cardinality diagrams collectively calledPicasso diagrams.

Plan Diagram

Plan diagram is a pictorial enumeration of the execution plan choices of a database query op-

timizers. Plan diagram shows the regions where a plan is optimal according to the chosen

optimizer. It also shows the coverage of plans over the selectivity space. An example is shown

in Figure 1.3.

Plan-cost and Plan-cardinality diagram

Plan-cost diagram is similar to plan diagram but shows the estimated cost of executing the

query over the selectivity space of the query, along with plans, as a third dimension. These

diagrams helps in understanding how cost varies within a plan and across plans for the same

query over the selectivity space. Plan-cardinality diagram is similar to plan-cost diagram except

that it shows the cardinality of result set instead of cost of execution. Examples of plan-cost and

plan-cardinality diagrams are shown in Figure 1.4 and 1.5.

Execution Plan-cost and Execution Plan-cardinality diagram

Execution Plan-cost diagram is similar to Plan-cost diagram, but instead of using the estimated

cost as reported by the optimizer, the query is executed and time taken is considered as the
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cost of the query. The comparison between Execution Plan-cost diagram and Plan-cost diagram

shows the quality of the cost model of optimizer.

Execution Plan-cardinality diagram is similar to Plan-cardinality diagram, but instead of

using the estimated cardinality as reported by the optimizer, the query is executed and number

of tuples is counted for the actual cardinality of result. The comparison between Execution

Plan-cardinality diagram and Plan-cardinality diagram shows the quality of the statistics and

estimation of the optimizer.

These example diagrams are generated for Query 7 of the TPC-H [24] benchmark, with

selectivity variations on theordersandcustomerrelations.

Figure 1.3: Plan Diagram (Query 11, DB2)
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Figure 1.4: Plan-Cost Diagram (Query 11, DB2)

Figure 1.5: Plan-Cardinality Diagram (Query 11, DB2)
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Prior Work

DSL has produced a tool called Plastic[12] which helps in plan re-use using query clustering

based on a feature vector. During the initial stages of Picasso project [11], the Picasso tool

is created from Plastic code base. The tool was used to generate various Picasso diagrams.

Due to its heritage and evolution, the code base of Picasso became unmanageably complex

and adding more features became more and more difficult. Some of the requirements such

as remote visualization, execution plan diagrams, exponential distribution of selectivity and N

dimensional diagrams could not be implemented due to architectural as well as design problems.

Therefore to further assist in the analysis of query optimizers, a re-architecting and re-designing

was carried out and the new Picasso tool is implemented from scratch.
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Chapter 3

Architecture

Picasso follows a 3-tier architecture wherePicasso client, Picasso serveranddatabasesform

the three tiers. Multiple clients can connect to the server which can in turn make use of different

databases. This new network centric architecture is depicted in figure 3.1.

The client connects to the server through network and makes requests to the server for

retrieving different kinds of information which will be explained in detail later. Server connects

to the database, generates differentPicasso diagramsand stores the data persistently on the

database itself.

Generating aPicasso diagramis a computationally expensive operation requiring lot of

CPU time and memory resources. The fundamental advantage of the client server architecture

is that users can use the client on their desktops with very little resources, while the Picasso

server which may run on high end dedicated machines can make use of the resources to run at

reasonable speed. The databases can be either on the same machine as the Picasso server or

can be on another machine on the same network. Having the database on the same machine as

Picasso server is slightly faster since lot of network overheads can be avoided.

Server

Picasso server is composed of aQuery Analyzer, Query Generator, Diagram Generator, Selec-

tivity Estimator, Database InterfaceandClient Interfacemodules. Integrated Client and Server

component architecture diagram is shown in Figure 3.2.

7



CHAPTER 3. ARCHITECTURE 8

Figure 3.1: System Architecture

• Query Analyzermodule parses the query template and extracts constant range predicates

marked by the format:num. It then identifies the relation name and schema name as-

sociated with the attribute in the predicate. It also validates the query for correctness.

Validation includes checking for duplication of selected attributes or the selection of at-

tributes from the same relation.

• Query Generatormodule generates queries for each point in the selectivity space for the

given resolution. The points on selectivity space can be either uniformly or exponentially

distributed. It uses the selectivity estimator module to generate constants corresponding

to the selectivity of each points. These cached constant values are used to generate the

query from query template.

• Selectivity Estimatorreads the statistics collected in the database such as histograms.

Then it generates a constant which when applied on the selected predicate results in the

specified selectivity.

• Diagram Generatormodule actually generates thePicasso diagrams. It uses Query Gen-

erator module to generate queries and fires these queries usingDatabase Interfacemodule
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to retrieve the optimal plan, estimated cost and estimated cardinality according to the opti-

mizer. All these information including plan trees, optimizer selectivity, Picasso selectivity

and constants used are stored persistently to the database periodically.

• Database Interfacemodule abstracts away communication to the relational databases.

Different databases has slightly varying SQL syntax, different types of histograms and

different plan representation. This modules abstracts such inconsistencies under a com-

mon interface.

• Client Interfacemodule abstracts the communication to the client. Currently Java object

serialization mechanism is used for sending and receiving data between client and server.

Client

Picasso client has aServer Interface, GUI, Settings, Tree visualizationand2D/3D visualization

modules.

• Server interfacemodule abstracts the communication to the server. Its similar to the

Client Interface module in the server but is implemented from the perspective of the

client.

• GUI module constructs the user interface including the main frame and dialog boxes and

handles the user events which triggers operations on the client.

• Settingsmodule stores the settings of the client persistently on disk. Settings include

database settings such as address, port, schema, dbname, username, password, optimiza-

tion level etc.

• Tree Visualizermodule draws the plan trees on screen. It also supports plandiff where

two plan trees are compared and differences between them are highlighted. This module

makes use of an external library called JGraph[14].

• 2D/3D visualizationmodule draws the actual plan, plan-cost and plan-cardinality dia-

grams, which are either 2D or 3D color coded surfaces. This modules makes use of an

external library called Visad[13].
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Figure 3.2: Component Diagram
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Picasso Server Design

QIDMAP(QTID, QTEXT, QTNAME, RESOLUTION, DIMENSION, EXECTYPE, SCALETYPE,
OPTLEVEL, MACHINE, GENTIME, DURATION)

PlanTree(QTID, PLANNO, ID, PARENTID , NAME, COST, CARD, OPTIONS)
PlanTreeArgs(QTID, PLANNO, ID, ARGNAME, ARGVALUE )
PlanStore(QTID, QID , PLANNO, COST, CARD, RUNCOST, RUNCARD)
SelectivityMap(QTID, QID, DIMENSION , SID)
SelectivityLog(QTID, DIMENSION, SID , PICSEL, OPTSEL, ACTSEL, CONST)

Figure 4.1: Picasso Schema

Picasso server waits for clients to make connection. Once connection is established, the

server sends a unique clientId to the client for all future communication between client and

server. When the server receives client requests, it takes action on the message and sends back

status and error messages as appropriate, and finally sends back the response message, which

marks the end of service of the current request. There are different kind of requests which are

discussed in detail later in the protocol section. If more than one request comes to the server

concurrently and are not mutually exclusive with the current set of operations under progress,

the server will operate on the request parallelly by starting a new threads. If there is a conflict

due to exclusive use of the database by any of currently running thread, the server queues

the request and sends back a response informing the client that request it sent has queued up.

Once the server completes the current blocking operation, it will dequeue next request and start

11



CHAPTER 4. PICASSO SERVER DESIGN 12

operating on it.

When aPicasso diagramis requested, server will search the database to see if its already

generated and stored. If already stored, server will send back thePicasso diagram. Otherwise

the query template is passed to theQuery Analyzermodule which parses theQuery Template

and collects information on the selected predicates like theattribute name, relation nameand

schema name. Server then queries the database to get statistics on the selected attributes. For

generating thePicasso diagram, server uses theQuery Generatormodule to generate queries

with appropriate constants in the selected range predicates. The selectivity values are varied ei-

ther uniformly or exponentially in the selectivity space and the constants are generated for each

of these selectivity values. Picasso submits the generated query to the optimizer and obtains

the optimal plan according to the optimizer from database. Picasso then matches this plan with

all the distinct plans that are found already. If no matching plan is found, a new plan number

is assigned to the new plan and is stored in memory for future comparison. A hash value is

generated for each plan which is used for the actual comparison of plans. The hash function

used is provided by java standard library. This approach is much more efficient than compar-

ing the entire tree structure. Picasso stores all generated information such as selectivity values,

constants used, plans, cost, cardinality etc in the database for later retrieval.

4.1 Database Schema

The schema of Picasso related relations where we store the generated data is shown in Figure

4.1.

• QIDMAP stores meta information about eachPicasso diagramsuch as the query tem-

plate, query name, resolution, dimension, optimization level, machine name, execution

type, scale type, time of generation and time taken for generating the diagram. Each

entry inQIDMAPdenotes aPicasso Diagram.

• Plantreestores the representative plan trees for each of the distinct plans in aPicasso

diagram. Each tuple in Plantree represents a node in a single plan. It has an id as well as
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Figure 4.2: Simplified Class Diagram

a parentId which refers to the id of its parent node. This structure allows storing plan tree

as a relational table.

• PlanTreeArgsstore the sub-operator level attributes for each node in the plan if any. There

can be multiple sub-operator level information for a single node, each of them resulting

in a tuple inPlanTreeArgs.

• PlanStorestores the bulk ofPicasso diagramdata. This include plan number, cost and

cardinality for each of the points in the selectivity space. For aPicasso diagramwith

resolutionx and dimensiony, number of entries inPlanStoreis xy.

• SelectivityMapmaps each entry in planstore to entries in theSelectivityLog. Number of

entries inSelectivityMapis same as that ofPlanStore.

• SelectivityLogstores the Picasso selectivity, optimizer selectivity and actual selectivity

values for the constants which are used while generating the plan diagram. For aPicasso

diagram, number of entries in SelectivityLog isx ∗ y only.
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4.2 Class Diagram

The class diagram for the server is shown in Figure 4.2. TheCommunicatorclass is responsible

for the network communication between client and server including sending error and status

messages. ThePicassoServerclass holds the top level loop of receiving requests, parsing, pro-

cessing and sending the reply message. TheProcessorclass starts a new thread of execution

for processing each request from thePicassoServer. It supports stopping current operations by

terminating threads whenever a ’stop operation’ message is received from the client.PlanDia-

gramclass is a central class which generates and retrieves differentPicasso diagramsfrom the

database.PlanDiagramcreates a concreteDatabaseinstance to communicate with the specified

database and then instantiates theQueryclass which acts as the query analyzer and generator.

PlanDiagramgenerates plan number, cost and cardinality information for each point in the se-

lectivity space. It then stores the generated data, along with unique plan trees, persistently on

the same database.Queryobject uses a concrete instance ofHistogramclass, for fetching the

statistics associated with the predicate attribute. This is used to generate the appropriate con-

stants corresponding to the selectivity values of each points in the selectivity space.Histogram

works withDatatypeobjects to be independent of the datatype of the predicate attributes.

4.2.1 Design Patterns

• Factory Methodis used to instantiateDatatypeobjects,Databaseobjects andHistogram

objects. Database and Histogram objects are created depending on the type of database

Picassodeals with and Datatype is determined based on the type of attribute upon which

selectivity is varied.

• Commanddesign pattern is used for the communication between client and server. Client

constructs a command object and sends it to the server which then operates on the com-

mand. This pattern makes it easy to queue client requests if the server is busy working on

a mutually exclusive operation.

• Strategydesign pattern is used for making Database and Histogram operations indepen-

dent of the specific methods of obtaining information and specific algorithms and queries
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for different type of database systems. This pattern makes it easy to add support for a new

database systems toPicasso.

4.3 Selectivity Estimator

Estimating the constant corresponding to given selectivity for a predicate is central to the opera-

tion of Picasso. This operation is infact the reverse of what databases query optimizers normally

do where it estimates the selectivity from the constant. Predicate attributes can be of different

datatypes which calls for abstraction of operations on data. This is explained in detail later.

There are three different notion of selectivity from the point of view of Picasso. For the sake

of ease of description we will use ’≤’ as the operator applied on the range predicate.

• Picasso Selectivityis the selectivity values Picasso wants to use for the attribute. Picasso

makes use of histograms in the database to compute a constant corresponding to this se-

lectivity. The underlying data distribution sometimes renders some selectivity impossible,

but Picasso still attempts to find a constant that is closest to the desired selectivity.

• Optimizer Selectivityis the optimizers estimate of selectivity for a given constant. Op-

timizer uses the statistics collected in the database to do the estimation. Ideally Picasso

selectivity and optimizer selectivity should be same, but we have seen slight differences

in the estimates mostly triggered from data distribution and peculiarities of histograms on

certain databases.

• Actual Selectivityis the real selectivity for the given dataset and constant for an attribute.

This is deterministic and is a function of dataset only. The other two selectivity notions

are talking about estimates of theActual Selectivity. Actual Selectivitycan be computed

by executing the following query

select count(*)
from table
where attrib <= Constant
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4.4 Datatypes

The datatypes of attributes are abstracted away using the Datatype class. The interface supports

comparison and interpolation operation which are the only operations needed forPicasso. Any

concrete implementation has to define these operators for the particular datatype being imple-

mented. Implementation ofIntegerandRealdatatype is trivial as it is well defined.Date is

also implemented by representing it as a long integer which holds the number of milliseconds

elapsed since the beginning of January 1st 1970.

4.4.1 String Datatype

Implementing a concrete class for the Datatype interface which supports String is not trivial.

The comparison operation is defined onStringsbased on the lexicographical ordering of char-

acters in the alphabet. But interpolation operation is not defined properly onStrings. ForInteger

andRealif low andhigh are the bounds andfactor is the interpolation factor, then the interpo-

lated value can be found as follows

value = low + (high− low) ∗ factor (4.1)

But this will not work with strings since multiplication is not a defined operation on Strings.

Our approach tries to approximate the variation in characters of the bounding strings and

use it as the base of variation in the character class. Then we define a mapping from strings to

real numbers between zero and one. Using this mapping we can convert the lower and upper

bound strings to the corresponding real numbers. Using this numbers we can use equation 4.1

to find the real number corresponding to target string. Then we can use the inverse function of

the mapping to generate the desired string.

For example consider a table with attribute telephone number. Here there are only 10 pos-

sibilities for an individual character. For attributes that include upper case, lower case or other

special characters, the variation on a single character can be high [a-Z]. In other words, if you

treat string as a number with high base, the base may vary widely between different kind of

attributes. Based on the above base, the interpolated value can vary.
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To minimize the impact of this problem of varying base of strings, we have used the ap-

proach adopted byPostgreSQLrelational database. The algorithm of string generation given

lower bound upper bound and selectivity within the bucket is given in Figure 4.3.

4.5 Protocol

Picasso uses Java object serialization for communication between client and server. This sim-

plifies the protocol quite a bit. Upon starting the client, it tries to connect to Picasso server

and then requests a clientId. Every message communicated between client and server will have

this clientId which is associated with all the client state information. Picasso makes use of

request-response paradigm. Some requests takes a long time to complete and those typically

sends status messages indicating progress of operation.

The list of message types are

• GET CLIENT ID is used just after the client connects to the server requesting a new

clientId. The server responds by supplying an unused clientId for future communications.

• CLOSECLIENT is used when the user closes the client window. This frees up the clientId

for reuse and server removes all client specific state information stored on the server.

• READPLAN DIAGRAM is used to read plan diagram information from the server. If

the plan diagram is not already generated, server responds by setting the command to

TIME TO GENERATE and sends the expected time needed to generate the requested

plan diagram.

• GENERATEPLAN DIAGRAM is used to request the server to generate a plan di-

agram. This is used only after first trying to read plan diagram and getting a

TIME TO GENERATE message.

• TIME TO GENERATEis the response of server when the client requests a plan diagram

which is not already generated.
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• GET PLAN TREEis used to get the representative plan tree which is stored persistently

in the database. The plan is identified by the plan number.

• GET COMPILED PLAN TREE is used to get the plan tree at given selectivity. Server

constructs the query corresponding to the given selectivity and generates the plan at the

given point and sends it back.

• PROCESSQUEUED is sent from the server if server is already using the same database

for some mutually exclusive operation. Server queues the message and later operates on

it as the previous requests are satisfied.

• DELETEPLAN DIAGRAM is used to delete all persistently stored data for a plan dia-

gram.

• GET PLAN DIAGRAMNAMESis used to query the server for getting a list of plan dia-

grams that are already generated and persistently stored on the database.

• STOPPROCESSINGis used to abort the current requested operation from the client.

Server removes all partly stored data and stops the thread of execution cleanly.
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Interpolate ( low, high, factor )
low : String
high : String
factor : double

rlow = smallest character in low and high
rhigh = biggest character in low and high
// If range includes major char ranges,
// make it include all
if (rlow <= ’Z’ and rhigh >= ’A’)

if (rlow > ’A’) rlow = ’A’
if (rhigh < ’Z’) rhigh = ’Z’

if (rlow <= ’z’ and rhigh >= ’a’)
if (rlow > ’a’) rlow = ’a’
if (rhigh < ’z’) rhigh = ’z’

if (rlow <= ’9’ and rhigh >= ’0’)
if (rlow > ’0’) rlow = ’0’
if (rhigh < ’9’) rhigh = ’9’

//Remove any common prefix of low and high
lVal = To_Real ( low, rlow, rhigh )
hVal = To_Real ( high, rlow, rhigh )
newVal = lowVal + (hVal - lVal) * factor
newStr = To_String (newVal, rlow, rhigh)
return newStr

To_Real ( val, rangelo, rangehi )
val : String
rangelow : character
rangehi : character

num = 0
denom = 1
base = rangehi - rangelo
For each character ch from right end of val

if (ch < rangelo) ch = rangelo - 1
else if (ch > rangehi) ch = rangehi + 1
num = num + (ch - rangelo) / denom
denom = denom * base

return num

To_String ( val, rangelo, rangehi )
val : String
rangelow : character
rangehi : character

base = rangehi - rangelo
newch = First character in newString
while ( val > eps )

newch = rangelo + floor ( val * base )
val = val - floor ( val * base ) / base

return newString

Figure 4.3: String interpolation algorithm



Chapter 5

Server Implementation

Picasso Server is implemented as a multi threaded Java application and uses JDBC for ac-

cessing database servers. Object serialization is used for communication with the client. The

database supported byPicassoareIBM DB2[16], Oracle[19], MS Sql Server[18], Postgres[20]

andSybase[22].

5.1 Selectivity Estimator

Database optimizer estimates the selectivity of a range predicate using uniform distribution

assumption if distribution statistics are not available, or by making use of distribution statistics.

Distribution statistics are usually stored asHistograms[7] in databases. The generation, storage

and representation of this information varies widely between database systems. To estimate the

constant for a given selectivity Picasso needs to do the inverse of what database optimizer does.

In Picasso, the central abstract class for selectivity estimation is theHistogramclass. There

are concrete classes likeDB2Histogram, OracleHistogrametc. which inherits from theHis-

togramclass and implements the interface defined by theHistogramclass. All other modules

use theHistograminterface to compute the constant corresponding to a given selectivity for an

attribute.

Histograms work withDatatypeobjects which enables histogram implementation to work

independent of the datatype of the attribute.Datatypeimplements comparison and interpolation

20



CHAPTER 5. SERVER IMPLEMENTATION 21

logic for the specific datatypes. There are four concrete implementation inPicassofor the

Datatype interface, which areInteger, Real, Date andString. The Histogram object holds a

vector of value and frequency corresponding to the value and the selectivity and associated

constants given the resolution.

DB2

DB2 stores two types of Histograms called quantile histogram and frequency histogram. Fre-

quency histogram stores the attribute value, frequency pairs for N most frequent attribute values

where N defaults to 10 and can be specified by DBA. Frequency histogram is used to esti-

mate the selectivity of equality predicates. Quantile histogram is an equidepth range histogram

which is used by the optimizer to estimate selectivity of range predicates. DB2 uses 20 buck-

ets by default to approximate data distribution. This information is stored on the system table

SYSIBM.SYSCOLDIST.

Oracle

Oracle has a single histogram which can act as either frequency histogram or equidepth his-

togram. Oracle uses the frequency version of histogram if the number of unique values of the

attribute is not high. It switches to equidepth histogram if domain is large and number of unique

values crosses a threshold. Default value of this threshold is 75 which will be the number of

buckets in equidepth histogram. Oracle provides the view, alltab histogram, to read the his-

togram information.

MS Sql Server

MS Sql server has a mix of frequency and equidepth histogram. The frequency of bucket

boundaries is specified along with the number of tuples in the bucket. The number of buckets

can go up to 200 in Sql Server. Histograms by default are generated with sampling in MS

Sql Server. The stored procedure DBCC SHOWSTATISTICS is used to extract histogram

information from MS Sql Server.
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Postgres

PostgreSQL maintains histograms which is a mixture of end biased and equidepth histograms.

Histograms are stored in a relation namedpg statscatalog table. The most frequently oc-

curring values are stored as an array in themostcommonvals column. The equi-depth his-

togram is stored in the form of two arrays which store the frequency of corresponding buckets

and the bounds of the buckets respectively. These are named asmostcommonfreqsandhis-

togrambounds. The default number of buckets is 10 on Postgres.

Sybase

Sybase also stores statistics on relational tables such assystabstatsandsysstatistics. But unfor-

tunately the fields of these relations are cryptic and the values present in it is understood only by

the database itself. Therefore an external stored procedure,hist values, available from a Sybase

forum [23] is used to get the distribution statistics.

select source_id, target_id, operator_type, object_name,
explain_operator.total_cost, stream_count, argument_type,
argument_value

from explain_statement, explain_stream
LEFT OUTER JOIN explain_operator
ON (source_id = explain_operator.operator_id

or (source_id=-1 and source_id = explain_operator.operator_id))
and explain_operator.explain_time = explain_stream.explain_time

LEFT OUTER JOIN explain_argument
ON explain_operator.operator_id = explain_argument.operator_id

and explain_stream.explain_time = explain_argument.explain_time
where explain_stream.explain_time = explain_statement.explain_time

and explain_statement.explain_level=’P’ and queryno=QNO
order by target_id, source_id, argument_type asc, argument_value asc

Figure 5.1: DB2 plan query
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5.2 Plan Representation

A plan is stored as a vector of nodes which consists of id, parentid, name, options, cost and

cardinality. Tree can be captured by having parent id of a node pointing to the id of its parent.

Plan class computes a hash value for a plan based on the following equation.

Σidi ∗ pidi ∗ (hash(nodenamei) + hash(nodeattri)) (5.1)

Plans are compared based on this hash value which will be different if there is any structural as

well as node name or options.

5.3 Plan Retrieval

Retrieving the plan which optimizer chooses from the database for a given query is one of the

central operations done byPicasso Server. Different database has different ways of supplying

this information. The approaches we used for DB2, Oracle and MS Sql Server, Postgres and

Sybase are described below.

DB2

DB2 has seven explain tables which stores the plan information. We can supply a query pre-

ceded with the clause ’explain plan for’ for storing the plan information in these tables. The

earlier implementation of retrieving plan from DB2 read these tables one by one for fetching

the information. This was too slow compared to the methods provided by other databases. We

were able to speed up the retrieval by using a complex SQL query given in Figure 5.1.

Oracle

Oracle has a single plan table which stores the plan tree information. Like DB2, Oracle sup-

ports populating this table with the plan tree using ’explain plan for’ clause before query. The

schema for Oracle PLANTABLE is PLAN TREE( id, parentid, operation, objectname, cost,

cardinality, options ).
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MS Sql Server

MS Sql Server doesn’t store the plan on relational tables. It doesn’t even provide a view for

accessing this information. The approach MS Sql Server has taken is to first execute the com-

mand ’set showplanall on’ before executing the query. Then instead of the result sets, queries

are answered with the plan asResultSetwhich can be used by Picasso to populate the Picasso

datastructure for plan representation.

Postgres

PostgreSQL provides the plan in textual form which is returned when the explain clause is

used in front of the query. The format has nested statements to represent the plan structure and

associated costs and cardinalities. Picasso needs to parse these information to populate its plan

datastructure.

Sybase

Sybase provides the plan in textual and XML form which needs to be parsed by Picasso. Since

parsing XML is easier, we chose to use the XML output of Sybase which can be obtained by

the following set of commands.

dbcc traceon(3604)

set plan for show best plan xml to client on

set noexec on

5.4 Query Generation

Query generator gets a concrete histogram object for the given database and use it to compute

constants for the selected attributes in the query. The granularity is defined by the resolution,

which determines how many unique constants are generated for a single dimension. Query

generator generates queries by modifying query template with the generated constants. These
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queries are fired to the database for optimizing and the resultant plan is obtained by the plan

diagram generator.

5.5 Picasso Parser

Picasso needs to parse the query template to determine the selected predicates which are marked

by ’:num’ format. It also needs to identify the relation and schema associated with the attribute

in the predicate along with the operation. To achieve this a regular expression based parser is

implemented which collects the list of relations in the query and attribute names in the selected

predicate in a tree structure. Tree structure is needed to handle nested queries correctly. The

attribute name is searched in all relations present in the current scope to find the associated

relation and schema. Another complication the parser needs to handle is aliases for relation

names, which can be used to explicitly specify the association of an attribute to a relation.

5.6 Execution picasso diagram

Execution picasso diagram is similar to plan-cost and plan-cardinality diagrams, but instead

of using optimizers estimate values for cost and cardinality, the time taken and cardinality of

result set after executing the query is used. Generating execution plan diagram is a very costly

operation as we have to actually execute the query. The time taken to execute the query, which

is considered as the cost, is system dependent and may vary based on external factors such as

load on the system etc. Execution plan diagram is very useful for comparing the effectiveness

of the cost model of optimizer in real world.

5.7 Progress and Time Estimator

Generating plan diagrams and execution diagram are costly operations. Therefore giving feed

back of estimated time to the user is a highly desirable feature. In Picasso we do static and

dynamic estimates of time to complete. Static estimator is based on firing a few sample queries

at the corners of the N-dimensional hypercube in selectivity space and taking the average value
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to compute the estimate of explaining a single query. The product of this value and number of

total points in the hypercube gives an estimate of time to generate the plan diagram.

Dynamic estimate is based on the number of queries fired so far and total queries. Picasso

also tries to take into account the difference in time for explaining the query at different corners

based on the static estimate.

Figure 5.2: Client Screen Shot

5.8 N dimension support

Picasso fully supports generating N-dimensional plan diagrams if the query has N range pred-

icates. This is achieved by using an index array. Picasso lays out the plan number, cost and

cardinality information to single dimension for storage and communication. The index array

is used to calculate the position of each point in the single dimension layout. Support for N

dimension has made the implementation of generation, retrieval, storage ofPicasso diagrams
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more complex. This feature has effects on the database schema and time estimator since all

these have to be generic in terms of the number of dimensions assumed.

5.9 Summarizing

Picasso supports generating plan diagrams of different resolutions from higher resolution ver-

sions if a higher resolution version is already generated. This allowes us to find out the rate at

which number of unique plans grow as we increase the resolution without explicitly generating

plan diagrams at various resolutions.

5.10 Slicing

N dimensional plan diagrams cannot be visualized by the client. Therefore the model we chose

was to slice the hypercube and send only a two dimensional slice of the hypercube. This needs

the selectivity values forN − 2 dimensions and the unspecified dimensions are varied to obtain

the slice.

5.11 Selectivity Distribution

Picasso supports both uniform and exponential distribution of selectivity values for data points

in the selectivity space. This is because often more plans are present in the low selectivity

regions and user may like to explore that part of selectivity space at higher granularity. The

exponential distribution of selectivity values places more points in the low selectivity region for

finer granularity in that area and becomes coarser at high selectivity region where fine granular-

ity may not be required.
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Figure 5.3: Plan Tree Screen Shot
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Picasso Client

Picasso client is implemented in Java. 2D/3D visualization is done using the library Visad.

Plan trees are drawn using another library JGraph. A screenshot of the interface is provided

in Figure 5.2. The top panel allowes to choose the database instance that is used, optimization

level, resolution, execution type and distribution. The query panel is used to input, load and

show SQL query. An SQL query along with the above settings is identified with a query name

which can be set in a text box. When any of the tabbed panes such as plan panel, plan-cost

panel, plan-cardinality panel or reduced plan panel is accessed, a request is send to the server

for reading the plan diagram corresponding to the query name. If its not already generated,

server responds with the estimated time to generate the diagram. If the client accepts diagram

is generated and shown. A legend panel on the right side shows the color codes for different

plans in these diagrams. Right clicking on the plan diagram will show the plan tree. A screen

shot of plan tree is shown in Figure 5.3.

29
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Conclusions and Future work

The Picasso server and client is implemented which serves as an excellent tool for characterizing

and analyzing relational query optimizers. The client server architecture allows running the

server on high end machines while the client runs on low end desktops.

Like any software, Picasso can be improved by adding several database management func-

tionality such as creating explain plan tables or creating statistics directly from the Picasso tool.

Currently N dimensional diagrams are generated fully before a slice of it can be visualized. A

nice feature in this regard will be to support generating only the requested slices of N Dimen-

sional diagram. Feeding plans generated by one database to another and compare the cost and

cardinality estimate for the same set of plans over the selectivity space allows more meaningful

comaparisons across databases.
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