
SIGHT and SEER:
Efficient Production and Reduction of Query

Optimizer Plan Diagrams

A PROJECTREPORT

SUBMITTED IN PARTIAL FULFILMENT OF THE

REQUIREMENTS FOR THEDEGREE OF

Master of Engineering

IN

COMPUTERSCIENCE AND ENGINEERING

by

Harish D

Computer Science and Automation

Indian Institute of Science

BANGALORE – 560 012

July 2008

To my Parents, whose dedication to my success and their continued support,

I shall always remember.

Acknowledgements

I would like to thank my advisor Prof. Jayant Haritsa for introducing me to this problem and

providing valuable guidance and encouragement. I would like to sincerely acknowledge his

invaluable support in all forms through out my stay in IISc.

I would like to thank all the members of DSL and CSA who have mademy stay at IISc

memorable. I thank my family and friends for their continuedsupport throughout my career.

i

Publications

1. Harish D., Pooja N. Darera, Jayant R. Haritsa

“Identifying Robust Plans through Plan Diagram Reduction”

Proc. of 34th Intl. Conf. on Very Large Data Bases (VLDB), Auckland, New Zealand,

August 2008.

2. Atreyee Dey, Sourjya Bhaumik, Harish D., Jayant R. Haritsa

“Efficiently Approximating Query Optimizer Plan Diagrams”

Proc. of 34th Intl. Conf. on Very Large Data Bases (VLDB), Auckland, New Zealand,

August 2008.

3. Harish D., Pooja N. Darera, Jayant R. Haritsa

“Robust Plans through Plan Diagram Reduction”, Technical Report, TR-2007-02,

DSL/SERC, Indian Institute of Science.

http://dsl.serc.iisc.ernet.in/publications/report/TR/TR-2007-02.

pdf

4. Atreyee Dey, Sourjya Bhaumik, Harish D., Jayant R. Haritsa

“Efficient Generation of Approximate Plan Diagrams”, Technical Report, TR-2008-01,

DSL/SERC, Indian Institute of Science.

http://dsl.serc.iisc.ernet.in/publications/report/TR/TR-2008-01.

pdf

ii

Abstract

Given a parametrized n-dimensional SQL query template and achoice of query optimizer,

a plan diagram is a color-coded pictorial enumeration of theexecution plan choices of the

optimizer over the query parameter space. These diagrams have proved to be a powerful

metaphor for the analysis and redesign of modern optimizers, and are gaining currency in

diverse industrial and academic institutions. However, their utility is adversely impacted by

the impractically large computational overheads incurredwhen standard brute-force exhaustive

approaches are used for producing high-dimension and high-resolution diagrams.

In this thesis, we investigate strategies for efficiently producing high-quality approximate

plan diagrams that have low plan-identity and plan-location errors. Through experimentation

with a representative set of TPC-H-based query templates on acustomized public domain

optimizer, we show that our techniques are capable of meeting identity and location error

bounds as low as 10% while incurring less than 5% of the computational overheads of the

exhaustive approach. In fact, we can virtually guarantee zero error with overheads of less than

10%.

The second problem we address in this thesis is that of identifying robust plans using plan

diagram reduction. Several plans in these plan diagrams frequently result in inflated query re-

sponse times due to errors in predicate selectivities estimated by the database query optimizer,

which often differ significantly from those actually encountered during query execution. We

investigate here mitigating this problem by replacing selectivity error-sensitive plan choices

with alternative plans that provide robust performance. Our approach is based on the recent

observation that even the complex and dense plan diagrams associated with industrial-strength

optimizers can be efficiently reduced to “anorexic” equivalents featuring only a few plans,

iii

iv

without materially impacting query processing quality.

Extensive experimentation with a representative set of TPC-H and TPC-DS-based query

templates on a commercial optimizer indicates that plan diagram reduction typically retains

plans that are substantially resistant to selectivity errors on the base relations. However, it

can sometimes also be severely counter-productive, with the replacements performing much

worse. We address this problem through a generalized mathematical characterization of plan

cost behavior over the parameter space, which lends itself to efficient criteria of when it is

safe to reduce. Our strategies are fully non-invasive and have been implemented in the Picasso

optimizer visualization tool.

In summary, we present in this thesis efficient plan diagram generation techniques, fol-

lowed by effective strategies to substantially increase resistance to selectivity errors by identi-

fying robust plans through plan diagram reduction.

Contents

Acknowledgements i

Publications ii

Abstract iii

1 Introduction 1
1.1 Plan Diagrams and Reduced Plan Diagrams 1
1.2 Problem I: Efficient Generation of Plan Diagrams 4

1.2.1 Generating Plan Diagrams . 4
1.2.2 The SIGHT Algorithm . 5
1.2.3 Results . 6

1.3 Problem II: Identifying Robust Plans through Plan Diagram Reduction 6
1.3.1 Robust Plans . 7
1.3.2 The SEER Algorithm. 8
1.3.3 Contributions and Results . 10

1.4 Organization . 11

2 Efficient Production of Plan Diagrams 12
2.1 Obtaining the Second Best Plan .. 13
2.2 Plan Diagrams . 14
2.3 The SIGHT Algorithm . 14

2.3.1 Handling non-PCM templates . 15
2.4 The ISIGHT Algorithm . 16

3 Identifying Robust Plans through Plan Diagram Reduction 17
3.1 Problem Framework . 17

3.1.1 Reduced Plan Diagrams . 17
3.1.2 Selectivity Estimation Errors 18
3.1.3 Motivational Scenarios .19
3.1.4 Robust Reduction . 20

3.2 Ensuring Robust Reduction .22
3.2.1 Modeling Plan Cost Functions . 23
3.2.2 Node Cost Models . 23

v

CONTENTS vi

3.2.3 Extension to d-dimensional spaces 26
3.2.4 Replacement Safety Conditions . 26

3.3 The SEER Algorithm . 30
3.3.1 Safety Checking . 30
3.3.2 Plan Diagram Reduction . 32
3.3.3 Extension to Higher Dimensions 33

3.4 Variants of SEER . 35
3.4.1 LiteSEER: A Fast Variant . 35
3.4.2 PartialSeer . 35

4 Experimental Results 39
4.1 Performance of SIGHT . 39

4.1.1 SIGHT . 40
4.1.2 ISIGHT . 41

4.2 Evaluation of SEER . 41
4.2.1 Experimental Setup . 41
4.2.2 Validity of Plan Cost Model . 42
4.2.3 Plan Diagram Reduction Quality .44
4.2.4 Error-resistance and Safety .. . 48
4.2.5 Efficiency of Reduction Process .51
4.2.6 Performance of PartialSeer .. 53
4.2.7 Uniform Query Distribution . 53

5 Conclusions 56

A Plan Diagram Reduction Variants 58
A.1 Quality of Plan Diagram Reduction .. . 58

A.1.1 The ReduceGreedy Algorithm . 58
A.1.2 Results . 59

A.2 Batch Reduction . 60
A.2.1 The BatchReduce algorithm . 61
A.2.2 Results . 62

Bibliography 63

List of Tables

2.1 PCM Behaviour . 15

3.1 Cost Models for Various Node Types .. . 25
3.2 Safety Satisfaction Conditions 27

4.1 Performance of SIGHT algorithm .. . 40
4.2 Performance of ISIGHT algorithm (ǫ = 10%) 41
4.3 RMS Errors in Fitted Cost Surfaces .. 44
4.4 Plan Diagram Reduction Quality (TPC-H) 46
4.5 Plan Diagram Reduction Quality (TPC-DS) 46
4.6 Plan Diagram Reduction Quality (TPCH-AI) 46
4.7 Plan Diagram Reduction Quality (TPCH-TI) 47
4.8 Characterization of Error-Resistance through Reduction 50
4.9 Efficiency of Reduction Process .. . 52
4.10 Plan Diagram Reduction Quality (λ = 20%) 53
4.11 Error-Resistance of PartialSeer (λ = 20%,MSA = 0.8) 53
4.12 Efficiency of PartialSeer (λ = 20%,MSA = 0.8) 53
4.13 Plan Diagram Reduction Quality (TPC-H, Uniform plan diagrams) 54
4.14 Plan Diagram Reduction Quality (TPC-DS, Uniform plan diagrams) 54
4.15 Plan Diagram Reduction Quality (TPCH-AI, Uniform plan diagrams) 54
4.16 Plan Diagram Reduction Quality (TPCH-TI, Uniform plan diagrams) 54
4.17 Characterization of Error-Resistance through Reduction(Uniform plan dia-

grams) . 55
4.18 Efficiency of Reduction Process (Uniform plan diagrams). 55

A.1 Performance of ReduceGreedy (OptA) 59
A.2 Performance of ReduceGreedy (OptB) 60
A.3 Performance of ReduceGreedy (OptC) 60
A.4 Performance of BatchReduce (OptA) .. . 62
A.5 Performance of BatchReduce (OptB) .. 62
A.6 Performance of BatchReduce (OptC) .. 62

vii

List of Figures

1.1 Example Query Template: QT8 .. 2
1.2 Sample Plan Diagram and Reduced Plan Diagram (QT8) 3

2.1 The SIGHT Algorithm . 15

3.1 Beneficial Impact of Plan Replacement 20
3.2 Adverse Impact of Plan Replacement 21
3.3 Sample Plan Tree . 24
3.4 Behavior of the safety functionfy(x) . 28
3.5 Perimeter and Wedge Test .31
3.6 The SEER Reduction Algorithm .33
3.7 n-Dimensional SafetyCheck Algorithm 34
3.8 n-Dimensional SEER Reduction Algorithm 34
3.9 The PartialSafetyCheck Algorithm 37
3.10 Working of the PartialSafetyCheck algorithm 38
3.11 The PartialSeer Reduction Algorithm 38

4.1 Plan Cost Function Modeling .. 43
4.2 Complex Plan Cost Function . 44
4.3 Safe Error-resistance with SEER 51

A.1 The ReduceGreedy Algorithm .59
A.2 The BatchReduce Algorithm . 61

viii

Chapter 1

Introduction

Modern database systems use a query optimizer to identify the most efficient strategy to ex-

ecute the SQL queries that are submitted by users. The efficiency of the strategies, called

“plans”, is usually measured in terms of query response time. Optimization is a mandatory

exercise since the difference between the cost of the best execution plan and a random choice

could be in orders of magnitude. The role of query optimizershas become especially critical in

recent times due to the high degree of query complexity characterizing current data warehous-

ing and mining applications, as exemplified by the TPC-H [26] and the recent TPC-DS [27]

benchmarks.

While commercial query optimizers each have their own “secret sauce” to identify the best

plan, the de-facto standard underlying strategy, based on the classical System R optimizer [22],

is the following: Given a user query, apply a variety of heuristics to restrict the combinatorially

large search space of plan alternatives to a manageable size; estimate, with a cost model and a

dynamic-programming based algorithm, the efficiency of each of these candidate plans; finally,

choose the plan with the lowest estimated cost.

1.1 Plan Diagrams and Reduced Plan Diagrams

For a given database and system configuration, a query optimizer’s execution plan choices are

primarily a function of theselectivitiesof the base relations in the query. A “plan diagram” is

1

Chapter 1. Introduction 2

select oyear, sum(case when nation = ’BRAZIL’ then volume else 0 end) / sum(volume)

from (select YEAR(oorderdate) as oyear, l extendedprice * (1 - ldiscount) as volume,
n2.n name as nation

from part, supplier, lineitem, orders, customer,
nation n1, nation n2, region

where ppartkey = lpartkey and ssuppkey = lsuppkey and lorderkey = oorderkey
and ocustkey = ccustkey and cnationkey = n1.nnationkey and n1.nregionkey
= r regionkey and snationkey = n2.nnationkey and rname = ’AMERICA’ and
p type = ’ECONOMY ANODIZED STEEL’ and
s acctbal :variesandl extendedprice :varies

) as all nations

group by oyear

order by oyear

Figure 1.1: Example Query Template: QT8

a color-coded pictorial enumeration of the plan choices of the optimizer for a parameterized

query template over the relational selectivity space. For example, consider QT8, the parame-

terized 2D query template shown in Figure 1.1, based on Query8 of TPC-H. Here, selectiv-

ity variations on theSUPPLIERand LINEITEM relations are specified through thes acctbal

:varies and l extendedprice :varies predicates, respectively. The associated plan diagram

for QT8 is shown in Figure 1.2(a), produced with the Picasso optimizer visualization tool [20]

on a popular commercial database engine.

In this picture, each colored region represents a specific plan, and a set of 89 different op-

timal plans,P1 throughP89, cover the selectivity space. The value associated with each plan

in the legend indicates the percentage area covered by that plan in the diagram – the biggest,

P1, for example, covers about 22% of the space, whereas the smallest,P89, is chosen in only

0.001% of the space.[Note to Readers: We recommend viewing all diagrams presentedin

this thesis directly from the color PDF file, or from a color print copy, since the greyscale

version may not clearly register the various features.]

Chapter 1. Introduction 3

(a) Plan Diagram (b) Reduced Diagram (Threshold = 10%)

Figure 1.2: Sample Plan Diagram and Reduced Plan Diagram (QT8)

As evident from Figure 1.2(a) , plan diagrams can be extremely complex and dense, with

a large number of plans covering the space – several such instances spanning a representative

set of benchmark-based query templates on industrial-strength optimizers are available at [20].

However, these dense diagrams can typically be “reduced” tomuch simpler pictures featuring

significantly fewer plans,without materially degrading the processing quality of any individual

query. For example in Figure 1.2(a), if users are willing to tolerate a minor cost increase (λ) of

at most 10% for any query point in the diagram, relative to itsoriginal cost, the picture could

be reduced to Figure 1.2(b), where only 7 plans remain – that is, most of the original plans have

been “completely swallowed” by their siblings, leading to ahighly reduced plan cardinality.

A detailed study of the plan diagram reduction problem was presented in [11], and it was

shown that a cost increase threshold ofonly 20 percentis usually amply sufficient to bring

down the absolute number of plans in the final reduced pictureto within or around ten. In

short, that complex plan diagrams can be made “anorexic” while retaining acceptable query

processing performance.

In this thesis, we solve the following two problems: (1) Efficiently generating plan dia-

grams, and (2) Identifying robust plans using plan diagram reduction.

Chapter 1. Introduction 4

1.2 Problem I: Efficient Generation of Plan Diagrams

Since their introduction in 2005 [21], plan diagrams have proved to be a powerful metaphor for

the analysis and redesign of industrial-strength databasequery optimizers. Through our inter-

actions with industrial developers, we have found that these complex diagrams have proved to

be quite contrary to the prevailing conventional wisdom. While developers had certainly been

extensively analyzing optimizer behavior onindividual queries, plan diagrams provide a com-

pletely different perspective of behaviorover an entire space, vividly capturing plan transition

boundaries and optimality geometries. So, in a literal sense, they deliver the “big picture”.

Plan diagrams are currently being used in various industrial and academic sites for a diverse

set of applications including analysis of existing optimizer designs; visually carrying out op-

timizer regression testing; debugging new query processing features; comparing the behavior

between successive optimizer versions; investigating thestructural differences between neigh-

boring plans in the space; investigating the variations in the plan choices made by competing

optimizers; etc. Visual examples of non-monotonic cost behavior in commercial optimizers,

indicative of modeling errors, were highlighted in [21].

A particularly compelling immediate utility of plan diagrams is that they provide the in-

put to “plan diagram reduction” algorithms. Anorexic plan diagram reduction has significant

practical benefits [11], including quantifying the redundancy in the plan search space, enhanc-

ing the applicability of parametric query optimization (PQO) techniques [12, 13], identifying

error-resistant and least-expected-cost plans [7, 8], andminimizing the overhead of multi-plan

approaches [2, 15].

1.2.1 Generating Plan Diagrams

The generation and analysis of plan diagrams has been facilitated by our development of the

Picasso optimizer visualization tool [20]. Given a multi-dimensional SQL query template like

QT8 and a choice of database engine, the Picasso tool automatically produces the associated

plan diagram. It is operational on several major platforms including IBM DB2, Oracle, Mi-

crosoft SQL Server, Sybase ASE and PostgreSQL. The tool, which is freely downloadable, is

Chapter 1. Introduction 5

now in use by the development groups of several major database vendors, as also by leading

industrial and academic research labs worldwide.

The diagram production strategy used in Picasso is the following: Given ad-dimensional

query template and a plot resolution ofr, the Picasso tool generatesrd queries that are either

uniformly or exponentially (user’s choice) distributed over the selectivity space. Then, for each

of these query points, based on the associated selectivity values, a query with the appropriate

constants instantiated is submitted to the query optimizerto be “explained” – that is, to have its

optimal plan computed. After the plans corresponding to allthe points are obtained, a different

color is associated with each unique plan, and all query points are colored with their associated

plan colors. Then, the rest of the diagram is colored by painting the region around each point

with the color corresponding to its plan. For example, in a 2Dplan diagram with a uniform

grid resolution of 10, there are 100 real query points, and around each such point a square of

dimension 10x10 is painted with the point’s associated plancolor.

The above exhaustive approach is eminently acceptable for diagrams with few dimensions

(upto 2D) and low resolutions (upto 100). However, it becomes impractically expensive for

higher dimensions and resolutions due to the exponential growth in overheads. For example,

a 3D plan diagram with a resolution of 100 on each selectivitydimension, requires invoking

the optimizer1003 times – that is, amillion optimizations have to be carried out. Even with a

conservative estimate of about half-second per optimization, the total time required to produce

the picture is close to a week! Therefore, although plan diagrams have proved to be extremely

useful, their high-dimensional and high-resolution versions pose serious computational chal-

lenges.

1.2.2 The SIGHT Algorithm

In this thesis, we address this issue using SIGHT (SelectiveIncremental Generation of plan

diagrams using HisTory), an algorithm to efficiently produceaccurateplan diagrams. We also

investigate the possibility of producinghigh-quality approximationsto plan diagrams requiring

extremely low overheads in the ISIGHT algorithm, an inexactvariant of the SIGHT algorithm.

Denoting the true plan diagram asP and the approximation asA, there are two categories of

Chapter 1. Introduction 6

errors that arise in this process:

Plan Identity Error (ǫI): This error metric refers to the possibility of the approximation miss-

ing out on a subset of the plans present in the true plan diagram. It is computed as the

percentage of plans lost inA relative toP.

TheǫI error is challenging to control since a majority of the plansin the plan diagrams,

as seen in Figure 1.2(a), are very small in area, and therefore hard to find.

Plan Location Error (ǫL): This error metric refers to the possibility of incorrectly assigning

plans to query points in the approximate plan diagram. It is computed as the percentage

of incorrectly (relative toP) assigned points inA.

The ǫL error is also challenging to control since the plan boundaries, as seen in Fig-

ure 1.2(a), can be highly non-linear, and are sometimes evenirregular in shape [20].

In the remainder of this thesis, we will useǫ to denote bothǫI and ǫL. Accurate plan

diagrams will haveǫ = 0.

1.2.3 Results

The SIGHT algorithm generates accurate plan diagrams with around10% overheadsof the

brute-force exhaustive method. We improve this in the ISIGHT algorithm, where approximate

plan diagrams having values ofǫ around10% can be generated incurring overheadsless than

5%.

1.3 Problem II: Identifying Robust Plans through Plan Dia-

gram Reduction

The query execution plan choices made by database engines often turn out to be poor in prac-

tice because the optimizer’s selectivity estimates are significantly in error with respect to the

actual values encountered during query execution. Such errors, which can even be in orders of

Chapter 1. Introduction 7

magnitude in real database environments [18], arise due to avariety of reasons [24], including

outdated statistics, attribute-value independence assumptions and coarse summaries.

1.3.1 Robust Plans

To address this problem, one obvious approach is to improve the quality of the statistical meta-

data, for which several techniques have been presented in the literature ranging from improved

summary structures [1] to feedback-based adjustments [24]to on-the-fly reoptimization of

queries [15, 18, 4]. A complementary and conceptually different approach, which we consider

in this thesis, is to identifyrobust plansthat are relatively less sensitive to such selectivity

errors. In a nutshell, to “aim for resistance, rather than cure”, by identifying plans that provide

comparatively good performance over large regions of the selectivity space. Such plan choices

are especially important for industrial workloads where global stability is as much a concern

as local optimality [17].

Related Work

Over the last decade, a variety ofcompile-timestrategies have been proposed to identify robust

plans. For example, in the Least Expected Cost (LEC) approach [7, 8], it is assumed that the

distribution of predicate selectivities is apriori available, and then the plan that has the least-

expected-cost over the distribution is chosen for execution. While the performance of this

approach is likely to be good on average, it could be arbitrarily poor for a specific query as

compared to the optimizer’s optimal choice for that query. Moreover, it may not always be

feasible to provide the selectivity distributions.

An alternative Robust Cardinality Estimation (RCE) strategy proposed in [3] is to model

the selectivity dependency of the cost functions of the various competing plan choices. Then,

given a user-specified “confidence threshold”T , the plan that is expected to have theleast

upper boundwith regard to cost inT percentile of the queries is selected as the preferred

choice. The choice ofT determines the level of risk that the user is willing to sustain with

regard to worst-case behavior. Like the LEC approach, this too may be arbitrarily poor for a

specific query as compared to the optimizer’s optimal choice.

Chapter 1. Introduction 8

Finally, in the (initial) optimization phase of the Rio approach [4, 5], a set of uncertainty

modeling rules from [15] are used to classify selectivity errors into one of six categories (rang-

ing from “no uncertainty” to “very high uncertainty”) basedon their derivation mechanisms.

Then, these error categories are converted to hyper-rectangular error boxes drawn around the

optimizer’s point estimate. Finally, if the plans chosen bythe optimizer at the corners of

the principal diagonal of the box are the same as that chosen at the point estimate, then this

plan isassumedto be robust throughout the box. However, the conditions under which this

assumption is likely to be valid are not outlined.

The above techniques have provided novel and elegant formulations, but have to contend

with the following issues:

1. They areintrusiverequiring, to varying degrees, modifications to the optimizer engine.

2. They requirespecializedinformation about the workload and/or the system which may

not always be easy to obtain or model.

3. Their query capabilities may belimited compared to the original optimizer – e.g., only

SPJ queries with key-based joins were considered in [3, 4]. Further, [4] has been imple-

mented and evaluated on a non-commercial optimizer.

4. Most importantly, as explained in Section 1.3.1, none of them provide, on an individual

query basis, quantitativeguaranteeson the quality of their final plan choice relative to

the original (unmodified) optimizer’s selection. That is, they “cater to the crowd, not

individuals”.

1.3.2 The SEER Algorithm.

In this thesis, we presentSEER (Selectivity-Estimate-Error-Resistance), a new strategyfor

identifying robust plans that can be directly used on operational database environments. More

concretely, it

• Treats the optimizer as a black-box and therefore is inherently (a) completely non-

intrusive, and (b) capable of handling whatever SQL is supported by the system. Further,

Chapter 1. Introduction 9

it does not expect to have any additional information beyondthat provided by the engine

interface.

• Provides plan performance guarantees that areindividually applicable to queries in the

selectivity space.

• Considers only theparametric optimal set of plans(POSP) [12] as replacement candi-

dates and therefore delivers, for errors that lie within thereplacement plan’s optimality

region, robustness “for free”. In contrast, the previouslyproposed algorithms in the

literature may evaluate plans that are not optimal anywherein the space.

• Is validated oncommercialoptimizers on both the classical TPC-H [26] and the recent

TPC-DS [27] benchmarks.

We hasten to add that SEER, due to its non-intrusive design objective, only attempts to

address selectivity errors that occur on thebase relations, similar to [1]. However, since these

base errors are often the source of poor plan choices due to the multiplier effect as they progress

up the plan-tree [14], minimizing their impact could be of significant value in practical environ-

ments. Further, since SEER is a purely compile-time approach, it can be used in conjunction

with run-time techniques such as adaptive query processing[9] for addressing selectivity errors

in the higher nodes of the plan tree.

SEER is based on theanorexic reduction of plan diagrams.

Example. We now show an example of how anorexic reduction helps to identify selectivity-

error-resistant plans: In Figure 1.2(a), estimated selectivities of around (14%,1%) lead

to a choice of planP70. However, if the actual selectivities at runtime turn out tobe

significantly different, say (50%,40%), executing withP70, whose cost increases steeply

with selectivity, would be disastrous. In contrast, this error would have had no impact

with the reduced plan diagram of Figure 1.2(b), sinceP1, the replacement plan choice

at (14%,1%), remains the preferred plan for a large range of higher values, including

(50%,40%). Quantitatively, at the run-time location, planP1 has a cost of 135, while

P70’s cost of 402 is aboutthree timesmore expensive.

Chapter 1. Introduction 10

It is easy to see, as in the above example, that the replacement plan will, by definition, be

a robust choice for errors that lie within its optimality region, i.e. its“endo-optimal” region.

This is the advantage, mentioned earlier, of considering replacements only from the POSP set

of plans. The obvious question then is whether the sizes of these regions are typically large

enough to materially improve the system performance.

A second, and even more important question, is: What if the errors are such that the run-

time locations are“exo-optimal” w.r.t. the replacement plan? For example, if the run-time

location happens to be at (80%,90%), which is outside the optimality region ofP1? In this

situation, nothing can be said upfront – the replacement could be much better, similar or much

worse than the original plan. Therefore, ideally speaking,we would like to have a mecha-

nism through which one could assess whether a replacement isglobally safeover the entire

parameter space.

1.3.3 Contributions and Results

We address the above problem from both theoretical and empirical perspectives. Through ex-

tensive experimentation with a representative suite of multi-dimensional TPC-H and TPC-DS-

based query templates on leading commercial optimizers, weshow thatplan diagram reduc-

tion typically produces plan choices that substantially curtail the adverse effects of selectivity

estimation errors. Therefore, it clearly has potential to improve performance in general, for

both the endo-optimal and exo-optimal regions.

However, we have also encountered occasional situations where a replacement plan per-

forms much worse in its exo-optimal region than the originaloptimizer choice, highlighting

the need to establish an efficient criterion of when a specificswallowing is globally safe. To

achieve this objective, we present a generalized mathematical model of the behavior of plan

cost functions over the selectivity space. The model, although simple, is sufficient to capture

the cost behavior of all plans that have arisen from our querytemplates. Using this model, we

then prove that checks on only theperimeterof the selectivity space are sufficient to decide the

safety of reduction over the entire space. These checks involve the costing of“foreign plans”,

that is, of costing plans in their exo-optimal regions, a feature that has become available in the

Chapter 1. Introduction 11

current versions of several industrial-strength optimizers, including DB2[28] (Optimization

Profile), SQL Server[30] (XML Plan) and Sybase[29] (Abstract Plan).

Apart from providing reduction safety, foreign-plan costing is additionally leveraged to

both (a) enhance the reduction levels of the plan diagram, and (b) improve the complexity

characteristics of the reduction process, as compared to our earlier CostGreedy reduction al-

gorithm [11]. Note that the increased diagram reduction automatically implieslarger within-

λ-of-optimal regionsfor the retained plans, upfront guaranteeing more robustness.

In summary, we provide SEER, an efficient, effective and safe mechanism for identifying

robust plans that are resistant, as compared to the optimizer’s original choices, to errors in

the base relation selectivity estimates. Through a detailed study of benchmark-based query

templates on commercial optimizers, we empirically demonstrate that SEER provides robust

good performance for industrial-strength database environments.

1.4 Organization

The remainder of this thesis is organized as follows: The SIGHT and ISIGHT algorithms

for generating plan diagrams are presented in Chapter 2. The SEER reduction algorithm is

discussed in Chapter 3. Our experimental framework and performance results are highlighted

in Chapter 4. Finally, in Chapter 5, we summarize our conclusions and outline future research

avenues.

Chapter 2

Efficient Production of Plan Diagrams

In this chapter we present the SIGHT algorithm, which can be used to efficiently generate

completely accurateplan diagrams. Subsequently, we provide an inexact variant, the ISIGHT

algorithm, which trades error, based on the user’s bound, for reduction in optimization effort.

Both algorithms require the cost-based optimizer to providethe following features:

Optimal Plan (OP): This feature, found in virtually every enterprise databaseproduct, pro-

vides the optimal plan (OP), as determined by the optimizer,for a given query.

Foreign Plan Costing (FPC): The “foreign plan costing” (FPC) feature provides an option

for costing plansoutsidetheir native optimality regions. Specifically, the featuresup-

ports the “what-if” question: “What is the estimated cost of sub-optimal planp if

utilized at query locationq?”. FPC has become available in the current versions of

several industrial-strength optimizers, including DB2 [28] (Optimization Profile), SQL

Server [30] (XML Plan), and Sybase [29] (Abstract Plan).

Plan Rank List (PRL): The optimizer should support an API that provides not just the best

plan but a “plan-rank-list” (PRL), enumerating the topk plans for the query. For ex-

ample, withk = 2, both the best plan and the second-best plan are obtained when the

optimizer is invoked on a query. However, to our knowledge, it is not yet available in

any of the current systems. Therefore, we showcase its utility through our own imple-

mentation in a public-domain optimizer.

12

Chapter 2. Efficient Production of Plan Diagrams 13

Specifically, it is assumed that for each query point, the optimizer provides both the best plan

and the second-best plan, and an option to cost the second-best plan at other points in the

selectivity space.

2.1 Obtaining the Second Best Plan

As mentioned in the Introduction, current optimizers use a variant of the algorithm used by

the classical System R optimizer [22]. This algorithm uses the dynamic programming strategy

to identify the optimal plan for a given query from an exponential (on the number of relations

taking part in the query) search space.

This search space can be represented as a search tree, with the root node representing a

subset of plans applicable for the given query. In the final step of the algorithm, the optimal

plan is identified as the cheapest plan among this set of candidate plans. At first glance, we

might mistake the second best plan from this set to be the global second best plan. This need

not always be true, since there are multiple ways certain operations can be performed (eg.

either a table-scan or an index-scan can be used to scan base tables), and it is possible to obtain

a better plan by using a different choice for such operationsin the optimal plan.

In order to find the global second best plan, we only need to search the restricted search

space obtained by the path in the search tree taken for the optimal plan and compare the

second-best plan in this space with the second-best candidate plan of the original dynamic

programming exercise. This can be accomplished with a simple modification to the original

dynamic programming algorithm, where, as we progress through the levels of the search tree,

instead of choosing only the optimal sub-plan, we choose both the optimal and the second-best

sub-plan, to be processed in the next step of the algorithm.

Approximate second-best plan: We have observed that second-best candidate plan obtained

from the original dynamic programming exercise can be used as an effective approximation

for the global second-best plan. This istrivially implementablein current optimizers since the

candidate set is constructed by default during the optimization process.

Chapter 2. Efficient Production of Plan Diagrams 14

2.2 Plan Diagrams

The selectivity spaceS is represented by a grid of points where each pointq(x, y) corresponds

to a unique query with selectivitiesx, y in the X and Y dimensions, respectively. In a plan

diagramP, generated for a query templateQ, eachq ∈ P is associated with an optimal (as

determined by the optimizer) planPi, and a costci(q) representing the estimated effort to

executeq with planPi. Corresponding to each planPi is a unique colorLi, which is used to

color all the query points that are assigned toPi. As mentioned earlier, the plan diagram is

essentially a visual characterization of the parametric optimal set of plans (POSP) [12]. We

useP andS interchangeably in the remainder of the thesis based on the context.

2.3 The SIGHT Algorithm

The SIGHT algorithm for a 2D query template is shown in Figure2.1. The algorithm starts

with optimizing the query pointq(xmin, ymin) corresponding to the bottom-left query point in

the plan diagram. Letp1 be the optimizer-estimated optimal plan atq, with costc1(q), and let

p2 be thesecond bestplan, with costc2(q). We then assign the planp1 to all pointsq′ in the

first quadrantrelative toq as the origin, which obey the constraint thatc1(q
′) ≤ c2(q). After

this step is complete, we then move to the next unassigned point in row-major order relative to

q, and repeat the process, which continues until no unassigned points remain.

This algorithm is predicated on thePlan Cost Motonicity(PCM) assumption that the cost

of a plan is monotonically non-decreasing throughout the selectivity space, which is true in

practice for most query templates [11].

The following theorem proves that the SIGHT algorithm will exactly produce the true plan

diagramP without any approximation whatsoever. That is,by definition, there is zero plan-

identity and plan-location errors.

THEOREM2.1. The plan assigned by SIGHT to any point in the approximate plan diagram

A is exactly the same as that assigned inP.

Proof. Let Po ⊆ P be the set of points which were optimized. Consider a pointq′ ∈ P \Po

with a planp1. Let q ∈ Po be the point that was optimized whenq′ was assigned the planp1.

Chapter 2. Efficient Production of Plan Diagrams 15

SIGHT (QueryTemplate QT)

1. LetA be an empty plan diagram.

2. Setq = (xmin, ymin)

3. while (q 6= null)

(a) Optimize query templateQT at pointq.
(b) Letp1 andp2 be the optimal and second-best plan atq, respectively.
(c) for all unassigned pointsq′ in the first quadrant ofq

if (c1(q
′) ≤ c2(q)), assign planp1 to q′

(d) Setq = next unassigned query point inA

4. ReturnA

5. End Algorithm SIGHT

Figure 2.1: The SIGHT Algorithm

Let p2 be the second best plan atq.

For the sake of contradiction, letpk (k 6= 1), be the optimal plan atq′. We know that for a

cost-based optimizer,ck(q
′) < c1(q

′). This implies thatck(q
′) < c2(q) (due to the algorithm).

Using the PCM property, we haveck(q) ≤ ck(q
′) ⇒ c1(q) ≤ ck(q) < c2(q). This means that

p2 is not the second best plan atq, a contradiction.

2.3.1 Handling non-PCM templates

When a query template features negation operators (e.g set difference) or short-circuit opera-

tors (e.g. exists), the PCM condition may not hold. However, as long as the template exhibits

monotonicity (non-decreasing or non-increasing) along each of the selectivity axes, the costs

will still remain monotonic in an appropriate quadrant [11], as shown in Table 2.1 for the 2D

case.

Cost Behavior Cost Behavior Cost Increase
X dimension Y dimension Quadrant

Non-decreasing Non-decreasing I
Non-increasing Non-decreasing II
Non-increasing Non-increasing III
Non-decreasing Non-increasing IV

Table 2.1: PCM Behaviour

Chapter 2. Efficient Production of Plan Diagrams 16

The algorithm can be easily modified to take the appropriate quadrant into consideration.

For example, if the costs are monotonically non-decreasingalong the third quadrant, then

the algorithm starts processing from the top-right of the plan diagram (Step 2),and the plan

assignment is performed along the third quadrant (Step 3c).The quadrant in which the cost

of a plan is non-decreasing can be easily obtained by comparing the costs of the plan at the4

corners of the selectivity space.

2.4 The ISIGHT Algorithm

While SIGHT always gives zero error, we now investigate the possibility of whether it is pos-

sible to utilize the permissible error bound ofǫ given by the user to reduce the computational

overheads of SIGHT. To this end, we propose the following ISIGHT algorithm: The plan as-

signment constraintci(q
′) ≤ cj(q) is relaxed to beci(q

′) ≤ (1+δ)cj(q) with (δ > 0), resulting

in fewer optimizations being required to fully assign plansin the diagram. The choice ofδ is a

function of the user’sǫ error bound and andµi, the slope of the cost functionci atq. Our empir-

ical assessment indicates that settingδ = 0.1 ∗µi ∗ ǫ (e.g. withǫ = 10% andµi = 1, δ = 0.01)

is sufficient to both meet the error requirements and simultaneously significantly reduce the

overheads. For example,ǫ = 10% can be achieved with only around1% overheads.

Chapter 3

Identifying Robust Plans through Plan

Diagram Reduction

We now turn our attention to the problem of obtaining plans that are resilient to selectivity

errors. For ease of exposition, we assume in the following discussion that the SQL query

template is 2-dimensional in its selectivity variations – the extension to higher dimensions is

straightforward.

3.1 Problem Framework

3.1.1 Reduced Plan Diagrams

The Plan Diagram Reductionproblem is defined as follows [11]: Given an input plan dia-

gramP, and a maximum-cost-increase thresholdλ (λ ≥ 0), find a reduced plan diagramR

with minimum cardinalitysuch that for every planPi in P,

1. EitherPi ∈ R, or

2. ∀ q ∈ Pi, the assigned replacement planPj ∈ R guarantees
cj(q)

ci(q)
≤ (1 + λ)

That is, find the maximum possible subset of the plans inP that can be completely “swallowed”

by their sibling plans in the POSP set. A point worth reemphasizing here is that the threshold

17

Chapter 3. Identifying Robust Plans through Plan Diagram Reduction 18

constraint applies on anindividual querybasis. For example, settingλ = 10% stipulates that

the cost ofeachquery point in the reduced diagram is within1.1 times its original value.

It was proved in [11] that the above problem is NP-Hard. Therefore, an efficient heuristic-

based online algorithm, calledCostGreedy, was proposed and shown to deliver near-optimal

“anorexic” levels of reduction, wherein the plan cardinality of the reduced diagram usually

came down to around 10 or less for aλ-threshold of only 20%. In a nutshell, complex plan

diagrams can be easily made very simple without materially affecting the query processing

quality.

3.1.2 Selectivity Estimation Errors

Consider a specific query pointqe, whose optimizer-estimated location inS is (xe, ye). De-

note the optimizer’s optimal plan choice at pointqe by Poe. Due to errors in the selectivity

estimates, theactual location ofqe could be different at execution-time – denote this location

by qa(xa, ya), and the optimizer’s optimal plan choice atqa by Poa. Assume thatPoe has been

swallowed by a sibling plan during the reduction process anddenote the replacement plan as-

signed toqe in R by Pre. Finally, extend the definition of query cost (which appliedto the

optimal plan) to haveci(t) denote the cost of an arbitrary POSP planPi at an arbitrary query

point t in S.

With respect toR, the actual query pointqa will be located in one of the following disjoint

regions ofPre that together coverS:

Endo-optimal region of Pre: Here,qa is located in the optimality region of the replacement

planPre, which also implies thatPre ≡ Poa. Sincecre(qa) ≡ coa(qa), it follows that the

cost ofPre at qa, cre(qa) < coe(qa) (by definition of a cost-based optimizer). Therefore,

improved resistance to selectivity errors is alwaysguaranteedin this region.

Swallow-region ofPre: Here,qa is located in the region “swallowed” byPre during the re-

duction process. Due to theλ-threshold constraint, we are assured thatcre(qa) ≤ (1 +

λ)coa(qa), and by implication thatcre(qa) ≤ (1+λ)coe(qa). Now, there are two possibil-

ities: If cre(qa) < coe(qa), then the replacement plan is again guaranteed to improve the

Chapter 3. Identifying Robust Plans through Plan Diagram Reduction 19

resistance to selectivity errors. On the other hand, ifcoe(qa) ≤ cre(qa) ≤ (1 + λ)coe(qa),

the replacement is guaranteed to not cause any real harm, given the small values ofλ

that we consider in this thesis.

Exo-optimal region of Pre: Here,qa is located outside both the endo-optimal and swallow-

regions ofPre. At such locations, we cannot apriori predictPre’s behavior, and therefore

the replacement may not always be a good choice – in principle, it could bearbitrarily

worse. Therefore, we would like to ensure that even if the replacement does not provide

any improvement, it is at least guaranteed to not do any harm.That is, theexo-optimal

region should have the same performance guarantees as the swallow-region. We show

in Section 3.2 how this objective can be efficiently achievedthrough simple but powerful

checks to decide when replacement is advisable.

3.1.3 Motivational Scenarios

Given the above framework, we now present example scenariosto motivate (a) the error-

resistance utility of plan diagram reduction, and (b) the need for safety in this process.

Our first scenario, typical of that seen in most of our experiments, demonstrates how the

replacement planPre can provide extremely substantial improvementsthroughout the selectiv-

ity space. Specifically, on a vanilla PC with a popular commercial optimizer, we generated a

plan diagram for a query template based on TPC-H Q5, with selectivity variations on theCUS-

TOMER andSUPPLIERrelations, and carried out reduction withλ = 10%. For this diagram,

with qe = (0.36, 0.05), and a representative set of actual locations (qa) along the principal

diagonal ofS, the costs ofPoe (P45),Pre (P17) andPoa (the optimal plan at eachqa location)

are shown in Figure 3.1(a) – note that the costs are measured on a log scale.

It is clear from Figure 3.1(a) that the replacement planPre providesorders-of-magnitude

benefit w.r.t.Poe. In fact, the error-resistance is to the extent that it virtually provides “immu-

nity” to the error since the performance ofPre is close to that of thelocally optimal planPoa

throughout the space, although the endo-optimal region ofPre constitutes only a very small

fraction of this space.

Chapter 3. Identifying Robust Plans through Plan Diagram Reduction 20

0,0 20,20 40,40 60,60 80,80 100,100
10

1

10
2

10
3

10
4

10
5

10
6

E
st

im
a

te
d

 P
la

n
 C

o
st

Actual Selectivity Location q
a
(x

a
,y

a
)

P
oe

 (P
45

)

P
re

 (P
17

)

P
oa

(a) Compile-Time

0,0 20,20 40,40 60,60 80,80 100,100
10

−1

10
0

10
1

10
2

10
3

R
e

sp
o

n
se

 T
im

e
 (

se
c)

Actual Selectivity Location q
a
(x

a
,y

a
)

P
oe

 (P
45

)

P
re

 (P
17

)

P
oa

(b) Run-Time

Figure 3.1: Beneficial Impact of Plan Replacement

To demonstrate that the benefits anticipated from the compile-time analysis do translate to

corresponding improvementsat runtime, we show in Figure 3.1(b) the query response times

(again measured on alog scale) of Poe (P45),Pre (P17) andPoa at the sameqa locations.

It is vividly clear in this picture that huge savings in processing time are obtained by using

the replacement plan instead of the optimizer’s original choice, and that the replacement’s

performance is virtually indistinguishable from the optimal choices.

While performance improvements are usually the order of the day, there are occasional

situations whereinPre performs worse thanPoe atqa. A particularly egregious example, arising

from thesameplan diagram described above, is shown in Figure 3.2(a) forqe = (0.03, 0.14)

– we see here that it is now the replacement planPre (P34), which isorders-of-magnitude

worse thanPoe (P26) in the presence of selectivity errors. This compile-time assessment is

corroborated in Figure 3.2(b) which shows the corresponding query response times.

3.1.4 Robust Reduction

From the above discussion, it is clear that we need to ensure that only safe replacements are

permitted. This means that replacement should be permittedonly if the λ threshold criterion

Chapter 3. Identifying Robust Plans through Plan Diagram Reduction 21

0,0 20,20 40,40 60,60 80,80 100,100
10

1

10
2

10
3

10
4

10
5

E
st

im
a

te
d

 P
la

n
 C

o
st

Actual Selectivity Location q
a
(x

a
,y

a
)

P
oe

 (P
26

)

P
re

 (P
34

)

P
oa

(a) Compile-Time

0,0 20,20 40,40 60,60 80,80 100,100
10

−1

10
0

10
1

10
2

10
3

R
e

sp
o

n
se

 T
im

e
 (

se
c)

Actual Selectivity Location q
a
(x

a
,y

a
)

P
oe

 (P
26

)

P
re

 (P
34

)

P
oa

(b) Run-Time

Figure 3.2: Adverse Impact of Plan Replacement

is satisfied not just at the estimated point, butat all locationsin the selectivity space. At the

same time, it is important to ensure that the safety check is not unnecessarily conservative,

preventing most plan replacements, and in the process losing all the error-resistance benefits.

Therefore, the overall goal is to maximize plan diagram reduction without violating safety

considerations. More formally, our problem formulation is:

Robust Reduction Problem.Given an input plan diagramP, and a maximum cost-increase-

thresholdλ (λ ≥ 0), find a reduced plan diagramR with minimum plan cardinalitysuch that

for every planPi in P,

1. Pi ∈ R, or

2. ∀ q ∈ Pi, the assigned replacement planPj ∈ R guarantees∀ query pointsq′ ∈ P,
cj(q

′)

ci(q′)
≤ (1 + λ)

That is, find the minimum-sized error-resistant “cover” of plans that reduces the plan diagram

P without increasing the cost of any reassigned query point bymore than the cost increase

threshold,irrespective of the actual location of the query at run-time.

It is easy to see that the Robust Reduction problem is NP-Hard, just like the standard Plan

Diagram Reduction problem, and therefore we present a heuristic-based algorithm later in

Chapter 3. Identifying Robust Plans through Plan Diagram Reduction 22

Section 3.3. But, prior to that, we show in the following section how replacement safety can

be checked efficiently.

3.2 Ensuring Robust Reduction

To find an error-resistant cover of the plan diagram, we need to evaluate the behavior of each

replacement planPre, w.r.t. its swallowing targetPoe, at all points in S. This requires, in

principle, finding the costs ofPoe and all potentialPre at every point in the diagram. Of course,

Poe andPre need not be costed in their respectiveendo-optimalregions, since these values are

already known through the plan diagram production process.The remainingexo-optimalcosts

can be obtained using the FPC feature, that is now supported in several industrial-strength

optimizers, as mentioned in the Introduction.

While the above solution is conceptually feasible, it is practically unviable due to its enor-

mous computational overheads. Plan-costing is certainly cheaper than the optimizer’s standard

optimal-plan-searching process [13], but the overall overhead is stillO(nm) wheren andm

are the number of plans and the number of points, respectively, in P. Typical values ofn range

from the several tens to several hundreds, whilem is of the order of several thousands to

several hundreds of thousands, making an exhaustive approach impractical.

The above situation motivates us to study whether it is possible, based on using FPC at

only a few select locations, toinfer the behavior in the rest of the space. In the remainder

of this section, we describe our strategy for making such an inference. We begin by design-

ing a parameterized mathematical model for characterizingplan cost behavior. Our model is

grossly simplified in comparison to those used in real optimizers, which are much more com-

plex [19, 18]. However, what we have found in practice (with several hundred distinct plans

arising out of TPC-H and TPC-DS-based query templates on industrial optimizers) is that with

appropriate settings of the parameters, our simple model isquite accurate, both behaviorally

and quantitatively. The reasons are that (a) in our problem space all parameters, barring the

selectivities, areconstant, resulting in complex models degenerating to comparatively simple

equivalents; (b) we arefitting the model to the observed cost behaviors, rather than tryingto

Chapter 3. Identifying Robust Plans through Plan Diagram Reduction 23

predict them; and (c) our modeling is at the level of entire plans, aggregating the effects of

several individual operators, thereby reducing the variability. Moreover, the quantitative accu-

racy is a bonus – it is not really required since onlybehavioralaccuracy is necessary for our

scheme to work.

3.2.1 Modeling Plan Cost Functions

For ease of presentation, we will initially assume that our objective is to model the cost behav-

ior of plans with respect to a 2-D selectivity space (e.g. Figure 1.2(a)) corresponding to distinct

relationsRx andRy. The extension to higher dimensions is straightforward andis provided

later in this section.

In current optimizers, the operators in the execution plan are all typically eitherunaryor

binarywith regard to their inputs. Therefore, given a specific planoperator tree, like the sample

one shown in Figure 3.3 (obtained on aRx = LINEITEM , Ry = CUSTOMER selectivity space),

we can define the following types of nodes:

Selectivity Nodes: These are the unary nodes that implement the selection operations on re-

lationsRx andRy. In Figure 3.3, they are colored orange, corresponding to Index Scans

on theLINEITEM andCUSTOMERrelations, respectively.

Dependent Nodes:These are the nodes in the tree that have at least one Selectivity Node in

the sub-tree below them. They are colored blue in Figure 3.3.

Independent Nodes:These are all the remaining nodes in the tree that do not belong to either

of the above two categories. They are colored white in Figure3.3.

3.2.2 Node Cost Models

We now enumerate the cost models that can be associated with the above node categories on

the 2-D selectivity spaceS. Our formulation is based on detailed observations of cost behavior

of individual operators on commercial database optimizers. In the following, the variablesx

andy are used to denote the (fractional) selectivities on the respective dimensions.

Chapter 3. Identifying Robust Plans through Plan Diagram Reduction 24

Figure 3.3: Sample Plan Tree

Independent Nodes:Since these nodes do not have a Selectivity Node in their sub-tree, vari-

ations inx andy do not change their inputs, and consequently their outputs.Therefore,

for a given plan, the costs at these nodes remain the same throughoutS.

Selectivity Nodes: The input cardinalities for these nodes will be constant (equal to the corre-

sponding base relation’s cardinalityn) while the output cardinality is directly dependent

on the selectivity value. Therefore, the cost behavior can be captured by the simple

linear model involving coefficientsa1 anda2 shown in Table 3.1. For example,Table-

Scanswill have a1 = 0, while Index-Scansare likely to have non-zero values for both

constants.

Dependent Unary Nodes:The input cardinalities for these nodes will be a function ofx

and/ory, and the associated family of cost models is as shown in Table3.1. For op-

erators such asAggregates, Arithmetic Expressions, Scalar functions, etc. the simple

linear model will apply, whereas the logarithmic model would apply to operators such

asSortandGroup Bythat require multiple passes over the data.

Dependent Binary Nodes:These are the nodes that represent binary set operators suchas

Chapter 3. Identifying Robust Plans through Plan Diagram Reduction 25

Node Type Input Cardinalities Cost Model
Selectivity Node (σ = x) n a1nx + a2

Dependant Unary Nodes
n1x

a1n1x + a2

a1n1x log n1x + a2

n1xy
a1n1xy + a2

a1n1xy log n1xy + a2

Dependant Binary Nodes
n1x n2 a1n1x + a2n2 + a3n1n2x + a4

n1xy n2 a1n1xy + a2n2 + a3n1n2xy + a4

n1x n2y a1n1x + a2n2y + a3n1n2xy + a4

Table 3.1: Cost Models for Various Node Types

Join, Union, Minus, etc. The different types of input possibilities and the associated cost

models are shown in Table 3.1.

Note that we deliberately do not consider the case whereboth the inputs to the binary

node are functions ofx (or y or xy). This is because it is easy to prove that such a

situation is not possible unless operators havebinary outputs– we have not encountered

any such operators in our study.

LEMMA 3.1. There cannot be a binary node that has both inputs to be functions ofx

(or functions ofy, or functions ofxy).

Proof. If there exists a binary nodeN with input cardinalitiesn1x andn2x, then there

should exist some node in its subtree that has abinary output. However, we know that all

nodes in the plan tree have unary outputs (since there is no cycle in the tree). A similar

argument holds for they andxy cases.

Cost Model of a Complete Plan

The cost function of the entire plan is the aggregate sum of the costs of the individual nodes.

Considering all possible cost models a node can have, we can conclude that the overall cost

model of a plan for a 2D selectivity space is of the form

Cost(x, y) =a1x + a2y + a3xy + a4x log x + a5y log y+

a6xy log xy + a7 (3.1)

Chapter 3. Identifying Robust Plans through Plan Diagram Reduction 26

wherea1, a2, a3, a4, a5, a6, a7 are coefficients, andx, y represent the selectivities ofRx andRy,

respectively.

Modeling a specific plan requires suitably choosing the seven coefficients, and this is

achieved through standard surface-fitting techniques, described in Section 4.

3.2.3 Extension to d-dimensional spaces

Generalizing the arguments used in the 2D case, we obtain thefollowing cost model for a

d-dimensional selectivity space.

Cost(x1, ..., xd) =
∑

i1

(ai1xi1 + bi1xi1 log xi1)+

∑

i1<i2

(ai1i2xi1xi2 + bi1i2xi1xi2 log xi1xi2) + ...+

a12..d(x1x2x3..xd) + b12..d(x1x2x3..xd) log(x1x2x3..xd) + a0 (3.2)

where thea’s andb’s are the coefficients and thexi, i = 1...d represent thed relational selec-

tivities.

3.2.4 Replacement Safety Conditions

For the 2D scenario, using the above7-coefficient cost model, our goal now is to come up with

an efficient mechanism to assess, given an optimal planPoe, candidate replacement planPre

and a cost-increase thresholdλ, whether it would be safe from aglobalperspective to havePre

swallowPoe.

Let the cost functions forPre andPoe be

fre(x, y) = a1x + a2y + a3xy + a4x log x + a5y log y + a6xy log xy + a7 (3.3)

and

foe(x, y) = b1x + b2y + b3xy + b4x log x + b5y log y + b6xy log xy + b7 (3.4)

Chapter 3. Identifying Robust Plans through Plan Diagram Reduction 27

respectively. Now consider the“safety function”

f(x, y) = fre − (1 + λ)foe (3.5)

which captures the differences between the costs ofPre and aλ-inflated version ofPoe in the

selectivity space. All points wheref(x, y) ≤ 0 are referred to asSafePointswhereas points

that havef(x, y) > 0 are calledViolatingPoints. For a replacement to be globally safe, there

should be no ViolatingPoint anywhere in the selectivity space.

In the following, we will use LR-Boundaries to collectively denote the left and right bound-

aries of the selectivity space, and TB-Boundaries to collectively denote the top and bottom

boundaries of the space.

For a specific value ofy, the safety functionf(x, y) can be rewritten as

fy(x) = g1 ∗ x + g2 ∗ x log x + g3

for appropriate coefficientsg1, g2, g3. Similarly, we can definefx(y). With this terminology,

the following theorem provides us with conditions for checking whether the selectivity space

is safe for the plan-pair (Poe,Pre) with regard to replacement.

THEOREM 3.2. For a plan-pair (Poe,Pre) and a selectivity spaceS with corners[(x1, y1),

(x1, y2), (x2, y2), (x2, y1)], the replacement is safe (i.e., withinλ-threshold) inS if any one of

the conditions, SC1 through SC6, given in Table 3.2 is satisfied.

Left Right Top Bottom
Boundary Boundary Boundary Boundary

SC1 Safe Safe f ′′

y2
(x) ≥ 0 f ′′

y1
(x) ≥ 0

SC2 f ′

y
(x1) ≤ 0 Safe f ′′

y2
(x) < 0 f ′′

y1
(x) < 0

& Safe
SC3 Safe f ′

y
(x2) ≥ 0 f ′′

y2
(x) < 0 f ′′

y1
(x) < 0

& Safe
SC4 f ′′

x1
(y) ≥ 0 f ′′

x2
(y) ≥ 0 Safe Safe

SC5 f ′′

x1
(y) < 0 f ′′

x2
(y) < 0 f ′

x
(y2) ≥ 0 Safe
& Safe

SC6 f ′′

x1
(y) < 0 f ′′

x2
(y) < 0 Safe f ′

x
(y1) ≤ 0
& Safe

Table 3.2: Safety Satisfaction Conditions

Chapter 3. Identifying Robust Plans through Plan Diagram Reduction 28

In order to prove the above theorem, we will start with deriving two lemmas – the first provides

us with a condition that is sufficient to ensure safety of all points on the straight line segment

joining a pair of safe points, while the second describes thebehaviour of the slope of the safety

function.

LEMMA 3.3 (Line Safety).Given a fixedy = yo, and a pair of safe points(x1, yo) and

(x2, yo) with x2 > x1, the straight line joining the two points is safe if the slopef ′

yo
(x) is either

(i) monotonically non-decreasing, OR

(ii) monotonically decreasing withf ′

yo
(x1) ≤ 0 or f ′

yo
(x2) ≥ 0

A similar result holds whenx is fixed.

Proof. The various possible behaviors offy(x) are shown in Figure 3.4 as Curves (a)

through (e). When the slopef ′

yo
(x) is monotonically non-decreasing (i.e. Condition (i) is

satisfied), the safety function curve that connects the two safe points is guaranteed to liebelow

the straight line joining the two points – Curve (a) in Figure 3.4 shows an example of this

situation. This ensures that the safety function along the given line segment is always negative

and hence safe.

yf (x)
x 1 x 2

�
�
�
��

�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�
�
�
�
� �

�
�
�

�
�
�
�

�
�
�
�

0

x

(b)

(c)

(d)

(e)

(a)

Figure 3.4: Behavior of the safety functionfy(x)

If, on the other hand,f ′

xo
(y) is monotonically decreasing, then the possible behaviors of

the safety functionfxo
(y) are shown in Curves (b) through (e) in Figure 3.4. Curves (b) and

Chapter 3. Identifying Robust Plans through Plan Diagram Reduction 29

(c) denote the behaviour of the safety function when Condition (ii) is satisfied, and clearly the

value of the safety function is again negative in the given range.

In Figure 3.4, Curve (d) also corresponds to a safe scenario – however, it is not possible

to differentiate between Curve (d) and the unsafe case, namely Curve (e), without explicitly

computing the safety function at every point on the given line-segment. Hence, weconserva-

tively categorize both cases as unsafe. We have also observed that the case corresponding to

Curve (e) occurs rarely in practice.

LEMMA 3.4 (Slope Behavior).If the slope of the safety function,f ′

y(x), is non-decreasing

(resp. decreasing) along the line-segmentsy = y1 andy = y2, then it is non-decreasing (resp.

decreasing) for all line segments in the interval(y1, y2). A similar result holds forf ′

x(y).

Proof. Consider the slope of the safety function

f ′

yo
(x) =

dfyo
(x)

dx
= g1 + g2(1 + log x) (3.6)

For x ∈ (0, 1), this slope is monotonic and its behavior depends on the signof g2. From

Equations 3.3 and 3.4, we know thatg2 can be written as the following function ofy

g2(y) = (a4 − (1 + λ)b4) + (a6 − (1 + λ)b6)y

= (k1 + k2y) (3.7)

wherek1 andk2 are constants.

Sinceg2(y) is a linear function ofy, the Lemma immediately follows.

We now prove Theorem 3.2 using the LineSafety and SlopeBehavior lemmas:

Proof. Consider the SC1 condition in Table 3.2: Sincef ′′

y (x) ≥ 0 (i.e. slopef ′

y(x) is

non-decreasing) at the TB-boundaries, then from Lemma 3.4, we know that the slopef ′

y(x) is

non-decreasing throughout the range(y1, y2).

Moving on to the SC2 and SC3 conditions: Sincef ′′

y (x) < 0 (i.e. slopef ′

y(x) is decreas-

ing) at the TB-boundaries, then from Lemma 3.4, we know that the slopef ′

y(x) is decreasing

throughout the range(y1, y2). Further, we know that for a giveny = yo ∈ (y1, y2), either

f ′

yo
(x1) ≤ 0 (SC2) orf ′

yo
(x2) ≥ 0 (SC3).

Chapter 3. Identifying Robust Plans through Plan Diagram Reduction 30

Thus, when SC1, SC2 or SC3 is satisfied, then for all lines betweenpoints (x1, y) and

(x2, y), y ∈ (y1, y2), the end-points are safe (because the LR-boundaries are safe), and the

slope conditions given in Lemma 3.3 are satisfied. Hence, allsuch line-segments are safe, the

union of which is the given region.

Similar arguments can be used to show safety of the region when conditions SC4, SC5 or

SC6 are satisfied. Hence the theorem.

The test criteria of Theorem 3.2 are utilized for determining reduction safety in the Safe-

tyCheck algorithm, described next. A related point to note here is that these checks arecon-

servativein that it is possible to have global safety even if none of theconditions are met – i.e.

the test is sufficient, but not necessary.

3.3 The SEER Algorithm

In this section, we first describe the safety checking procedure, which given a plan-pair (Poe,

Pre), responds whether the replacement ofPoe by Pre is globally safe throughout the selectiv-

ity spaceS. We then present and analyze the SEER algorithm which uses this procedure to

perform error-resistant plan diagram reduction.

In the following, we will assume that the selectivity spaceS is represented by a gridG,

with m = r × r points, i.e. the grid resolution in each dimension isr.

3.3.1 Safety Checking

To implement safe reduction in a 2-D plan diagram, we need to be able to check for the satisfac-

tion of any of the conditions (SC1 through SC6) stipulated in Theorem 3.2. A straightforward

way to achieve this is the followingPerimeter Testprocedure:

Perimeter Test. First compute the safety function at all points on theperimeterof G – this

is obtained through the foreign-plan-costing (FPC) feature. Then, compute the slope behav-

ior (non-decreasing or decreasing) along all the grid lines– this is achieved by evaluating the

slopes at the matching end-points on the perimeter and comparing the values. The slope at a

perimeter point is approximated by computing the value of the safety function at its immediate

Chapter 3. Identifying Robust Plans through Plan Diagram Reduction 31

f x(y)

f y(x)

Figure 3.5: Perimeter and Wedge Test

internal neighbor – i.e., along the “inner perimeter”, and evaluating the slope of the line seg-

ment joining these two points. Finally, use these results toverify whether any of the 6 safety

conditions are satisfied.

In the Perimeter test, the number of FPC operations is2 ∗ 4(r − 1) for the perimeter (the

2 is due to having to compute bothfre andfoe), while the computation of the slopes takes an

additional2 ∗ 4(r − 3) costings of the inner perimeter, leading to a total of approximately16r.

Note that this is much less than the2r2 FPC operations required by a brute-force approach of

costing both plans at all points in the diagram. For example,with r = 100, the overhead is

brought down by over an order of magnitude. The red and blue points shown in Figure 3.5 are

to be costed in this test.

An obvious minor improvement that could be carried out on the16r overhead is to perform

the inner perimeter costings only when conditions SC1 and SC4 are violated. In this case, only

one of SC2 or SC3 (resp. SC5 or SC6) can be valid. Hence, we need to perform FPC operations

only attwoboundaries of the inner perimeter, one along each dimension. This reduces the FPC

overhead to12r.

Wedge Test.We now present a powerful optimization, calledWedge Test, that allows condi-

tions SC1 and SC4 to be checked with aconstantnumber of FPC, specifically24, irrespective

of the resolution. This is based on the observation that the slope of the safetyfunction is

Chapter 3. Identifying Robust Plans through Plan Diagram Reduction 32

a monotonic function (Equation 3.6). Thus, by comparing theslopes at the corners of the

space, we can infer the slope behaviour of the safety function along its boundaries. Applying

Lemma 3.3, the safety of the boundaries can also be inferred.Hence, it is sufficient to perform

FPC only at each corner of the space and its two adjacent points on the perimeter boundaries

– that is, at the “corner wedges”. Only the red points shown inFigure 3.5 are to be costed in

this test.

Based on the above observations, we employ a two-stage process of safety-checking – in

the first stage, use the extremely cheap Wedge Test check, andonly if it fails, use the more

expensive Perimeter Test to verify replacement safety.

Note that once a plan is costed at a given location, we store this cost in a cache for reuse

later, ensuring no redundant computations.

3.3.2 Plan Diagram Reduction

We now show how the above safety checks are integrated into the SEER procedure for plan dia-

gram reduction. Note that SEER’s design is completely different from that of CostGreedy [11]

because now reduction is permitted only if it satisfies a safety criterion that is applicable over

S, whereas CostGreedy’s attention is limited to onlyPoe’s endo-optimal region.

The complete SEER algorithm is shown in Figure 3.6. Here, a Set-Cover instance is first

created from the input plan diagramP. Then the two-stage global safety checking procedure

of the Wedge Test, followed by the Perimeter Test, is implemented to evaluate replacement

possibilities across each pair of plans inP, and the Set-Cover instance is updated accordingly.

Finally, the resulting instance is solved using the standard greedy techniques [23, 10] to obtain

the reduced plan diagramR.

Analysis. As discussed earlier, each replacement assessment of a plan-pair (Poe,Pre) requires

atmostO(r) FPCs to be performed. There areO(n2) such comparisons performed by the

algorithm. However, since we cache the already obtained costs, the amortized number of FPC

to be performed per plan isO(r). Thus, for gridG with m = r×r points, the comparison of all

plan pairs requires onlyO(n
√

m + n2) time. Solving the Set-Cover problem using the Greedy

Chapter 3. Identifying Robust Plans through Plan Diagram Reduction 33

SEER (Plan DiagramP, Threshold λ)

1. Create a Set-Cover InstanceI = (U, S), whereS = {S1, S2, ..., Sn}, U = {1, 2, ..., n},
corresponding to then plans in the original plan diagramP.

2. Set eachSi = {i},∀i = 1...n

3. For each pair of plans(Pi, Pj) do

if (WEDGE TEST (Pi,Pj,λ) == Safe) then

Si = Si

⋃{j}
else if (PERIMETERTEST (Pi,Pj,λ) == Safe) then

Si = Si

⋃{j}
4. Solve the Set-Cover instanceI using the Greedy Set-Cover algorithm to identify the

plans retained inR.

Figure 3.6: The SEER Reduction Algorithm

Set-Cover algorithm [23, 10] requiresO(n2) time. This results in anO(n
√

m + n2) reduction

algorithm. Further, since the set cover instance created has |U | = n, the approximation factor

of this reduction algorithm isO(log n).

The above bounds and approximation factors for SEER comparevery favorably with those

of the CostGreedy reduction algorithm [11], which has time complexity O(nm) and approxi-

mation factor ofO(log m), since typicallyn << m.

3.3.3 Extension to Higher Dimensions

The SafetyCheck algorithm used to verify the safety of the replacement ofPoe by Pre in a d-

dimensional selectivity space is given in Figure 3.7. The above algorithm recursively finds the

safe area of the(d − 1)-dimension “slices” of the inputd-dimension selectivity space. When

d = 2, the WEDGETEST and PERIMETERTEST methods are used to check for safety. The

SEER algorithm incorporating this checking mechanism is shown in Figure 3.8.

Eachd-dimensional plan diagram is composed ofr (d − 1)-dimensional plan diagrams.

The time complexity of the SafetyCheck algorithm for the basecase whend = 2 is O(r).

Thus the SafetyCheck algorithm runs inO(rd−1) time. Given a grid withm = rd points,

FPC is performedO(m
d−1

d) times for each plan pair. Thus, the time complexity of the SEER

reduction algorithm for ad-dimensional plan diagram isO(m
d−1

d n + n2).

Chapter 3. Identifying Robust Plans through Plan Diagram Reduction 34

SafetyCheck (Plan DiagramP, Threshold λ, Plan Poe, Plan Pre, Dimensiond)

1. if(d == 2)

(a) if (WEDGE TEST (P,Pi,Pj ,λ) == Safe) then

return true.

else if (PERIMETERTEST (P,Pi,Pj ,λ) == Safe) then

return true.

(b) return false.

2. else

(a) safety = true;

(b) for each(d − 1)-dimension sliceP’ of P

safety = safety∧ SafetyCheck (P’,lambda, Poe, Pre, d − 1)

3. return safety.

Figure 3.7: n-Dimensional SafetyCheck Algorithm

SEER (Plan DiagramP, Threshold λ)

1. Create a Set-Cover InstanceI = (U, S), whereS = {S1, S2, ..., Sn}, U = {1, 2, ..., n},
corresponding to then plans in the original plan diagramP.

2. Set eachSi = {i},∀i = 1...n

3. For each pair of plans(Pi, Pj) do

if (SafetyCheck (P,λ,Pi,Pj ,d) == true) then

Si = Si

⋃{j}

4. Solve the set-cover instanceI using the Greedy Setcover algorithm to identify the plans re-
tained inR.

Figure 3.8: n-Dimensional SEER Reduction Algorithm

Chapter 3. Identifying Robust Plans through Plan Diagram Reduction 35

3.4 Variants of SEER

3.4.1 LiteSEER: A Fast Variant

The SEER design makes conscious efforts, as described above, to minimize the computational

overheads, but these overheads do grow with increasing dimensionality of the query template.

Therefore, we have also designed and evaluated LiteSEER, a light-weight heuristic-based al-

gorithm that trades SEER’s safety guarantee for providing rapid running-times. In LiteSEER,

a replacement is simply assumed to be safe ifall the corner points of the selectivity space are

safe. The intuition behind this observation is that when two points are safe, then the straight

line joining them is also usually safe. This is corroboratedby our experimental results which

indicate that the heuristic provides almost the same safetyas that obtained through the strict-

checking criteria of SEER.

Given ad-dimensional plan diagramP with n plans, the LiteSEER algorithm only com-

putes the safety function at the2d corners of the associated selectivity space. It immediately

follows that its overall complexity isO(2dn + n2). Since, in most practical scenarios of in-

terest,2d << n (e.g. in the 2-D case,2d = 4, while n is typically in the several tens, if not

more), the effective complexity turns out to beO(n2). Note that, in principle, in the absence

of any apriori information, this is theminimum workrequired to be executed by any reduction

algorithm.

3.4.2 PartialSeer

The problem formulation for robust reduction required the replacement plan to beglobally

safe. As a generalized variant, the safety criteria can be relaxed to allow a planPre to replace

planPoe if Pre is safe in at least a user-definedminimum safe fraction (MSF)of the area covered

by S (MSF ≤ 1).

In order to assess partial safety, we first perform the WEDGETEST and PERIMETERTEST

checks for global safety. If this fails, we verify whether the slope criteria of any of the 6 con-

ditions given in Theorem 3.2 is satisfied. If true, we allow planPre to replace planPoe if

Chapter 3. Identifying Robust Plans through Plan Diagram Reduction 36

1. At least two adjacent boundaries in the perimeter ofS are safe; and

2. TheMSF requirement is met inS.

The reason for restricting our attention to situations where at least two adjacent boundaries

are safe is that, for this case, an efficient algorithm can be set up to check satisfaction of the

area requirement, as described below. Figure 3.9 shows the modified SafetyCheck algorithm

that finds the safe area when the left and bottom boundaries ofS are safe. The algorithm is

similar when other boundaries are safe.

From Theorem 3.2 we know that the safe (and violating) pointsform contiguous regions

in S when the slope criteria of at least one of the size conditionsare satisfied. Since the left

and bottom boundaries of the grid are safe, thex andy axes form a part of the boundary of the

safe region. The PartialSafetyCheck algorithm traces the remainder of this boundary.

Figure 3.10 shows the flow of the algorithm while tracing the boundary between the safe

(green) and violating (red) regions of the selectivity space for a pair of plans. In this figure, the

top and right boundaries of the region violate the safety requirement.

We start from the first violating point on the top-boundary ofthe grid, and at each stage

either move down or right in the grid. At each interior point that we move to, we perform

the costing of the plansPoe andPre. The algorithm stops when we reach the bottom or right

boundaries of the grid.

The number ofright or downmovements required to reach this termination situation is

atmost2r movements for ar × r grid. Hence, for a pair of plans, atmost4r extra costings

are needed to obtain the error-resistant area. Steps 1 through 3 of the algorithm require an

additional12r costings in the worst case scenario – it is usually much smaller. Thus, the overall

time complexity of the modified PartialSafetyCheck algorithm for a 2-dimensional selectivity

space isO(r).

The PartialSeer reduction algorithm, which employs the PartialSafetyCheck safety-checking

technique, is shown in Figure 3.11.

Chapter 3. Identifying Robust Plans through Plan Diagram Reduction 37

PartialSafetyCheck (Plan DiagramP, Thresholdλ, Area allowedV iolation, PlanPoe, PlanPre,
Dimensiond)

1. if(d == 2)

(a) if (WEDGE TEST (P,Poe,Pre,λ) == Safe)return allowedV iolation

(b) if (PERIMETERTEST (P,Poe,Pre,λ) == Safe)return allowedV iolation

(c) if the slope criteria of the six conditions of Theorem 3.2 are not satisfied, return −1

(d) if (allowedV iolation = 0) return −1

(e) if no two adjacent boundaries are safe,return −1.

(f) Let the first violating point at the top-boundary of the gridG occur atx = xv. Set
x = xv, y = r − 1, NumV iolatingPoints = 0

(g) Whilex 6= r andy 6= −1

i. Setcount = 0

ii. While current point is violating (i.ef(x, y) > 0) andy 6= −1

A. move down (i.e.y--)

B. if (NumV iolatingPoints+(r−y−1)× (r−x−1)) > allowedV iolation,
return −1

iii. While current point is safe (i.ef(x, y) ≤ 0) andx 6= r

A. move right (i.e.x++), count++

B. if (NumV iolatingPoints+ count × (r − y − 1)) > allowedV iolation,
return −1

iv. NumV iolatingPoints + = count × (r − y − 1)

(h) allowedV iolation − = NumV iolatingPoints

(i) return allowedV iolation

2. else

(a) for each(d − 1)-dimension sliceP’ of P

i. allowedV iolation = PartialSafetyCheck (P’,λ, allowedV iolation, Poe, Pre, d−1)

ii. if (allowedV iolation < 0)
return allowedV iolation;

3. return allowedV iolation.

Figure 3.9: The PartialSafetyCheck Algorithm

Chapter 3. Identifying Robust Plans through Plan Diagram Reduction 38

Figure 3.10: Working of the PartialSafetyCheck algorithm

PartialSeer (Plan DiagramP, Threshold λ, MinSafeFraction MSF)

1. Create a Set-Cover InstanceI = (U, S), whereS = {S1, S2, ..., Sn}, U = {1, 2, ..., n},
corresponding to then plans in the original plan diagramP.

2. Set eachSi = {i},∀i = 1...n

3. For each pair of plans(Pi, Pj) do

(a) SetallowedV iolation = (1 − MSF) × Area(P).

(b) if (PartialSafetyCheck (P,λ,allowedV iolation, Pi,Pj ,d) ≥ 0) then

Si = Si

⋃{j}

4. Solve the set-cover instanceI using the Greedy Setcover algorithm to identify the plans re-
tained inR.

Figure 3.11: The PartialSeer Reduction Algorithm

Chapter 4

Experimental Results

The testbed used in our experiments is the Picasso optimizervisualization tool [20], executing

on a Sun Ultra 20 workstation equipped with an Opteron Dual Core 2.5GHz processor, 4 GB of

main memory and 720 GB of hard disk, running the Windows XP Prooperating system. The

experiments were conducted over plan diagrams produced from a variety of multi-dimensional

TPC-H and TPC-DS-based query templates. In our discussion, we use QTx to refer to a

query template based on Queryx of the TPC-H benchmark, and DSQTx to refer to a query

template based on Queryx of the TPC-DS benchmark. The TPC-H database was of size

1GB, while the TPC-DS database occupies 100GB. We present representative results here for

a commercial optimizer anonymously referred to hereafter as OptCom, and a public-domain

optimizer, hereafter referred to as OptPub.

4.1 Performance of SIGHT

We now evaluate the two plan generation algorithms, SIGHT and ISIGHT. For this experi-

ment, the OptPub engine was modified to (a) implement the FPC feature internally, and (b) to

return the second best sibling plan along with the optimal plan when the “explain” command

is executed.

39

Chapter 4. Experimental Results 40

Dimension/ Query No. of Exhaustive Time taken by Optimizations performed
Resolution Template Plans Generation time SIGHT by SIGHT (%)

2D: 1000× 1000
QT5 22 5 hrs 20 mins 4 mins (1%) 0.17 %
QT8 20 6 hrs 10 mins 2 hrs 47 mins (45%) 44 %

3D: 100× 100× 100
QT5 23 5 hrs 48 mins 13mins (3%) 2.4 %
QT8 49 5 hrs 58 mins 2 hrs 2 mins (34%) 32 %
QT9 22 6 hrs 45 mins 5 mins (1%) 0.24 %

4D: 30× 30× 30× 30
QT5 37 4 hrs 50 mins 25 mins (8%) 5.8 %
QT9 28 6 hrs 10 mins 7 mins (2%) 0.7 %

Table 4.1: Performance of SIGHT algorithm

4.1.1 SIGHT

Using the approximate second best plan, we were able to obtain plan diagrams with no plan

identity error, andalmost zeroplan location error. As can be seen in Table 4.1, SIGHT usually

requires at most10% optimizations to generateclose to accurateplan diagrams for all query

templates, except those based on Query 8, the reason for which is discussed below. The good

performance of SIGHT can be attributed to the following: Along with the optimizations being

performed at select points, all points (except the origin) are costed exactly once. Further, since

the FPC feature is internalized in the optimizer, the ratio of plan-costing to plan-searching is

approximately 1:100, making the overheads incurred very small. Also, an important byproduct

of this minor investment is the ability to also obtain the cost diagram corresponding to the plan

diagram.

Though an investment of10% optimizations is usually the order of the day, there are oc-

casional scenarios when the SIGHT algorithm requires a substantially larger number of opti-

mizations to generate the plan diagram. Such a situation is seen for QT8 – the reason is that

the cost of the second best plan is extremely close to that of the optimal plan over an extended

region. Even though the actual plan switch occurs much later, this close-to-optimal cost causes

the algorithm to optimize at frequent intervals as the constraintc1(q
′) ≤ c2(q) is easily violated

leading to the algorithm “panicking too quickly” and choosing to optimize a large number of

unnecessary points.

Chapter 4. Experimental Results 41

Query No. Exhaustive Approximation Optimizations ISIGHT
Dimension/ Temp- of Generation Time Required by Error (%)
Resolution -late Plans Time Taken ISIGHT (%) ǫI ǫL

2D: 1000× 1000
QT5 22 5 hrs 20 mins 3 mins (1%) 0.1 % 13 % 11 %
QT8 20 6 hrs 10 mins 6 mins (2%) 0.5 % 10 % 11 %

3D: 100× 100× 100
QT5 23 5 hrs 48 mins 7 mins (2%) 0.95 % 9 % 4.6 %
QT8 49 5 hrs 58 mins 12 mins (4%) 1.8 % 16 % 0.2 %
QT9 22 6 hrs 45 mins 5 mins (2%) 0.4 % 0 % 4.9 %

4D: 30× 30× 30× 30
QT5 37 4 hrs 50 mins 15 mins (5%) 3 % 8 % 1 %
QT9 28 6 hrs 10 mins 7 mins (2%) 0.4 % 3 % 4.5 %

Table 4.2: Performance of ISIGHT algorithm (ǫ = 10%)

4.1.2 ISIGHT

Turning our attention to the ISIGHT algorithm, whose performance is presented in Table 4.2

for a 10% error bound, we find that it consistently generates approximate plan diagrams while

performing less than 5% optimizations. Further and very importantly, even for the problematic

QT8, due to the relaxation of the effect of the proximity of the second best plan, the plan

diagram is now obtained incurring only a small overhead. Finally, note that the identity errors

greater than 10% are usually an artifact of the low number of plans in the original plan diagram.

A related point to note is that the time overheads are a littlemore than that of optimization.

The reason is that, although FPC is very cheap, since it has tobe invoked for a very large

number of points, a small but perceptible time overhead results.

4.2 Evaluation of SEER

4.2.1 Experimental Setup

Physical Design. Following a methodology similar to that advocated in [6], weconsidered

three different physical design configurations in our study: PrimaryKey (PK) , AllIndex

(AI) , andTunedIndex (TI) . PK represents the default physical design of our database engine,

wherein a clustered index is created on each primary key. AI,on the other hand, represents

an “index-rich” situation wherein (single-column) indices are available on all query-related

schema attributes. Finally, TI represents the index environment obtained by implementing the

recommendations of the database engine’s index tuning advisor (which include multi-column

Chapter 4. Experimental Results 42

indices).

In the subsequent discussion, we use QTx to refer to a query template based on Queryx

of the TPC-H benchmark, and DSQTx to refer to a query template based on Queryx of the

TPC-DS benchmark, operating in the default PK configuration.We prefix AI and TI to the

query template identifiers in describing our results for these specialized configurations.

Query Location Distribution. All the performance results shown initially in this sectionare

for plan diagrams generated withexponentiallydistributed locations for the query points across

the selectivity space, resulting in higher query densitiesnear the selectivity axes and towards

the origin. This choice is based on earlier observations in the literature (e.g. [12, 13, 21])

that plans tend to be densely packed in precisely these regions of the selectivity space. From

a performance perspective, these diagrams represent the “tough-nut” challenging situations

with respect to obtaining anorexic reduction due to their high plan densities and substantially

broader range of plan cost values.

For completeness, we have also conducted all the experiments with auniformdistribution

of query locations – these results are detailed in Section 4.2.7.

Performance Metrics. In the remainder of this section, we evaluate the SEER reduction algo-

rithm with regard to the following performance parameters:(a) Diagram Reduction Quality,

(b) Error-resistance obtained through Reduction, (c) Safety of Reduction, and (d) Computa-

tional Efficiency. As a precursor, we first evaluate the validity of the plan cost function model

(Section 3.2.1).

4.2.2 Validity of Plan Cost Model

The validity of the plan cost model presented in Equation 3.1was assessed by attempting to

fit the costs of plans generated by OptCom1. The experimental data consisted of optimizer-

estimated execution costs over the selectivity space of theplans that appeared in the various

plan diagrams (taken from both exponentially and uniformlydistributed query templates). As

1We have also validated this plan cost model on another commercial database, and found the results to be
similar

Chapter 4. Experimental Results 43

(a) Actual Cost Function (b) Fitted Cost Function

Figure 4.1: Plan Cost Function Modeling

mentioned earlier, the foreign-plan-costing (FPC) featurewas used to evaluate plans outside

of their endo-optimal regions.

The surface fitting was carried out with the classical LinearLeast Squares method [16] and

implemented using Matlab 7.4 [25]. An example 2-D fitted costfunction is:

Cost(x, y) = 17.9x + 45.9y + 1046xy − 39.5x log x + 4.5y log y + 27.6xy log xy + 97.3

For this plan, the complete plots of the actual cost surface and the fitted cost surface, as a

function of the selectivities of the two base relations, areshown in Figure 4.1. It is visually

evident that the fit is very good.

As further evidence of the accuracy of our model, Table 4.3 shows the quality-of-fit, mea-

sured in terms of the maximum and averageRoot-Mean-Square(RMS)errors, over a large

number of plans featuring in the plan diagrams arising from our suite of multi-dimensional

query templates. The consistently low RMS values suggest that the model is sufficiently accu-

rate for our purposes.

Finally, as an additional precaution, we deliberately searched for plan cost functions with

complex shapes to assess the quality-of-fit in these difficult cases. An example is shown in

Figure 4.2, and we see that even here, the fit is of high quality(the RMS Error is only around

10%). This can be attributed to the fact that our cost model has 7 parameters which gives

Chapter 4. Experimental Results 44

Dimension Number Maximum Average
of Plans RMS Error (%) RMS Error(%)

2D (TPC-H) 614 14.20 1.82
2D (TPC-DS) 168 7.31 2.87
3D (TPC-H) 28 6.98 1.92
3D (TPC-DS) 100 2.71 1.58

Table 4.3: RMS Errors in Fitted Cost Surfaces

sufficient freedom to fit most of the plan cost functions foundin practice. Our curve fitting

technique does not impose any restriction on the behaviour of the cost function, and hence we

see for this example, a small PCM violation in the fitted curve.

0
0.5

1

00.20.40.60.81
0

200

400

600

800

1000

1200

1400

1600

(a) Actual Cost Function

0

0.5

1

00.20.40.60.81
0

200

400

600

800

1000

1200

1400

1600

1800

(b) Fitted Cost Function

Cost(x, y) = 184.3x+619.9y+524.5xy−1090x log x−1179.9y log y−836.2xy log xy−1000

RMSError = 10.96%

Figure 4.2: Complex Plan Cost Function

4.2.3 Plan Diagram Reduction Quality

A potentially worrisome aspect of our quest to obtain globally robust reduction is whether it

might result in losing out on the anorexic reduction levels observed in the localized reduction

processes of [11]. This concern is quantitatively allayed in Table 4.4, which presents a compar-

ison between SEER and CostGreedy (CG) of the number of plans in the reduced diagram for

Chapter 4. Experimental Results 45

a diverse suite of multi-dimensional query templates on theTPC-H database. The PK physical

design configuration was operational in these experiments.

At first glance, SEER might have been expected to perform worse than CostGreedy because

its additional safety checks may prevent some plan swallowings permitted by CostGreedy– in

fact, this was the source of our concern. However, in Table 4.4, we actually find theconverse

– while CostGreedy does provide anorexic reduction, SEER does even better. The reason for

this is that CostGreedy follows a conservative cost-bounding approach to estimate the costs

of plans outside their endo-optimal regions (details in [11]). SEER, on the other hand, uses

the foreign-plan-costing feature to obtain the exact costsin these regions, and therefore has

superior reduction possibilities. Therefore, the FPC feature comes in handy from both quality

and safety perspectives.

A question that immediately arises is how SEER would compareagainst a CostGreedy

variant that also utilized the FPC feature. This issue is also addressed in Table 4.4, where the

performance of this variant (CG-FPC) is presented. We see thatCG-FPC does perform better

or as well as SEER, as should be expected – however, the gap, if any, is always very small. A

related point to note here is that the SEER reduction qualityremains excellent even for the 3D

query templates, in spite of the fact that the additional dimension increases the possibility of

the safety conditions being violated.

Finally, we observe in Table 4.4 that the LiteSEER fast variant happens to provide reduction

quality identical to SEER. Under the AI (and TI) configurations, however, it occasionally

performs slightly better (see Section 4.2.3), as should be expected due to its being less stringent

in allowing replacements.

TPC-DS Results.The above results were generated on the TPC-H database, whichhas uni-

formly distributed data. Table 4.5 shows a corresponding set of results for plan diagrams

generated on the TPC-DS database, which features skewed data. It is immediately evident that

the reduction profiles of the various reduction algorithms are very similar to those seen with

TPC-H.

Chapter 4. Experimental Results 46

Query Original CG CG-FPC SEER LiteSEER
Template No. of plans
QT2 (2D) 60 14 3 6 6
QT5 (2D) 51 7 2 2 2
QT8 (2D) 121 7 2 2 2
QT9 (2D) 137 9 3 4 4
QT10 (2D) 44 3 3 3 3
QT16 (2D) 32 11 3 3 3
QT5 (3D) 68 8 3 3 3
QT8 (3D) 191 8 3 3 3
QT10 (3D) 75 10 3 4 4

Table 4.4: Plan Diagram Reduction Quality (TPC-H)

Query Original CG CG-FPC SEER LiteSEER
Template No. of plans

DSQT12 (2D) 25 6 3 2 2
DSQT18 (2D) 114 13 2 2 2
DSQT19 (2D) 55 11 3 4 4
DSQT12 (3D) 33 11 2 2 2
DSQT18 (3D) 222 15 2 4 4
DSQT19 (3D) 98 15 2 4 4

Table 4.5: Plan Diagram Reduction Quality (TPC-DS)

Query Original CG CG-FPC SEER LiteSEER
Template No. of plans

AIQT2 (2D) 87 12 2 2 2
AIQT5 (2D) 126 14 4 6 5
AIQT8 (2D) 121 7 3 3 3
AIQT9 (2D) 132 14 3 4 3
AIQT10 (2D) 37 8 4 5 5
AIQT16 (2D) 35 9 2 2 2
AIQT5 (3D) 139 14 5 7 5
AIQT8 (3D) 168 14 4 6 5
AIQT10 (3D) 77 16 7 8 8

Table 4.6: Plan Diagram Reduction Quality (TPCH-AI)

Chapter 4. Experimental Results 47

Query Original CG CG-FPC SEER LiteSEER
Template No. of plans

TIQT2 (2D) 52 10 4 5 5
TIQT8 (2D) 108 16 3 3 3
TIQT9 (2D) 101 16 6 5 5
TIQT10 (2D) 50 10 4 2 2
TIQT16 (2D) 36 14 4 6 6
TIQT5 (3D) 84 10 4 5 5
TIQT8 (3D) 181 14 4 6 5
TIQT10 (3D) 78 12 6 8 7

Table 4.7: Plan Diagram Reduction Quality (TPCH-TI)

Reduction Quality with AllIndex Configuration

While the PK configuration had only 8 primary-key indices, AllIndex includes an additional

53 (non-clustered) single-column indices covering all theremaining query-related schema at-

tributes. The reduction quality results for this index-rich configuration are shown in Table 4.6.

We first notice that the number of plans in the original diagram usually increases, often sub-

stantially, as should be expected since the optimizer’s search space has increased due to the

availability of the additional indices. For example, the number of plans for AIQT5(2D) goes

up to 125 from 51, while AIQT5(3D) jumps to 139 from 68. However, when we consider the

reduction quality of the various algorithms, we find that they continue tomaterially adhere to

anorexic levels, although the actual cardinalities may have gone up by a couple of plans. For

example, SEER on AIQT5(2D) retains 6 plans as compared to 2 under PK.

Another point to note in Table 4.6 is that we now see LiteSEER occasionally permitting

slightly greater reduction than SEER, due to its relaxed constraint in allowing replacements.

Reduction Quality with Tuned-Index Configuration

The reduction quality results for theTuned Index(TI) configuration which implements the

recommendations of the index tuning advisor shipped with OptCom is shown in Table 4.7.

The parameters of the tuning advisor were set to their default values, and the TPC-H bench-

mark queries (generated with the QGen utility) formed the input workload. For this setup, the

advisor recommended 20 additional indices beyond the default Primary Key configuration.

Chapter 4. Experimental Results 48

We see here that the reduction performance is very similar tothat obtained with the PK and

AI configurations, testifying to SEER’s consistent behaviorover a wide variety of database

environments.

4.2.4 Error-resistance and Safety

Having established the retention of diagram reduction quality, we now move on to assessing

the extent to which resistance to selectivity errors is provided through SEER reduction. We

begin with defining a metric that quantitatively captures this effect:

Error Resistance Metric. Given an estimated query locationqe and an actual locationqa, the

Selectivity Error Resistance Factor(SERF) of a replacement planPre w.r.t. the optimal plan

Poe is defined as,

SERF (qe, qa) = 1 − cre(qa) − coa(qa)

(1 + λ)coe(qa) − coa(qa)

Intuitively, SERF captures the fraction of the performance gap betweenPoe andPoa that is

closed byPre. In principle, SERF values can range over(−∞, 1], with the following interpre-

tations: SERF in the range(λ, 1] indicates that the replacement is beneficial, with values close

to 1 implying “immunity” to the selectivity error. For SERF inthe range[0, λ], the replacement

is indifferent in that it neither helps nor hurts, while SERF values below0 highlight a harmful

replacement that materially worsens the performance.

The above formula applies to a specific instance of replacement. To capture the net impact

of reduction on improving the resistance in anentire plan diagram, we compute the following

AvgSERF =

∑
qe∈rep(P)

∑
qa∈exooe(P) SERF (qe, qa)∑

qe∈rep(P)

∑
qa∈exooe(P) 1

whererep(P) is the set of points in the plan diagramP that were replaced during the reduction

process, andexooe(P) is the set of points lying in the exo-optimal region defined with respect

to Poe, the optimizer’s plan choice forqe. The normalization is with respect to the number

of possible selectivity errors in the diagram. (To ensure meaningful AvgSERF values from a

robustness perspective, we exclude the uninteresting scenarios wherein bothcre andcoe have

Chapter 4. Experimental Results 49

extremely low absolute values, or are both withinλ-threshold ofcoa.)

Note that in the above formulation, we assume for simplicitythat the actual locationqa is

equally likely to be anywhere inPoe’s exo-optimal space, that is, that the errors are uniformly

distributed over this space. However, our conceptual framework is also applicable to the more

generic case where the error locations have an associated probability distribution.

Resistance Results.For CostGreedy, SEER and LiteSEER, we show in Table 4.8, the AvgSERF,

as defined above, as well as MinSERF and MaxSERF, the minimum andmaximum values of

SERF over all replacement instances, for the various query templates. We first see here that for

all the algorithms, plan diagram reduction is capable, across the board, of providing complete

immunity (MaxSERF tending to 1) to selectivity errors for individual replacement instances.

Secondly, and more importantly, the AvgSERF is also quite substantial for SEER. For exam-

ple, in DSQT18, on average, more than three-quarters of the performance gap due to selectivity

errors is bridged by the SEER reduction process.

With CostGreedy, on the other hand, the AvgSERF is comparatively very poor, and oc-

casionally even negative! The important point to note here is that these low averages are an

artifact arising out of a small fraction of points (around 10-20% points occuring with probabil-

ity of around 0.1) whose performance is grossly adversely affected by plan replacement. That

is, plan reduction does help in the vast majority of cases butthe “few very bad apples”, reflected

by the hugely negative MinSERF values (which sometimes even run into the thousands), ruin

the overall performance statistics. More pertinently, these results serve to quantitatively and

vividly substantiate the need for safe replacement, the motivation underlying our design of the

SEER algorithm.

Finally, turning our attention to LiteSEER, we see that its error-resistance profile is very

similar to that of SEER – in fact, the AvgSERF and MaxSERF numbers are identical for most

templates. Further, although like CostGreedy it does not guarantee safety, as testified to by the

negative values in the MinSERF column, note that (a) the templates having negative values

are relatively rare, (b) even in these cases, unsafe replacements occur only for about 1% of the

points (with probability less than 0.01), and (c) most importantly, their magnitudes are small

in comparison (the maximum is -10 for AIQT5(2D)).

Chapter 4. Experimental Results 50

Query CG SEER LiteSEER
Template MinSERF AvgSERF MaxSERF MinSERF AvgSERF MaxSERF MinSERF AvgSERF MaxSERF
QT2 (2D) -58.6 0.2 1 0 0.38 0.98 0 0.38 0.98
QT5 (2D) -15.6 0.5 1 0.14 0.51 0.99 0.14 0.51 0.99
QT8 (2D) -2.9 0.82 1 0.3 0.93 1 0.3 0.93 1
QT9 (2D) -46.3 0.37 1 0 0.77 1 0 0.77 1
QT10 (2D) -23.8 0.09 1 0 0.35 1 0 0.35 1
QT16 (2D) -132.5 0.03 0.99 0.04 0.33 0.96 0.04 0.33 0.96
QT5 (3D) -15.4 0.6 1 0.03 0.38 1 0.03 0.38 1
QT8 (3D) -177.7 -0.5 1 0 0.63 1 0 0.63 1
QT10 (3D) -130.7 -2 1 0 0.45 1 0 0.45 1
AIQT2 (2D) -202 -1.1 0.99 0 0.8 0.99 0 0.8 0.99
AIQT5 (2D) -1336 -3.1 1 0 0.58 1 -10 0.54 1
AIQT8 (2D) -62.4 0.35 1 0 0.54 1 0 0.54 1
AIQT9 (2D) -9486 -3.1 1 0 0.62 1 -5 0.66 1
AIQT10 (2D) -20.2 0.24 1 0 0.25 0.98 0 0.25 0.98
AIQT16 (2D) -76 0.07 1 0 0.75 1 0 0.75 1
AIQT5 (3D) -2151 0.24 1 0.05 0.62 1 -2 0.66 1
AIQT8 (3D) -103.7 0.43 1 0 0.44 1 -6 0.44 1
AIQT10 (3D) -4680 -4.4 1 0 0.33 1 0 0.33 1
TIQT2 (2D) -161.3 -0.12 0.99 0.01 0.32 0.94 0.01 0.32 0.94
TIQT8 (2D) -550.1 -3.4 1 0 0.54 1 0 0.54 1
TIQT9 (2D) -87.5 0.01 1 0 0.44 1 0 0.44 1
TIQT10 (2D) -671.4 -15.7 1 0 0.27 0.99 0 0.27 0.99
TIQT16 (2D) -14.4 0.11 0.99 0.02 0.39 0.97 0.02 0.39 0.97
TIQT5 (3D) -166.3 -1.42 1 0 0.71 1 0 0.71 1
TIQT8 (3D) -4188.5 -4.23 1 0 0.61 1 -1.3 0.61 1
TIQT10 (3D) -574 -4.97 1 0 0.31 1 -8.9 0.31 1
DSQT12 (2D) -4 0.61 1 0.07 0.44 1 0.06 0.44 1
DSQT18 (2D) -194.75 -2 1 0.07 0.81 1 0.07 0.81 1
DSQT19 (2D) -86 0.17 1 0 0.63 1 0 0.63 1
DSQT12 (3D) -142 -0.32 1 0.06 0.53 1 0.06 0.53 1
DSQT18 (3D) -3104 -0.14 1 0 0.85 1 0 0.85 1
DSQT19 (3D) -106.6 0.33 1 0.02 0.82 1 0.02 0.82 1

Table 4.8: Characterization of Error-Resistance through Reduction

Safety Example

In the example of Figure 3.2, plan diagram reduction withoutexplicitly checking for safety led

to situations whereinPre performed much worse thanPoe at qa. The effectiveness of SEER

in avoiding such unsafe replacements is visually highlighted in the sequence of pictures in

Figure 4.3, corresponding to the same example.

Assuming that the actual location of a query at run-timeqa is uniformly distributed over

S, Figure 4.3(a) shows theexpected costfor each query pointqe, when executed with its

optimizer-selected planPoe. Note that the peaks in the picture correspond to situationswhere

the plan-choice is highly sensitive to selectivity errors.

Then, Figure 4.3(b) shows the expected cost of each query point qe when executed withPre

from the reduced plan diagram obtained using CostGreedy. Note that virtually all the peaks

in Figure 4.3(a) are substantively eliminated through the replacement choices in the reduced

Chapter 4. Experimental Results 51

(a) Expected Costs (Optimizer) (b) Expected Costs (CG) (c) Expected Costs (SEER)

Figure 4.3: Safe Error-resistance with SEER

plan diagram – for example, the dark-blue peak at the left-top corner of Figure 4.3(a) is largely

removed. However, on the down side, some plans suffer injurious replacements – for e.g.,

the earth-brown colored plan in the left-bottom corner of Figure 4.3(a) is now replaced by the

fluorescent-green colored plan in Figure 4.3(b), whose expected cost is orders of magnitude

greater. That is, CostGreedy in the process of eliminating existing peaks, may introducenew

peaks.

Finally, in Figure 4.3(c), we show the performance of SEER reduction. We see here that

(a) it removes all the peaks of Figure 4.3(a) like CostGreedy,and (b) it does not introduce any

new peaks courtesy its safety criterion. In a nutshell, “it provides virtually all the good, and

doesn’t introduce any harm”.

4.2.5 Efficiency of Reduction Process

We now move on to profiling the time taken to complete the reduction process by SEER as

compared to CostGreedy. These results are shown in Table 4.9 for our query template suite.

Focussing initially on the 2D query templates, we see that SEER’s performance is quite ac-

ceptable in terms of absolute times (a few minutes per reduction), especially in comparison to

the original plan diagramproduction time. However, it is much slower relative to CostGreedy,

which offers sub-second response times. This might seem surprising in light of our analysis in

Chapter 4. Experimental Results 52

Query CG CG-FPC SEER LiteSEER
Template (ms) (min) (min) (sec)
QT2 (2D) 15 53.1 3.6 14.2
QT5 (2D) 16 45.0 1.0 12
QT8 (2D) 17 108 9.6 28.8
QT9 (2D) 13 122.4 10.6 32.6
QT10 (2D) 15 38.7 3.0 10.3
QT16 (2D) 15 27.9 1.3 7.5
QT5 (3D) 25 67 19.0 32
QT8 (3D) 21 190 65.0 91
QT10 (3D) 17 74 16.5 4.5

DSQT12 (2D) 14 21.6 2.6 5.8
DSQT18 (2D) 13 101.7 9.4 27.1
DSQT19 (2D) 14 48.6 6.4 13.0
DSQT12 (3D) 20 32.0 7.4 15.4
DSQT18 (3D) 25 221.0 89.1 106.1
DSQT19 (3D) 23 97.0 35.8 46.6

Query CG CG-FPC SEER LiteSEER
Template (ms) (min) (min) (sec)

AIQT2 (2D) 17 77.4 5.0 20.6
AIQT5 (2D) 12 112.5 3.7 30.0
AIQT8 (2D) 11 108.0 6.9 28.8
AIQT9 (2D) 18 107.9 9.1 31.4
AIQT10 (2D) 12 32.4 2.0 8.6
AIQT16 (2D) 12 30.6 2.0 8.2
AIQT5 (3D) 26 138 37.7 66.2
AIQT8 (3D) 19 167 47.3 80.2
AIQT10 (3D) 24 76 14.9 36.5
TIQT2 (2D) 18 45.9 2.9 12.2
TIQT8 (2D) 12 96.3 4.9 25.7
TIQT9 (2D) 16 90.0 7.2 24.0
TIQT10 (2D) 14 44.1 2.6 11.8
TIQT16 (2D) 12 31.5 2.0 8.4
TIQT5 (3D) 28 83 20.8 39.8
TIQT8 (3D) 24 180 67.8 86.4
TIQT10 (3D) 19 78 15.9 37.0

Table 4.9: Efficiency of Reduction Process

Section 3.3 showing that SEER is anO(n
√

m+n2) algorithm, whereas CostGreedy isO(nm).

The reason for the higher running time of SEER is that the basic cost-bounding computation in

CostGreedy is much faster than the foreign-plan-costing operator provided by the commercial

optimizers. Our discussions with the development team of OptCom have indicated that this is

not due to the costing itself, but is largely an artifact of setting up the contexts for the costing,

including verifying the validity of the plan with respect tothe query. Therefore, it is possible

that future better implementations of the FPC feature may bring SEER’s running time closer

to CostGreedy.

When we consider the 3D query templates, however, the runningtimes of SEER can be

quite large. It is here that LiteSEER shows its worth since its running times are only a few

minutes or even less, across the board for all the query templates. Taken in conjunction with

its good safety performance (Section 4.2.4), it suggests that LiteSEER offers an extremely

attractive compromise between the speed of CostGreedy and the robustness of SEER, making

it a viable first-cut reduction technique in real-world installations.

Finally, to normalize the effect of the different costing implementations, the running time of

the CG-FPC algorithm is also shown in Table 4.9 – we see here that CG-FPC takes in the order

of several tens or few hundreds of minutesto complete the reduction process. In comparison,

SEER’s selective usage of the FPC operator, courtesy Theorem3.2 and the two-stage checking

process, does succeed in substantially bringing down the overheads.

Chapter 4. Experimental Results 53

4.2.6 Performance of PartialSeer

Sample results obtained with the PartialSeer algorithm forMSA = 0.8 are shown in Ta-

ble 4.10, 4.11 and 4.12, for the various metrics of reductionquality, error resistance and effi-

ciency of the reduction.

Query Original
Template No. of CG CG-FPC SEER PartialSeer

plans (MSA = 1) (MSA = 0.8)
QT4(2D) 16 7 3 3 2
QT5(2D) 51 10 2 2 1
QT16(2D) 32 11 3 3 3

DSQT18(2D) 114 13 2 2 2

Table 4.10: Plan Diagram Reduction Quality (λ = 20%)

Query MinSERF AvgSERF MaxSERF
QT4(2D) -0.28 0.36 0.998
QT5(2D) -15.6 0.37 1
QT16(2D) -0.25 0.37 0.99

DSQT18(2D) -0.26 0.83 1

Table 4.11: Error-Resistance of PartialSeer
(λ = 20%,MSA = 0.8)

Query No of FPC Time (min)
QT4(2D) 2780 2.8
QT5(2D) 8738 8.7
QT16(2D) 5046 5.0

DSQT18(2D) 27284 27.3

Table 4.12: Efficiency of PartialSeer (λ =
20%,MSA = 0.8)

4.2.7 Uniform Query Distribution

The results shown thus far were produced with an exponentialdistribution of query points

across the selectivity space. We present here the corresponding results for plan diagrams gen-

erated with auniform distribution of query points. Tables 4.13 and 4.14 show the reduction

quality over our suite of query templates on the TPC-H and TPC-DS databases, respectively,

operating with a PrimaryKey physical configuration. The performance on the AllIndex and

TunedIndex configurations are detailed in Tables 4.15 and 4.16, respectively. Finally, the error-

resistance quality and the reduction efficiency are shown inTables 4.17 and 4.18, respectively.

These results are behaviorally similar to those obtained with the exponential distribution.

Chapter 4. Experimental Results 54

Query Original CG CG-FPC SEER LiteSEER
Template No. of plans
QT2 (2D) 25 5 3 3 3
QT5 (2D) 10 3 1 1 1
QT8 (2D) 31 4 2 2 2
QT9 (2D) 21 2 1 1 1
QT10 (2D) 13 3 2 2 2
QT16 (2D) 26 9 2 3 3
QT5 (3D) 18 1 1 1 1
QT8 (3D) 18 6 3 3 3
QT10 (3D) 18 4 2 2 2

Table 4.13: Plan Diagram Reduction Quality (TPC-H, Uniform plan diagrams)

Query Original CG CG-FPC SEER LiteSEER
Template No. of plans

DSQT12 (2D) 7 4 2 2 2
DSQT18 (2D) 21 3 1 1 1
DSQT19 (2D) 28 5 2 2 2
DSQT12 (2D) 8 2 1 1 1
DSQT18 (3D) 36 2 1 1 1
DSQT19 (2D) 64 2 1 1 1

Table 4.14: Plan Diagram Reduction Quality (TPC-DS, Uniform plan diagrams)

Query Original CG CG-FPC SEER LiteSEER
Template No. of plans

AIQT2 (2D) 30 8 3 3 3
AIQT5 (2D) 25 6 2 2 2
AIQT8 (2D) 25 3 2 3 3
AIQT9 (2D) 25 5 1 1 1
AIQT10 (2D) 16 4 3 3 3
AIQT16 (2D) 22 14 3 4 4
AIQT5 (3D) 37 4 2 2 2
AIQT8 (3D) 39 5 2 3 3
AIQT10 (3D) 50 9 4 3 3

Table 4.15: Plan Diagram Reduction Quality (TPCH-AI, Uniformplan diagrams)

Query Original CG CG-FPC SEER LiteSEER
Template No. of plans

TIQT2 (2D) 25 5 3 4 4
TIQT8 (2D) 29 2 1 1 1
TIQT9 (2D) 49 12 3 5 3
TIQT10 (2D) 8 3 2 2 2
TIQT16 (2D) 20 10 3 3 3
TIQT5 (3D) 30 5 3 3 3
TIQT8 (3D) 35 6 2 2 2
TIQT10 (3D) 16 6 2 2 2

Table 4.16: Plan Diagram Reduction Quality (TPCH-TI, Uniformplan diagrams)

Chapter 4. Experimental Results 55

Query CG SEER LiteSEER
Template MinSERF AvgSERF MaxSERF MinSERF AvgSERF MaxSERF MinSERF AvgSERF MaxSERF
QT2 (2D) 0 0.76 0.98 0.02 0.62 0.98 0.02 0.62 0.98
QT5 (2D) 0.99 0.99 0.99 0.96 0.98 1 0.96 0.98 1
QT8 (2D) -0.47 0.73 0.99 0.27 0.44 0.99 0.27 0.44 0.99
QT9 (2D) -55.3 -0.56 1 0.86 0.99 1 0.86 0.99 1
QT10 (2D) -0.81 0.4 0.99 0.14 0.34 0.60 0.14 0.34 0.60
QT16 (2D) -0.33 0.49 0.97 0.04 0.46 0.92 0.04 0.46 0.92
QT5 (3D) 0 0.01 0.02 0.78 0.95 1 0.78 0.95 1
QT8 (3D) -22.6 0.41 1 0.15 0.36 0.99 0.15 0.36 0.99
QT10 (3D) -5.5 0.43 1 0.19 0.69 1 0.19 0.69 1
AIQT2 (2D) -3.95 0.16 0.97 0.15 0.64 0.94 0.15 0.64 0.94
AIQT5 (2D) 0.17 0.38 1 0.28 0.51 1 0.28 0.51 1
AIQT8 (2D) -0.27 0.48 0.99 0.19 0.46 0.99 0.19 0.46 0.99
AIQT9 (2D) -1999.8 -2.1 1 0.96 0.99 1 0.96 0.99 1
AIQT10 (2D) -5.7 0.32 1 0.16 0.33 0.68 0.16 0.33 0.68
AIQT16 (2D) -0.39 0.58 0.96 0 0.58 0.98 0 0.58 0.98
AIQT5 (3D) 0.3 0.6 1 0.05 0.9 1 0.05 0.9 1
AIQT8 (3D) -9.25 0.32 0.99 0.03 0.75 0.99 0.03 0.75 0.99
AIQT10 (3D) -24.6 0.44 1 0.08 0.5 1 0.08 0.5 1
TIQT2 (2D) -4.23 0.52 0.98 0.01 0.49 0.95 0.01 0.49 0.95
TIQT8 (2D) -26.9 0.48 0.92 0.6 0.93 0.99 0.6 0.93 0.99
TIQT9 (2D) -37.5 0.21 0.99 0 0.32 0.99 -0.27 0.36 0.99
TIQT10 (2D) 0.17 0.18 0.53 0.17 0.32 0.59 0.17 0.32 0.59
TIQT16 (2D) -4.2 0.52 0.96 0.07 0.56 0.98 0.07 0.56 0.98
TIQT5 (3D) -96.9 0.43 0.99 0.22 0.89 0.99 0.22 0.89 0.99
TIQT8 (3D) -9.47 0.22 0.99 0.04 0.67 0.99 0.04 0.67 0.99
TIQT10 (3D) -2.96 0.52 0.99 0.38 0.9 0.99 0.38 0.9 0.99
DSQT12 (2D) -1 0.16 1 0.25 0.32 0.54 0.25 0.32 0.54
DSQT18 (2D) -12.2 0.38 1 0.59 0.99 1 0.59 0.99 1
DSQT19 (2D) -11.8 0.08 1 0.18 0.47 1 0.18 0.47 1
DSQT12 (3D) 1 1 1 1 1 1 1 1 1
DSQT18 (3D) 0.99 0.99 0.99 0.72 0.86 1 0.72 0.86 1
DSQT19 (3D) -0.53 0.74 1 0.77 0.87 1 0.77 0.87 1

Table 4.17: Characterization of Error-Resistance through Reduction (Uniform plan diagrams)

Query CG CG-FPC SEER LiteSEER
Template (ms) (min) (min) (sec)
QT2 (2D) 15 21.6 2.2 5.8
QT5 (2D) 14 8.1 0.7 2.2
QT8 (2D) 14 27.0 1.9 7.2
QT9 (2D) 13 18.0 2.1 4.8
QT10 (2D) 14 10.8 0.7 2.9
QT16 (2D) 13 22.5 1.4 6.0
QT5 (3D) 25 17.0 5.1 8.2
QT8 (3D) 21 29.0 10.7 13.9
QT10 (3D) 22 23.0 7.8 11.0

DSQT12 (2D) 19 5.4 0.07 1.4
DSQT18 (2D) 17 18.0 1.2 4.8
DSQT19 (2D) 14 24.3 1.7 6.5
DSQT12 (3D) 20 7.0 1.2 3.4
DSQT18 (3D) 30 35.0 7.2 16.8
DSQT19 (3D) 26 63.0 12.7 30.2

Query CG CG-FPC SEER LiteSEER
Template (ms) (min) (min) (sec)

AIQT2 (2D) 16 26.1 2.8 7.0
AIQT5 (2D) 16 21.6 0.7 5.8
AIQT8 (2D) 14 21.5 2.1 5.8
AIQT9 (2D) 15 21.6 1.7 5.7
AIQT10 (2D) 13 13.5 0.7 3.6
AIQT16 (2D) 13 18.9 0.4 5.0
AIQT5 (3D) 23 36.0 12.0 17.3
AIQT8 (3D) 20 38.0 14.0 18.2
AIQT10 (3D) 20 49.0 14.0 23.5
TIQT2 (2D) 16 21.6 2.3 5.8
TIQT8 (2D) 16 25.2 1.1 6.7
TIQT9 (2D) 16 43.2 2.2 11.5
TIQT10 (2D) 16 6.3 0.43 1.7
TIQT16 (2D) 15 17.1 0.52 4.6
TIQT5 (3D) 16 29 8.7 13.9
TIQT8 (3D) 16 34 11 16.3
TIQT10 (3D) 16 15 2.2 7.2

Table 4.18: Efficiency of Reduction Process (Uniform plan diagrams)

Chapter 5

Conclusions

We have investigated in this thesis, methods for the efficient generation of plan diagrams, a key

resource in the analysis and redesign of modern database query optimizers. For optimizers that

supportplan rank listandforeign plan costingfeatures, we proved that the SIGHT algorithm

produced zero errors and was able to do so incurring overheads of less than 10%. However,

it performs poorly for query templates that have the second-best plan being very close to the

optimal choice over an extended region. We then demonstrated that the ISIGHT algorithm,

which traded error for performance, was able to satisfy the 10% error bound with less than 5%

optimizations. It was also able to adequately handle the problem templates of SIGHT.

As a second complementary problem, we investigated whetherthe optimizer’s choices

could be replaced by alternative plans from the parametric optimal set over the selectivity

space that are more resilient to selectivity estimation errors, which are well-documented causes

of poor plan choices by database optimizers. In particular,the recently proposed notion of

anorexic reduction of plan diagrams was used to provide replacements that had large endo-

optimal regions, making them error-resistant by definitionin these areas. Further, the empirical

evidence suggested that error-resistance was provided even in the exo-optimal regions in the

vast majority of the cases. However, there were occasional situations where the replacement

could turn out to be significantly worse. To prevent this, we developed a simple but accurate

model of plan cost behavior. To our knowledge, this model is the first such characterization for

industrial-strength query optimizers. Using this formulation, we devised efficient checks that

56

Chapter 5. Conclusions 57

operate only on the boundaries of the space to decide safety in the entire space. The checks

are implemented utilizing foreign-plan costing feature provided by the commercial database

engines. A particularly attractive feature of our approachis that the safety guarantee applies on

anindividual query basis. As a bonus, the foreign-plan costing, in addition to providing safety,

was leveraged to further improve the quality and complexityof the plan diagram reduction

process.

The above techniques were integrated into the SEER algorithm and the intended benefits

validated on a representative range of TPC-H and TPC-DS-basedquery templates on leading

commercial optimizers. We observed that typically at leastone-third of the performance gap

due to selectivity errors was bridged by the SEER reduction process, while in some instances,

virtually complete immunityagainst selectivity errors was obtained. We also presentedLite-

SEER, a light-weight version of SEER that very cheaply provides a high degree of safety by

restricting its attention to only the corners of the selectivity space.

In summary, we present SIGHT to efficiently generate high-dimension and high-resolution

plan diagrams, with typical overheads being anorder of magnitude lowerthan the brute-force

approach. We then provide SEER, an effective and safe compile-time mechanism for substan-

tially increasing resistance to selectivity errors on baserelations, without requiring modifica-

tions to the optimizer or specialized knowledge of the workload/system.

Currently, SEER operates as a post-processor after production of the plan diagram. In

future, we intend to investigate how optimizers could internalize these ideas and be redesigned

to directly produce safe reduced plan diagrams. Also, whilewe assumed a uniform distribution

of selectivity estimation errors, it would be interesting to extend our results to incorporate user-

defined probability distributions.

We hope that our results will encourage all database vendorsto incorporate the plan-rank-

list and foreign-plan-costing features, both of which werecritical to the excellent performance

of SIGHT and SEER, in their optimizer APIs.

Appendix A

Plan Diagram Reduction Variants

A.1 Quality of Plan Diagram Reduction

The CostGreedy algorithm given in [11] computes the reduced plan diagram withk plans, such

that the cost of every point in the reduced plan diagram is within λ of its original cost. It is

possible that there might exist a reduced plan diagram with another set ofk plans, where the

maximum cost increase is much lower thanλ. We would ideally like to obtain the reduced

plan diagram with minimum number of plans that also minimizes the maximum cost-increase

of the query points in the reduced plan diagram.

To solve this problem, we provide a 2-step approximation algorithm ReduceGreedy, that

provides a bounded performance guarantee.

A.1.1 The ReduceGreedy Algorithm

The ReduceGreedy algorithm is given in Figure A.1. In the firststep of this algorithm we use

CostGreedy to obtain a reduced plan diagram withk plans. We then use the ThresholdGreedy

algorithm [11] with a budget ofk plans to obtain a reduced plan diagram which minimizes the

maximum cost-increase over all query points in the plan diagram.

We know that the the ThresholdGreedy algorithm guarantees that the solution is atleast0.63

times the optimal solution. Also, it is possible that the solution obtained through CostGreedy

58

Appendix A. Plan Diagram Reduction Variants 59

ReduceGreedy (Plan DiagramP, Threshold λ)

1. LetR1 = CostGreedy(P, λ).

2. Letk = |R1|.

3. LetR2 = ThresholdGreedy(P, k).

4. if (CostIncrease(R2) > CostIncrease(R1)

return R1

else

return R2

5. End Algorithm ReduceGreedy.

Figure A.1: The ReduceGreedy Algorithm

performs better than the one obtained through ThresholdGreedy. Hence, a sanity check is

performed in in step 4 to return the best solution.

A.1.2 Results

Tables A.1, A.2 and A.3 show the quality of plan diagram reduction of ReduceGreedy when

compared to CostGreedy for three commercial optimizers, denoted by OptA, OptB and OptC

respectively. It can be seen that in many situations, using ReduceGreedy helps us obtain a

reduced plan diagram with better quality.

Query No. of Reduced Plans Maximum λ Reached
Template Plans (λ = 20%) CostGreedy ReduceGreedy

QT2 14 7 5.4% 5.4%
QT5 11 2 17.2% 17.2%
QT8 36 3 18% 16%
QT9 39 6 19.4% 19.4%
QT10 18 4 11% 11%

Table A.1: Performance of ReduceGreedy (OptA)

Appendix A. Plan Diagram Reduction Variants 60

Query No. of Reduced Plans Maximum λ Reached
Template Plans (λ = 20%) CostGreedy ReduceGreedy

QT2 20 8 19.8% 19.8%
QT5 12 4 4.7% 4.7%
QT8 16 2 18.1% 18.1%
QT9 18 3 19.5% 19.5%
QT10 7 3 6% 6%

Table A.2: Performance of ReduceGreedy (OptB)

Query No. of Reduced Plans Maximum λ Reached
Template Plans (λ = 20%) CostGreedy ReduceGreedy

QT2 44 8 18.4% 18.4%
QT5 23 5 16.4% 11.6%
QT8 50 4 16% 16%
QT9 38 3 19.4% 12.6%
QT10 17 3 13.8% 13.8%

Table A.3: Performance of ReduceGreedy (OptC)

A.2 Batch Reduction

The plan diagram reduction problem defined in [11] requires the cost increase of all query

points in the reduced plan diagram to be less thanλ. In this section we will consider a variant of

this problem where we require the average cost-increase of all the query points in the reduced

plan diagram to be below the givenλ-threshold. This problem is formally defined as follows:

Batch Reduction Problem. Given an input plan diagramP, and a maximum-cost-increase

thresholdλ (λ ≥ 0), find a reduced plan diagramR with minimum cardinalitysuch that,

∑
q∈R

cre(q)∑
q∈R

coe(q)
≤ (1 + λ)

wherecre andcoe are the costs of the plansPre andPoe assigned to the query pointq in R and

P respectively.

Appendix A. Plan Diagram Reduction Variants 61

A.2.1 The BatchReduce algorithm

It can be easily seen that the batch reduction problem is NP-Hard. Hence, we provide the

BatchReduce algorithm, that uses a greedy heuristic to solve this problem.

In this algorithm, we start with the input plan diagram and ineach step, we remove a plan

Pi such that

1. The total cost increase is withinλ-threshold after the removal ofPi, and

2. Removal ofPi has the minimum total cost increase over all plans that can beremoved.

The algorithm terminates when no plan can be removed from theplan diagram. The com-

plete algorithm is given in Figure A.2

BatchReduce (Plan DiagramP, Threshold λ)

1. setR = P

2. setλ′ = ∞

3. For each planPi ∈ R

(a) Calculateλi = cost increase ofR due to the removal ofPi

(b) if λi < λ′

λ′ = λi, plan = Pi

4. if λ′ ≤ λ

(a) removeplan from R

(b) goto Step 2

5. return R

6. End Algorithm BatchReduce.

Figure A.2: The BatchReduce Algorithm

This algorithm does not impose any restrictions on the cost increase of an individual query

point. But in some situations, we would like to maintain an upper boundλq on the increase in

cost of every point. This can be easily achieved by a slight modification to the above algorithm,

where in addition to checking the overall cost increase, we also check for the maximum cost

increase of any point, when a plan is removed. Another enhancement that can be made is

Appendix A. Plan Diagram Reduction Variants 62

to use the reduced plan diagram obtained through CostGreedy,instead ofP in Step 1 of the

algorithm. The advantage of using CostGreedy reduction firstis two-fold, (a) it ensures that

the reduced plan diagram is the same as the one obtained from CostGreedy whenλq = λ, and

(b) the plans in the reduced plan diagram are likely to be robust since the more volatile plans

are usually removed by CostGreedy.

A.2.2 Results

In our experiments, we use the modified BatchReduce algorithm,which uses the reduced plan

diagram obtained through CostGreedy in step 1 of the algorithm given in Figure A.2. Tables

A.4, A.5 and A.6 show the reduction results for OptA, OptB andOptC respectively, obtained

using a representative cost-increase threshold ofλ = 20%. The reduction was performed for

λq = ∞, where there is no upper bound on the cost-increase of an individual query point, and

for λq = 200%, which is an acceptable increase in cost for any given query point.

Query No. of Reduced Plans
Template Plans (λq = ∞) (λq = 200%)

QT2 14 3 5
QT5 11 1 2
QT8 36 1 1
QT9 39 1 1
QT10 18 1 2

Table A.4: Performance of BatchReduce
(OptA)

Query No. of Reduced Plans
Template Plans (λq = ∞) (λq = 200%)

QT2 20 1 2
QT5 12 1 2
QT8 16 1 1
QT9 18 1 1
QT10 7 1 2

Table A.5: Performance of BatchReduce
(OptB)

Query No. of Reduced Plans
Template Plans (λq = ∞) (λq = 200%)

QT2 44 2 3
QT5 23 2 2
QT8 50 1 1
QT9 38 1 1
QT10 17 1 2

Table A.6: Performance of BatchReduce (OptC)

Bibliography

[1] A. Aboulnaga and S. Chaudhuri, “Self-tuning Histograms:Building Histograms without
Looking at Data”,Proc. of ACM SIGMOD Intl. Conf. on Management of Data, May
1999.

[2] G. Antonshenkov, “Dynamic Query Optimization in Rdb/VMS”, Proc. of 9th IEEE Intl.
Conf. on Data Engineering (ICDE), 1993.

[3] B. Babcock and S. Chaudhuri, “Towards a Robust Query Optimizer: A Principled and
Practical Approach”,Proc. of ACM SIGMOD Intl. Conf. on Management of Data, June
2005.

[4] S. Babu, P. Bizarro and D. DeWitt, “Proactive Re-Optimization”, Proc. of ACM SIGMOD
Intl. Conf. on Management of Data, 2005.

[5] S. Babu, P. Bizarro and D. DeWitt, “Proactive Re-Optimization with Rio”, Proc. of ACM
SIGMOD Intl. Conf. on Management of Data, June 2005.

[6] N. Bruno, “A Critical Look at the TAB Benchmark for Physical Design Tools”,SIGMOD
Record, 36(4), 2007.

[7] F. Chu, J. Halpern and P. Seshadri, “Least Expected Cost Query Optimization: An Ex-
ercise in Utility”, Proc. of ACM Symp. on Principles of Database Systems (PODS), May
1999.

[8] F. Chu, J. Halpern and J. Gehrke, “Least Expected Cost QueryOptimization: What Can
We Expect”,Proc. of ACM Symp. on Principles of Database Systems (PODS), May 2002.

[9] A. Deshpande, Z. Ives and V. Raman ”Adaptive Query Processing”, Foundations and
Trends in Databases, 2007.

[10] U. Feige, “A threshold of ln n for approximating set cover”, Journal of ACM, 45(4), 1998.

[11] Harish D., P. Darera and J. Haritsa, “On the Production of Anorexic Plan Diagrams”,
Proc. of 33rd Intl. Conf. on Very Large Data Bases (VLDB), September 2007.

[12] A. Hulgeri and S. Sudarshan, “Parametric Query Optimization for Linear and Piecewise
Linear Cost Functions”,Proc. of 28th Intl. Conf. on Very Large Data Bases (VLDB),
August 2002.

[13] A. Hulgeri and S. Sudarshan, “AniPQO: Almost Non-intrusive Parametric Query Opti-
mization for Nonlinear Cost Functions”,Proc. of 29th Intl. Conf. on Very Large Data
Bases (VLDB), September 2003.

63

BIBLIOGRAPHY 64

[14] Y. Ioannidis and S. Christodoulakis, “On the Propagation of Errors in the Size of Join
Results”,Proc. of ACM SIGMOD Intl. Conf. on Management of Data, May 1991.

[15] N. Kabra and D. DeWitt, “Efficient Mid-Query Re-Optimization of Sub-Optimal Query
Execution Plans”,Proc. of ACM SIGMOD Intl. Conf. on Management of Data, May
1998.

[16] E. Kreyszig,Advanced Engineering Mathematics, New Age International, 5th ed, 1997.

[17] L. Mackert and G. Lohman, “R* Optimizer Validation and Performance Evaluation for
Local Queries”,Proc. of ACM SIGMOD Intl. Conf. on Management of Data, May 1986.

[18] V. Markl, V. Raman, D. Simmen, G. Lohman, H. Pirahesh and M. Cilimdzic, “Robust
Query Processing through Progressive Optimization”,Proc. of ACM SIGMOD Intl. Conf.
on Management of Data, June 2004.

[19] J. Patel, M. Carey and M. Vernon, “Accurate Modeling of the Hybrid Hash Join Algo-
rithm”, Proc. of ACM SIGMETRICS Intl. Conf. on Measurement and Modelingof Com-
puter Systems, 1994.

[20] Picasso Database Query Optimizer Visualizer,http://dsl.serc.iisc.ernet.
in/projects/PICASSO/picasso.html

[21] N. Reddy and J. Haritsa, “Analyzing Plan Diagrams of Database Query Optimizers”,
Proc. of 31st Intl. Conf. on Very Large Data Bases (VLDB), August 2005.

[22] P. Selinger, M. Astrahan, D. Chamberlin, R. Lorie and T. Price, “Access Path Selection
in a Relational Database System”,Proc. of ACM SIGMOD Intl. Conf. on Management of
Data, June 1979.

[23] P. Slavik, “A tight analysis of the greedy algorithm forset cover”,Proc. of 28th ACM
Symp. on Theory of Computing, 1996.

[24] M. Stillger, G. Lohman, V. Markl and M. Kandil, “LEO – DB2’s LEarning Optimizer”,
Proc. of 27th Intl. Conf. on Very Large Data Bases (VLDB), September 2001.

[25] MATLAB, http://www.mathworks.com

[26] http://www.tpc.org/tpch

[27] http://www.tpc.org/tpcds

[28] http://publib.boulder.ibm.com/infocenter/db2luw/v9/index.
jsp?topic=/com.ibm.db2.udb.admin.doc/doc/t0024533.htm

[29] http://infocenter.sybase.com/help/index.jsp?topic=/com.
sybase.dc34982_1500/html/mig_gde/BABIFCAF.htm

[30] http://msdn2.microsoft.com/en-us/library/ms189298.aspx

