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Abstract

Modern database systems use a query optimizer to identify the most efficient strategy,

called “query execution plan”, to execute declarative SQL queries. The role of the query

optimizer is especially critical for the complex decision-support queries featured in current

data warehousing and data mining applications.

Given an SQL query template that is parametrized on the selectivities of the partic-

ipating base relations and a choice of query optimizer, a plan diagram is a color-coded

pictorial enumeration of the execution plan choices of the optimizer over the query pa-

rameter space. Complementary to the plan-diagrams are cost and cardinality diagrams

which graphically plot the estimated execution costs and cardinalities respectively, over

the query parameter space. These diagrams are collectively known as optimizer diagrams.

Optimizer diagrams have proved to be a powerful tool for the analysis and redesign of

modern optimizers, and are gaining interest in diverse industrial and academic institu-

tions. However, their utility is adversely impacted by the impractically large computa-

tional overheads incurred when standard brute-force approaches are used for producing

fine-grained diagrams on high-dimensional query templates.

In this thesis, we investigate strategies for efficiently producing close approximations

to complex optimizer diagrams. Our techniques are customized for different classes of

optimizers, ranging from the generic Class I optimizers that provide only the optimal

plan for a query, to Class II optimizers that also support costing of sub-optimal plans

and Class III optimizers which offer enumerated rank-ordered lists of plans in addition to

both the former features.

For approximating plan diagrams for Class I optimizers, we first present database-
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Abstract iii

oblivious techniques based on classical random sampling in conjunction with nearest-

neighbor (NN) inference scheme. Next we propose grid sampling algorithms which con-

sider database specific knowledge such as (a) the structural differences between the oper-

ator trees of plans on the grid locations and (b) parametric query optimization principle.

These algorithms become more efficient when modified to exploit the sub-optimal plan

costing feature available with Class II optimizers. The final algorithm developed for Class

III optimizers assume plan cost monotonicity and utilize the rank-ordered lists of plans

to efficiently generate completely accurate optimizer diagrams. Subsequently, we provide

a relaxed variant, which trades quality of approximation, for reduction in diagram gen-

eration overhead. Our proposed algorithms are capable of terminating according to user

given error bounds for plan diagram approximation.

For approximating cost diagrams, our strategy is based on linear least square regression

performed on a mathematical model of plan cost behavior over the parameter space,

in conjunction with interpolation techniques. Game theoretic and linear programming

approaches have been employed to further reduce the errors in cost approximation.

For approximating cardinality diagrams, we propose a novel parametrized mathemat-

ical model as a function of selectivities for characterizing query cardinality behavior. The

complete cardinality model is constructed by clustering the data points according to their

cardinality values and subsequently fitting the model through linear least square regres-

sion technique separately for each cluster. For non-sampled data points the cardinality

values are estimated by first determining the cluster they belong to and then interpolating

the cardinality value according to the suitable model.

Extensive experimentation with a representative set of TPC-H and TPC-DS-based

query templates on industrial-strength optimizers indicates that our techniques are capa-

ble of delivering 90% accurate optimizer diagrams while incurring no more than 20% of

the computational overheads of the exhaustive approach. In fact, for full-featured opti-

mizers, we can guarantee zero error optimizer diagrams which usually require less than

10% overheads. Our results exhibit that (a) the approximation is materially faithful to

the features of the exact optimizer diagram, with the errors thinly spread across the pic-
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ture and largely confined to the plan transition boundaries and (b) the cost increase at

the non-sampled point due to assignment of sub-optimal plan is also limited.

These approximation techniques have been implemented in the publicly available Pi-

casso optimizer visualizer tool. We have also modified PostgreSQL’s optimizer to in-

corporate costing of sub-optimal plans and enumerating rank-ordered lists of plans. In

addition to these, we have designed estimators for predicting the time overhead involved

in approximating optimizer diagrams with regard to user given error bounds.

In summary, this thesis demonstrates that accurate approximations to exact optimizer

diagrams can indeed be obtained cheaply and consistently, with typical overheads being

an order of magnitude lower than the brute-force approach. We hope that our results

will encourage database vendors to incorporate the foreign-plan-costing and plan-rank-

list features in their optimizer APIs.
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Chapter 1

Introduction

The Structured Query Language (SQL) [58] is the international standard for querying

relational database management systems (DBMS) such as IBM’s DB2, Microsoft’s SQL

Server, Oracle etc., which form the cornerstone of today’s information industry. SQL is

a declarative language in the sense that an SQL query specifies what has to be done, not

how it is to be done. A sample SQL query on the TPC-H benchmark schema [83] is given

in Figure 1.1, which lists the mode of shipping for all items whose quantity is less than

or equal to 20, and forms a part of an order of price 100 or less.

select l shipmode

from orders, lineitem

where o orderkey = l orderkey

and o totalprice ≤ 100

and l quantity ≤ 20

group by l shipmode

order by l shipmode

Figure 1.1: Sample SQL Query

Modern database systems use a query optimizer to identify the most efficient strategy

to execute declarative SQL queries. The efficiency of the strategies, called “query execu-

tion plans” or simply “plans”, is usually evaluated or costed in terms of the estimated

1



Chapter 1. Introduction 2

Figure 1.2: Query Execution Plan

query response time. A sample plan for the query of Figure 1.1 is shown in Figure 1.2.

This plan performs sequential scans of the orders and lineitem relations before joining

them using the hash join operator. It finally sorts and groups the results in the required

order.

Optimization is a mandatory exercise since the difference between the cost of the

best plan and a random choice could be in orders of magnitude [73]. The role of query

optimizers has become especially critical in recent times due to the high degree of query

complexity characterizing current decision-support applications, as exemplified by the

TPC-H benchmark [83], and its new incarnation, TPC-DS [82].

Query optimization is a difficult problem due to the large number of possible ways

to execute a given query using different access methods, join orders, join operators, etc.

While industrial strength query optimizers each have their own proprietary methods to

identify the best plan, the de-facto standard underlying strategy is based on the classical

System-R optimizer [68] proposed about three decades ago. This method is: Given a user

query, first apply a variety of heuristics to restrict the combinatorially large search space

of plan alternatives to a manageable size; then estimate, with a cost model and a dynamic-

programming-based processing algorithm, the efficiency of each of these candidate plans;
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finally, choose the plan with the lowest estimated cost.

Query optimization using this cost-based approach is computationally expensive w.r.t.

the time and resources that need to be expended to find the best plan. Therefore, un-

derstanding and characterizing query optimizers with the ultimate objective of improving

their performance is a fundamentally important issue in the database research literature.

1.1 Query Templates

select o year, sum(case when nation = ’BRAZIL’ then volume else 0 end) / sum(volume)

from (

select year(o orderdate) as o year, l extendedprice * (1 - l discount) as volume,
n2.n name as nation

from part, supplier, lineitem, orders, customer, nation n1, nation n2, region

where p partkey = l partkey and s suppkey = l suppkey and l orderkey = o orderkey
and o custkey = c custkey and c nationkey = n1.n nationkey
and n1.n regionkey = r regionkey and s nationkey = n2.n nationkey
and r name = ’AMERICA’ and p type = ’ECONOMY ANODIZED STEEL’
and s acctbal ≤ C1 and l extendedprice ≤ C2

) as all nations

group by o year

order by o year

Figure 1.3: Example Query Template: QT8

The cost of a given query execution plan is a function of many parameters, including

the database structure and contents, the engine settings, the system configuration, etc.

For a query on a given database and system configuration, the optimizer’s plan choice is

primarily a function of the selectivities of the base relations participating in the query –

that is, the estimated number of rows of each relation relevant to producing the final result.

Varying the selectivities of one or more of the base relations produces the selectivity space

w.r.t. these relations. A “parameterized query template” is a query with predicates that

produce queries across this selectivity space.
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For example, consider QT8, the parameterized 2-D query template shown in Fig-

ure 1.3, based on Query 8 of the TPC-H benchmark, with selectivity variations on the

supplier and lineitem relations through the s acctbal ≤ C1 and l extendedprice ≤ C2

predicates, respectively. By varying the constants C1 and C2, queries are generated across

the selectivity space.

1.2 Optimizer Diagrams

The behavior of a query optimizer over the selectivity space can be captured in a suite of

diagrams. First, a “plan diagram” [64] denotes a color-coded pictorial enumeration of the

execution plan choices of a database query optimizer for a parameterized query template

over the relational selectivity space. The plan diagram for QT8 (produced using the Pi-

casso optimizer visualization tool [76] on a popular commercial database engine) is shown

in Figure 1.4(a), where the X and Y axes determine the percentage selectivities of the

supplier and lineitem relations, respectively, and each color-coded region represents a

particular plan that has been determined by the optimizer to be the optimal choice in that

region. We find that a set of 89 different optimal plans, P1 through P89, cover the entire

selectivity space. The value associated with each plan in the legend indicates the percent-

age area coverage of that plan in the diagram – P1, for example, covers about 22% of the

space, whereas P89 is chosen in only 0.001% of the space. [Note to Readers: We rec-

ommend viewing all diagrams presented in this thesis directly from the color

PDF file, available at http://dsl.serc.iisc.ernet.in/ atreyee/thesis draft.pdf,

or from a color print copy, since the greyscale version may not clearly reg-

ister the various features.]

Complementary to the plan diagram is a “cost diagram”, shown in Figure 1.4(b), which

is a three-dimensional visualization of the estimated plan execution costs over the same

relational selectivity space. The X and Y axes represent the variations in selectivities and

the Z axis represents the cost. In this picture, the costs are normalized to the maximum

cost over the space, which in this case is 155 and occurs at the point corresponding to

maximum selectivity along the X and Y axes. The minimum and maximum estimated
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costs are also shown in the bottom rectangle of the diagram.

(a) Plan Diagram

(b) Cost Diagram (c) Cardinality Diagram

Figure 1.4: Sample Optimizer Diagrams (QT8)

Finally, a “cardinality diagram”, shown in Figure 1.4(c), is similar to a cost diagram

except that it shows the cardinality of the query result as estimated by the optimizer,

instead of execution cost. The minimum and maximum estimated cardinalities are also

shown in the bottom rectangle. From here onwards we will use the term Optimizer

diagrams to collectively refer to plan, cost and cardinality diagrams.
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1.3 Applications of Optimizer Diagrams

Since their introduction in [64] a few years ago, Query Optimizer Diagrams i.e. plan, cost

and cardinality diagrams have proved to be a powerful tool for the analysis and redesign of

industrial-strength database query optimizers. For example, as evident from Figure 1.4(a),

plan diagrams can be surprisingly complex and dense, with a large number of plans

covering the space – several such instances spanning a representative set of benchmark-

based query templates on current optimizers are available at [76]. Our interactions with

industrial development teams have indicated that these diagrams have often proved to

be contrary to the prevailing conventional wisdom. The reason is that while optimizer

behavior on individual queries has certainly been analyzed extensively by developers,

plan diagrams provide a completely different perspective of behavior over an entire space,

vividly capturing plan transition boundaries and optimality geometries. So, in a literal

sense, they deliver the “big picture”. Similarly the cost and cardinality diagrams shown

in 1.4(b) and 1.4(c), help in visualizing the estimations generated by the optimizer.

Optimizer diagrams are currently in use at various industrial and academic sites for a

diverse set of applications including analysis of existing optimizer designs; visually carry-

ing out optimizer regression testing; debugging new query processing features; comparing

the behavior between successive optimizer versions; investigating the structural differences

between neighboring plans in the space; evaluating the variations in the plan choices made

by competing optimizers; etc. As a case in point, visual examples of non-monotonic cost

behavior in commercial optimizers, indicative of modeling errors, were highlighted in [64].

Apart from optimizer design support, plan diagrams can also be used in operational

settings. Specifically, since they identify the optimal set of plans for the entire rela-

tional selectivity space at compile-time, they can be used at run-time to immediately

identify the best plan for the current query without going through the time-consuming

optimization exercise. Further, they can prove useful to adaptive plan selection tech-

niques (e.g. [17, 23, 57]) which, based on the differences between the actual selectivities

encountered during execution and the associated compile-time estimates, may dynami-

cally choose to re-optimize the query and switch plans mid-way through the processing.
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In this context, plan diagrams can help to eliminate the re-optimization overheads in-

curred in determining the substitute plan choices for estimation errors that occur on the

selectivity dimensions.

Plan Diagram Reduction. A particularly compelling utility of plan diagrams is that

they provide the input to “plan diagram reduction” algorithms. Specifically, given a plan

diagram and a cost-increase-threshold (λ) specified by the user, these reduction algorithms

recolor the dense diagram to a simpler picture that features only a subset of the original

plans while ensuring that the cost of no individual query point goes up by more than λ

percent, relative to its original cost. That is, some of the original plans are “completely

swallowed” by their siblings, leading to a reduced plan cardinality in the diagram. It has

been shown [18] that if users were willing to tolerate a minor cost increase of λ = 20%, the

absolute number of plans in the final reduced picture could be brought down to within or

around ten. In short, that complex plan diagrams can be made “anorexic” while retaining

acceptable query processing performance. For example, the reduced version of the QT8

plan diagram (Figure 1.4(a)) retains only 7 of the original 89 plans with λ = 20% as

shown in Figure 1.5.

Figure 1.5: Reduced Diagram (λ = 20%)
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Anorexic plan diagram reduction has significant practical benefits [18], including quan-

tifying the redundancy in the plan search space, enhancing the applicability of paramet-

ric query optimization (PQO) techniques [47, 48], identifying error-resistant and least-

expected-cost plans [14, 15], and minimizing the overhead of multi-plan approaches [3, 52].

A detailed study of its application to identifying robust plans that are resistant to errors

in relational selectivity estimates is available in [19].

1.4 Generation of Optimizer Diagrams

The generation and analysis of Optimizer Diagrams has been facilitated by the devel-

opment of the Picasso optimizer visualization tool [76]. Given a multi-dimensional SQL

query template like QT8 and a choice of database engine, the Picasso tool automatically

produces the associated plan, cost and cardinality diagrams. It is operational on several

major platforms including IBM DB2, Oracle, Microsoft SQL Server, Sybase ASE and

PostgreSQL.

The diagram production strategy used in Picasso is the following:

Plan Diagram Given a d-dimensional query template and a plot resolution of r, the

Picasso tool generates rd queries that are either uniformly or exponentially (user’s

choice) distributed over the selectivity space. Then, for each of these query points,

based on the associated selectivity values, a query with the appropriate constants

instantiated is submitted to the query optimizer to be “explained” – that is, to

have its optimal plan computed. After the plans corresponding to all the points

are obtained, a different color is associated with each unique plan, and all query

points are colored with their associated plan colors. Then, the rest of the diagram

is colored by painting the region around each point with the color corresponding to

its plan. For example, in a 2D plan diagram with a uniform grid resolution of 10,

there are 100 real query points, and around each such point a square of dimension

10x10 is painted with the point’s associated plan color.

Cost and Cardinality Diagrams Each of these rd queries on being explained also gets
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assigned with the estimated cost and cardinality values. The plot of the cost and

cardinality values normalized to the maximum cost and cardinality values in the

set of rd queries respectively are known as Cost and Cardinality diagrams. Given

a d-dimensional query template, the cost and cardinality diagrams are each a d + 1

dimensional diagram.

The above exhaustive approach is eminently acceptable for diagrams on low-dimension

(1D and 2D) query templates with coarse resolutions (up to 100 points per dimension).

However, it becomes impractically expensive for higher dimensions and fine-grained

resolutions due to the exponential growth in overheads. For example, a 2D optimizer

diagram with a resolution of 1000 on each selectivity dimension, or a 3D optimizer

diagram with a resolution of 100 on each dimension, both require invoking the optimizer

a million times. Even with a conservative estimate of about half-second per optimization,

the total time required to produce the picture is close to a week! Therefore, although

Optimizer Diagrams have proved to be extremely useful, their high-dimension and/or

fine-resolution versions pose serious computational challenges.

In this thesis we address the problem of efficiently generating optimizer diagrams. Two

obvious mechanisms to lower the computational time overheads are:

1. Customize the resolution on each dimension to be domain-specific – for example,

coarse resolutions may prove sufficient for categorical data

2. Use computational units in parallel to leverage the independence between the op-

timizations of the individual query points, resulting in concurrent issue of multiple

optimization requests

In this thesis, we consider how we can supplement the above remedies, which may

not always be applicable or feasible, through the use of generic algorithmic techniques, as

described next.
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1.5 Motivation and Research Challenges

Specifically, we investigate whether it is possible to efficiently produce accurate approx-

imations to plan, cost and cardinality diagrams.Denoting the exact plan diagram as P

and the approximation as A, there are two categories of errors that arise in the process

for approximating plan diagram:

Plan Identity Error (εI): It refers to the possibility of the approximation missing out

on a subset of the plans present in the exact plan diagram. It is computed as the

percentage of plans lost in A relative to P.

Plan Location Error (εL): It refers to the possibility of incorrectly assigning plans to

query points in the approximate plan diagram. It is computed as the percentage of

incorrectly (relative to P) assigned points in A.

Similarly, errors associated with the cost and cardinality diagram approximations are:

Maximum Error (εMAX): It refers to the maximum percentage cost/cardinality error

incurred in A with regard to P, measured over all points in the diagram.

Root Mean Square Error (εRMS): It refers to the root mean square error caused by

the cost/cardinality approximation. RMS error indicates the average quality of the

process.

The approximation strategies should be robust enough to counteract the following

challenges:

• The εI error is difficult to control since a majority of the plans appearing in plan

diagrams, as seen in Figure 1.4(a), are very small in area, and therefore hard to

find. Similarly the εL error is also hard to control since the plan boundaries, as

seen in Figure 1.4(a), can be highly non-linear, and are sometimes even irregular in

shape [76].

• Cost being a function of a plan structure needs to be estimated separately for

individual plans, which will be subsequently helpful in approximating cost value



Chapter 1. Introduction 11

for un-optimized points. However, scarcity of sufficient number of data points for

small plans severely affects the quality of the respective cost functions. Moreover,

extrapolation error also imposes a significant threat to the quality of approximate

cost diagram.

• In approximating cardinality diagram our main challenge was to come up with a

suitable model for depicting cardinality diagram first and then use it for cardinality

value estimation.

We have observed that some of the advanced commercial optimizers provide extra

features other than the best plan, which can improve the approximation efficiency. As

described next, these lead us to categorize the current optimizers into different classes

and devise separate strategies tailored to their capabilities.

1.5.1 Optimizer Classes

Our study shows that the ability to reduce overheads is a function of the plan-related

functionalities offered by the optimizer’s API, based on which we define the following

three categories of optimizers:

Class I: OP Optimizers This class refers to the generic cost-based optimizers that are

routinely found in virtually every enterprise database product, where the API only

provides the optimal plan (OP), as determined by the optimizer, for a user query.

Class II: OP + FPC Optimizers This class of optimizers additionally provide a “for-

eign plan costing” (FPC) feature in their API, that is, of costing plans outside their

native optimality regions. Specifically, the feature supports the following “what-if”

question: “What is the estimated cost of sub-optimal plan p if utilized at query lo-

cation q?”. FPC has become available in the current versions of several industrial-

strength optimizers, including DB2 [80] (Optimization Profile), SQL Server [81]

(XML Plan), and Sybase [78] (Abstract Plan). Note that along with cost, the FPC

feature also returns the estimated result cardinality of the query point.
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Class III: OP + FPC + PRL Optimizers This class of optimizers support, in ad-

dition to FPC, an API that provides not just the best plan but a “plan-rank-list”

(PRL), enumerating the top k plans for the query. For example, with k = 2, both

the best plan and the second-best plan are obtained when the optimizer is invoked

on a query. The PRL feature can be implemented in current optimizers through

modifying the Dynamic Programming-based query optimization process. However,

to our knowledge, it is not yet available in any of the current systems. Therefore, we

showcase its utility through our own implementation in a public-domain optimizer.

Note that conceptualization and implementation of algorithms to extract PRL was

another challenging task – the details of which are given later in Section 3.4.1.

1.5.2 Approximation Techniques

We first concentrate on generating an accurate approximation of plan diagram, which

requires optimizing a sub-set of points from the set of rd query points. Subsequently the

approximate cost and cardinality diagrams are produced, without involving any further

optimizations. For Class I (OP) and Class II (OP+FPC) optimizers, the techniques that

we propose for plan diagram approximation are based on a combination of sampling and

inference, while for Class III optimizers (OP+FPC+PRL), it is purely based on inference.

The sampling techniques include both classical random sampling and grid sampling, while

the inference approaches rely on nearest-neighbor (NN) classifiers [72], parametric query

optimization (PQO) [47, 48] and plan cost monotonicity (PCM) [18]. For some of the

techniques, theoretical results that help to provide guaranteed bounds on the errors are

available, whereas for the others, empirical evaluation is the only recourse.

For Class I diagrams, the cost diagram approximation uses the plan cost model de-

fined in [19]. The cost functions for individual plans discovered in A are determined using

the linear least square regression technique. The derived plan cost functions are then

used to estimate cost values at the inferred points. The interpolation errors due to in-

adequate number of data points is resolved by applying a game theoretic approach. The

extrapolation error is addressed by restricting the model-based interpolation to the points
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residing inside the convex polytope constructed by the optimized data points. We apply

linear programming to identify the interior points. For points outside the polytope we

apply linear extrapolation technique. Further, in this thesis we also propose a cardinality

model as a function of relational selectivities. Fitting of such model requires application

of a clustering algorithm beside the linear least square regression technique. Note that we

may bypass cost and cardinality diagram approximation for Class II optimizers, since cost

and cardinality values can be obtained using the FPC feature by costing each and every

inferred point explicitly. Moreover, for Class III we will show that the exact cost and

cardinality diagrams come for free as an output of the algorithms used for plan diagram

approximation.

1.6 Results of the Speedup Quality

We have quantitatively assessed the efficacy of the various strategies, with regard to plan

identity and location errors, through extensive experimentation with a representative suite

of multi-dimensional TPC-H [83] and TPC-DS [82] based query templates on leading

commercial and public-domain optimizers. We have also observed that the maximum

and RMS errors caused due to the cost and cardinality approximations are low. Our

results are very promising since they indicate that accurate approximations can indeed

be obtained cheaply and consistently, as described below.

10 percent Error Bound. Consider the case where the user desires that the approx-

imation error is of the order of 10 percent or less on both plan identities and plan lo-

cations. For Class I (OP) optimizers, it is possible to regularly achieve this target with

only around 15% overheads of the brute-force exhaustive method. To put this in perspec-

tive, the earlier-mentioned one-week plan diagram can be produced in less than a day. A

sample approximate diagram (having 10% identity and 10% location error) is shown in

Figure 1.6, with all the erroneous locations marked in black – as can be seen, the approx-

imation is materially faithful to the features of the exact plan diagram, with the errors

thinly spread across the picture and largely confined to the plan transition boundaries.
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Figure 1.6: Approximate Diagram (10% Error Bound) - QT8

Database Bound Overhead % εI % εL % Cost εRMS % Card εRMS %
εI = εL(%) Max Avg Max Avg Max Avg Max Avg Max Avg

TPC-H

1 40 16 1.3 0.5 1.1 0.3 1.5 0.2 8 2.2
5 18.9 10.4 6 1 5.7 3.8 1.7 0.5 9.7 3.8
10 14.8 7.1 10 2 10.1 6.7 2.9 0.6 11.3 3.7
15 11.3 5.3 14 4 13.3 8.7 3.3 1.1 12.0 3.9
20 8.6 4.5 19 6.5 19.5 12.5 8.6 1.4 14.9 4.3

TPC-DS

1 42 16 1.3 0.5 1.1 0.4 1.5 0.2 10 4.5
5 22.2 10.1 6.1 1.5 5.8 3.4 1.7 0.5 12 6.1
10 13.9 7.6 10.2 3.4 10.1 6.7 3.9 0.7 15 8.3
15 12.8 6.2 15.6 5.3 12.7 8.5 7.1 1.4 15 8.6
20 9.5 4.7 17.9 6.2 21.6 12.5 10 2.9 20 9

Table 1.1: Results for Optimizer Diagram Approximation for Class I

The approximate cost and cardinality diagrams associated with these 90% accurate plan

diagrams incur very low value of RMS error e.g. within the range of 2-10%.

For Class II (OP+FPC) optimizers, a similar error performance is achieved with only

around 10% overheads. An important point to note here is that plan costing is consider-

ably cheaper than searching for the optimal plan. Finally, for Class III (OP+FPC+PRL)

optimizers, the overheads come down to less than 5%. We can also obtain the associated

exact cost and cardinality diagrams utilizing the FPC API. However, for the Class I opti-

mizers due to the presence of location error the cost diagram may not be exact. As shown

in Table 1.3 with 90% accurate plan diagram the cost penalty is below 5%.
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1 percent Error Bound. We have also investigated the scenario where the user has

the extremely stringent expectation of around 1 percent plan identity and location errors.

For this situation, Class I and II both take up to 40% overheads, while Class III usually

incurs less than 10% overheads. For Class I and II optimizers the RMS error of the

cost and cardinality approximation improves around 2% - 6% (refer to Tables 1.1 and 1.3).

Table 1.1 consolidates the approximation quality achieved for Class I optimizers, the

generic optimizer with least features available for end-users. Experiments were performed

on extensive set of TPC-H and TPC-DS benchmark query templates for varied resolutions

(30 to 1000) and dimensions (1D to 4D). The “Max” and “Avg” columns depict the

maximum and average values acquired by the associated parameters e.g. “Max” and

“Avg” column of “Cost εRMS %” refers to the maximum and average RMS error incurred

respectively by the cost approximation. This table also shows that without any extra

feature we can achieve a speedup in order of magnitude. Results observed for Class II

and III are at least twice as better than Class I.

1.7 Contributions

In this thesis we present a suite of algorithms customized to the optimizer’s API richness,

for efficiently generating accurate approximate Optimizer Diagrams. For plan diagram

approximation we will first present the database-oblivious techniques based on classical

random sampling which perform moderately in approximating the diagrams. These when

further modified to consider database specific knowledge lowered the overhead by an order

of magnitude. In this thesis, we also present an algorithm to generate exact plan diagrams

with much less number of optimizations.

Considering the approximate plan diagram as an input we then move on to presenting

cost and cardinality diagram approximation. We applied the cost model developed in [19]

to first evaluate the cost function for individual plan through regression. These cost

functions are then applied to estimate the cost values for inferred points. Similar to

the process adopted in [19] we present the cardinality model as a function of selectivity
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Optimizer Overheads Range Overheads Range
Class (Bound : εI = εL = 10%) (Bound :εI = εL = 1%)

Plan Cost & Card Plan Cost & Card
Class I (OP) 1% – 15% 0.02% – 0.05% 15% – 40% 0.01% – 0.02%

Class II (OP+FPC) 1% – 10% 6 – 10% 15% – 40% 3 – 7%
Class III (OP+FPC+PRL) 1% –5% 0% 1% – 10% 0%

Table 1.2: Summary Results for Optimizer Diagram Approximation

Optimizer (Bound = 10%) ( Bound = 1%)
Class Cost εRMS Card εRMS Cost εRMS Card εRMS

Class I (OP) 1-10% 0-15% 0-2% 0-5%
Class II (OP+FPC) 3% 0% 1% 0%

Class III (OP+FPC+PRL) 0% 0% 0% 0%

Table 1.3: Summary Results for Cost and Cardinality Errors

applicable for most of the modern optimizers available. This cardinality model is used

afterwards to interpolate cardinality values for the inferred points following a similar

approach used for cost approximation.

Results for Optimizer Diagrams (with uniform query point distribution) are summa-

rized in Tables 1.2 and 1.3. In Table 1.2 the typical range of overheads (relative to the

exhaustive approach) to generate the approximate Optimizer Diagrams is shown as a

function of the user’s error bound for each optimizer class. Finally in Table 1.3 we show

the maximum RMS error incurred by the cost and cardinality approximation, taken over

an extensive set of query templates of TPC-H and TPC-DS benchmarks. Note that the

cost and cardinality errors are all 0 for Class III. However, even with the ability to cost

each point explicitly, we could not achieve zero error cost diagram for Class II optimizers

due to the presence of location error. At those points we actually cost a sub-optimal plan

through FPC, which may be higher than the exact cost value. Whereas, the cardinality

model obtained for Class II is perfect, since cardinality is not a function of the plans

assigned at the inferred points.
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1.8 Organization

The remainder of this thesis is organized as follows: Related works are reviewed in Chap-

ter 2. The plan diagram approximation algorithms developed for the different classes

of optimizers are presented in Chapter 3, which also contains the experimental results

associated with each process. The cost value approximation techniques are illustrated in

Chapter 4. Chapter 5 starts by presenting the cardinality model and later shows how to

apply the same model for cardinality value approximation. Implementation details are

discussed in Chapter 6. Finally, in Chapter 7, we summarize our conclusions and outline

future research avenues.
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Survey of Related Research

There has been extensive work in the area of query optimization for relational database

management systems since the early 70’s, triggered by the advent of declarative query

languages. A number of surveys (eg. [38, 13]) have covered the progress of query optimiza-

tion techniques over the years. In this chapter, we also discuss some of the approximation

techniques where classical random sampling approach has been exploited. Then we talk

about some of the estimators devised for counting distinct values of an attribute in a

relation. After this we examine research works done towards analyzing the industrial

optimizers. We assume the reader is familiar with the techniques they discuss and only

give a brief overview of the basic concepts here. Sections 2.1 and 2.4 in this chapter are

reproduced verbatim from [20].

2.1 Challenges of Query Optimization

Among the key constituents of the query evaluation component of an SQL database system

are the query optimizer and the query execution engine. The query optimizer is responsible

for generating the input for the execution engine. It takes a parsed representation of an

SQL query as input and is responsible for generating an efficient execution plan for the

given SQL query from the space of possible execution plans. One aspect of optimization

is where the system attempts to find an expression equivalent to the given expression, but

18
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more efficient to execute. Another aspect is selecting a detailed strategy for processing

the query. The task of an optimizer is computationally challenging since, for a given

SQL query, there can be a large number of possible execution plans, of the order of

O(3n) [71], where n is the number of base relations in the query. The query execution

engine implements the set of physical operators specified by the execution plan. Each

operator takes as input one or more data streams and produces an output data stream.

Examples of physical operators are sequential scan, index scan, (external) sort, nested-

loop join and sort-merge join.

The design of a query optimizer entails tackling the following challenging issues:

2.1.1 Plan Selection Strategy

A number of selection strategies can be applied for query optimization. These include:

1. Make a random choice.

2. Use a set of heuristic rules.

3. Use randomized algorithms or genetic techniques.

4. Exhaustively enumerate the search space and use a cost-based approach.

The exhaustive cost-based approach mentioned in 4 is the most commonly used in modern

optimizers, since none of the others can deterministically guarantee the quality of their

choices. Note that the approaches mentioned in 2 and 3 could be cost-based too. The pio-

neering work in the development of cost-based optimizers was carried out in the System-R

project [68]. Their techniques have been incorporated in many commercial optimizers and

continue to be remarkably relevant. In System-R, the size of the search space is restricted

by considering only the set of left-deep plans, which allows pipelining of the output of one

operator to the input of the next operator. It also introduced the notion of “interesting

orders” into the plan selection process – the ordering of the output tuples of an operator

is called an interesting order if it can become useful in some subsequent operation. The

idea of an interesting order was later generalized to physical properties [36], which refers
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to any characteristic of a plan that is not necessarily shared by other plans for the same

expression, but could impact the cost of subsequent operations.

In an alternative strategy, Chu and Halpern [15, 14] propose the idea of picking the

least expected cost (LEC) plan rather than the least specific cost (LSC) plan. In their first

paper [15], they propose a set of algorithms to find this LEC plan and guarantee that this

plan will be at least as good as the LSC plan, and typically better. They also consider

parameters that could vary during the execution of the plan. They find that “The greater

the run-time variation in the values of parameters that affect the cost of the query plan,

the greater the cost advantage of the LEC plan is likely to be”. They assume that the

probability distribution of the values of the parameters is available at compile-time.

In their second paper [14], they observe that the LSC optimization does, in many

cases, yield the LEC plan. The current optimizers can be coaxed to pick the LEC plan by

appropriately choosing the parameters and their settings. They also study cases where

running time is not the cost measure applied (it may matter if the plan is blocking or pro-

duces results at a constant rate, etc.) and find that in these scenarios, LEC optimization

becomes particularly relevant.

2.1.2 Efficient Selection Strategies

For the cost-based optimizers, System-R proposed the use of dynamic programming to

efficiently find a good plan. The dynamic programming approach is based on the assump-

tion of the principle of optimality [77], which states that the optimal solution to a problem

is a combination of optimal solutions to its subproblems. While dynamic programming

(DP) works very well for moderately complex queries with up to around a dozen base

relations, it usually fails to scale beyond this stage in current systems due to its inherent

exponential space and time complexity. Therefore, DP becomes practically infeasible for

complex queries with a large number of base relations.

To address the above problem, a variety of approaches have been proposed in the

literature, such as Iterative Dynamic Programming (IDP) [54, 69], wherein DP is em-

ployed bottom-up until it hits its feasibility limit, and then iteratively restarted with a
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significantly reduced subset of the execution plans currently under consideration. A re-

cent alternative approach that improves on IDP’s performance and scalability is Skyline

Dynamic Programming (SDP) [22].

When queries are optimized at the time they are submitted by the user, the selection

process can add a substantial overhead to the execution time of the query. In order to avoid

this, the Parametric Query Optimization (PQO) method was proposed. The goal here is

to apriori identify the parametric optimal set of plans (POSP) for the entire parameter

space at compile time, and subsequently to use at run time the actual parameter settings to

identify the best plan – the expectation is that this would be much faster than optimizing

the query from scratch. The PQO method was first proposed in [50] in the context of

randomized algorithms for plan selection. They considered buffer size as the primary

parameter, although their solution could work with arbitrary parameters. Subsequently,

a number of PQO-based techniques have been proposed for cost-based optimizers:

In the pioneering work of Betawadkar & Ganguly [5], a System-R style optimizer with

left-deep join-tree search space and linear cost models was built, the workload comprising

of pure SPJ query templates with star or linear join-graphs and one-dimensional selectivity

variations. They proposed the idea of finding an approximate POSP given a tolerance

factor (cost increase threshold). Within this context, their experimental results indicate

that, for a given cost increase threshold, plan reduction is more effective with increasing

join-graph complexity. They also find that “if the increase threshold is small, a significant

percentage of the plans have to be retained”. For example, with a threshold of 10%, more

than 50% of the plans usually have to be retained. However, this conclusion is possibly

related to the low plan cardinality (less than 20 in all the experiments) in their original

plan diagrams.

In subsequent work, Hulgeri & Sudarshan [47, 48] model an optimizer along the lines

of the Volcano query engine [37], and evaluate SPJ query templates with two, three

and four-dimensional relational selectivities. In their first paper [47], they discuss the

PQO problem in the context of linear cost functions where the conventional optimizer

is unaltered. The optimizer is treated as a black-box and the plans and costs returned
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by the optimizer are used to find the POSP. They also propose a solution to the PQO

problem in the presence of piecewise linear cost functions, which works for an arbitrary

number of parameters. This solution involves altering the current optimizers to handle

cost functions in the place of atomic cost values.

In the second paper [48], they propose a heuristic solution to the PQO problem which

works with arbitrary nonlinear and discontinuous cost functions and any number of pa-

rameters. They propose an algorithm called AniPQO (and a variation of it called DAG-

AniPQO), which requires minimal changes to existing optimizers and attempts to find a

subset of the POSP such that for each point in the parameter space, either the optimal

plan or a close-to-optimal plan is in the result set. The closeness to optimality is measured

by an optimality threshold, which is guaranteed to be maintained in the case of linear cost

functions, but cannot be guaranteed in the presence of nonlinear cost functions, when it

is used only as a heuristic. Even with this relaxation, the final number of plans with a

threshold of 10% can be large – for example, a 4-D query template with 134 original plans

is reduced only to 53 with the DAG-AniPOSP algorithm and to 29 with AniPOSP.

Most of the solutions to the PQO problem are based on assuming cost functions that

would result in one or more of the following:

1. Plan Convexity: If a plan P is optimal at point A and at point B, then it is optimal

at all points on the line joining the two points;

2. Plan Uniqueness: An optimal plan P appears at only one contiguous region in the

entire space;

3. Plan Homogeneity: An optimal plan P is optimal within the entire region enclosed

by its plan boundaries.

However, it has been found that none of the three assumptions hold true, even ap-

proximately, in the plan diagrams produced by the commercial optimizers [64]. Even in

situations where these assumptions hold, it is very difficult to store the regions of optimal-

ity of each of the plans in the POSP, so as to pick the best one at the time of execution.

An alternative proposed by Hulgeri & Sudarshan in [47, 48], is to estimate the cost of all
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the plans that belong to the POSP at the time of execution and pick the one that gives

the minimum cost for the actual parameter values. This will be faster than optimizing

the query from scratch, provided the number of plans in the POSP is not too large.

2.1.3 Run-time Refinements of Plan Choices

Query optimizers often make poor decisions because their compile-time cost models use

inaccurate estimates of various parameters. There have been several efforts in the past

to address this issue, which can be categorized as – strategies that make decisions at

the start of query execution and strategies that make decisions during query execution.

There are some parameters, like memory availability, whose value cannot be predicted

at compile-time, but are accurately known at the start of execution. Assuming that the

values of these parameters remain constant for the duration of the execution, the following

strategies have been proposed:

1. Perform query optimization just before query execution. This method is not very

efficient, especially if the query is executed repeatedly.

2. Find the best execution plan for all possible values of the parameters and lookup

the best plan for the current parameter values at runtime (PQO).

3. Perform part of the optimization at compile time and defer any decisions that are

affected by the parameter values to execution time.

For parameters whose value cannot be predicted at the start of the execution, like

predicate selectivities, the following strategies can be applied:

1. Kabra and DeWitt [52] propose a technique which uses the query optimizer to gen-

erate a plan with each step of the plan containing the expected cost and result size

statistics associated with it. At strategic points in the query execution, the interme-

diate runtime statistics are collected and compared to the the expected statistics and

this information is used to alter the allocation of shared resources and if necessary,

change the query execution plan itself. While changing the query execution plan,



Chapter 2. Survey of Related Research 24

they ensure that the operations already performed are not wasted, and re-optimize

only the remainder of the query.

2. Antonshenkov [3] proposes a strategy where, in order to execute a query, multiple

query plans are run in parallel. When one plan finishes or makes significant progress,

the other competing plans are killed. This strategy assumes that ample resources are

available, and is applied only to subcomponents of the query (typically to individual

table accesses).

3. Roy et al [67] propose to optimize a batch of queries simultaneously so as to reuse

common sub-expressions between the queries. They use an AND-OR DAG represen-

tation to compactly represent alternative query plans and extend this representation

to ensure that all common sub-expressions are detected.

2.2 Random sampling

Random sampling techniques have been used extensively in various fields of DBMS when

a quick synopsis regarding the underlying data is required. The most common use of

sampling in query optimization is for query result size estimation, or for building the

statistics. Following are some of the applications of random sampling techniques.

2.2.1 Approximate answer of aggregate queries

In current databases the amount of data poses a bottleneck for answering a query effi-

ciently, as it involves scanning each and every tuple individually. Most often in decision

support systems a less accurate answer is satisfactory to serve the purpose. The ac-

ceptability of inexact query answers coupled with the necessity for fast query response

times has led researchers to investigate approximate query answering techniques that

sacrifice accuracy to improve running time. This is known as approximate query process-

ing (AQP). AQP is particularly common in data warehousing applications, which stores

samples from the complete data set to decrease response time. Reader can refer to the
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Aqua project from Bell Labs [2] for an example of this. The survey, “Sampling Methods

In Approximate Query Answering Systems” composed by Gautam Das [21] illustrates

some of the well known research work done on this field. The survey talks about the

general rule in which most approximate query processing systems operate: first, during

the “pre-processing phase”, some auxiliary data structures, or data synopses, are built

over the database; then, during the “runtime phase”, queries are issued to the system and

approximate query answers are quickly returned using the data synopses built during the

pre-processing phase. The quality of an approximate query processing system is often

determined by how accurately the synopsis represents the original data distribution. In-

stead of using the simple random sampling problem, researchers tried to incorporate the

database specific knowledge for improving accuracy. Some of the procedures are described

below:

• Ganti et al [32] proposed a heuristic pre-computation procedure called “Icicles”,

which biases the tuples according to how many times they have been accessed by

different queries in the workload and assigns them with greater probabilities of being

selected into the sample.

• Chaudhuri et al [10] proposed “Outlier Indexing” for improving sampling-based

approximations for aggregate queries when the attribute being aggregated has a

skewed distribution.

• Acharya et al [1] introduced “Congressional Sampling” which is specifically suited

for answering group by queries with aggregation more efficiently.

• The stratified sampling approach was studied by Chaudhuri et al [8, 9], where au-

thors formulated the problem of pre-computing a sample as an optimization prob-

lem, whose goal is to minimize the error for the given workload.

• Later Babcock et al [4] introduced the concept of dynamic sampling where the

sampling technique attempts to strike a middle ground between pre-computed and

online sampling.
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2.2.2 Building and maintaining database statistics

There has been great deal of research on how to build the summary statistics efficiently

using random sampling techniques. The ability to successfully use random sampling

also requires that there should be a mechanism for determining the degree of sampling

necessary for the desired accuracy. Several practical considerations make this problem

challenging:

1. Need small error for all queries, with high probability.

2. Data distribution is not known a priori.

3. Columns have an unknown number of duplicate values.

4. For large samples, sampling at the tuple level is prohibitively expensive

Poosala et al [61] proposed elegant solutions for producing efficient histograms with

random sampling techniques, which helps in keeping the cost of such production reason-

ably low. The main idea behind this approach is to perform the histogram construction

looking at the sampled values instead of the entire relation.

Strategies on improving the tuple based random sampling to disk page or disk block

level have been explored by Surajit Chaudhuri et al [11, 12].

2.2.3 Query optimization

Accurate and inexpensive estimation of database query sizes is useful for many purposes.

Such estimates are used by query optimizers, to compare costs of alternative interme-

diate sub-plans. Sampling based query cardinality estimation procedures have received

increasing attention over the past few years, as they not only give an estimate of the size

of the query result, but also provide an indication of the precision of the estimate. Lipton

and Naughton [55] and Lipton, Naughton and Schneider [56] presented adaptive sampling

algorithms for estimating sizes of various select and join queries. However, the adaptive

sampling algorithms proposed in [55, 56] assume knowledge of maximum size of each
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sub-query. Since this is not usually available, an upper bound for this quantity is used

in the expression for the termination criterion of the adaptive sampling approach, which

can lead to taking considerably more observations than necessary causing the sampling

algorithm to be unduly expensive in some cases. Later Haas and Swami [42] proposed

improvements on the termination criterion. In the same paper [42] they also suggested

classifying the tuples into different predefined groups (this requires knowledge about the

data distribution) and then apply stratified sampling on each such group. Further refine-

ments on the adaptive sampling algorithms were given by Haas et al [43], and again later

by Haas et al [40].

In the work by Haas and Swami [42], the classification of tuples into groups is known

a priori, which may not be feasible in practice. To overcome this, Ganguly et al [29]

presented “Bifocal Sampling” which classifies the tuples into two categories namely sparse

and dense, based on the number of tuples with the same join value, then applies distinct

estimation strategy for these groups. The algorithm itself infers the class boundary at

runtime while scanning the data.

There is an extensive survey done by Frank Olken [60] on efficient methods of an-

swering random sampling queries of relational databases, motivated by the above issues.

The author suggested introducing a random sample operator in the DBMS and laid out

different algorithms to apply the operator in different situations.

2.3 Study of the Distinct Classes Estimators

The number of distinct values of an attribute in a relation is one of the critical statistics

necessary for effective query optimization. It is well-established [39] that a bad estimate to

the number of distinct values can slow down the query execution time by several orders

of magnitude. Unfortunately, as the amount of data stored in a database increases,

it becomes increasingly difficult to estimate the count of distinct values quickly with

reasonable accuracy. Several approaches have been considered in the literature to deal

with this issue. Recently, much of the work has focused on streaming models, or algorithms

which are allowed to take only a single pass over the data. The challenge for these
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algorithms lie in minimizing the space used, since the naive schemes run out of memory

long before a single scan is complete. Another natural approach is to take a small random

sample from the large dataset and then to estimate the number of distinct values from the

sample. We now talk about some of the estimators devised following the second approach.

The initial work on distinct class estimators was presented by Goodman [35]. The

Goodman’s estimator works as follows: first, select m tuples at random from R, where

R has n tuples. Next, delete unwanted attributes from the sampled tuples, and group

the resulting tuples by the number of duplicates. That is, group i contains all tuples

that, after deleting the projected-out attributes, appear i times in the sample. Let the

number of tuples in group i be xi. The Goodman’s estimator estimates that the project

has
∑

i>0 Aixi tuples, where,

Ai = 1− (−1)i

(
n−m+i−1

i

)
(

m
i

)

Hou et al [45, 46] proposed Goodman’s Estimator for use in the database setting

for finding out distinct values of an attribute. The advantage of this estimator is that

it requires no additional information regarding data distribution, hence with a moderate

sample size it outperformed many well known estimator available. But the apparent draw-

backs were that it is quite unstable with small sample sizes and causes huge computational

overheads for large relations.

Haas et al [39] published a comprehensive review on different kinds of estimators

for counting distinct values of an attribute. They showed empirically that the relative

performance of the estimators is sensitive to the degree of skew in the data and

finally proposed a new estimator that is a hybrid of the smoothed jackknife estima-

tor (developed by them for low skew) and an estimator due to Shlosser [70](for high skew).

The above estimators are mostly based on heuristics and are not at all supported by

any probabilistic error guarantees. An explanation for the apparent difficulty of distinct-

values estimation was provided in the powerful negative result of Charikar et al [7]. They

demonstrate two data distribution scenarios where the numbers of distinct values differ

dramatically, yet a large number of random samples is required to distinguish between
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the two scenarios. For example, to guarantee that an estimate has less than 10% error

with high probability, requires sampling almost the entire table. They developed GEE

(Guaranteed Error Estimator) which is armed with an expected error guarantee. We will

discuss more about GEE in Section 3.2.

2.4 Behavior of Industrial Strength Optimizers

We now shift focus to studying the behavior of industrial strength query optimizers in

practice. In [73], Waas and Galindo devise algorithms for counting, exhaustive generation,

and uniform sampling of plans from the complete search space. Using this information,

they study the cost distribution of query plans. Cost distributions are of interest because

they can be taken as obvious indicators of the stochastic difficulty of a problem, by

simply considering the ratio of high quality to low quality plans. They find that, under

the precondition that the queries are of sufficiently large size, i.e., involving more than

4 or 5 joins, the distributions obtained “correspond to Gamma-distributions with shape

parameter close to 1”. They also find that the percentage of plans that are within twice

the optimum cost is usually around 1% of the total number of plans in the search space.

Reddy and Haritsa [64] study the behavior of industrial strength optimizers from

the perspective of the optimality space, instead of the search space. They examine the

variation of the plan choices across the selectivity space and find that current optimizers

make extremely fine-grained plan choices. They also observe that the plan optimality

regions may have highly intricate patterns and irregular boundaries, indicating strongly

non-linear cost models, that non-monotonic cost behavior exists where increasing result

cardinalities decrease the estimated cost and, that the basic assumptions underlying

the research literature on parametric query optimization often do not hold in practice.

Further, there is heavy skew in the relative coverage of the plans, with 80 percent of

the space typically covered by 20 percent or less of the plans. They show that through

a process of plan reduction where the query points associated with a small-sized plan

are swallowed by a larger plan, it is possible to bring down the cardinality of the plan

diagram to about one-third of the original cardinality, without materially affecting the
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query cost.

In this thesis, we study the problem of approximating Optimizer Diagrams i.e. plan

diagrams (which represent the parametric optimal set of plans over the selectivity space),

cost and cardinality diagrams arising from industrial-benchmark-based query templates

operating on commercial state-of-the-art query optimizers. Our results indicate that it is

indeed possible to generate 90% accurate diagram with only 15% overhead compared to

the standard brute force approach.
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Plan Diagram Approximation

In this chapter, we describe our suite of strategies for the efficient generation of approxi-

mate plan diagrams. We begin with algorithms for Class I optimizers, and then describe

how these techniques can be improved for Class II optimizers leveraging their foreign-

plan-costing (FPC) feature. We conclude with two variants of an algorithm for Class III

optimizers with FPC and plan-rank-list (PRL) functionalities – the first version guar-

antees zero error, while the second trades error for further reduction in computational

overheads.

For ease of presentation, we will assume in the following discussion that the query

template is 2D – the extension to d-dimensions is straightforward and given in appendix.

The true plan diagram is denoted by P and the approximation as A, with the total

number of query points in the diagrams denoted by n. Each query point is denoted by

q(x, y), corresponding to a unique query with selectivities x, y in the X and Y dimensions,

respectively. The terms pP (q) and pA(q) are used to refer to the plans assigned to query

point q in the P and A plan diagrams, respectively (when the context is clear, we drop

the diagram subscript). We denote the total number of plans present in true diagram as

α and in approximate diagram obtained after s explicit optimizations as αs.

Finally, the plan identity and plan location errors of an approximate diagram are

defined as,

31
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εI =
α− αs

α
∗ 100

εL =
|pA(q) 6= pP (q)|

n
∗ 100

The approximation techniques should ideally ensure that εI and εL are within the

user-specified bounds θI and θL, or are at least in their close proximity. In the process

of approximation we estimate the value of εI and εL, we will use ε̂I and ε̂L to denote the

estimated values (absolute) of εI and εL respectively.

3.1 Notation

Before we move ahead with presenting algorithms developed for plan diagram approxi-

mation we want reader to be familiar with the notations used in this chapter and later

in the thesis. The following table consolidates the notations and abbreviations used:

Notations

r Resolution of the selectivity space

d Dimension of the selectivity space

n # of query points in the selectivity space (population size)

s # optimizations performed (# samples)

P True plan diagram

A Approximate plan diagram

α # of plans in the true diagram

αs # plans in approximate diagram after s optimizations

εI True identity error

εL True location error

ε̂I Estimated identity error

ε̂L Estimated location error

θI User given identity error
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θL User given location error

σ Risk factor of wrongly assigning an inferred point

x, y Selectivity variable in 2D

qo An optimized point

qu An un-optimized point

qin An inferred point

pk An arbitrary plan

ak Area covered by plan pk

PCM Plan Cost Monotonicity

FPC Foreign Plan Costing

PRL Plan Rank List

PQO Parametric Query Optimization

LPF Low pass filter

QTx Query Template < x > of TPC-H benchmark

DSQTx Query Template < x > of TPC-DS benchmark

RS NN Random Sampling with Nearest Neighbor interpolation

GS PQO Grid Sampling with PQO assumption

3.2 Class I Optimizers

The approximation procedures for this class of optimizers operate in two main steps:

Optimization: A set of query points in the plan diagram are explicitly optimized to

obtain the optimal plans at those points.

Inference: The plans for a set of un-optimized points are inferred using the information

obtained from the Optimization step.

These steps are executed in an interleaved fashion under the following two main es-

timation phases that form the core of the sampling procedures described later in this
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chapter.

εI estimation: In this phase, optimizations are performed to bring down εI below user

given threshold θI .

εL estimation: In this phase we intend to achieve εL < θL by performing an iterative

process of optimization and inference.

Since we have empirically found that the plan-location error εL almost always lags

plan-identity error εI , the performance of the algorithms were found to be more effective

when εI estimation phase precedes εL.

3.2.1 Random Sampling with NN Inference (RS NN)

In the RS NN algorithm, we first use the classical random sampling technique to sample

query points from the plan diagram that are to be optimized during the optimization

step. Termination of RS NN algorithm is based on both εI and εL estimators. In first

pass we optimize a certain amount of query points based on εI estimator and infer the

remaining un-optimized points. After that we evaluate εL estimator and if it meets the

desired goal i.e. ε̂L ≤ θL, we stop the algorithm there otherwise we optimize some more

points and recheck the value of ε̂L. This process iterates until the goal is properly met.

We now describe the two estimation phases devised to aid the RS NN algorithm.

3.2.1.1 εI estimation phase

The problem of finding the distinct plans in the plan diagram can be related to the

classical statistical problem of finding distinct classes in a population [41] – details are

mentioned in Section 2.3. Applying the recent results of [7], we obtain the following: Let

s samples be taken from the plan diagram, αs be the number of distinct plans in these

samples, and let f1 denote the number of plans occurring only once in the samples. Then,

it is highly likely that the number of distinct plans α in the entire plan diagram is in the

range [αs, α̂max]. α̂max is defined as,

α̂max = (
n

s
− 1)f1 + αs (3.2.1)
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If we ensure that the sampling is iteratively continued until αs is within θI of α̂max, then

it is highly likely that the number of plans found thus far in the sample is within θI of

α. Therefore, the RS NN algorithm continuously evaluates Equation 3.2.1 to determine

when the optimization step can be terminated.

Our experience, as borne out by the experimental results has been that the above

stopping condition may be too conservative in that it takes many more samples than is

strictly necessary. Therefore to refine the stopping condition, we also studied the other

estimator for α, α̂GEE (Guaranteed Error Estimator) defined in [7] as,

α̂GEE = (

√
n

s
− 1)f1 + αs (3.2.2)

which has an expected ratio error bound of O(

√
n

s
). Later, rigorous experimental in-

vestigation suggested that this estimator seems to be lacking stability for some of the

less dense diagrams. Table 3.3 in the Experimental Section, shows the performance of

different estimators when used as a terminating condition for the RS NN algorithm.

Therefore, we now terminate the optimization phase in two steps as follows: After αs

increases to a value within a (1 − δ) factor of α̂max, we continue the sampling until αs

reaches to within a (1−θI) factor of α̂GEE. The value of δ conducive to good performance

results has been empirically determined to be 0.3. The estimated value of εI i.e ε̂I is

calculated as,

ε̂I =





α̂max − αs

α̂max

αs ≤ (1− δ)α̂max

α̂GEE − αs

α̂GEE

otherwise
(3.2.3)

The intuition behind this method is that once the gap between αs and α̂max has

narrowed to a sufficiently small range, then the α̂GEE estimator can be used as a reliable

indicator of the plan cardinality in the diagram.

3.2.1.2 Inference

After the completion of the sampling phase, the plan choices at the un-optimized points

of the plan diagram need to be inferred from the plan choices made at the sampled points.
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(a) Optimize (b) Infer (c) Filter

Figure 3.1: Execution Stages of the RS NN Algorithm

This is done using a Nearest Neighbor (NN) style classification scheme [72]. Specifically,

for each un-optimized point qu, we search for the nearest optimized point qo, and assign

the plan of qo to qu. If there are multiple nearest optimized points, then the plan that

occurs most often in this set is chosen, and in case of a tie on this metric, a random

selection is made from the contenders. This NN classification metric is based on Naive

Bayes Classifier [27].

According to Bayes theorem [27], the finite risk (r(x|ci)) of misclassifying x by class |ci| is
defined as 1−Pr(ci|x) = 1− Pr(x|ci) Pr(ci)

Pr(x)
. Now Pr(x|ci) =

|ci|vicinity

|ci| and Pr(ci) =
|ci|
s

.

Considering Pr(x) = 1 we can evaluate r(x|ci) as below,

r(x|ci) = 1− |ci|vicinity

s
(3.2.4)

To infer x, we choose ci for which the risk in minimum i.e. we follow a “majority wins”

policy for inference.

The distance between two query points q1(x1, y1) and q2(x2, y2) can be calculated

using various distance metrics. We have evaluated the following three popular metrics:

(1) Manhattan (L1 norm); (2) Euclidean (L2 norm); and (3) Chessboard (L∞ norm). Our

experience has been that the Chessboard Distance is most suitable, since the transition

boundaries between plans often tend to be aligned along the (horizontal and vertical)

axes. The same metric is also used for establishing the geometries of plan clusters in

PLASTIC [33, 65], a tool designed to amortize query optimizer overheads.
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3.2.1.3 εL estimation phase

We perform the εL estimation phase, after the εI estimation phase is over i.e. ε̂I ≤ θI

and all the un-optimized points are inferred. This estimator is intended to capture errors

performed by the NN inference technique.

Consider an inferred point qin, whose correct plan is pP (qin). Now the NN interpolation

technique could mistakenly assign an incorrect plan to qin due to one of the following

reasons,

Case 1: When the right plan pk is not present in the approximate diagram. Let us find

out probability of such an event. Suppose the area occupied by plan pk is ak, then

with s samples taken with replacement from population of size n, probability of

missing pk is given (1− ak

n
)s. It is evident that with high value of ak, probability of

missing pk will decrease.

Now we discuss the effect of such an event on εL. For the plan pk, εL may also

increase by a value ak

n
with a probability (1− ak

n
)s. Hence, the expected increase in

εL due to plan identity error is ∆(εL) =
∑θI×α

k=1
ak

n
(1− ak

n
)s. Now the term ak

n
(1− ak

n
)s

attains maxima when ak

n
= 1

s+1
.

∆(εL) =

θI×α∑

k=1

ak

n
(1− ak

n
)s

<

θI×α∑

k=1

1

s + 1
(1− 1

s + 1
)s

< θI × α× 1

s + 1
(1− 1

s + 1
)s

For θI = 10% applying bisection method we found that by setting s = 500, we

can achieve ∆(εL) < 0.01, if number of plans are restricted to couple of hundreds.

Further, even if the number of plans are as high as 500, we can achieve the same

performance with s = 1500. Our experience suggests that, the number of plans

found in plan diagrams are around few hundreds, and we almost always optimize in

excess of 500 query points. Therefore, the location error contribution due to Case

1 in our case is within an acceptable range.
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Case 2: The right plan pP (qin) is present in the approximate diagram, but we still miss

it due to the following reasons.

Case 2.1: pP (qin) is not part of the set of optimized points found at the nearest

neighborhood. This can happen when the plan pP (qin) is scattered across

the plan diagram. Generally speckle or very thin Venetian blind patterns[64]

found in plan diagrams, may give rise to an error of this kind. Probabilistic

computation is hard for this kind of error and outside scope of this thesis.

Case 2.2: pP (qin) is present in minority in the neighborhood i.e either qin is victim

of tie or surrounded by many plans.

We will concentrate on estimating error incurred due to the Case 2.2 in this thesis.

According to our inference metric we designed the location error heuristic as,

ε̂L =
n∑

i=1

r′(qi|pA(qi))

=
n∑

i=1

(
1− si(pA(qi))

si

)
(3.2.5)

where si is number of samples found at the nearest neighbor and pA(qi) is the plan inferred

at the point qi in the approximate diagram A. The term si(pA(qi)) denotes the number

of optimized points covered by pA(qi) at the nearest neighbor. r′(qi|pA(qi)) is a heuristic

based on r(qi|pA(qi)) given in Equation 3.2.4, where we replace s with si. We found this

heuristic to be a better estimator for location error.

This estimator works as follows. We complete one iteration of optimization phase that

brings down the value of ε̂I below θI followed by one iteration of Inference step. Once

these are over we calculate the value of ε̂L using the Equation 3.2.5. If ε̂L is found to be

greater than θL, we optimize few (1%) more query points. Based on the updated set of

optimized points we then re-run the inference step and re-evaluate the estimator. This

process is executed in an iterative fashion as long as ε̂L > θL.
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Algorithm 1 The RS NN Algorithm

RS NN (QueryTemplate QT , IdnErrBound θI ,LocErrBound θL, IncrSamples s)
1: \***********Phase: εI Estimation (Step: Optimization)**********\
2: stage ← 1;
3: while true do
4: Optimize s samples chosen uniformly at random;{ \* s ≥ 106 *\}
5: Compute the values of α̂max and α̂GEE ;
6: if stage = 1 then
7: if αs ≥ ((1− δ)α̂max) then
8: stage ← 2;
9: end if

10: else if stage = 2 then
11: if αs ≥ ((1− θI)α̂GEE) then
12: break;
13: end if
14: end if
15: end while
16: \***********Phase: εI Estimation (Step: Interpolate)************\
17: for each un-optimized point qu do
18: Determine the set m of nearest optimized neighbors;
19: Determine plan pk which occurs most often in m;
20: In case of a tie set pk by picking any plan at random from the contenders;
21: Assign the plan pk to qu;
22: end for
23: \********************Phase: εL Estimation**********************\
24: while true do
25: Calculate ε̂L =

∑n
j=1 Pr[qj has wrong plan pA(qj)];

26: if ε̂L ≤ θL then
27: break;
28: else
29: Optimize s samples chosen uniformly at random;
30: Apply interpolation step;
31: end if
32: end while
33: \********************Low Pass Filter***************************\
34: for each inferred point qin do
35: Check for plan multiplicity at chessboard distance 1;
36: if a plan pk occupies more than half of the neighbors then
37: Assign pk to qin;
38: end if
39: end for
40: return

3.2.1.4 Low Pass Filter (LPF).

Inference using the NN scheme is well-known to result in boundary errors [72] – in our

case, along the plan optimality boundaries. To reduce the impact of this problem which

is prominent with small sample size and large εL, we apply a low-pass filter [34] after the
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final inference i.e. after completion of εL estimation phase. The filter operates as follows:

For each inferred point qin, all its neighbors (both optimized and inferred) at a distance

of one, are examined to find the plan that is assigned to more than half of the neighbors.

If such a plan exists, it is assigned to qin, otherwise the original assignment is retained.

Note that each un-optimized point is processed once during the filter phase, and that

the resultant diagram is dependent on the order in which the points are taken up for

processing. Further, the filter could, in principle, be applied multiple times. However,

our empirical results indicate that the choice of processing order has only minuscule impact

on overall diagram accuracy – in our implementation, the points are processed starting

from the top right corner and moving towards the origin in reverse row-major order.

Also, applying the filter multiple times does not provide any perceptible improvement –

therefore, we apply it only once.

The functioning of the RS NN algorithm is illustrated in Figure 3.1 – in this set

of pictures, each large dot indicates an optimized query point, whereas each small dot

indicates an inferred query point. The initial set of optimized sample query points is

shown in Figure 3.1(a), and the NN-based inference for the remaining points is shown

in Figure 3.1(b). Applying the LPF filter results in Figure 3.1(c) – note that the center

query point, which has an (inferred) red plan in Figure 3.1(b), is re-assigned to the blue

plan in Figure 3.1(c).

The complete RS NN algorithm is shown in Algorithm 1. In our implementation, the

initial number of samples s0 is set to 1% of the space, and the increment in the number

of samples after each iteration is also set to this value.

3.2.2 Grid Sampling with PQO Inference (GS PQO)

We now turn our attention to an alternative approach based on grid sampling. Here, a

low resolution grid of the plan diagram is first formed, which partitions the selectivity

space into a set of smaller rectangles. The query points corresponding to the corners of

all these rectangles are optimized first. Subsequently, these points are used as the seeds

to determine which of the other points in the diagram are to be optimized.
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Specifically, if the plans assigned to the two corners of an edge of a rectangle are the

same, then the mid-point along that edge is also assigned the same plan. This is essentially

a specific inference based on the guiding principle of the Parametric Query Optimization

(PQO) literature (e.g. [47]): “If a pair of points in the selectivity space have the same

optimal plan pk, then all locations along the straight line joining these two points will

also have pk as their optimal plan.” At first glance, our usage of the PQO principle here

may seem to be at odds with our earlier observation in [64] that, for industrial-strength

optimizers, this principle is observed more in breach than in compliance. However, the

difference is that we are applying PQO at a “micro-level”, that is, within the confines of

a small rectangle in the selectivity space, whereas earlier work has effectively considered

PQO as a universal truth that holds across the entire space. Our experimental experience

has been that micro-PQO generally holds in all the plan diagrams that we have analyzed.

When the plans assigned to the end points of an edge are different, then the midpoint

of this edge is optimized. After all sides of a given rectangle are processed, its center-point

is then processed by considering the plans lying along the “cross-hair” lines connecting

the center-point to the mid-points of the four sides of the rectangle. If the two end-

points on one of the cross-hairs match, then the center-point is assigned the same plan

(if both cross-hairs have matching end-points, then one of the plans is chosen randomly).

If neither of the cross-hairs has matching endpoints, the center-point is optimized. Now,

using the cross-hairs, the rectangle is divided into four smaller rectangles, and the process

recursively continues, until all points in the plan diagram have been assigned plans.

The progress of the GS PQO algorithm is illustrated in Figure 3.2 (again, each large

dot indicates an optimized point, whereas each small dot indicates an inferred point).

Figure 3.2(a) shows the state after the initial grid sampling is completed. Then, the ‘?’

symbols in Figure 3.2(b) denote the set of points that are to be optimized in the following

iteration as we process the sides of the rectangles. Finally, Figure 3.2(c) enumerates the

set of points that are to be optimized while processing the cross-hairs.

A limitation of the GS PQO algorithm is that it may perform a substantial num-

ber of unnecessary optimizations, especially when a rectangle with different plans at its
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(a) Initial Grid (b) Mid Points (c) Cross Hairs

Figure 3.2: Execution Loop in GS PQO Algorithm

endpoints features only a small number of new plans within its enclosed region. This is be-

cause GS PQO does not distinguish between sparse and dense low-resolution rectangles.

For example, if two similar-sized rectangles each have two plans featured at their four

corner points, then they are divided similarly irrespective of the expected number of new

plans present in the interior. We attempt to address this issue by refining the algorithm

in the following manner: Assign each rectangle R with a “plan-richness” indicator ρ(R)

that serves to characterize the expected plan density in R, and then preferentially assign

optimizations to the rectangles with higher ρ.

Our strategy to assign ρ values is as follows: Instead of merely making a boolean

comparison at the corners of the rectangle as to whether the plans at these points are

identical or not, we now dig deeper and compare the plan operator trees associated with

these plans in order to estimate interior plan density. As an extreme example, consider

the case where there is a left-deep tree at one corner of the rectangle, and a right-deep

tree at another corner. In this situation, it seems reasonable to expect that there will be

a significant number of plans in the interior of the rectangle since the process of shifting

from a left-deep to a right-deep tree usually occurs in incremental intermediate steps, each

corresponding to a new plan, rather than all at once – we have confirmed this observation

through detailed analysis of the plan diagrams of industrial optimizers.
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(a) Plan Tree T1 (b) Plan Tree T7

Figure 3.3: Example of Plan Tree Difference (QT8)

Plan Tree Differencing. Let the operator trees corresponding to a pair of plans pi and

pj be denoted by Ti and Tj, respectively. Our comparison strategy is based on identifying

and mapping similar operator nodes in the two trees. Figure 3.3 shows an example pair

of plan trees T1 and T7 corresponding to the plans p1 and p7 that feature in the plan

diagram of Figure 1.4(a) – the white nodes depict matching nodes, whereas the colored

nodes represent distinct nodes.

In the following description, the term branch is used to refer to any directed chain

of unary-input nodes between leaf and a binary node, or between a pair of binary-input

nodes, in these trees. Branches are directed from the lower node to the higher node,

modeling the direction of data propagation. The matching proceeds as follows:
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(a) ρ values in Plan Diagram (QT9) (b) Effect of ρt on εI and εL Errors

Figure 3.4: Behavior of ρ

1. First, all the leaf nodes (relations) and all the binary-input nodes (typically join

nodes) are identified for Ti and Tj.

2. A leaf of Ti is matched with a leaf of Tj if and only if they both have the same

relation name. In the situation that there are multiple matches available (that is, if

the same relation name appears in multiple leaves), an edit-distance computation is

made between the branches of all pairs of matching leaves between Ti and Tj. The

assignments are then made in increasing order of edit-distances. For example, the

nation node appears twice in T1 and T7 of Figure 3.3, and the specific pairing is

made based on the closeness of matching in the branches arising out of these nodes.

3. A binary node of Ti is matched with a binary node of Tj if the set of base relations

that are processed is the same. If the node operator names and the left and right

inputs are identical (in terms of base relations), the nodes are made white. However,

if the node operator names are different, or if the left and right input relation subsets

are different, then the nodes are colored.

4. A minimal edit-distance computation is made between the branches arising out of
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each pair of matched nodes, and the nodes that have to be added or deleted, if any,

in order to make the branches identical, are colored. Unmodified nodes, on the other

hand, are matched with their counterparts in the sibling tree and made white.

5. Finally, each pair of matched nodes is assigned the same unique number in both

trees. For example, the number 15 is assigned to the final join node, representing

the composite relation formed by the join of all the base relations, in each tree.

Plan Richness Metric. We now describe the procedure to quantify plan richness in

terms of plan-tree differences. Our formulation uses |Ti| and |Tj| to represent the number

of nodes in plan-trees Ti and Tj, respectively, and |Ti ∩ Tj| to denote the number of

matching nodes between the trees.

Now, ρ is measured as the classical Jaccard Distance [72] between the trees of the two

plans, and is computed as

ρ(Ti, Tj) = 1− |Ti ∩ Tj|
|Ti ∪ Tj| (3.2.6)

For example, the ρ for the plan tree pair (T1, T7) in Figure 3.3 is 1 − 28

28 + 5 + 6
=

1− 28

39
= 0.28.

While Equation 3.2.6 works for a pair of plans, we need to be able to extend the metric

to handle an arbitrary set of plans, corresponding to the corners of the hyper-rectangle

in the selectivity space. Given a set of n trees {T1, T2, . . . , Tn}, this is achieved through

the following computation:

ρ(T1, . . . , Tn) =

∑n
i=1

∑n
j=i+1 ρ(Ti, Tj)(

n
2

) (3.2.7)

Note that the ρ values are normalized between 0 and 1, with values close to 0 indi-

cating that all the plans are structurally very similar to each other, and values close to

1 indicating that the plans are extremely dissimilar. Figure 3.4(a) depicts the ρ values

calculated for a sample plan diagram (produced from a query template based on TPC-H

Query 9) after partitioning into 20x20 squares. We see here that ρ reaches high values
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close to the origin and along the selectivity axes. This is in accordance with earlier ob-

servations in [47, 48, 62, 63, 64] that plans tend to be densely packed in precisely these

regions of the selectivity space.

3.2.2.1 εI estimation phase

We now describe how GS PQO utilizes the above characterization of plan-tree-differences.

First, the grid sampling procedure is executed as mentioned earlier. Then, for each

resulting rectangle, the ρ value is computed based on the plan-trees at the four corners,

using Equation 3.2.7. The rectangles are organized in a max-Heap structure based on

the ρ values, and the optimizations are directed towards the rectangle Rtop at the top

of the heap, i.e. with the current highest value of ρ. Specifically, the PQO principle is

applied to the mid-points of all qualifying edges (those with common plans at both ends

of the edge) in Rtop, and all the remaining edge mid-points are explicitly optimized. The

rectangle is then split into four smaller rectangles, for whom the ρ values are recomputed,

and these new rectangles are then inserted into the heap. This process continues until all

the rectangles in the heap have a ρ value that is below a threshold ρt. Next we discuss

how we set the value of the threshold ρt.

Setting value of ρt. A representative behavior of the error metrics, εI and εL, as a

function of the ρt threshold, is shown in Figure 3.4(b), obtained with query template

QT8. Note that we find here that εL does not always lag εI . The reason is that samples

cease to be assigned to rectangles with ρ ≤ ρt even when they contain more than one plan.

In this situation, our current inference scheme may increase εL due to erroneous boundary

detection between the plans present inside the rectangle. Therefore, even when εI is low,

εL may be comparatively large. We see in Figure 3.4(b) that setting the threshold equal

to the error bound(θI), i.e. ρt = θI (e.g. for θI = 10%, ρt = 0.1), is an adequate heuristic

that is sufficient to meet user expectations on both error metrics – we observed similar

behavior for most of the other query templates as well, and therefore applied this heuristic

in [24]. Further investigation revealed that for some of the query templates ρt is too loose

and for some it was not sufficient. In this thesis we propose another heuristic which is



Chapter 3. Plan Diagram Approximation 47

seen to be working pretty well in almost all the cases. To do so, we identified five factors

as mentioned below, that affects determining the value of ρt.

1. Query point distribution : This is taken care of implicitly by the initial hyper-

rectangle size and position defined, e.g for exponential distribution the hyper-

rectangles are implicitly of smaller size around origin and bigger elsewhere.

2. Resolution of the plan diagram (r): The initial grid size is taken to be
√

r,

which is a sub-linear scale up. This ensures that we don’t miss too many plans

with increasing resolution. We have verified through experiments that the same ρ

value in higher resolution may depict higher number of plans than its low resolution

counterpart.

3. Dimension of the plan diagram (d): Same ρ value for same template differing

in dimension may not indicate same amount of plan-richness, therefore we should

design different ρt according to dimension of the query template. However, while

calculating ρ value for a rectangle R, we consider the number of corner points, which

already takes care of the dimension factor.

4. Maximum ρ value (ρmax) : Similarly same ρ value for two different query tem-

plates quantify different plan density. Our experience has been that the maximum

ρ value found while processing the initial rectangles can be used to quantify the

expected number of plans at the corner points throughout the diagram.

5. Frequency of plans inside the ρmax rectangle (ξ): The number of plans present

at the corners of the highest ρ hyper-rectangle reflects the correlation between ρ and

the incremental plan structure difference for a particular plan diagram. For example

if ρmax is achieved by k plans in a certain plan diagram then we say to introduce

a new plan a gap of approximately ρ
k

value is required. Similarly in another case if

the same ρmax value is achieved by k′ plans where k′ > k, we would want to tighten

ρt further. Therefore we find this factor important in deciding the value of ρt. Now

assume there exists two different plan diagrams A1 and A2, both having ρmax = 0.4
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and k plans at the corners. But among the k corner plans in A1 assume k − 1

plans are structurally very similar whereas for A2 all the k plans differ substantially.

According to our strategy ρt will be set to the same value for both A1 and A2, which

is not desirable. Therefore, instead of simply counting the number of plans at the

corners of the ρmax rectangle, we use a heuristic which evaluates it according to the

structural differences of those plans.

We introduce “Contribution Factor”(ξ) heuristic as the quantitative measurement

of the plan frequency at the corners of a hyper-rectangle Rk. We use ρ calculation

to estimate ξk of a hyper-rectangle Rk with 2d (d - dimension) corner points as,

ξk = # plans×
∑2d

i=1
min

(j=1:2d,i6=j)
ρ(Ti, Tj) (3.2.8)

To illustrate the calculation of ξk let us consider a rectangle with distinct plans at

the four corners. Now suppose the set X = {{0, 0.33, 0.25, 0.01}, {0.33, 0, 0.23, 0.3},
{0.25, 0.23, 0, 0.27}, {0.01, 0.3, 0.27, 0}} denotes the ρ calculated for each pair of

plans. The contribution factor of such rectangle is calculated as, ξ = 4 × (0.01 +

0.23 + 0.27 + 0.01) = 2.08. Note that according to our heuristic ξ is allowed to take

a value > 2d in case there exists huge structural difference among the corner plans.

Among the five factors mentioned above we argued that query distribution and di-

mension of the selectivity space were taken care of implicitly by GS PQO. Now we design

our heuristic εI estimator taking into account the remaining three factors as follows,

1. initial grid size is set to d√re

2. ρt is determined as: ρt =
ρmax

ξmax

× θI

This heuristics shows reasonable performance for both uniform and exponential query

distribution which is evident from the experimental results presented in Section 3.5..

Final Inference. As mentioned earlier, GS PQO uses the PQO-based inference tech-

nique within each rectangle until its plan richness metric goes below the ρt threshold.

After the threshold is crossed, there may still be unassigned points within the rectangle.
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These are handled as follows in the final inference phase: The same PQO-based inference

scheme is used with the only difference being that whenever an edge has different end-

points, then the plan assignment of the mid-point is done by randomly choosing one of

the end-point plans, rather than resorting to explicit optimization.

Algorithm 2 The GS PQO Algorithm

GS PQO (QueryTemplate QT , IdentityErrorBound θI , LocationErrorBound θL)
1: \************Phase : εI Estimation (Step: Optimization)**************\
2: Optimize the points in the initial low-resolution grid with edge length set to

√
r;

3: Calculate ρ for each rectangle using Equation 3.2.7;
4: Organize the rectangles in a max-Heap (Mρ) based on their ρ values;
5: ρt ← ρmax

ξmax
× θI (Class I optimizers) | ρt ←

√
d× (ρmax

ξmax
× θI) (Class II optimizers);

6: for the rectangle Rtop at the top of Mρ do
7: if ρ(Rtop) ≤ ρt then
8: break;
9: else

10: Extract Rtop from Mρ;
11: Apply PQO inference to mid-points of qualifying edges of Rtop;
12: Optimize all the remaining mid-points qo. Set σ(qo) = 0;
13: Split Rtop into four equal rectangles and compute ρ values for the smaller rectangles;
14: Insert the new rectangles into Mρ;
15: end if
16: end for
17: \**********Phase : εI Estimation (Step: Interpolation)***************\
18: while the heap is not empty do
19: Extract Rtop from the Mρ;
20: Add a copy of Rtop into a max-Heap Mε̂L

ordered on its ε̂L contribution;
{\* This heap will later be used for εL estimation phase *\}

21: Select a plan at random from the edge end points and assign it to the mid point qu;
22: σ(pA(qj)) ← 1− s(ct)(1−σ(qj))

s if assigned with plan at point qj ;
23: Recursively split the rectangles until all points inside Rtop are processed;
24: end while
25: \********************Phase: εL Estimation********************\
26: while true do
27: ε̂L ←

∑n
j=1 σ(qj);

28: if ε̂L ≤ θL then
29: break;
30: else
31: Optimize s points extracting from Mε̂L

;
32: Insert the sub-rectangles in Mε̂L ;
33: Infer the un-optimized points again;
34: end if
35: end while
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3.2.2.2 εL estimation phase

It is evident that the stopping condition devised using ρ(R) takes care of εI only. So similar

to RS NN we developed a location error heuristic for GS PQO too. We use the term risk

factor (σ) to denote the estimation of the probability of misclassifying an un-optimized

point. Naturally the risk factor for an optimized point is 0. Suppose an inferred point

qin is surrounded by points q1, q2, ..qk in a d-dimensional plan diagram, whose risk factors

are σ(q1), σ(q2), . . . σ(qk) respectively. Now suppose qin gets assigned from a neighboring

point qj associated with plan pj, then the risk factor at qin following is set to,

σ(qin) = 1− sin(pj)(1− σ(qj))

sin

(3.2.9)

where sin is the number of points (both optimized and inferred) in the neighborhood

consulted for inferring qin and sin(pj) is the number of such points assigned with plan

pj. One might wonder that how can we calculate the value of σ(q1), σ(q2), . . . σ(qk)

beforehand. Note that the GS PQO works by first optimizing points from the initial

grid, each of whose σ values (which is 0) are known. This is used in second iteration for

assigning σ value to the set of un-optimized points encountered, which in turn helps in

assigning σ for un-optimized points discovered so far. The intuition behind calculating

the additional multiplicative factor s(pj) is that in GS PQO we do not always infer from

an optimized point, therfore we included the extra term (1 − σ(qj)). We estimate ε̂L in

similar fashion as we did for RS NN,

ε̂L =
∑n

j=1
σ(qj) (3.2.10)

If the value of ε̂L is evaluated to be greater than θL then we follow the steps below to

reduce the location error iteratively,

1. Add the rectangles with 0 < ρ < ρt earlier rejected for further optimizations in a

max heap Mε̂L
, this time ordered according to the amount of location error they are

contributing.

2. Extract the rectangle with maximum ε̂L contribution from Mε̂L
. The rectangle is

divided into sub rectangles by optimizing the mid points and cross-hair.
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3. Keep on dividing the rectangles till the extra optimizations are within 1% of n.

4. Infer plans for all the un-optimized points again and evaluate the ε̂L estimator, if it

is still greater than θL we repeat the process from Step 2.

The complete GS PQO algorithm is shown in Algorithm 2.

3.2.3 Approximation Overhead Estimator

While approximating a Optimizer Diagram appears sufficiently fast, it is likely that users

might need to know a rough estimate of the approximation time before they start gener-

ating. For example, user would like to tune the error threshold to meet his/her purpose.

Therefore, it is helpful to design a fast estimator to produce a rough estimate of the

time required. Charikar et al [7] proved a strong negative result showing that any such

estimation with low sample size cannot provide strong guarantee.

We developed approximation time estimators for both RS NN and GS PQO process

applicable only for Class I and II optimizers as described below:

S-EST: The estimator developed for RS NN is called S-EST. It starts by optimizing

a small number of query points using simple random sampling technique. Then it es-

timates identity error applying a conservative statistical estimator αmax mentioned in

Section 3.2.1.1. It further optimizes some more points and calculates the improvement in

identity error estimate. The number of samples required for this improvement is linearly

scaled up to the desired improvement in terms of user given error threshold. For example

look at the Figure 3.5, where the red line shows the error estimates obtained by αmax and

the blue line shows the actual error incurred by the approximation process with increasing

sample size. S-EST works by extending the red line till it reaches the θI threshold in the

plot, which is 10% in this case. The choice of initial sub-set of points was to improve the

population to sample fraction used in the αmax, which tends to overestimate the actual

number of plans if the population to sample ratio is too high.

Note that our estimation process only considers plan-identity error. This is because,

given similar tolerance levels for both errors, our empirical observation has been that the
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Figure 3.5: S-EST: RS NN Overhead Estimator

plan-location error typically lags behind the plan-identity error. However, it is possible

that the user may have given a significantly larger tolerance for identity error as compared

to location error, in which case the assumption is no longer valid. To handle this situation,

we artificially treat the lower of the tolerance levels to be the plan-identity error in com-

puting the time estimation, in the process achieving a conservative estimate (note that

this assumption is only intended for generation time estimation and does not impact the

approximation process itself). In the current implementation, the seed set consists of 50

query points, which typically takes less than a minute to optimize on standard platforms.

G-EST: The GS PQO estimator is known as G-EST. It concentrates on all the corner

rectangles except that near the origin of the query space. First, the corner points of those

rectangles are optimized and plan-richness factor is calculated for all of them. Among the

rectangles present near axis, we choose one with highest plan richness factor for further

grid partitioning considering user given error threshold as the bound. We evaluate ρt as

mentioned in Section 3.2.2.1, using this information for the corner rectangle and keep on

optimizing until the bound is reached. The rectangle at the highest selectivity region is

also optimized according to the user given error thresholds using the grid partitioning
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(a) Initial Rectangles (b) Rectangle chosen for
optimizations

(c) Sample % after opti-
mizations

Figure 3.6: Execution of GS PQO Overhead Estimator

mechanism. Now we consider that each rectangle along the axis will consume same

number of optimizations as the chosen representative from the axis and the rest of the

rectangles will take as much sample as the highest selectivity box. We sum up the sample

size accordingly as the final estimate. Figure 3.6 shows the different stages of working

of the estimator for a 2D selectivity space. First the corner points of the 3 rectangle are

optimized to find out the ρ value, as shown in Figure 3.6(a). Among the rectangles at

left-top and right-bottom, the one with higher ρ value is chosen to be processed further

along with the right-top box. Figure 3.6(b) shows the % samples consumed by them.

The gray rectangles of Figure 3.6(c) shows the final assignment to all the rectangles of

the selectivity space. The final estimate of required sample size is 8.8% in this case.

Note that we avoid considering any rectangle around origin because of two reasons, 1) it

consumes a large number of samples and 2) it gives a huge overestimate when same % of

samples are assigned to all the rectangles along the axis.

According to our study, we have found the initial box with rectangle edge width
√

r

produces satisfactory estimation.
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3.3 Class II Optimizers

In the algorithms described above for the Class I optimizers, we run into situations wherein

we are forced to pick from a set of equivalent candidate plans in order to make an as-

signment for an un-optimized query point. For example, in the RS NN approach, if there

are multiple nearest neighbors at the same distance. Similarly, in the GS PQO approach,

when the ρ value of a rectangle goes below the threshold and there remain unassigned

internal points. The strategy followed is to make a random choice from the closest neigh-

boring plans.

Class I Class II
In GS PQO stopping threshold is set as
ρt = ρmax

ξmax
× θI

Stopping threshold can be relaxed to (ρt×√
d)

Random choice in tie breaking Perform FPC and choose plan with least
cost

Table 3.2: Differences in Class I and Class II Algorithms

For Class II optimizers, however, which offer a “foreign plan costing” (FPC) feature,

we can make a more informed selection: Specifically, cost all the candidate plans at the

query point in question, and assign it the lowest cost plan. This method significantly helps

in reducing the plan-location error, since it enables precise demarcation of the boundaries

between plan optimality regions. A direct fallout obtained through our empirical investi-

gation (see Table 3.4) is that the value of ρt, can be increased further to
√

d times than

the value used for Class I while still maintaining the same accuracy characteristics, in the

process noticeably lowering overheads. The differences in Class I and Class II optimizers

working is given in Table 3.2.

Another point to be noted here is that plan-costing is much cheaper than the opti-

mizer’s standard optimal-plan-searching process [48], and hence the overheads incurred

through costing are negligible compared to those incurred through optimization. In our

experience, the overhead ratio of plan-costing to plan-searching is around 1:10 in the

commercial optimizers, while in our implementation of this feature in PostgreSQL, it is

close to 1:100.

The improvement proposed above is beneficial as long as the number of points where
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FPC is performed does not add significant overhead and at the same time this exercise

should have a considerable impact on reducing the plan-location error. In the results

shown in Table 3.10 and Table 3.11, we see that both these criteria are met.

3.4 Class III Optimizers

The algorithms discussed thus far minimize the number of explicit optimizations per-

formed by assuming certain properties of the plan diagram and using these properties

to infer plan assignments from the optimized query points. The algorithms proposed for

this class of optimizers utilize the foreign-plan-costing (FPC) and plan-rank-list (PRL)

features offered by the Class III optimizer API. Specifically, it is assumed that for each

query point, the optimizer provides both the best plan and the second-best plan. We now

present the algorithm developed for generating PRL.

3.4.1 The Plan Rank List

The query optimizers available in commercial and public-domain database management

systems provide only the best query execution plan i.e. the plan which incurs least

cost to execute the query. To get the cost-enumerated list of top k plans, the dynamic

programming based query optimization needs to be modified. We will discuss these

modifications on the query optimization technique defined and illustrated in [68].

Given a query associated with multiple relations, the query optimizer searches for the

best query execution plan by finding the best join order for successively larger subsets

of relations [68]. Further Join-Graph is evaluated to reduce the search space to only

meaningful join orders. At each step, sub-plans having neither least cost nor some

interesting order [68] are pruned. After termination of search process, the least cost

plan from this search tree is chosen. Generating the Plan Rank List at first glance from

this search tree seems to be obvious and trivial - sort all the plans available at the root

according to their cost. Unfortunately, this will not work as some plans may get pruned
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(a) Path structure of top 2 plans re-
trieved at root in a DP Lattice

(b) Pruned sub-plan of a candidate to
2nd best plan

Figure 3.7: Structure of DP Lattice

early in the search process while being compared to the best plan and may not appear in

the final search tree. Figure 3.4.1 shows a sample DP-Lattice. The path structure of best

plan (solid-red) and its 2nd sibling (dotted-blue) which reached the root i.e. ABCDE of

the DP lattice are shown in the Figure 3.7(a). A candidate best plan e.g. the sub-plan

shown in Figure 3.7(b) got pruned earlier. Here it looks like that the node ADE pruned

the join order A ./ DE as compared to AD ./ E (best plan) for being costlier.

In this thesis we concentrate only on getting PRL with k = 2.

Additive Second Best Plan Search. We propose an addition to the current data

structure of a node, which enables a node to store cheapest two sub-plans generating it

and propagate both to the higher nodes in the lattice. As shown in Figure 3.8, the dotted

lines depict the path of the 2nd cheapest plans at the respective node e.g. now both

the paths for generating the node ADE i.e. AD ./ E and A ./ DE are saved. In this

process the 2nd best plan will be explicitly found at the root node. One of the major

issue with this approach is that it would now require four times the optimization time

at each node. For example, at node ABCDE, we would individually compute the best

combination strategy for (AD ./ E) ./ BC, for (AD ./ E) ./ CB, for (A ./ DE) ./ BC,
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and for (A ./ DE) ./ CB, considering CB is the 2nd best way of generating (B ./ C).

Figure 3.8: Additive Second Best Plan Search Algorithm

However, we can optimize on the above by realizing that the best combination strategy

will be the same for all four options i.e. the best join strategy and join order identified

for (AD ./ E) ./ BC and (A ./ DE) ./ BC will be same. This is because the strategies

are evaluated in terms of cardinalities and number of distinct values present in BC and

ADE, which is independent of the underlying sub-plan generating them. Therefore, only

one optimization, say (AD ./ E) ./ BC, needs to be carried out, and the results reused

for the other three pairings. All though this method of inheriting cost of best-pair can

not be applied directly to sub-plans with interesting orders. But practically for TPC-H

templates we have seen very few plans with interesting order, which does not affect the

run-time significantly.

We have implemented this algorithm in OptPub and implementation details are given

in Chapter 6. We have observed that increase in space for modifying the data structure

used for representing one node and retaining the sub-plans went up to maximum 10MB

(the original data structure takes roughly 6MB), which is quite reasonable with current

systems. This results are obtained with TPC-H benchmark queries, where the maximum

node in a lattice was less than 50. Note that we keep twice as much path (1 KB) but

same number of nodes (124 KB). The time for retrieving PRL with k = 2 was seen to be

taking roughly 10% more time compared to simple optimization.
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But, even this approach is wasteful in terms of memory since we need to carry around

the extra baggage of the second-best plan throughout the DP lattice.

Iterative Second Best Plan Search. A much more efficient approach is the follow-

ing: Compute the best plan using the standard DP mechanism with the only minor

modification being that at the top node in the lattice, in addition to the best plan (P I
top),

temporarily store the second-best plan (P II
top) and its cost (cII

top). Now, observe that the

genuine second-best plan is either P II
top itself, or if there has to be an intermediate plan

between P I
top and P II

top, then that plan must have been pruned along the path of P I
top.

Therefore, it is sufficient to now traverse only that path, starting with the leaves and

propagating the second-best sub-plan to higher nodes in the lattice. At each node along

this path, if the cost of the second-best sub-plan happens to exceed cII
top, then we can im-

mediately terminate the process, and proclaim P II
top to be the second-best plan. However,

if the second-best sub-plan reaches the root node and its cost is less than cII
top, then it is

declared the second-best plan.

Note that when we say the path of best-plan, we actually mean the node-path and

all alternative inputs along the node-path need to also be explored. That is, just like the

second-best plan at top node need not be second-best plan globally, similarly, the second-

best plan at each node along the best-plan node path has to be based on considering all

inputs to these nodes, and not just the input path followed by the best-plan.

We now move on to presenting for the Class III optimizers. Both the algorithms work

following similar approach to the popular Flood-Fill [75] algorithm used in graphics to

paint a particular bounded area with a color. In our case we paint the region with a

plan. The PlanFill algorithm can be used to efficiently generate completely accurate plan

diagrams. Subsequently, we provide a variant, Relaxed-PlanFill algorithm, which trades

error, based on the user’s bound, for reduction in optimization effort.
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3.4.2 The PlanFill Algorithm

The PlanFill algorithm for a 2D query template is shown in Algorithm 3. The algorithm

starts with optimizing the query point q(xmin, ymin) corresponding to the bottom-left

query point in the plan diagram. Let p1 be the optimizer-estimated optimal plan at q,

with cost c1(q), and let p2 be the second best plan, with cost c2(q). We then assign

the plan p1 to all points q′ in the first quadrant relative to q as the origin, which obey

the constraint that c1(q
′) ≤ c2(q). After this step is complete, we then move to the next

unassigned point in row-major order relative to q, and repeat the process, which continues

until no unassigned points remain.

This algorithm is predicated on the Plan Cost Monotonicity (PCM) assumption that

the cost of a plan is monotonically non-decreasing throughout the selectivity space, which

is true in practice for most query templates [18].

The following theorem proves that the PlanFill algorithm will exactly produce the

true plan diagram P without any approximation whatsoever. That is, by definition, there

are no plan-identity and plan-location errors.

Theorem 1 The plan assigned by PlanFill to any point in the approximate plan diagram

A is exactly the same as that assigned in P.

Proof: Let Po ⊆ P be the set of points which were optimized. Consider a point q′ ∈ P\Po

with a plan p1. Let q ∈ Po be the point that was optimized when q′ was assigned the plan

p1. Let p2 be the second best plan at q.

For the sake of contradiction, let pk (k 6= 1), be the optimal plan at q′. We know that

for a cost-based optimizer, ck(q
′) < c1(q

′). This implies that ck(q
′) < c2(q) (due to the

algorithm). Using the PCM property, we have ck(q) ≤ ck(q
′) ⇒ c1(q) ≤ ck(q) < c2(q).

This means that p2 is not the second best plan at q, a contradiction.

3.4.3 The Relaxed-PlanFill Algorithm

While PlanFill always ensures zero error, we now investigate the possibility of whether it

is possible to utilize the permissible error bound of θ to further reduce the computational
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Algorithm 3 The PlanFill Algorithm

PlanFill (QueryTemplate QT )

1: Let A be an empty plan diagram.
2: q ← (xmin, ymin)
3: while q 6= null do
4: Optimize query template QT at point q.
5: Let p1 and p2 be the optimal and second-best plan at q, respectively.
6: for all unassigned points q′ in the first quadrant of q do
7: if c1(q

′) ≤ c2(q) then
8: assign plan p1 to q′

9: end if
10: end for
11: q ← next unassigned query point in A
12: end while
13: return A

overheads of PlanFill . To this end, we propose the following Relaxed-PlanFill algorithm:

The plan assignment constraint c1(q
′) ≤ c2(q) is relaxed to be c1(q

′) ≤ (1 + γ)c2(q)

with (γ > 0), resulting in fewer optimizations being required to fully assign plans in the

diagram.

The choice of γ is a function of θ and µ, the slope of the cost function c2 at q with

regard to maximum cost value of the plan diagram. The reason behind choosing µ is

to make γ tighter with increasing selectivity as around lower selectivity region the ratio

between the cost values of two neighboring plans is found to be higher than their higher

selectivity counterpart at the same distance. We use slope of the cost function to capture

this gap between costs at different selectivity region. Our empirical assessment indicates

that setting γ = µ ∗ θ (e.g. with θ = 10%,and µ = 0.1, γ = 0.01) is sufficient to meet the

error requirements and simultaneously significantly reduce the overheads. For example,

θ = 10% can be achieved with only around 1% overheads, as seen in the following section.

For cases where θI 6= θL, we assume θ = min{θI , θL}.
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3.5 Experimental Results

The testbed used in our experiments is the Picasso optimizer visualization tool [76], ex-

ecuting on a Sun Ultra 20 workstation equipped with an Opteron Dual Core 2.5GHz

processor, 4 GB of main memory and 720 GB of hard disk, running the Windows XP

Pro operating system. The experiments were conducted over plan diagrams produced

from a variety of two, three, and four-dimensional TPC-H [83] and TPC-DS [82] based

query templates. In our discussion, we use QTx to refer to a query template based on

Query x of the TPC-H benchmark, and DSQTx to refer to a query template based on

Query x of the TPC-DS benchmark. The TPC-H database was of size 1GB, while the

TPC-DS database occupies 100GB. The plan diagrams were generated with a variety of

industrial-strength database query optimizers – we present representative results here for

a commercial optimizer anonymously referred to as OptCom, and a public-domain opti-

mizer, referred to as OptPub. We will present results with query points being uniformly

distributed over the selectivity space unless explicitly mentioned.

In the remainder of this section, we evaluate the various approximation strategies with

regard to their computational efficiency, given user-specified bounds for plan-identity and

plan-location error. For simplicity of exposition, we will assume in the sequel that users

specify the same bound θI = θL = θ on both metrics, however our methods are applicable

even if θI 6= θL. The bounds we consider here are θ = 10% and θ = 1%.

Our analysis was carried out over an extensive suite of query templates. However, we

selectively present results here for “challenging” plan diagrams that feature a sufficiently

rich set of plans (≥ 10 plans). This is due to fact that with < 10 plans the notion of 10%

error becomes equivalent to 0% error.

3.5.1 Class I Optimizers

We will first show the behavior of the three estimators discussed in Section 3.2.1 to vali-

date our choice of estimator. Then we present the effect of different stopping conditions

imposed on GS PQO and how it influences the number of plans discovered inside a rect-

angle.
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Dimension/ Query α̂max α̂GEE α̂hybrid

Resolution Templates s (%) εI (%) s (%) εI (%) s (%) εI (%)

2D: 300 x 300

QT2 53 5 23 18 36 8
QT3 30 5 1 27 25 5
QT4 5 0 1 20 5 0
QT5 8 10 6 13 8 10
QT7 19 0 12 0 17 0
QT8 56 7 35 10 35 10
QT9 55 6 33 10 33 10
QT20 37 4 26 4 28 4
QT21 29 2 18 4 18 4

2D: 1000 x 1000
QT8 47 5 25 8 25 8
QT21 15 8 5 12 11 10

3D: 100 x 100
QT8 45 6 20 12 25 11
QT9 47 7 30 11 35 8

Table 3.3: Comparative study on estimator performance ε̂I = 10%

Performance of different εI estimators. Table 3.3 shows the performance of the

estimators α̂max, α̂GEE proposed in [7] along with the hybrid estimator (α̂hybrid) combining

the former two estimators, as discussed in Section 3.2.1. α̂GEE when used as stopping

criterion terminates quite early without reaching the goal of θI = 10% for the 2D query

templates QT2,QT3 and QT4 with resolution 300. Again, α̂max turns out to be too

conservative in many cases e.g. QT21,QT9 and QT20. However, the performance of

hybrid estimator α̂hybrid was found to be satisfactory almost always. All the experiments

performed for RS NN later in this chapter relies on the α̂hybrid estimator.

Behavior of ρt in GS PQO. This set of experiments are to validate the “micro-PQO”

assumption. We study the number of plans missed inside a rectangle R, by running

GS PQO for different ρt values. The initial rectangle size for which we calculated ρ

was set to
√

(r). The experimental results are shown in Table 3.3. For none of the

cases we found “micro-PQO” to be violated. Furthermore, the results suggests that εI

contribution of rectangles with ρ = 0.1 and ρ = 0.2 are almost similar. This observation

later helped us to relax the stopping condition of GS PQO for Class II optimizers.

We now move on to presenting comparative analysis of algorithms developed for Class

I optimizers. We start with evaluating the performance of the two algorithms applicable to

Class I optimizers, namely, RS NN and GS PQO. In the RS NN algorithm, as mentioned
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Dimension/ Query Plans Max plans missed in a rectangle with ρ ≤ ρt

Resolution Template # ρt = 0 ρt = 0.05 ρt = 0.1 ρt = 0.15 ρt = 0.2

2D: 100X100

QT2 44 0 0 0 0 0
QT3 16 0 0 0 0 0
QT4 11 0 0 0 0 0
QT5 23 0 0 0 2/7 2/7
QT7 12 0 0 0 0 1/5
QT8 50 0 0 0 0 0
QT9 44 0 0 1/7 1/7 1/7
QT10 17 0 0 0 1/5 1/5
QT11 16 0 0 2/6 2/6 2/6
QT16 32 0 0 0 1/5 3/8
QT17 12 0 0 0 0 0
QT18 8 0 0 0 0 0
QT20 33 0 0 0 4/9 4/16
QT21 42 0 0 1/8 3/8 3/8

2D: 300X300

QT2 76 0 0 1/7 1/7 1/7
QT3 22 0 0 0 4/8 4/8
QT4 12 0 0 0 0 0
QT5 31 0 1/4 1/4 1/4 4/7
QT7 17 0 1/4 1/5 2/7 7/9
QT8 42 0 0 0 1/9 1/9
QT9 41 0 0 0 2/9 2/9
QT10 31 0 0 3/6 3/9 3/9
QT11 20 0 1/4 4/9 4/9 4/9
QT16 38 0 0/7 0 4/9 4/9
QT17 12 0 0 0 0/7 0/7
QT18 8 0 0 0 0/3 0
QT20 46 0 2/7 4/7 5/12 5/12
QT21 48 0 1/3 1/7 3/9 3/9

2D: 1000X1000
QT8 132 0 2/4 4/13 4/13 7/13
QT16 25 0 0 0 0 0
QT21 58 0 0 6/10 6/10 8/14

3D: 100X100X100
QT8 190 0 0 0 0 1/13
QT9 404 0 0 2/16 2/23 6/33
QT21 130 0 0 0 1/14 3/14

Table 3.4: Quality of ρt as an estimator [OptCom- TPC-H database]

earlier, the parameter δ, which specifies the transition of the algorithm from Stage 1 to

Stage 2, is set to 0.3, while the sample size increments are 1% of the space. For the

GS PQO algorithm, the resolution of the initial grid along each dimension is set to a

value around
√

resolution, at which the plan diagram is to be generated. As an example,

to approximate a 2D plan diagram with 300 × 300 resolution, we set the initial sample

size of RS NN to 900 and the initial grid of GS PQO to 16× 16.

Error Bound = 10%. For the above framework, Table 3.5 shows the algorithmic

efficiency of the RS NN and GS PQO algorithms relative to the brute-force exhaustive

approach for a variety of multi-dimensional query templates, under a θ = 10% constraint.

The efficiency is presented both in terms of actual time, as well as in terms of the number

of optimizations that were carried out. The bracketed numbers in the TimeTaken columns
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Query Pl- Approximation Samples Error (%)
Dim/ Temp- ans Gen Time Taken s(%) RS NN GS PQO

Res -late # Time RS NN GS PQO RS NN GS PQO εI εL εI εL

2D:
100X100

QT2 44 30 m 10 m(33%) 3 m(10%) 33% 9% 10% 2% 0% 9%
QT3 16 8 m 3.4 m(42%) 45 s(9%) 42% 9% 10% 6% 6% 10%
QT4 11 6 m 1 m(16%) 47 s(13%) 16% 13% 0% 10% 0% 6%
QT5 23 45 m 7 m(15%) 5 m(12%) 15% 12% 4% 9% 0% 6%
QT7 12 38 m 1 m(42%) 4 m(10%) 42% 10% 6% 5% 0% 6%
QT8 50 1 h 22 m(38%) 9 m(15%) 38% 15% 10% 7% 6% 10%
QT9 44 2 h 45 m(39%) 15 m(13%) 39% 13% 10% 6% 2% 9%
QT10 17 12 m 1 m(9%) 1 m(8%) 9% 8% 6% 7% 0% 5%
QT11 26 36 m 4 m(10%) 3 m(8%) 10% 8% 6% 5% 0% 8%
QT16 32 10 m 2 m(21%) 1 m(13%) 21% 12% 9% 10% 3% 13%
QT17 12 21 m 1 m(6%) 1 m(6%) 6% 6% 9% 8% 0% 7%
QT18 8 1 h 12 m(20%) 3 m(5%) 20% 5% 9% 7% 0% 6%
QT20 33 4 h 1.6 h(40%) 16 m(7%) 40% 7% 3% 5% 3% 8%
QT21 84 30 m 4 m(13%) 5 m(14%) 13% 14% 10% 10% 0% 7%

2D:
300X300

QT2 76 4.3 h 1 h(25%) 13 m(5%) 25% 5% 8% 4% 5% 8%
QT3 22 1.7 h 30 m(25%) 7 m(7%) 25% 7% 5% 8% 0% 5%
QT4 12 1 h 3 m(5%) 4 m(6%) 5% 6% 0% 10% 0% 6%
QT5 31 8.3 h 40 m(8%) 23 m(5%) 8% 5% 10% 5% 0% 6%
QT7 17 6 h 1 h(17%) 24 m(4%) 17% 4% 0% 3% 6% 3%
QT8 92 11 h 3.6 h(35%) 43 m(7%) 35% 7% 10% 3% 1% 7%
QT9 91 1.1 d 9 h(34%) 1.5 h(6%) 34% 6% 10% 3% 2% 6%
QT10 31 5 h 30 m(10%) 9 m(3%) 10% 3% 10% 3% 6% 4%
QT11 20 2.5 h 8 m(5%) 4 m(3%) 5% 3% 5% 6% 0% 9%
QT16 38 1.6 h 8 m(8%) 5 m(5%) 8% 5% 5% 10% 0% 11%
QT17 12 2.5 h 8 m(5%) 6 m(2%) 5% 2% 0% 3% 0% 4%
QT18 8 7 h 21 m(5%) 6 m(2%) 5% 2% 10% 3% 0% 6%
QT20 46 1.3 d 8.7 h(28%) 37 m(2%) 28% 2% 4% 2% 11% 8%
QT21 48 5 h 1 h(18%) 38 m(7%) 18% 7% 4% 4% 7% 2%

2D:1000 X
1000

QT8 132 6 d 29 h (21%) 3.3 h(2%) 21% 2% 3% 10% 11% 5%
QT9 125 10 d 3 d(30%) 4 h(2%) 30% 2% 4% 5% 2% 15%
QT21 58 2.2 d 8.6 h(16%) 47 m(1%) 16% 1% 10% 2% 0% 6%

3D:100X
100X100

QT8 190 6.5 d 2 d(27%) 17 h(12%) 27% 11% 1% 2% 1% 9%
QT9 404 10 d 3 d(30%) 1.3 d(13%) 30% 12% 7% 10% 3% 9%
QT21 130 3 d 1.2 d(37%) 10 h(14%) 37% 13% 1% 4% 1% 7%

3D:300X
300X300

QT8 314 4
mons

– 2.6 d(2%) – 2% – – – –

4D:30X
30X30X30

QT8 243 5 d 23 h(19%) 15 h(12%) 19% 12% 12% 9% 4% 9%

Table 3.5: Class I : Efficiency with TPC-H (θ = 10%) [OptCom ]

indicate the percentage time taken relative to the exhaustive approach.

We see in Table 3.5 that the RS NN algorithm requires a substantial amount of time,

or equivalently, number of optimizations, to generate the approximate plan diagram. For

example, with the 3D QT9 template at a resolution of 100 per dimension, RS NN takes

about 30% of the exhaustive time. On the other hand, GS PQO exhibits a much better

performance, requiring only 13% overheads – in fact, our experience has been that it needs

less than 15% of the exhaustive time across all templates. Moreover, as can be seen from

Table 3.5, we have also produced an approximate plan diagram for the 3D QT8 template

at a resolution of 300 per dimension, corresponding to 27 million query points in only 2.6
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Dim/ Query Pl- Gen Approximation Samples Error (%)
Res Temp- ans Time Time Taken s(%) RS NN GS PQO

-late # RS NN GS PQO RS NN GS PQO εI εL εI εL

2D:
100X100

DSQT12 13 16 m 4 m(25%) 28 s(3%) 25% 3% 12% 3% 0% 0%
DSQT17 39 8 h 2.6 h(39%) 39 m(8%) 39% 8% 8% 8% 10% 9%
DSQT18 47 3.5 h 1.4 h(40%) 20 m(10%) 40% 10% 6% 7% 2% 9%
DSQT19 36 2 h 24 m(20%) 11 m(9%) 20% 9% 3% 3% 8% 9%
DSQT25 33 8 h 4.6 h(65%) 41 m(9%) 65% 9% 10% 9% 9% 10%
DSQT25a 51 8 h 1.5 h(24%) 1 h(12%) 24% 12% 12% 11% 0% 11%
DSQT25b 45 7.3 h 2.6 h(36%) 30 m(7%) 36% 7% 9% 9% 0% 8%
DSQT50 10 1 h 20 m(18%) 4 m(7%) 30% 7% 8% 9% 0% 1%
DSQT76 18 1.5 h 31 m(34%) 14 m(15%) 34% 15% 8% 2% 11% 10%

2D:
300X300

DSQT12 15 2.2 h 40 m(29%) 2 m(2%) 29% 2% 7% 4% 11% 5%
DSQT18 81 1 d 9 h(38%) 1 h(4%) 38% 4% 10% 11% 5% 7%
DSQT19 42 17 h 1 h(7%) 34 m(4%) 7% 4% 7% 7% 2% 6%
DSQT29 37 3 d 11 h(15%) 3.2 h(4%) 15% 4% 2% 3% 3% 7%

3D:100X
100X100

DSQT19 167 10 d 2 d(20%) 1 d(14%) 20% 14% 2% 8% 1% 8%

Table 3.6: Class I : Efficiency with TPC-DS (θ = 10%) [OptCom ]

days with GS PQO – the estimated generation time with the brute-force approach is 4

months! The difference in percentage value between optimization and approximation time

taken is contributed by three factors e.g. 1) time to complete the NN inference step and

2) the iterative εL estimation phase excluding the optimization time. For GS PQO the

time required to build and maintain different maxHeap data structure is also included.

An interesting point to note is that for RS NN the optimization percentages are virtually

identical to the time percentages for most of the query templates. This is because εL lags

εI for all of them except some complex diagram like QT21. Even for GS PQO these extra

times do not seem to add any significant overheads.

We see that the estimators designed for RS NN and GS PQO almost always result in

meeting the user’s error bounds or being in their close proximity.

Turning our attention to Table 3.6, which repeats the above experiment on the TPC-

DS database, we see that the results are even more striking. RS NN incurs large overheads

in general, typically around 40%, whereas GS PQO again does not exceed 15%.

Error Bound = 1%. When the user’s error constraint is tightened from 10 percent to

1 percent, the resulting algorithmic performance is shown in Table 3.7. Only GS PQO is

shown since for this stringent constraint, the RS NN algorithm tends to optimize almost

the entire space. Further to make the 1% error bound meaningful, we have considered

only plan diagrams having around or over 100 plans. It can be seen from the table that
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Dim/ Query Plans Exhaustive Approxima- Samples Error (%)
Res Template # Gen time -tion Time (%) εI εL

2D:
300X300

QT 8 92 10.5 h 3.6 h (35%) 35 % 0 % 0.25 %
QT 9 91 1 d 3 h 7.3 h (30%) 30 % 0 % 2 %

2D:1000
X1000

QT 8 132 6 d 1.8 d (30%) 30 % 2 % 1 %

3D:100X
100X100

QT 8 190 6.5 days 1.6 d (25%) 25 % 0.5 % 1.5 %
QT 9 404 10 d 4 d (40%) 40 % 1 % 1 %
QT 21 130 3 d 11 h (16%) 16 % 0.77 % 1.5 %

Table 3.7: Class I : Efficiency with TPC-H (θ = 1%) [OptCom ]

Dim/ Query No. of Samples (%) RS NN GS PQO
Res Template Plans RS NN GS PQO εI εL εI εL

2D: 100X100

QT2 44 32 % 6.4 % 7 % 8 % 4.4 % 9 %
QT3 16 18 % 6.4 % 4 % 10 % 4.4 % 9 %
QT4 11 14 % 12.6 % 10 % 7 % 0 % 7.9 %
QT5 23 32 % 17.6 % 9 % 10 % 10.8 % 10.9 %
QT7 12 22 % 12 % 9 % 5 % 3 % 3 %
QT8 50 42 % 10.6 % 10 % 11 % 3.7 % 6.8 %
QT9 44 33 % 9.3 % 4 % 7 % 0 % 8.2 %
QT10 17 19 % 3.8 % 4 % 10 % 0 % 7.4 %
QT11 16 14 % 18 % 8 % 9 % 0 % 1.1 %
QT16 32 16 % 8.5 % 10 % 10 % 0 % 5.9 %
QT17 12 25 % 14% 7 % 9 % 2 % 9%
QT18 8 16 % 4.5 % 8 % 7 % 9.1 % 8.4 %
QT20 33 31 % 19 % 7 % 10 % 0 % 7.8 %
QT21 42 31 % 9.5 % 6 % 8 % 0 % 8.2 %

2D: 300X300

QT5 31 61 % 4.9 % 0 % 3 % 7.7 % 9.9 %
QT8 92 27 % 13 % 10 % 11 % 5.7 % 10.6 %
QT9 91 39 % 11.3 % 3 % 5 % 5.2 % 8.5 %
QT21 48 5 % 4.7 % 0 % 1 % 0 % 3.9 %

Table 3.8: Class I : Efficiency for Exponential Distribution (θ = 10%) [OptCom ]

by optimizing around 40% of the points, GS PQO is able to generate extremely accurate

approximate plan diagrams.

Portability on Exponential Diagrams The earlier experiments were performed on

plan diagrams which have the query points uniformly distributed over the relational selec-

tivity space. Now we show portability of our algorithms for plan diagrams with exponential

query point distribution. With the exponential distribution, the density of points is max-

imum near the origin and becomes progressively lower moving outwards in the space.

The motivation for the exponential distribution stems from the observation in the liter-

ature [47, 48, 62, 63, 64] that plan density is often high around the origin and along the

axes, and it may therefore be useful, from a computational perspective, to focus the query

workload on these regions. Table 3.8 presents performance of both RS NN and GS PQO

algorithm on some of the complex TPC-H query templates with exponential distribution.
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The results suggests these algorithms are also applicable for exponential diagrams, with

around 5% increase in optimization overheads than its uniform counterpart. The increase

in overhead was expected as in case of exponential diagrams taming identity error itself

requires high sample size. The value of εL was measured in similar fashion as is done in

case of uniform query point distribution.

Estimator Performance Our next experiment studies the quality of the overhead esti-

mates provided by the estimators. The results shown in Table 3.9 indicates the estimation

quality of S-EST and G-EST with regard to actual approximation time taken by RS NN

and GS PQO respectively. We see here that, in general S-EST produces conservative

estimates, whereas estimations produced by G-EST are almost always close to the actual

approximation overheads.

3.5.2 Class II Optimizers

We now move on to demonstrate how the FPC feature, provided by Class II optimizers,

can be used to improve the performance of GS PQO. Tables 3.10 and 3.11 show the

effort required by GS PQO for obtaining approximate plan diagrams with θ = 10% on

the TPC-H and TPC-DS benchmarks, respectively. The “FPC (%)” column in both

Tables 3.5 and 3.6 indicates the percentage of FPC performed during the interpolation

phase to resolve ties. As can be seen from the results, the percentage FPC performed is

low compared to actual optimizations. Further we see here that GS PQO often reduces

the approximation overheads by a significant fraction as compared to the corresponding

numbers in Tables 3.5 and 3.6, testifying to the utility of FPC. As a case in point, the

13% overhead incurred by the 3D:100x100x100 flavor of QT9 with the Class I optimizer

is reduced to 8.5% with the Class II optimizer.

Another point to note is that the average value of εI increases for Class II optimizers

since we relax the value of ρt.

With an error bound of 1%, however, the role of FPC becomes limited since inference

is rare, and therefore the diagram approximation time is similar to that seen for Class I
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Dim/ Query Plans Actual RS NN S-EST GS PQO G-EST
Res Template # Gen

Time
Time Taken Estimation Time Taken Estimation

2D:
100X100

QT2 44 30 m 10 m 15 m 3 m 5 m
QT3 16 8 m 3.4 m 7 m 45 s 2 m
QT4 11 6 m 1 m 3 m 47 s ¡ 1 m
QT5 23 45 m 7 m 20 m 5 m 6 m
QT7 12 38 m 1 m 16 m 4 m 9 m
QT8 50 1 h 22 m 32 m 9 m 8 m
QT9 44 2 h 45 m 1.2 h 15 m 20 m
QT10 17 12 m 1 m 30 m 1 m ¡ 1 m
QT11 26 36 m 4 m 20 m 3 m 4 m
QT16 32 10 m 2 m 5 m 1 m ¡ 1m
QT17 12 21 m 1 m 9 m 1 m 5 m
QT18 8 1 h 12 m 24 m 3 m 11 m
QT20 33 4 h 1.6 h 2.2 h 16 m 31 m
QT21 84 30 m 4 m 14 m 5 m 6 m

2D:
300X300

QT2 76 4.3 h 1 h 1.8 h 13 m 26 m
QT3 22 1.7 h 30 m 1 hr 7 m 15 m
QT4 12 1 h 3 m 20 m 4 m 3 m
QT5 31 8.3 h 40 m 3 h 23 m 36 m
QT7 17 6 h 1 h 2.5 h 24 m 1 h
QT8 92 11 h 3.6 h 5.5 h 43 m 1.2 m
QT9 91 1.1 d 9 h 16 h 1.5 h 2.6 h
QT10 31 5 h 30 m 2 h 9 m 11.3 m
QT11 20 2.5 h 8 m 1 h 4 m 12 m
QT16 38 1.6 h 8 m 20 m 5 m 8 m
QT17 12 2.5 h 8 m 1 h 6 m 30 m
QT18 8 7 h 21 m 3 h 6 m 25 m
QT20 46 1.3 d 8.7 h 12 h 37 m 2.8 h
QT21 48 5 h 1 h 2.2 h 38 m 26 m

2D:1000 X
1000

QT8 132 6 d 29 h 2 d 3.3 h 4.2 h
QT9 125 10 d 3 d 4 d 4 h 13 h
QT21 58 2.2 d 8.6 h 1 d 47 m 58 m

3D:100X
100X100

QT8 190 6.5 d 2 d 3 d 17 h 23 h
QT9 404 10 d 3 d 4.2 d 1.3 d 2.5 d
QT21 130 3 d 1.2 d 1.8 d 10 h 16 h

4D:30X
30X30X30

QT8 243 5 d 23 h 20 h 15 h 22 h

Table 3.9: Performance of Estimators with TPC-H (θ = 10%) [OptCom ]

optimizers (Table 3.7).

3.5.3 Class III Optimizers

Turning our attention to Class III optimizers, we now evaluate the two algorithms, Plan-

Fill and Relaxed-PlanFill for TPC-H and TPC-DS benchmark queries. For this exper-

iment, the OptPub engine was modified to (a) implement the FPC feature internally,

and (b) to return the second best plan along with the optimal plan when the “ex-

plain”command is executed.
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Dim/ Query Plans Gen Time taken Samp- FPC GS PQO (%)
Res Templates # Time by GS PQO -les(%) (%) εI εL

2D:
100X100

QT2 44 0.5 h 2 m(6%) 6% 9% 6.8% 6.7%
QT3 16 8 m 40 s(8.6%) 8% 3% 6.3% 5.8%
QT4 11 6 m 47 s(9.7%) 10% 8% 0.0% 5.8%
QT5 23 45 m 4 m(8.3%) 8% 8% 0.0% 0.9%
QT7 12 38 m 3 m(8.2%) 8% 6% 0.0% 1.3%
QT8 50 1 h 5 m(8.2%) 8% 6% 6.0% 4.3%
QT9 44 2 h 10 m(8.9%) 9% 8% 2.3% 3.4%
QT10 17 12 m 44 s(6.1%) 6% 8% 0.0% 0.3%
QT11 16 36 m 1.2 m(3.4%) 3% 4% 6.3% 7.4%
QT16 32 10 m 37 s(6.2%) 6% 11% 3.1% 6.3%
QT17 12 21 m 1 s(5.5%) 5% 9% 0.0% 0.9%
QT18 8 1 h 3 m(4.6%) 5% 6% 0.0% 2.8%
QT20 33 4 h 7 m(2.8%) 3% 5% 9.1% 7.8%
QT21 42 30 m 3 m(8.3%) 8% 9% 4.8% 3.2%

2D:
300X300

QT2 76 9.6 h 6 m(2.2%) 2% 6% 5.3% 7.6%
QT3 22 1.7 h 6 m(5.8%) 6% 3% 0.0% 4.8%
QT4 12 1 h 3 m(5.7%) 5% 4% 0.0% 6.1%
QT5 31 8.3 h 15 m(2.9%) 3% 4% 6.5% 1.3%
QT7 17 6 h 10 m(2.7%) 3% 4% 5.9% 0.2%
QT8 92 11 h 22 m(3.5%) 4% 3% 2.2% 3.9%
QT9 91 1.1d 43 m(2.7%) 3% 2% 4.4% 5.8%
QT10 31 5 h 6 m(1.8%) 2% 4% 11% 2.9%
QT11 20 2.5 h 1 m(0.5%) 1% 3% 10% 6.7%
QT16 38 1.6 h 3 m(2.9%) 3% 11% 2.6% 6.9%
QT17 12 2.5 h 2 m(0.9%) 1% 3% 0.0% 1.3%
QT18 8 7 h 6 m(1.5%) 2% 3% 0.0% 3.5%
QT20 46 1.3 d 13 m(0.7%) 1% 4% 9% 6.2%
QT21 48 5 h 9 m(3%) 3% 10% 2.1% 1.3%

2D:1000
X1000

QT8 132 6 d 1.6 h(1.1%) 1% 2% 8.2% 3.9%
QT9 404 10 d 1 h(0.5%) 1% 1% 4.8% 11.6%
QT21 58 2.2d 15 m(0.5%) 1% 1% 6.9% 1.2%

3D:100X
100X100

QT8 190 6.5d 14.5h(9.5%) 9.1% 2% 1.6% 3.7%
QT9 404 10 d 21 h(8.5%) 8.3% 1% 7.3% 9.4%
QT21 130 3 d 6 h(8.5%) 8.0% 2% 1.5% 2.0%

3D:300X
300X300

QT8 314 4 mons 2 d(1.7%) 1.6% 3% - –
(GS PQO) (est)

4D:30X
30X30X30

QT8 243 5 d 12 h(10%) 9.7% 4% 4% 6%

Table 3.10: Class II : Efficiency with TPC-H (θ = 10%) [OptCom ]

PlanFill . The performance results for PlanFill are shown in Table 3.12 – due to the

change in database engine from OptCom to OptPub, the set of query templates with

“challenging” plan diagrams differs as compared to our earlier results. We observe that

PlanFill usually requires at most 10% optimizations to generate a completely accurate

plan diagram for all query templates, except those based on TPC-H Query 8 and TPC-

DS Query 18 and 19, the reason for which is discussed below. The good performance of

PlanFill can be attributed to the following: Along with the optimizations being performed

at select points, all points are costed exactly once. Further, since the FPC feature is

internalized in the optimizer, the ratio of plan-costing to plan-searching is approximately

1:100, making the overheads incurred very small.
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Dim/ Query Plans Gen Time taken Samples GS PQO (%)
Res Template # Time by GS PQO (%) εI εL

2D: 100X100

DSQT12 13 16 m 22 s(2.3%) 2% 0% 0%
DSQT17 39 6.7 h 31 m(6.6%) 7% 12% 5%
DSQT18 47 3.5 h 17 m(8.2%) 8% 2% 3%
DSQT19 36 2 h 9 m(7.5%) 7% 8% 7%
DSQT25 33 7 h 34 m(7.2%) 7% 9% 4%
DSQT25a 51 6.5 h 48 m(10%) 10% 0% 11%
DSQT25b 45 7.3 h 29 m(6.7%) 7% 0% 3%
DSQT50 10 1 hr 4 m(6.6%) 7% 0% 1%
DSQT76 18 1.5 h 10 m(12%) 12% 12% 10%

2D: 300X300

DSQT12 15 2.2 h 2 m(1.4%) 1% 11% 3%
DSQT18 81 1 d 46 m(3.2%) 3% 6% 3%
DSQT19 42 17 h 23 m(2.3%) 2% 2% 6%
DSQT29 37 3 d 3 h(3.8%) 4% 3% 4%

3D:100X100X100 DSQT19 167 10 d 20 h(8.5%) 8% 3% 12%

Table 3.11: Class II : Efficiency with TPC-DS (θ = 10%) [OptCom ]

Dim/ Query Plans Exhaustive Time taken Optimizations
Res Template # Gen time by PlanFill by PlanFill (%)

2D:1000
X1000

QT5 22 5 h 20 m 4 m (1%) 0.17 %
QT8 20 6 h 10 m 2 h 47 m (45%) 44 %
QT9 16 6 h 40 m 40 m (10%) 7.4 %

3D:100X
100X100

QT5 23 5 h 48 m 13m (3%) 2.4 %
QT8 49 5 h 58 m 2 h 2 m (34%) 32 %
QT9 22 6 h 45 m 5 m (2%) 0.24 %

4D:30X
30X30X30

QT5 37 4 h 50 m 25 m (8%) 5.8 %
QT8 62 4 h 30 m 1 hr 18 m (29%) 26 %
QT9 28 6 h 10 m 7 m (2%) 0.7 %

2D:1000X
1000

DSQT7 17 5 h 24 m 30 m (7.8%) 6 %
DSQT18 27 6 h 12 m 2 h (34%) 32 %
DSQT19 79 8 h 31 m 2 h 15 m (26%) 23 %
DSQT26 24 6 h 42 m 35 m (8.6%) 7 %

Table 3.12: Class III : Zero-error Efficiency[OptPub ]

Though an investment of 10% optimizations is usually the order of the day, there are

occasional scenarios when the PlanFill algorithm requires a substantially larger number

of optimizations to generate the plan diagram. Such a situation is seen for QT8,DSQT18

and DSQT19 – the reason is that the cost of the second best plan is extremely close to that

of the optimal plan over an extended region. Even though the actual plan switch occurs

much later, this close-to-optimal cost causes the algorithm to optimize at frequent intervals

as the constraint c1(q
′) ≤ c2(q) is easily violated leading to the algorithm “panicking too

quickly” and choosing to optimize a large number of unnecessary points.

Relaxed-PlanFill . Turning our attention to the Relaxed-PlanFill algorithm, whose

performance is presented in Table 3.13 for a 10% error bound, we find that it consistently

generates approximate plan diagrams while performing less than 5% optimizations. Fur-
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Dim/ Query Plans Gen Approximation Samples Error (%)
Res Templates # Time Time (%) εI εL

2D:1000
X1000

QT5 22 5 h 20 m 3 m (2.4%) 1.8 % 16.6 % 2.6 %
QT8 20 6 h 10 m 9 m (9%) 7.9 % 0 % 2.8 %
QT9 16 6 h 40 m 4 m (3%) 2.1 % 0 % 0.8 %

3D:100X
100X100

QT5 23 5 h 48 m 10 m (3%) 1.7 % 9 % 3 %
QT8 49 5 h 58 m 17 m (5%) 3.4 % 12 % 0.3
QT9 22 6 h 45 m 4 m (1%) 0.06 % 18 % 10%

4D:30X
30X30X30

QT5 37 4 h 50 m 20 m (7%) 4.5 % 11 % 1 %
QT8 62 4 h 30 m 10 m (4%) 1.9 % 6 % 5%
QT9 28 6 h 10 m 5 m (1%) 0.3 % 18 % 13 %

2D:1000X
1000

DSQT7 17 5 h 24 m 6 m (1.8%) 0.6 % 5.8 % 7.9 %
DSQT18 27 6 h 12 m 18 m (5%) 4.5 % 3.7% 3.8%
DSQT19 79 8 h 31 m 42 m (8.2%) 7 % 12 % 10.6%
DSQT26 24 6 h 42 m 12 m (3%) 1.5 % 8.3 % 9.4 %

Table 3.13: Class III : Relaxed-PlanFill Efficiency (θ = 10%) [OptPub ]

ther and very importantly, even for the problematic QT8,DSQT18 and DSQT19, due to

the relaxation of the effect of the proximity of the second best plan, the plan diagram is

now obtained incurring only a small overhead. Finally, the apparently high identity error

of 18% for the 4D QT9 query template is an artifact of the low number of plans (28) in

the original plan diagram.

In Table 3.13, the maximum number of plans produced by a query template is only

49 which is much below 100 – therefore, the performance of Relaxed-PlanFill for θ = 1%

is equivalent to that of PlanFill , which can be viewed as Relaxed-PlanFill with θ = 0%.

A related point to note is that unlike the Optimizer I and II classes where the time

and optimization overheads are virtually identical, here the time overheads are a little

more than that of optimization. The reason is that although FPC is very cheap, since it

has to be invoked for a very large number of points, a small but perceptible time overhead

results.

3.5.4 Cost Increase Due to Approximation

A legitimate concern in generating and using approximate plan diagrams is the following:

In the erroneous locations, where a different plan has been assigned as compared to the

original diagram, is it possible that the substitute plan’s (estimated) cost performance

is significantly worse than that of the original choice? Our experience is that the cost

increase is only a few percent – this is quantified below in Table 3.14, which shows the
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maximum cost increase incurred in the erroneous locations, for a representative set of

query templates. The experiments were performed for θ = 10% and θ = 20%, by applying

FPC at the erroneous locations and comparing with the actual cost of true plan there.

The average error found for individual diagram is small, in fact according to our

observation more than 80% of the erroneous points suffer lower than 10% error. Most of

the errors occur near the boundary of larger plans or towards higher selectivity region.

Note that the number of observations for TPC-H got reduced from 200 to 50 from

θ = 10% to θ = 20%. This is due to the fact that we had to ignore plan diagrams with

< 20 plans.

Database θI # of Templates) Max Cost error (%) Avg Cost error (%)
TPC-H 10% 200 27% 2%
TPC-H 20% 50 45% 2.5%
TPC-DS 10% 60 31% 2%
TPC-DS 20% 20 50% 2%

Table 3.14: Cost Increase induced by Approximation



Chapter 4

Cost Diagram Approximation

In this chapter we present methods to generate approximate cost diagrams for the three

different classes of optimizers. Our approximation procedure does not involve further

optimizations and works after the plan diagram approximation has completed. Essentially,

the approximation process is required only for Class I optimizers. The FPC feature

supported by Class II and III optimizers is capable of generating the exact cost diagram

associated with the approximate plan diagram by explicitly costing each inferred point.

However, for Class II an extra overhead is added due to this. The algorithms developed

for Class III perform costing at each point as a part of the process, hence the cost diagram

is granted as a bonus.

Let us consider the true cost of a query point q(x, y) in P is cP (q) and with our

approximation technique the cost value is estimated as cA(q) in A. We denote max(cP ) =

cP (qn) as the maximum cost of a query point in P, which is the cost of the top-right

query point qn assuming that the CDP is not violated. First we will define the absolute

and relative error metric εabs(ci) and εrel(ci) to measure the cost approximation error

incurred at point qi between P and A. We then define the combined metric ε(ci) used for

the practical purposes. This metric is intended to reduce the large % error artificially

73
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induced by very low cost value.

εabs(ci) = |cP (qi)− cA(qi)|
εrel(ci) =

|cP (qi)− cA(qi)|
cP (qi)

ε(ci) = min{βabs × εabs(ci), βrel × εrel(ci)}

We use βabs = 1, βrel = 100. Now εMAX and εRMS as defined in Section 1.5 are calculated

as:

εMAX(%) = maxn
i=1 ε(ci)

εRMS(%) =

√√√√ 1

n

n∑
i=1

(
εabs(ci)

max(cP )

)2

The normalization with respect to max(cP ) helps in comparing errors of two different cost

diagrams in terms of their quality of approximation.

4.1 Class I optimizers

Using empirical assessment of plan cost behavior, a generalized cost function associated

with a query execution plan was proposed recently in [19]. For a d-dimensional selectivity

space the cost model defined in [19] is given by:

Cost(x1, ..., xd) =
∑
i1

(ai1xi1 + bi1xi1 log xi1)

+
∑
i1<i2

(ai1i2xi1xi2 + bi1i2xi1xi2 log xi1xi2)

+... + a12..d(x1x2x3..xd)

+b12..d(x1x2x3..xd) log(x1x2x3..xd) + a0 (4.1.1)

where the a’s and b’s are the coefficients and the xi, i = 1...d represent the d relational

selectivities.

For ease of exposition, from here onwards we will assume 2D selectivity space, where the

variables x and y denote the selectivity along the two dimensions. The cost function for

2D selectivity space is defined as,

Cost(x, y) = a0 + a1x + a2y + a3xy + a4xlog x + a5ylog y + a6xylog xy (4.1.2)
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4.1.1 Cost value interpolation with Regression

We estimate the cost values for the un-optimized points in the following steps.

1. For each plan, say pk among the αs plans discovered by s optimizations,

(a) Extract the cost values associated with the optimized points occupied by pk.

(b) Fit the function defined in Equation 4.1.2 with these data points (i.e. selec-

tivities and costs) using linear least square regression method. Let us call the

cost function of pk as costk(x, y).

2. For each un-optimized point qin inferred with the plan pk, evaluate cA(qin) by pro-

viding selectivities of qin to the function costk(xin, yin).

4.1.2 Approximation Errors

The simple approach described above is not enough to generate a high quality cost diagram

because there are some side-effects, discussed later, associated with the least square re-

gression technique. We address some of these problems inherent to the regression method

and propose solutions to counteract them.

4.1.2.1 Scarcity of Training Data

One of the problems encountered is the unavailability of adequate number of optimized

points for fitting the model for each plan, present in the approximate plan diagram. This

ocurrs due to plan skew where most of the plans occupy very few query points in the true

diagram and even fewer optimized points in the approximate diagram. For example if

a plan appears in less than 7 optimized points in a 2D approximate plan diagram, the

quality of the function (according to Equation 4.1.2) fitted through regression becomes

questionable.

Solution: Our experience has been that all the terms (a0, a1, . . . , a6) present in the cost

model may not be necessary to express each and every plan cost function e.g. we can
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ignore the “log” terms in absence of Sort operator in the respective plan tree. Therefore

one simple approach to address this issue would be to throw or keep terms according to

their contribution in defining the cost model. This relates to a well known area of research

known as Perturbation Analysis [44]. Perturbation analysis asks how some quantity will

change as a result of changes in one or more underlying parameters. We explore a game

theoretic approach for performing the perturbation analysis of our cost model. Before

moving ahead, we provide a brief background of Coalitional Games and Shapley Value

which will be used later to illustrate the solution procedure.

Coalitional Games: A coalitional model [59] focuses on what groups of players can

achieve rather than on what individual players can do. We now describe a simple version

of a coalitional game, namely a coalitional game with transferable payoff [59] (transferable

payoff means that there is no restriction on how the total payoff may be divided among

the members of a group).

Coalitional Games with transferable payoff: Formally, the game is a finite set of

players G, called the grand coalition and a characteristic function v : 2G → <≥0. v has

the following properties,

1. v(Φ) = 0

2. v(S ∪ T ) ≥ v(S) + v(T ), whenever S ∩ T = Φ

The interpretation of the function v is as follows: if S is a coalition of players which agree to

cooperate, then v(S) describes the total expected gain from this cooperation, independent

of what the players outside of S do. The additivity condition (second property) expresses

the fact that collaboration can only help but never hurt.

Shapley Value: In game theory, a Shapley value describes one approach to the fair

allocation of gains obtained by cooperation among several players.

The Shapley value is one way to distribute the total gains to the players, assuming

that they all collaborate. The amount a player i gets which is equal to his/her expected
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marginal contribution to all possible sub-coalition is defined as,

φi(v) =
∑

S⊆G\{i}

|S|! (ω − |S| − 1)!

ω!
(v(S ∪ {i})− v(S)) (4.1.3)

where ω = |G| is the total number of players and the sum extends over all subsets S of

G not containing player i. The formula can be justified if one imagines the coalition being

formed one player at a time, with each player demanding their contribution v(S ∩ i)v(S)

as a fair compensation, and then averaging over the possible different permutations in

which the coalition can be formed.

Mapping our Problem to Game theory: In our case the players participating in the

coalitional game are the individual terms (a0, a1 . . . a6) participating in defining the cost

model. We are trying to find out contribution of each such term through computing the

Shapley value. To do the same, we need to eliminate the terms and redo the model fitting

iteratively. Now as the characteristic function we use the Goodness of Fit [72] factor of

the cost model perturbed through removing the associated parameters.

Goodness of Fit: The Goodness of Fit of a statistical model describes how well it fits

a set of observations. Measures of Goodness of Fit typically summarize the discrepancy

between observed values and the values expected under the model in question. One of

the popular Goodness of Fit test is the Coefficient of Determination(R2) Test [72],

which represents the proportion of variability in the observed(Yi) and expected(Ŷi) data.

It requires measuring the Sum of Squares due to Error (SSE) of the data (Yi), which is
∑n

i=1(Yi− Ŷi)
2 and Total Sum of Squares (SST), which is

∑n
i=1(Yi− Ȳ )2, where Ȳ is mean

of the observed data. The final value of R2 is determined as,

R2 = 1− SSE

SST
(4.1.4)

One obvious question that might arise is “Why not use the RMS Error instead of

R2?”. The reason is that RMSE value is a good representative of Goodness of Fit, given

that the model is estimated over the entire population, not just on the samples drawn
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from the population. In our case we determine the R2 value on the set of sample points.

This method of perturbing the cost model can be closely related to the stream of

research known as Multi-perturbation Shapley value Analysis (MSA)[16, 53]. MSA eval-

uates the functional contributions by viewing a set of multi-perturbation experiments as

a coalitional game as we do. In MSA the desired set of contributions is calculated by

the Shapley value too, capturing the unique fair division of the each of function-terms

performance. The higher an elements contribution according to the Shapley value, the

larger is the part it causally plays in the successful performance of the function.

Algorithm 4 Cost model dimensionality reduction

ModelForLowDim(NumCoeffs ω, Plan pk,CostFunction costFunck)
1: Generate all possible strings from 0 and 1 of size ω.
2: Set a mapping between each function term to each position in the string.
3: for each term ak, k = 1 to ω do
4: for each such string from i = 1 to 2ω such that the kth position is 0 do
5: Build a function costi consisting of terms whose corresponding positions are 1 in the

string i. {we can reuse this value for subsequent iteration}
6: Curve fit with costi (for plan pk).
7: Evaluate R2

i for costk
8: Curve fit with costki = costi ∪ kth term (for plan pk).
9: Evaluate R2

ki for costki

10: Calculate value φki = ωi!(ω−ωi−1)!
ω!

(
R2

ki −R2
i

)
, where ωi is the no. of terms in costi.

11: end for
12: Calculate Shapley value φk as

∑
φki.

13: end for
14: return s(pk) terms with highest Shapley value.

Our method works by starting with a full model and then starts dropping 1, 2 . . . ω

terms one at a time. After Shapley value is calculated for each of the terms, we keep the

top s(pk) terms where s(pk) is the number of optimized points available for fitting.

4.1.2.2 Effect of Extrapolation

Whenever a linear regression model is fitted to a group of data, the range of the data

should be carefully observed. Prediction outside the range of the data used to construct

the model is known as extrapolation (refer to Figure 4.1(a)) and it is risky. The range of
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(a) Extrapolation (Source:
http://en.wikipedia.org/wiki/Extrapolation)

(b) Set of optimized points (c) Convex Polytope formed by the
points

Figure 4.1: Convex Polytope (Source: http://xcellerator.info/mPower/pages/convexHull.html)

the data deciding cost function of a plan can be described as the Convex Polytope (refer

to Figure 4.1) formed in A. Therefore, inferring cost value with the same function at a

query point lying outside the convex polytope of the plan can be treated as extrapolation

in our scenario. Introduction of this error is highly probable in our approach, as at the

time of inferring the un-optimized points we inflate the area of an individual plan than

that is covered by the optimized points in A.
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Solution: We can first extract the convex polytope (CPk for plan pk) formed by the

optimized points in A and refrain from using the cost model developed for the interior

points to estimate cost for the exterior points. However, algorithms designed for extracting

convex polytopes are computationally expensive and their high dimensional counterparts

are not so popularly known in practice. Fortunately we can bypass identification of convex

polytope to tell if a point q lies inside CPk by checking whether or not q can be expressed

as convex combination of all the optimized points inside CPk. This can be obtained

efficiently by checking if feasible solution to the standard form linear programming (LP)

problem with degenerate objective function exists or not. The function is of the form

Ax = b, where A is a [d× nk] matrix, nk being the number of points lying inside CPk in

a d dimensional selectivity space. b is [d × 1] matrix representing the coordinates of the

point q. Therefore solution for x which is a [nk × 1] matrix, will give the desired linear

combination. All we have to check is if ∀i, 0 ≤ xi ≤ 1 and
∑nk

i=1xi = 1, where xi is the ith

entry of the solution matrix x.

However, it would become tremendously expensive if we intend to check this for all the

un-optimized query points in selectivity space, which can be around 90% if approximation

with GS PQO algorithm is employed. Fortunately, we can reduce the effort by considering

only those points which are assigned with a plan covering ≤ 50% optimized points at the

nearest neighbor. For a 90% accurate diagram this reduces the target points to roughly

around 10%(empirically verified). We check the LP solution for these points and if they

actually lie exterior to the plan polytope then we apply linear extrapolation technique

to infer the cost value instead of using the cost model defined for the points inside the

polytope. Note that, since we only consider optimized points to construct the matrix A,

nk is limited to a small value and hence the matrix solution does not impose significant

overheads.

The outline of this method is described in Algorithm 5.

One can raise a question about the choice of linear extrapolation over polynomial or

other popular nonlinear techniques. However, in our case as the extrapolation bandwidth

i.e. the plan boundary is limited to a reasonably small value, we find linear extrapolation
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Algorithm 5 Extrapolating cost model

TreatExtrapolationNOutliers(SetofPoints Q)
1: for all un-optimized point qi such that 0 ≤ i < n, from the set Q do
2: if qi is inferred by a plan occupying ≤ 50% of optimized points then
3: set eF lag[qi] = true
4: else
5: set eF lag[qi] = false
6: end if
7: end for
8: for all inferred point qi such that 0 ≤ i < n, from the set Q do
9: if eF lag[qi == true then

10: Find solution of Ax = b.
11: if [∀i, 0 ≤ xi ≤ 1 and

∑nk
i=1xi = 1] is violated then

12: find two nearest optimized points q1 and q2 in the direction of the center of the
polytope.

13: if two such points are found then
14: set c(qin) = c(q1) + dist(qin−q1)

dist(q2−q1) × (c(q2)− c(q1))
15: else if only one such point found then
16: apply linear scaling to determine the cost using distance from origin.
17: end if
18: end if
19: end if
20: end for

sufficient for our purpose. Note that for finding out the matrix solution we can not use

standard LU decomposition scheme as the matrix in this case may not be square. We

apply QR decomposition scheme to obtain the same. The implementation details are

given in Section 6.

4.2 Class II optimizer

For Class II optimizers with FPC, the exact cost diagram respective to the approximate

plan diagram can be obtained without doing the regression and interpolation steps men-

tioned in the previous section. An additional overhead is incurred due to this e.g. if

there are 90% inferred points in the diagram hence performing FPC on all of them would

add an overhead of 9% (considering one FPC operation takes 1
10

th
of the optimization).

The errors incurred in Class II cost diagrams obtained through FPC are due to location

error only, where costing a sub-optimal plan can give rise to spikes in the cost diagram.
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However, location error incurred in Class II is low as we use FPC to resolve ties between

different plans contending at an un-optimized points.

Alternative approach for Class II. For Class II optimizers we can perform a better

job of cost inference without explicitly executing FPC on every query point. We can

perform FPC only at points which suffer from extrapolation or curse of dimensionality

error. Empirically we have seen these reduces around 50% of the total FPC cost keeping

the quality of final cost diagram comparable to the earlier approach.

4.3 Class III optimizer

The Class III algorithms i.e. PlanFill and Relaxed-PlanFill both operate by costing the

entire query space at least once, therefore cost diagram is a byproduct of the algorithm

itself. For PlanFill we obtain the zero error approximation of cost diagram. Whereas

Relaxed-PlanFill admits error in cost diagram approximation at the points suffering lo-

cation error similar to the Class II diagrams.

4.4 Experimental Results

We use the same experimental setup as the one described in Section 3.5, for plan diagram

approximation experiments. In the remainder of this section we present performance of

cost diagram approximation. Note that we do not optimize any further query points

during this process. These error measurements are different from the results shown in

Table 3.14 which showed how much damage one can suffer by choosing the sub-optimal

plans from the erroneous locations of A. This section strictly speaks about efficiency of the

cost diagram approximation techniques. So another aspect of approximation efficiency in

this case relies on how well the cost of a plan outside its optimality region can be estimated.

The performance of cost approximation technique is presented in Table 4.1. To mea-

sure the percentage error at a point, we evaluate the difference between the actual cost of

the plan assigned at that point and the estimated value both taken strictly from A. For
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points suffering location error we determine the actual cost by performing FPC (available

with OptCom) at that point feeding the inferred plan as an input. We showcase results

produced only by GS PQO. The approximation errors will be prevalent in GS PQO as it

involves lesser number of optimizations.

We have shown results for both the naive and corrected interpolation techniques. It is

evident that in terms of quality we gained a lot with the corrected version of interpolation

technique. Specifically for QT8, the 100-3D diagram, the error(εmax was improved from

100% to 25%, similarly for DSQT25b there is a drastic improvement from 9289.58% to

0.65%. Note that, we did not allow assignment of negative cost values in any of the

techniques mentioned. In both the cases if the model estimates negative value, we ignore

that value and assign cost of the nearest neighbor.

Figure 4.2 demonstrates the approximation quality for some of the complex diagrams

encountered by us. The shape of the diagrams are retained well after approximation,

though the existence of unevenness in the diagram is mainly due to presence of small

plans there. As an example in Figure 4.2(f), the small spikes in the cost diagram is due

to introduction of location error around those region of the plan diagram.
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Dimension Query W/O Correction With Correction
/Resolution Template εmax (%) εRMS(%) εmax (%) εRMS(%)

2D:100X100

QT2 26.35 % 2.40 % 26.35 % 2.40 %
QT3 68.87 % 6.57 % 5.65 % 1.10 %
QT4 3.14 % 0.29 % 3.14 % 0.29 %
QT5 20.02 % 1.22 % 6.71 % 1.19 %
QT7 19.50 % 2.20 % 11.91 % 1.36 %
QT8 74.24 % 2.06 % 2.17 % 0.40 %
QT9 71.23 % 11.30 % 4.06 % 0.19 %
QT10 83.70 % 1.19 % 6.07 % 0.13 %
QT11 50.80 % 17.66 % 0.55 % 0.04 %
QT16 7.82 % 0.47 % 4.24 % 0.45 %
QT17 5.61 % 0.12 % 0.32 % 0.06 %
QT18 4.90 % 0.21 % 0.81 % 0.07 %
QT20 86.30 % 8.03 % 0.37 % 0.06 %
QT21 9.93 % 1.45 % 9.93 % 1.47 %

2D:300X300

QT2 82.00 % 9.36 % 42.30 % 3.20 %
QT3 65.56 % 1.17 % 4.74 % 0.96 %
QT4 7.28 % 0.41 % 7.28 % 0.41 %
QT5 53.00 % 41.63 % 8.12 % 1.21 %
QT7 36.10 % 1.72 % 22.39 % 1.68 %
QT8 70.65 % 1.31 % 1.75 % 0.19 %
QT9 72.73 % 1.32 % 1.32 % 0.27 %
QT10 115.00 % 13.07 % 46.00 % 3.10 %
QT11 0.58 % 0.05 % 0.58 % 0.05 %
QT16 6.61 % 0.53 % 4.29 % 0.49 %
QT17 0.48 % 0.06 % 0.48 % 0.06 %
QT18 6.35 % 0.30 % 5.43 % 0.29 %
QT20 42.00 % 6.40 % 12.90 % 2.10 %
QT21 13.06 % 1.39 % 13.06 % 1.35 %

2D:1000X1000
QT8 69.35 % 0.48 % 1.85 % 0.40 %
QT16 92 % 8.50 % 6.69 % 0.10 %
QT21 25.44 % 1.49 % 16.86 % 1.57 %

3D:100X100X100
QT8 100 % 22.00 % 25.83 % 0.37 %
QT9 49 % 18.90 % 16.92 % 0.37 %
QT21 72.96 % 10.15 % 13.09 % 2.89 %

2D:100X100

DSQT2 0.28 % 0.03 % 0.28 % 0.03 %
DSQT17 78.26 % 4.20 % 1.98 % 0.05 %
DSQT18 67.70 % 5.80 % 7.78 % 0.76 %
DSQT19 67.35 % 4.31 % 9.00 % 0.66 %
DSQT25 94.31 % 2.78 % 7.91 % 0.25 %
DSQT25a 2.16 % 0.15 % 2.16 % 0.16 %
DSQT25b 9289.58 % 109.80 % 0.65 % 0.06 %
DSQT50 3.90 % 1.04 % 3.90 % 1.04 %
DSQT76 71.21 % 6.47 % 35.00 % 1.50 %

2D:300X300

DSQT12 17.02 % 8.24 % 11.14 % 3.93 %
DSQT18 48.46 % 6.63 % 17.14 % 0.95 %
DSQT19 50.00 % 37.90 % 12.76 % 0.69 %
DSQT28 15.94 % 0.48 % 14.92 % 0.36 %

3D:100X100X100 DSQT19 73.52 % 1.73 % 15.47 % 0.72 %

Table 4.1: Cost approximation error for 90% accurate plan diagram
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(a) Original Cost Diagram : QT7
(TPC-H)

(b) Approx Cost Diagram : QT7
(TPC-H)

(c) Original Cost Diagram : QT10
(TPC-H)

(d) Approx Cost Diagram : QT10
(TPC-H)

(e) Original Cost Diagram : QT21
(TPC-H)

(f) Approx Cost Diagram : QT21
(TPC-H)

Figure 4.2: Qualitative Performance of Cost Approximation



Chapter 5

Cardinality Diagram Approximation

Having considered plan and cost diagrams, in this chapter we move on to discussing tech-

niques to approximate the last type of Optimizer Diagrams namely cardinality diagrams.

We begin by designing a parametrized mathematical model for characterizing plan

cardinality behavior using a similar approach to that made for cost presented in [19], which

was discussed in the previous chapter. The cardinality estimation techniques adopted

by different database query optimizers are mostly implemented as an extension to the

pioneering work presented in [68]. Our model also tries to capture the same. We have

found in practice that with appropriate settings of the parameters our model is quite

accurate with many distinct cardinality diagrams arising out of TPC-H and TPC-DS-

based query templates on industrial optimizers, both behaviorally and quantitatively.

Let us consider the true cardinality of a query point q(x, y) in P is CP (q) and with

our approximation technique the cardinality value is estimated as CA(q) in A. We denote

max(CP ) = maxn
j=1 CP (qj) as the maximum cardinality of a query point obtained in P.

The quality metrics used are similar to that defined in Chapter 4 for cost approximation.

The metrics εabs(Ci), εrel(Ci) and ε(Ci) are defined below.

εabs(Ci) = |CP (qi)− CA(qi)|
εrel(Ci) =

|CP (qi)− CA(qi)|
CP (qi)

ε(Ci) = min{βabs × εabs(Ci), βrel × εrel(Ci)}

86
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Similar to cost approximation, we use βabs = 1, βrel = 100. εMAX and εRMS are calculated

as:

εMAX(%) = maxn
i=1 ε(Ci)

εRMS(%) =

√√√√ 1

n

n∑
i=1

(
εabs(Ci)

max(CP )

)2

5.1 Query Cardinality Model

We start by deriving the final output cardinality according to the contribution made by

different kinds of nodes in a plan tree. We then present the final cardinality model.

5.1.1 Cardinality Derivation

Let us study the plan operator tree generated by a 2D query template shown in Figure 5.1.

In current optimizers, the operators in the execution plan tree are all typically either unary

or binary with regard to their inputs. Cardinality on each relational operator or node is

derived bottom up. There are only three kinds of Dependent Nodes([19]) affecting the

output cardinality. The node types are shown in Figure 5.1 and described below.

1. Filter Node: Unary nodes with the range or equality predicates on scalar-valued

attributes are categorized as Filter Nodes. Note that Filter Node on base relations

are the Selectivity Nodes defined in [19]. There may be other filter nodes present at

the upper part of a plan tree also for example arising due to presence of HAVING

clause. The blue nodes in Figure 5.1 denote the filter nodes.

2. Join Node: These are binary nodes that host the join clauses between two relations.

In Figure 5.1 the red colored nodes are join nodes.

3. Aggregate Node: These unary nodes perform aggregation (COUNT, SUM,

AVG, MAX etc) of the results according to the specifications declared with the

“GROUP BY” clause. For example the green nodes in Figure 5.1, are aggregate

nodes.
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Figure 5.1: Different predicates in a Plan Tree (TPCH - Query Template 18)

5.1.2 Node Cardinality Model

For ease of presentation, we will initially assume that our objective is to model the be-

havior of the cardinality diagram with respect to a 2D selectivity space. We will assume

variable x and y denote the selectivities on respective dimensions and Rx and Ry as the

relations contributing “Selectivity Predicates”. Let us consider Ax and Ay are the at-

tributes involved.

Note that x and y are obtained after going through the initial Filter Node on the base

relations. We derive the model as below,

1. Filter Node: As mentioned earlier, Filter nodes on base relations are nothing but

Selectivity Nodes, whose cardinality model can be expressed as a linear function

of x,y and xy as shown in Figure 5.2(a). However, presence of filter above the
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(a) Filter Nodes

(b) Join Nodes

(c) Aggregate Nodes

Figure 5.2: Cardinality Model of Dependent Nodes

Selectivity Nodes can produce a clamping effect on the final output cardinality. We

will discuss how we modeled this later in this section.

2. Join Node: With the similar arguments as given in [19] we can model the output

cardinality of a Join Node as shown in Figure 5.2(b) with a1, . . . a4 being coefficients.

3. Aggregate Node: In the Aggregate Nodes, if there is no grouping column then

output cardinality of the aggregate node is 1. Otherwise the final value is then

clamped according to the maximum possible output row count. Note that clamping
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of output for this node can occur only around the end part of the cardinality diagram.

We use logarithmic model to capture this nature of Aggregate Nodes. The model

associated with aggregate node is shown in Figure 5.2(c).

Modeling the Flat regions. We first start by restricting ourselves only to monotonic

cardinality diagrams. These means that the we will concentrate on flat regions present

either at the lowest or highest selectivity regions. Now the log terms introduced is capable

to imitate the flat regions with limited spread (around 25% of the diagram). Therefore, we

refine our final cardinality model by introducing two additional expressions which enable

us to represent a cardinality diagram with one or more extended flat regions. The idea is

to first check the quality of model, only if it is not sufficient we use these extra terms to

represent a complete cardinality model.

5.1.3 Complete Cardinality Model

The final output cardinality of a query point can be expressed as the aggregate sum of

the cardinality values of the individual nodes. As mentioned earlier to capture the flat

regions in the cardinality model which the logarithmic terms can not, we introduce two

extra terms. The part related to Cmin and Cmax takes care of the extended flat regions

present in the cardinality diagram and rest of the points are modeled by the second part

of the function. The final model for 2D diagram looks like,

Card(x, y) =





Cmin if x ≤ xmin and y ≤ ymin

Cmax if x ≥ xmax and y ≥ ymax

(a1x + a2y + a3xy + a4xlog(x) + a5ylog(y) otherwise

+a6xylog(xy) + a7)

(5.1.1)
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Extension to d-dimension is also straight forward,

Card(x1, ..., xd) =





Cmin if xi ≤ xi
(min)

Cmax if xi ≥ xi
(max)

∑
i1

(ai1xi1 + bi1xi1 log xi1) otherwise

+
∑

i1<i2
(ai1i2xi1xi2 + bi1i2xi1xi2 log xi1xi2)

+ . . . + a12...d(x1x2x3 . . . xd)

+b12...d(x1x2x3 . . . xd) log(x1x2x3 . . . xd) + a0

(5.1.2)

where i = 1, 2 . . . d. From here onwards we will refer the Cmin and Cmax related terms as

first part of the model and the remaining terms as second part.

5.2 Cardinality value interpolation with Regression

Following similar approach as mentioned in Section 4.1.1 we estimate the cardinality

values for the un-optimized points in the following steps.

1. Extract the cardinality values associated with the optimized points.

2. Fit them into the function defined in Equation 5.1.1. Let us call the cardinality

function of as card(x, y).

3. For each un-optimized point qin, estimate CA(qin) by feeding selectivities of qin to

the function card(xin, yin).

However the major differences from the cost interpolation technique are first a) we fit

the model for all the optimized points in the diagram i.e. we derive one cardinality model

for a diagram and secondly b)the process of fitting the cardinality model to data can

not be done entirely through linear least square regression technique. We use DBSCAN

clustering mechanism to determine the values related to Cmin and Cmax as described in

the next section.
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5.3 Density-Based Spatial Clustering of Applications

with Noise (DBSCAN)

DBSCAN algorithm is used later in this chapter for determining parameters related to

the first part of the cardinality model. Here we briefly describe working of this algorithm

and its relation to cardinality diagram approximation.

(a) Set of data points (b) Final Clusters

Figure 5.3: Example of clustering by DBSCAN

The algorithm DBSCAN, based on the formal notion of density-reachability for d-

dimensional points, is designed to discover clusters of arbitrary shape. The runtime of

the algorithm is of the order O(nlogn) if region queries are efficiently supported by spatial

index structures (such as R* tree), i.e. at least in moderately dimensional spaces. The

brute-force approach is of order O(n2). The key idea is that for each point of a cluster

the neighborhood of a given radius has to contain at least a minimum number of points,

i.e. the density in the neighborhood has to exceed some threshold. The shape of a

neighborhood is determined by the choice of a distance function for two points p and

q, denoted by dist(p, q). For instance, when using the Manhattan distance in 2D space,

the shape of the neighborhood is rectangular. DBSCAN requires two parameters: cluster

radius (l) and minimum points (m). It starts with an arbitrary starting point that has

not been visited. It then finds all the neighboring points within distance l of the starting

point. If the number of neighbors is greater than or equal to m, a cluster is formed.
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The starting point and its neighbors are added to this cluster and the starting point is

marked as visited. The algorithm then repeats the evaluation process for all the neighbors

recursively. If the number of neighbors is less than m, the point is marked as noise. If a

cluster is fully expanded (all points within reach are visited) then the algorithm proceeds

to iterate through the remaining unvisited points in the data set. A graphical illustration

of DBSCAN is shown in Figure 5.3.

The outline of DBSCAN algorithm is given below:

Algorithm 6 DBSCAN

DBSCAN(ClusterRadius l,MinSize m,Data D,Cluster Φ,ClusterNo Φlast)
1: for each unvisited point qu in data set D do
2: N ← getNeighbors(qu, l)
3: if sizeof(N) < m then
4: Mark qu as NOISE
5: else
6: + + Φlast.
7: Mark qu as visited.
8: Add qu to cluster Φ.
9: DBSCAN(l,m,D,φ,Φlast).

10: end if
11: end for

5.3.1 Interpretation of DBSCAN in our setup

We use DBSCAN to retrieve clusters consisting of query points with very close cardinality

values and are continuous in selectivity region, hence both the BORDER and CORE

points belong to a cluster in our case. In this process the query points categorized as

NOISE are the uninteresting points i.e. they will be fitted through the second part of the

cardinality model defined in Equation 5.1.2 through the least square regression technique.

Note that all the points dealt with are genuine points and these terms have nothing to

do with the quality of individual cardinality values. The related parameters are set as

described below.

1. The feature set contains two attributes, cardinality, selectivity.

2. The initial values are set to l = 0.001 and m = 0.05× n.
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3. The distance between two neighboring points here means the absolute difference in

their cardinality values and the chessboard distance in selectivities.

5.4 Class I Optimizers

Similar to cost diagram approximation, we consider the approximate plan diagram as an

input for cardinality approximation. But unlike cost, cardinality function is determined

for the entire plan diagram rather than for individual plans. The cardinality model derived

above involves 13 parameters in 2D selectivity space.

5.4.1 Approximation techniques

Our approximation technique starts by fitting the second part of cardinality model (as

defined in Equation 5.1.2) with the set of optimized data points obtained after plan

diagram approximation. We use linear least square regression technique for this purpose.

After which we calculate the Goodness of Fit of the regression with R2 test defined in

Equation 4.1.4 in the previous chapter. If the R2 value evaluates to be ≥ 0.6, we ignore

first part of the model. Otherwise we apply DBSCAN to extract the cluster corresponding

to Cmin and Cmax. Finally after the model is derived, it is used to determine cardinality

value for each inferred point. We do not need to apply DBSCAN unless it is absolutely

necessary. The outline of the algorithm( 7) is given below (assume 2D model),

Note that the approximation errors mentioned for cost diagram approximation do not

play a major role here since (a) we construct the model for the entire diagram, the number

of optimize points are adequate enough for a good quality fitting, and (b) we optimize the

corner points for initial grid processing, which ensures all the inferred points are within

same convex polytop.
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Algorithm 7 Approximating cardinality diagram

1: xmin ← ymin ← 0; xmax ← ymax ← r;
2: Fit data to the second part of cardinality model defined in Equation 5.1.1 using linear least

square regression technique.
3: Calculate R2;
4: if R2 < 0.6 then
5: Φ ← ∅; Φlast ← 0.
6: Call DBScan(l, m,Φ, Φlast).
7: Extract clusters Φ̂ which is associated with minimum and maximum cardinality values

Cmin and Cmax respectively.
8: Run a single scan through the data points of Φ̂ to determine xmin, ymin and xmax, ymax.
9: Fit data /∈ Φ̂ to the second part of cardinality model defined in Equation 5.1.1.

10: end if
11: return final model.

5.5 Class II

For Class II using FPC feature we can determine the true cardinality of the inferred

points. This is because unlike the cost diagram, location error does not affect the output

cardinalities of inferred points since cardinality is not a function of plans assigned there.

Therefore the above mentioned techniques are not quite required for Class II optimizers

unless one intends to save the number of FPC performed as mentioned in Section 4.2 in

the previous chapter.

5.6 Class III

Since the plan diagram approximation algorithms perform FPC at each query point at

least once, we obtain the zero error cardinality diagram as a bonus output. Therefore, we

do not employ the above mentioned procedures of cardinality approximation for Class III

optimizers.

5.7 Experimental Results

In this section we will present experimental results to strengthen the claim on quality of

the cardinality model and the approximation error caused by it.
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5.7.1 Model Quality.

We tried fitting all the query points present in the selectivity space on the cardinality

model, with an intention to observe the behavior of the fitted models. As expected, the

fitted models retained the shape of the original cardinality diagrams. The quality of the

fitted diagram will depict the applicability of the cardinality model. Figures 5.4, 5.5,

5.6 and 5.7 show the shape of some of these true and fitted cardinality diagrams. In

Figure 5.4, the absolutely flat cardinality diagram for QT8 is correctly modeled, similarly

the model derived for the staircase (Figure 5.5) or “L-shaped” (Figure 5.7) cardinality

diagrams have retained their original shape too. Among these diagrams only for TPCH

QT18 (Figure 5.7) we required both first and second parts of the cardinality model i.e.

executed the DBSCAN algorithm. Note that the color in the plots presented in Figures

5.4, 5.5, 5.6 and 5.7 do not denote plan color, the colors act as a differentiator between

cardinality values for better visualization.

Stronger results are obtained when experimented on many distinct diagrams across

different optimizers for both TPCH and TPCDS benchmarks. The results are given in

the Table 5.1, where we can see that the maximum and average RMS error is less than

15% and 5% respectively i.e. the proposed model came out to be around 95% accurate

on an average.

Database Dimension # of Templates) Max RMS error (%) Avg RMS error (%)
TPC-H 2D 310 11.9% 4.1 %
TPC-H 3D 120 8.1% 3.3 %
TPC-DS 2D 140 14% 4.5 %
TPC-DS 3D 50 7.3% 3.2 %

Table 5.1: Quantitative performance of Cardinality Model over different DB-Engines

5.7.2 Approximation Quality.

As mentioned earlier, we consider plan diagram to be the input for the cardinality ap-

proximation process. First the model is derived through linear least square regression

and DBSCAN (if required) performed on the output cardinalities at the optimized query



Chapter 5. Cardinality Diagram Approximation 97

points. Finally the cardinality function is used to estimate cardinalities for the inferred

points. We ran experiments on some of the representative query templates of TPC-H and

TPC-DS benchmarks. Table 5.2 lists the maximum RMS error (εRMS) and maximum

error (εMAX) incurred by approximating cardinalities for these query templates. The low

RMS value indicates that the error across the diagram is small, whereas the presence of

steep rise in cardinality introduces significant error for some points. This is because the

exact selectivities where these sudden changes occur are very difficult to catch through

a continuous model. Nevertheless, our model is well equipped to imitate the clamping

nature brought in by GROUP BY or HAVING clauses, hence the overall error i.e. εRMS

value evaluates to be very small.

Finally the quality of approximate cardinality model can be observed from Figure 5.4,

5.5, 5.6 and 5.7. These diagrams show that with our approximation technique the original

shape could be retained. The spikes seen in the approximate diagrams are due to the

presence of optimized points on those locations, where the nearby points are inferred

through the fitted model.
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Dimension / Resolution Query Template εMAX (%) εRMS (%)

2D:100X100

QT2 19.8 % 6.01 %
QT3 29.60 % 8.76 %
QT4 0.00 % 0.00 %
QT5 5.61 % 1.74 %
QT7 23.51 % 1.85 %
QT8 0.00 % 0.00 %
QT9 59.69 % 11.35 %
QT10 25.02 % 5.57 %
QT11 15.54 % 1.28 %
QT16 19.57 % 3.62 %
QT17 0.00 % 0.00 %
QT18 11.72 % 8.03 %
QT20 23.82 % 3.87 %
QT21 30.30 % 4.35 %

2D:300X300

QT2 20.25 % 6.24 %
QT3 31.40 % 8.95 %
QT4 0.00 % 0.00 %
QT5 85.05 % 2.93 %
QT7 53.30 % 2.07 %
QT8 0.40 % 0.05 %
QT9 70.00 % 0.50 %
QT10 29.31 % 7.31 %
QT11 16.59 % 1.32 %
QT16 20.90 % 3.85 %
QT17 0 % 0 %
QT18 44.07 % 7.13 %
QT20 28.69 % 4.05 %
QT21 38.94 % 5.31 %

2D:1000X1000
QT8 78.14 % 0.27 %
QT16 24.39 % 4.94 %
QT21 52.21 % 5.69 %

3D:100X100X100
QT8 0 % 0 %
QT9 75.18% 8.33 %
QT21 66.93 % 8.1 %

2D:100X100

DSQT2 0.01 % 0.00 %
DSQT17 19.92 % 1.90 %
DSQT18 39.65 % 7.12 %
DSQT19 30.35 % 8.91 %
DSQT25 23.72 % 5.36 %
DSQT25a 60.09 % 16.91 %
DSQT25b 31.13 % 9.61 %
DSQT50 5.74 % 1.62 %
DSQT76 37.20 % 3.59 %

2D:300X300

DSQT12 53.89 % 12.68 %
DSQT18 43.88 % 13.90 %
DSQT19 31.51 % 8.70 %
DSQT28 30.44 % 5.86 %

3D:100X100X100 DSQT19 55.81 % 7.43 %

Table 5.2: Maximum Cardinality Error due to Approximation [OptCom ]
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Figure 5.4: Cardinality Diagrams for TPCH
QT8
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Figure 5.5: Cardinality Diagrams for TPCH
QT9
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(a) Original

(b) Fitted

(c) Approx

Figure 5.6: Cardinality Diagrams for TPCH
QT16

(a) Original

(b) Fitted with Model

(c) Approximate (θ = 10%)

Figure 5.7: Cardinality Diagrams for TPCH
QT18



Chapter 6

Implementation in Picasso and

PostgreSQL

The various algorithms proposed in this thesis have been implemented in the publicly

available query optimizer visualization tool Picasso v2.0. Additionally we have also modi-

fied PostgreSQL v8.3.6 to incorporate the foreign plan costing and plan rank list features.

6.1 Picasso

Picasso has been developed in the Database Systems Lab [74] at the Indian Institute of

Science, for visually analyzing the behavior of industrial-strength relational query opti-

mizers. It generates a host of diagrams that throw light on the functioning of the optimizer

for a parameterized query template over the relational selectivity space. Given a query

template, the grid resolution, the distribution at which the instances of this template

should be spread across the selectivity space, the parameterized relations (axes) and their

attributes on which the diagrams should be constructed, and the choice of query opti-

mizer, the Picasso tool automatically generates the associated SQL queries, submits them

to the optimizer to generate the plans, and finally produces the color-coded plan, cost

and cardinality diagrams.

A block diagram of the Picasso architecture is shown in Figure 6.1. Every request from

101
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Figure 6.1: Picasso Architecture

the user is passed on from the Picasso client to the Picasso server, which handles com-

munication with the database engine and the production of diagrams. The Picasso client

is responsible for the visualization of these diagrams. The Picasso server communicates

with the database engines through their JAVA interfaces, treating the optimizers as “black

boxes”. Picasso currently supports DB2, SQL Server, Oracle, Sybase and PostgreSQL.

6.1.1 Algorithm Implementation

The sampling techniques developed for Class I and II optimizers have been implemented

in the Picasso-Server module of the Picasso tool. Additional modifications for accepting

θI and θL as user input were done in the Picasso-Client module.

6.1.1.1 RS NN

Optimization Step: We generate a random number for each of the different dimensions

within the range 0 to r − 1 for constructing a query point to optimize. The seed

used for the random number generator is set to a constant value to ensure the

approximations are reproducible.

Inference: To infer a point qu(x1, x2, . . . , xd) we start with chessboard distance 1 and

gradually increase the distance until we encounter at least one optimized point.

Suppose we want to find out the selectivities of each query point at distance l from

qu. We increase each xi, starting from 1 to l using recursion ensuring that at least
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one of the xi’s is set to l, otherwise it will refer to a point at distance < l. Reader

can refer to the code presented in the Appendix.

6.1.1.2 GS PQO

As described earlier, in GS PQO the entire selectivity space needs to be divided into sub-

rectangles. To make it generalized for any dimension, a recursive approach was developed.

Figure 6.2 illustrates the process for a 3D rectangle. Suppose we want to divide the

rectangle whose origin is denoted by the binary string 000. First the points at Hamming

Distance 1 are looked at i.e. 001, 100, 010, 100 and mid points of these edges are optimized

or inferred. Then the points at hamming distance 2 i.e. 110, 110, 101 are referred to

process the respective mid points. Afterwards the point at Hamming Distance 3 i.e. 111

is considered. For a d dimensional rectangle the process goes on till Hamming Distance d.

To implement this, we first generate all possible permutations of string with 0,1 of length

d (dimension), then recursively call the process for each point.

Figure 6.2: Generalization of GS PQO rectangle split

6.1.1.3 Cost and Cardinality approximation

In both RS NN and GS PQO, once all points of the selectivity space are either optimized

or inferred, we find out the respective cost and cardinality functions using linear least

square regression method. The respective models are fitted for the optimized points.

Once the models are derived, we use it to estimate the cost and cardinality values of the

inferred points.



Chapter 6. Implementation in Picasso and PostgreSQL 104

Linear Algebra Packages Used. We need to find out solution of matrices to verify

whether a point can be expressed as linear combination of the boundary points of a

convex polytop and also to implement the linear least square regression technique. We

applied LU decomposition for solving matrix of the form Ax = b where A happens to

be square matrix and QR decomposition otherwise. Both the LU and QR decomposition

method is implemented using the LINPACK [26] routines DGEFA, DGEDI, DQRDC and

DQRSL. DGEFA computes the LU decomposition by Gaussian elimination and DGEDI

computes the determinant and inverse of a matrix using factors computed by DGEFA.

Similarly DQRDC computes the QR decomposition using least squares method, while

DQRSL applies the decomposition for finding solution of the form Ax = b.

6.1.1.4 Major design changes

Some additional information on algorithm type, optimization overhead etc. needs to be

stored for approximate diagram. To serve this purpose we created a new table called Pi-

cassoApproxMap. If the diagram type(EXECTYPE) in the table PicassoQTIDMap is

set to approximate diagram, the additional information is fetched from PiccasoApproxMap

for the particular QTID. The schema of PiccasoApproxMap is given below.

PicassoApproxMap

• QID : Unique ID (Primary Key) assigned to the approximate diagram.

• SampleSize : Stores percentage sample size required in the approximation process.

• SamplingMode : This saves the specific algorithm id used for approximation e.g. for
RS NN it is 0 and 1 for GS PQO.

• IdentityErrorBound : Stores the user given threshold on identity error in percentage.

• AreaErrorBound : Stores the user given threshold on location error in percentage.

• FPCMode : Set to 1 if FPC was enabled during approximation.

In the existing code of Picasso 1.0, we added one class called PicassoSampling, which

acts as a container for the different sampling and inference techniques, as well as for the

methods required for cost and cardinality approximations. The class inheritance diagram

and package(iisc.dsl.picasso.server.sampling) contents are given below.
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1. PicassoServer

(a) PicassoDiagram

i. PicassoSampling (extends PicassoDiagram)
A. RS NN (extends PicassoSampling)
B. GS PQO (extends PicassoSampling)

(a) Class Inheritance

iisc.dsl.picasso.server.sampling

• PicassoSampling.java

• RS NN.java

• GS PQO.java

• CostFunction.java

• CardFunction.java

(b) Sampling Package (Server side)

While the above changes were made in the server side code, no such major changes were

made at client side, other than the GUI module necessary for retrieving specifications from

user regarding approximation, along with the methods to pass the information properly

to server side.

6.1.1.5 Customization for Class II optimizers

The FPC feature should only be enabled for Class II optimizers, which is ensured through

a flag set during initialization of the database connection. FPC is used as mentioned

earlier as a tie breaker in the approximation process and during generation of cost and

cardinality diagram. We save the abstract plan information e.g. the plan-tree XML for

SQL Server corresponding to each plan so that the same skeleton can be used to perform

FPC later. The implementation steps for the approximation works in a manner shown in

Table 6.1.
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Class I Class II

1. Run algorithms for Optimization + Infer-
ence (terminate with εI and εL estimators).

2. Find Cost and Card function.

3. Set Cost and Card for each inferred point.

1. Run algorithms for Optimization + Infer-
ence (terminate with εI estimator, break
ties with FPC and verify with εL estima-
tors).

2. Use FPC to calculate Cost and Card for
each inferred points.

Table 6.1: Steps of approximation algorithms

(c) Screen 1: Diagram type

(d) Screen 2: Algorithm specifications

(e) Screen 3: Overhead estimation

Figure 6.3: User Input Screens (Picasso)



Chapter 6. Implementation in Picasso and PostgreSQL 107

6.1.2 Approximation in Picasso

Following are the steps the user has to follow to generate approximate diagram for Class

I and Class II optimizers. Figure 6.3 shows a snapshot of the user query screen.

1. User will be asked regarding the diagram type (Figure 6.3(c)) first.

- If user chooses to follow the exhaustive approach, the process will start immedi-

ately.

- Else user will be asked specifics concerning the approximation techniques (Fig-

ure 6.3(d)).

2. Before the generation process, user will be shown the estimated approximation over-

head ((Figure 6.3(e))). User can cancel the process at this point also.

3. After the diagram is generated, user will be informed about the % optimizations

done as shown in Figure 6.4(a).

4. Later user can access any approximate diagram from the template list, where each

approximate diagram will have “(A)” beside their name as shown in Figure 6.4(b).

Our approximate diagrams do support reduction and other post processing opera-

tions which are supported by an exact diagram generated through the default brute-force

technique.

6.2 PostgreSQL

The approximation algorithms for Class III optimizers were implemented and tested

in PostgreSQL v8.3.6. In this section we briefly discuss the code changes made in

PostgreSQL to implement FPC, PRL, PlanFill and Relaxed-PlanFill . First we give an

overview of the important data structures of PostgreSQL and discuss how we have used

them.

Our implementation mainly was concentrated on planner/optimizer part of Post-

greSQL.
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(a) The user screen shot after the approximation dia-
gram is generated

(b) The dropdown entries for approximate diagrams

Figure 6.4: Approximation Interface (Picasso)

Important data structures

Path: An access path for a base or join relation.

RelOptInfo: Per-relation information for planning/optimization. Each RelOptInfo has
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a pointer to the cheapest access path.

RestrictInfo: For each AND sub-clause of a restriction condition (WHERE or JOIN/ON

clause) these datastructures are created. Since the restriction clauses are logically

ANDed, one can use any one of them or any subset of them to filter out tuples,

without having to evaluate the rest. The RestrictInfo node itself stores data used

by the optimizer while choosing the best query plan. Each RelOptInfo may have

one or more RestrictInfo data structure denoting the restrictions imposed on it.

Plan: This is final plan-tree structure.

These are the basic data structures used by PostgreSQL while planning/optimization

defined in the header file relation.h.

6.2.1 Foreign Plan Costing

To implement the FPC feature in PostgreSQL we had to divide the code into three

different parts as mentioned below,

1. Replacing remote points selectivity in the Path.

2. Recosting the modified Path till Join-Root.

3. Recosting the stem part of the Path i.e. from Join-Root till Plan-Root.

Major Design Considerations Our design choices were based on the existing Post-

greSQL code structure.

1. For our purpose, re-costing a plan-tree would have been easier if we could call the

FPC functions for the Plan structure. However, many of the cost related parameters

required for efficient re-costing e.g. RestrictInfo etc present in Path are not available

in Plan structure. Therefore, we call the main FPC function for Path structure.

2. While implementing the code we encountered certain issues specific to PostgreSQL’s

costing functions. We discovered that for the first time PostgreSQL encounters a
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certain restriction clause e.g. A.age = B.age, it caches some values and reuses it for

all the later occasions. This cached values are very specific to the query parameters

and in our case we cannot reuse the same cached values while recosting the plan

at some remote point. The final plan tree cost was found to be very sensitive to

slightest change of these cached values. That lead us to save some extra paths (it

may not be part of the query plan tree) which had to be explicitly recosted along

with the main plan tree. We saved extra paths for each Join Node (RelOptInfo),

Hash-Join Node (RestrictInfo), Bitmap-Heap Scan Path (BitmapHeapPath) and

Index Path (IndexPath). Changes are made in relation.h, pathnode.c, indxpath.c

and joinpath.c to take care of the extra baggage, which is used later in fp costsize.c.

These extra operations actually increases the FPC overhead roughly by 25%, still a

single FPC takes roughly 1
100

of optimization time, which seems sufficiently fast for

practical purposes.

3. We only considered costing dependent paths since those paths will get affected with

changing selectivities.

The main costing functions are defined in fp costsize.c which hosts similar functions as

costsize.c tailored for FPC. Current implementation of FPC is not available as an API.

6.2.2 Second Best Plan

We implemented the Additive Second Best Plan Search as mentioned in Section 3.4.1.

While implementing these feature we had to stop pruning of paths completely. Infact in

various cases we had to explicitly enumerate paths getting pruned or not considered at

all otherwise by PostgreSQL.

1. To find out 2nd best access-path at each intermediate node we had to stop all kind

of pruning of paths. After all paths are generated we scan the list of paths twice and

extract the two best paths. Note that by avoiding sorting we improve the efficiency

of the code.
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2. Two kinds of paths are being propagated upward in the default DP-Tree. First

one is the cheapest cost path and second one is the interesting paths (which can be

more than one in number according to their interesting order). Now if any of the

interesting paths becomes cheapest at root, the 2nd cheapest path may get pruned

along its path in the DP-tree. Therefore, with each interesting path we have to

propagate its 2nd best sibling too. Hence we are actually passing more than two

paths (2 + 2 × no of interesting paths) per node to the next higher level in the

DP-lattice.

3. The inheritance of cost from best path to other can only be done upon paths having

same interesting orders. Note that, we can also inherit the stem-cost in the same

manner.

These changes were made in allpaths.c, joinpath.c, indxpath.c and planner.c.

6.2.3 PlanFill

The main PlanFill code is written in planner.c. We start by optimizing q and then

in the first-quadrant we search for selectivities till which the current plan’s cost (found

through FPC) is less than or equal to its second best plan using Flood-fill algorithm. The

algorithm is given in Figure 6.5.

6.2.4 FPC and PRL as API

We modified the code related to parser (gram.y and keywords.c) in PostgreSQL to

request for PRL from Picasso. We also had to modify the structures related to

“EXPLAIN” statement for the same. Now instead of only EXPLAIN user needs

to write “EXPLAIN PRL2” to get the second best plan. The second best plan

is appended to the best one after a line demarcation. Similarly for FPC request

we save the original plan and path and recost them on demand. We are capable

of handling 3 selectivity predicates. The modified explain request for FPC is “EX-

PLAIN FPC (< Relation2 ID >,< Foreign Selectivity1 >,< Relation2 ID >, <
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Flood-fill-By-Plan(QueryPoint q,Plan p1,Cost c1,Cost c2)

1. Set Q to the empty queue.
2. Add q to Q.
3. For each element q(x,y) of Q, /*(x, y) denotes the coordinates of the query point in

2D*/
4. For j = 1 to r − x, /*PlanFill in row order first*/
5. If q(x+j,y) is already assigned with a plan: continue;
6. Perform FPC of p(x,y) at q(x+j,y), suppose the cost is c(x+j,y).
7. If c(x+j,y) < c2 : Set p(x+j,y) = p(x,y)

8. else break;
9. For each node from (x, y) to (x + j, y) i.e. for i = 0 : j, /*searching for valid

points in column order */
10. Perform FPC of p(x+i,y) at q(x+i,y+1), suppose the cost is c(x+i,y+1).
11. If c(x+i,y+1) < c2 : Set p(x+i,y+1) = p(x,y) and add q(x+i,y+1) in Q.
12. Continue looping until Q is exhausted.
13. Return;

Figure 6.5: The Flood-fill algorithm used in PlanFill

Foreign Selectivity2 >,< Relation3 ID >, < Selectivit3 >”. The “Relation ID” is the

unique id assigned by PostgreSQL to the base relations. User can easily find that out by

keeping the “DEBUG-PRINT” feature enabled.
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Conclusions

We have investigated in this thesis the efficient generation of approximate Optimizer Di-

agrams, a key resource in the analysis and redesign of modern database query optimizers.

Based on the optimizer’s API capabilities, we made a partitioning into three different

classes of optimizers, and developed appropriate approximation techniques for each class.

For Class I, which only provides the optimal plan, our experimental results showed that

the GS PQO algorithm, which combines grid sampling with PQO inference at the micro

level, performed very adequately requiring less than 15% overheads as compared to the

exhaustive approach, for an error bound of 10%. These overheads came down to 10%

when the same algorithm was used in Class II optimizers, due to their additional FPC

feature. Finally, for Class III systems, we proved that the PlanFill algorithm produced

zero errors and was generally able to do so incurring overheads of less than 10%. However,

it performs poorly for query templates that have the second-best plan being very close

to the optimal choice over an extended region. Finally, the Relaxed-PlanFill algorithm

traded error for performance, and was able to satisfy the 10% error bound with less than

5% optimizations. It was also able to adequately handle the problem query templates

of PlanFill . We have also presented methods of approximating cost and cardinality di-

agrams for Class I optimizers, and showed that approximation error is sufficiently low

for a wide range of query templates. Class II and Class III can produce the exact cost

and cardinality diagrams with regard to the approximate plan diagram, utilizing the FPC

113
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feature along with the plan diagram generation.

In summary, our work has shown that it is indeed possible to efficiently generate close

approximations to high-dimension and high-resolution Optimizer diagrams, with typical

overheads being an order of magnitude lower than the brute-force approach. We hope

that our results will encourage all database vendors to incorporate the foreign-plan-costing

and/or plan-rank-list features in their optimizer APIs.

7.1 Future Work

The work that has been presented in the thesis can be extended in following ways:

1. Our algorithms feature tuning parameters that have been set after considerable

empirical testing. These settings may be a function of the specific optimizer engines

and database environments assessed in our experiments – in our future work, we plan

to investigate the portability of these settings over a broader spectrum of engines

and environments.

2. We also intend to explore alternative inside-engine speedup technique that does not

involve approximation. Following are two such ideas:

(a) We can produce the picture starting from the top-right corner and moving

towards the origin. At each query optimization, we can use the lowest cost in

the first quadrant with respect to this query as a “pilot” pruning mechanism

in the DP routine. Such an idea had been proposed in the context of standard

single-query optimization about two decades ago, but it had proved unworkable

since the random pilot plan chosen was usually very weak in terms of its pruning

ability. However, in the plan diagram context, this shortcoming may not hold

to the same extent since we are using a pilot that is expected to be close to

the optimal.

(b) We can also speedup plan diagram generation through re-use of plan com-

putations. The idea is to cache the cost and cardinality results of a limited
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set of sub-plans during a subset of the query optimizations, and reuse this

information during the DP process for subsequent query optimizations.

3. Modern optimizers do not support FPC and PRL. We would like to incorporate these

features as an optimizer API into the publicly available optimizer of PostgreSQL.

Furthermore, using these API, we wish to incorporate Class III approximation al-

gorithms in Picasso.

4. We would also like to investigate performance of these approximation algorithms in

much higher dimension e.g. 5D or above.
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Appendix A

Coding Details

In this section we have listed the n-dimensional version of the algorithms described and

also the implementation procedure of different techniques mentioned earlier in the report.

A.1 RS NN

We describe the implementation procedure of the NN-Interpolation and Low Pass Filtering

technique mentioned so far.

NN-Interpolation As we have mentioned earlier the interpolation technique relies on

the nearest-neighbor approach to look for a suitable plan around as a candidate plan for

a non-sampled point. The algorithm listed in the Figure A.1 is invoked for each non

sampled point. The implementation procedure is described in Fig A.1.

From here onwards we have used d to represent the dimension of the diagram. The

variable dist is used to set the chessboard distance at which we are interested in find-

ing the neighbors e.g. if dist = 4 then the function recursiveNN() derives all possible

offsets required to find out neighbors at a particular chessboard distance. The variable

dimPresent is used to avoid generating offsets for neighbors at a lesser distance i.e. if

dist = 4 then we shouldn’t generate for dist = 3, 2or1. This is achieved if at least one

of the coordinates of a offset is equal to dist. So dimPresent is used to implement that
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by forcefully turning the lowest dimension to dist if none of the higher dimension is set

to so. Then we add these offsets with the coordinates of non-sampled point X and apply

the interpolation technique thereafter.

Low-Pass We run one iteration of Low-Pass Filter on the approximate diagram to

remove jagged edges introduced by NN interpolation. We look at all the neighbors at

distance 1 from a non-sampled point. This can be done by invoking the NearestNeighbor

algorithm illustrated in Figure A.1 with dist = 1. If any of the neighboring plans occupies

more than 50% of points, we assign that plan to the non-sampled point.

A.2 GS PQO

The n-dimensional GS PQO algorithm is almost same as described in Section 3.2.2 except

the initial grid sampling and rectangle decomposition. The initial grid sampling employs

a simple recursive function InitialGSPQO shown in Figure A.2 to optimize the corner

points of initial rectangles. In the rectangle decomposition step we need to optimize or

interpolate the mid-points of all the d · 2d−1 edges of a d dimensional hyper-rectangle

and break it into 2d equal hyper-rectangles. The complete algorithm is illustrated in

Figure A.2.
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//Global variables
Non-Sampled point: X(x1, x2, ..., xd);
Dimension: d;
Distance: dist;
Array of length d: DimV ar;
boolean dimPresent;
Queue Q;

NearestNeighbor()
1. dist = 1;

2. Call recursiveNN(d); //Recursively check neighbors at distance dist

3. if Q is not NULL

4. Assign plan P occupying maximum points to X.

5. Return;

6. dist + +;

7. Go to Step 2;
recursiveNN(Depth)

1. if Depth = 1

2. if dimPresent = true,

3. for i= -dist to +dist, increment i by 1

4. dimVar[1] = i;

5. doNNJob();

6. else

7. dimVar[1] = -dist;

8. doNNJob();

9. dimVar[1] = +dist;

10. doNNJob();

11. else

12. for i= -dist to +dist, increment i by 1

13. dimVar[Depth] = i;

14. dimPresent = false;

15. if i = -dist or i = +dist

16. dimPresent = true;

17. recursiveNN(Depth-1);

doNNJob()

1. NN [1...d] : dimvar[1...d] + X[1...d]

2. if NN [1...d] is a sampled point

3. Add NN into Queue Q;

Figure A.1: The n-Dimensional RS NN Interpolation Algorithm
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//Global Variables
Integer interval; //Initial GSPQO interval
Array of length d: DimV ar;
Resolution: res;

GS PQO (QueryTemplate Q, ErrorBound ε,Dimension d)
1. ρt = ε

2. InitialGSPQO(d); //Optimize points in the initial low-resolution grid

3. Calculate the ρ plan density metric for each
hyper-rectangle with 2d corners using Equation 3.2.7.

4. Organize the hyper-rectangles in a max-Heap structure based on their ρ values.

5. For the hyper-rectangle Rtop at the top of the heap

6. If ρ(Rtop) ≤ ρT stop

7. else

8. Extract Rtop from the heap

9. Apply PQO interpolation to the mid-points of qualifying edges of Rtop.
Optimize all the remaining mid-points.

10. Split Rtop into 2d equal hyper-rectangles.

11. Compute ρ values for the smaller hyper-rectangles.

12. Insert the new hyper-rectangles into the heap

13. Return to 5

14. End Algorithm GS PQO
InitialGSPQO(Depth d)

1. if Depth = 1

2. For DimVar[1] = 1 to res increment by 1

3. Optimize the point DimVar[1 ... d];

4. else

5. For DimVar[d] = 1 to res increment by 1

6. InitialGSPQO(d− 1);

Figure A.2: The n-Dimensional GS PQO Algorithm



Appendix B

TPC-H Query Templates

128



Appendix B. TPC-H Query Templates 129

select

s_acctbal,

s_name,

n_name,

p_partkey,

p_mfgr,

s_address,

s_phone,

s_comment

from

part,

supplier,

partsupp,

nation,

region

where

p_partkey = ps_partkey

and s_suppkey = ps_suppkey

and p_retailprice :varies

and s_nationkey = n_nationkey

and n_regionkey = r_regionkey

and r_name = ’EUROPE’

and ps_supplycost <= (

select

min(ps_supplycost)

from

partsupp, supplier, nation, region

where

p_partkey = ps_partkey

and s_suppkey = ps_suppkey

and s_nationkey = n_nationkey

and n_regionkey = r_regionkey

and r_name = ’EUROPE’

and ps_supplycost :varies

)

order by

s_acctbal desc,

n_name, s_name, p_partkey

Figure B.1: QT2
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select

l_orderkey,

sum(l_extendedprice * (1 - l_discount)) as revenue,

o_orderdate,

o_shippriority

from

customer,

orders,

lineitem

where

c_mktsegment = ’BUILDING’

and c_custkey = o_custkey

and l_orderkey = o_orderkey

and o_totalprice :varies

and l_extendedprice :varies

group by

l_orderkey,

o_orderdate,

o_shippriority

order by

revenue desc,

o_orderdate

Figure B.2: QT3
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select

o_orderpriority,

count(*) as order_count

from

orders

where

o_totalprice :varies

and exists (

select

*

from

lineitem

where

l_orderkey = o_orderkey

and l_extendedprice :varies

)

group by

o_orderpriority

order by

o_orderpriority

Figure B.3: QT4
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select

n_name,

sum(l_extendedprice * (1 - l_discount)) as revenue

from

customer,

orders,

lineitem,

supplier,

nation,

region

where

c_custkey = o_custkey

and l_orderkey = o_orderkey

and l_suppkey = s_suppkey

and c_nationkey = s_nationkey

and s_nationkey = n_nationkey

and n_regionkey = r_regionkey

and r_name = ’ASIA’

and o_orderdate >= ’1994-01-01’

and o_orderdate < ’1995-01-01’

and c_acctbal :varies

and s_acctbal :varies

group by

n_name

order by

revenue desc

Figure B.4: QT5
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select

supp_nation,

cust_nation,

l_year,

sum(volume)

from

(

select

n1.n_name as supp_nation,

n2.n_name as cust_nation,

YEAR (l_shipdate) as l_year,

l_extendedprice * (1 - l_discount) as volume

from

supplier,

lineitem,

orders,

customer,

nation n1,

nation n2

where

s_suppkey = l_suppkey

and o_orderkey = l_orderkey

and c_custkey = o_custkey

and s_nationkey = n1.n_nationkey

and c_nationkey = n2.n_nationkey

and (

(n1.n_name = ’FRANCE’

and n2.n_name = ’GERMANY’)

or (n1.n_name = ’GERMANY’

and n2.n_name = ’FRANCE’)

)

and l_shipdate between ’1995-01-01’

and ’1996-12-31’

and o_totalprice :varies

and c_acctbal :varies

)as shipping

group by

supp_nation,

cust_nation,

l_year

order by

supp_nation,

cust_nation,

l_year

Figure B.5: QT7
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select

o_year,

sum(case

when nation = ’BRAZIL’ then volume

else 0

end) / sum(volume)

from

(

select

YEAR(o_orderdate) as o_year,

l_extendedprice * (1 - l_discount) as volume,

n2.n_name as nation

from

part,

supplier,

lineitem,

orders,

customer,

nation n1,

nation n2,

region

where

p_partkey = l_partkey

and s_suppkey = l_suppkey

and l_orderkey = o_orderkey

and o_custkey = c_custkey

and c_nationkey = n1.n_nationkey

and n1.n_regionkey = r_regionkey

and r_name = ’AMERICA’

and s_nationkey = n2.n_nationkey

and p_type = ’ECONOMY ANODIZED STEEL’

and s_acctbal :varies

and l_extendedprice :varies

) as all_nations

group by

o_year

order by

o_year

Figure B.6: QT8
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select

n_name,

o_year,

sum(amount)

from

(

select

n_name,

YEAR(o_orderdate) as o_year,

l_extendedprice * (1 - l_discount) -

ps_supplycost * l_quantity as amount

from

part,

supplier,

lineitem,

partsupp,

orders,

nation

where

s_suppkey = l_suppkey

and ps_suppkey = l_suppkey

and ps_partkey = l_partkey

and p_partkey = l_partkey

and o_orderkey = l_orderkey

and s_nationkey = n_nationkey

and p_name like ’%green%’

and s_acctbal :varies

and ps_supplycost :varies

) as profit

group by

n_name,

o_year

order by

n_name,

o_year desc

Figure B.7: QT9
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select

c_custkey,

c_name,

sum(l_extendedprice * (1 - l_discount)) as revenue,

c_acctbal,

n_name,

c_address,

c_phone,

c_comment

from

customer,

orders,

lineitem,

nation

where

c_custkey = o_custkey

and l_orderkey = o_orderkey

and o_orderdate >= ’1993-10-01’

and o_orderdate < ’1994-01-01’

and c_nationkey = n_nationkey

and c_acctbal :varies

and l_extendedprice :varies

group by

c_custkey,

c_name,

c_acctbal,

c_phone,

n_name,

c_address,

c_comment

order by

revenue desc

Figure B.8: QT10
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select

p_brand,

p_type,

p_size,

count(distinct ps_suppkey) as supplier_cnt

from

partsupp,

part

where

p_partkey = ps_partkey

and p_retailprice :varies

and ps_suppkey in (

select

s_suppkey

from

supplier

where

s_acctbal :varies

)

group by

p_brand,

p_type,

p_size

order by

supplier_cnt desc,

p_brand,

p_type,

p_size

Figure B.9: QT11
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select

p_brand,

p_type,

p_size,

count(distinct ps_suppkey) as supplier_cnt

from

partsupp,

part

where

p_partkey = ps_partkey

and p_retailprice :varies

and ps_suppkey in (

select

s_suppkey

from

supplier

where

s_acctbal :varies

)

group by

p_brand,

p_type,

p_size

order by

supplier_cnt desc,

p_brand,

p_type,

p_size

Figure B.10: QT16



Appendix B. TPC-H Query Templates 139

select

sum(l_extendedprice) / 7.0 as avg_yearly

from

lineitem,

part

where

p_partkey = l_partkey

and p_retailprice :varies

and l_quantity < (

select

0.2 * avg(l_quantity)

from

lineitem

where

l_partkey = p_partkey

and l_extendedprice :varies

)

Figure B.11: QT17
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select

c_name,

c_custkey,

o_orderkey,

o_orderdate,

o_totalprice,

sum(l_quantity)

from

customer,

orders,

lineitem

where

o_orderkey in (

select

l_orderkey

from

lineitem

where l_extendedprice :varies

group by

l_orderkey having

sum(l_quantity) > 300

)

and c_custkey = o_custkey

and o_orderkey = l_orderkey

and c_acctbal :varies

group by

c_name,

c_custkey,

o_orderkey,

o_orderdate,

o_totalprice

order by

o_totalprice desc,

o_orderdate

Figure B.12: QT18
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select

s_name,

s_address

from

supplier,

nation

where

s_suppkey in (

select ps_suppkey

from partsupp

where ps_partkey in (

select p_partkey

from part

where p_name like ’forest%’

)

and ps_availqty < (

select 0.5 * sum(l_quantity)

from lineitem

where l_partkey = ps_partkey

and l_suppkey = ps_suppkey

and l_extendedprice :varies

)

)

and s_nationkey = n_nationkey

and s_acctbal :varies

and n_name = ’AMERICA’

order by

s_name

Figure B.13: QT20
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select

s_name,

count(*) as numwait

from

supplier,

lineitem l1,

orders,

nation

where

s_suppkey = l1.l_suppkey

and o_orderkey = l1.l_orderkey

and o_orderstatus = ’F’

and exists (

select

*

from

lineitem l2

where

l2.l_orderkey = l1.l_orderkey

and l2.l_suppkey <> l1.l_suppkey

)

and not exists (

select

*

from

lineitem l3

where

l3.l_orderkey = l1.l_orderkey

and l3.l_suppkey <> l1.l_suppkey

and l3.l_receiptdate > l3.l_commitdate

)

and s_nationkey = n_nationkey

and s_acctbal :varies

and l1.l_extendedprice :varies

and n_name = ’SAUDI ARABIA’

group by

s_name

order by

numwait desc,

s_name

Figure B.14: QT21
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select

i_item_id,

avg(ss_quantity) as agg1,

avg(ss_list_price) as agg2,

avg(ss_coupon_amt) as agg3,

avg(ss_sales_price) as agg4

from

store_sales, customer_demographics,

date_dim, item, promotion

where

ss_sold_date_sk = d_date_sk and ss_item_sk = i_item_sk

and ss_cdemo_sk = cd_demo_sk and ss_promo_sk = p_promo_sk

and cd_gender = ’M’ and cd_marital_status = ’S’

and cd_education_status = ’College’

and (p_channel_email = ’N’ or p_channel_event = ’N’)

and d_year = 2000 and ss_sales_price <= 100.0

and i_current_price <= 50.0

group by

i_item_id

order by

i_item_id

limit 100;

Figure C.1: DSQT7
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select

i_item_desc,

i_category,

i_class,

i_current_price,

sum(ws_ext_sales_price) as itemrevenue,

sum(ws_ext_sales_price)*100/sum(sum(ws_ext_sales_price))

over (partition by i_class) as revenueratio

from

web_sales,

item,

date_dim

where

ws_item_sk = i_item_sk

and ws_sold_date_sk = d_date_sk

and d_date between ’1998-05-16’ and ’998-06-16’

and i_current_price :varies

and ws_list_price :varies

group by

i_item_id,

i_item_desc,

i_category,

i_class,

i_current_price

order by

i_category,

i_class,

i_item_id,

i_item_desc,

revenueratio

Figure C.2: DSQT12
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select

i_item_id,

i_item_desc,

s_state,

count(ss_quantity) as store_sales_quantitycount,

avg(ss_quantity) as store_sales_quantityave,

stdev(ss_quantity) as store_sales_quantitystdev,

stdev(ss_quantity)/avg(ss_quantity) as store_sales_quantitycov,

count(sr_return_quantity) as_store_returns_quantitycount,

avg(sr_return_quantity) as_store_returns_quantityave,

stdev(sr_return_quantity) as_store_returns_quantitystdev,

stdev(sr_return_quantity)/avg(sr_return_quantity)

as store_returns_quantitycov,

count(cs_quantity) as catalog_sales_quantitycount,

avg(cs_quantity) as catalog_sales_quantityave,

stdev(cs_quantity)/avg(cs_quantity) as catalog_sales_quantitystdev,

stdev(cs_quantity)/avg(cs_quantity) as catalog_sales_quantitycov

from

store_sales, store_returns, catalog_sales,

date_dim d1, date_dim d2, date_dim d3, store, item

where

d1.d_quarter_name = ’2002Q1’

and d1.d_date_sk = ss_sold_date_sk

and i_item_sk = ss_item_sk

and s_store_sk = ss_store_sk

and ss_customer_sk = sr_customer_sk

and ss_item_sk = sr_item_sk

and ss_ticket_number = sr_ticket_number

and sr_returned_date_sk = d2.d_date_sk

and d2.d_quarter_name in (’2002Q1’,’2002Q2’,’2002Q3’)

and sr_customer_sk = cs_bill_customer_sk

and sr_item_sk = cs_item_sk

and cs_sold_date_sk = d3.d_date_sk

and d3.d_quarter_name in (’2002Q1’,’2002Q2’,’2002Q3’)

and ss_list_price :varies

and cs_list_price :varies

group by

i_item_id, i_item_desc, s_state

order by

i_item_id, i_item_desc, s_state

Figure C.3: DSQT17
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select

i_item_id,

ca_country,

ca_state,

ca_county,

avg(cs_quantity) agg1,

avg(cs_list_price) agg2,

avg(cs_coupon_amt) agg3,

avg(cs_sales_price) agg4,

avg(cs_net_profit) agg5,

avg(c_birth_year) agg6,

avg(cd1.cd_dep_count) agg7

from

catalog_sales,

customer_demographics cd1,

customer_demographics cd2,

customer,

customer_address,

date_dim,

item

where

cs_sold_date_sk = d_date_sk

and cs_item_sk = i_item_sk

and cs_bill_cdemo_sk = cd1.cd_demo_sk

and cs_bill_customer_sk = c_customer_sk

and cd1.cd_gender = ’F’

and cd1.cd_education_status = ’Unknown’

and c_current_cdemo_sk = cd2.cd_demo_sk

and c_current_addr_sk = ca_address_sk

and c_birth_month in (3,11,9,5,8,10)

and d_year = 2000

and ca_state in (’NC’,’AK’,’PA’,’AK’,’CA’,’MA’,’WV’)

and cs_list_price :varies

and i_current_price :varies

group by

i_item_id,

ca_country,

ca_state,

ca_county

order by

ca_country,

ca_state,

ca_county

Figure C.4: DSQT18
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select

i_brand_id brand_id,

i_brand brand,

i_manufact_id,

i_manufact,

sum(ss_ext_sales_price) ext_price

from

date_dim,

store_sales,

item,

customer,

customer_address,

store

where

d_date_sk = ss_sold_date_sk

and ss_item_sk = i_item_sk

and d_moy=12

and d_year=1999

and ss_customer_sk = c_customer_sk

and c_current_addr_sk = ca_address_sk

and substring(ca_zip,1,5) <> substring(s_zip,1,5)

and ss_store_sk = s_store_sk

and ss_list_price :varies

and i_current_price :varies

group by

i_brand,

i_brand_id,

i_manufact_id,

i_manufact

order by

ext_price desc,

i_brand,

i_brand_id,

i_manufact_id,

i_manufact

Figure C.5: DSQT19
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select

i_item_id,

i_item_desc,

s_store_id,

s_store_name,

sum(ss_net_profit) as store_sales_profit,

sum(sr_net_loss) as store_returns_loss,

sum(cs_net_profit) as catalog_sales_profit

from

store_sales,

store_returns,

catalog_sales,

date_dim d1,

date_dim d2,

date_dim d3,

store,

item

where

d1.d_moy = 4

and d1.d_year = 1999

and d1.d_date_sk = ss_sold_date_sk

and i_item_sk = ss_item_sk

and s_store_sk = ss_store_sk

and ss_customer_sk = sr_customer_sk

and ss_item_sk = sr_item_sk

and ss_ticket_number = sr_ticket_number

and sr_returned_date_sk = d2.d_date_sk

and d2.d_moy between 4 and 4+6

and d2.d_year = 1999

and sr_customer_sk = cs_bill_customer_sk

and sr_item_sk = cs_item_sk

and cs_sold_date_sk = d3.d_date_sk

and d3.d_moy between 4 and 4+6

and d3.d_year = 1999

and ss_list_price :varies

and cs_list_price :varies

group by

i_item_id, i_item_desc, s_store_id, s_store_name

order by

i_item_id,

i_item_desc,

s_store_id,

s_store_name;

Figure C.6: DSQT25
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select

i_item_id, avg(cs_quantity) as agg1,

avg(cs_list_price) as agg2,

avg(cs_coupon_amt) as agg3,

avg(cs_sales_price) as agg4

from

catalog_sales, customer_demographics,

date_dim, item, promotion

where

cs_sold_date_sk = d_date_sk and cs_item_sk = i_item_sk

and cs_bill_cdemo_sk = cd_demo_sk and cs_promo_sk = p_promo_sk

and cd_gender = ’M’ and cd_marital_status = ’S’

and cd_education_status = ’College’

and (p_channel_email = ’N’ or p_channel_event = ’N’)

and d_year = 2000 and cs_list_price <= 150.0

and i_current_price <= 50.0

group by

i_item_id

order by

i_item_id;

Figure C.7: DSQT26


