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Abstract

Given a parametrized n-dimensional SQL query template acklo&ce of query optimizer,
a plan diagram is a color-coded pictorial enumeration ofekecution plan choices of the
optimizer over the query parameter space. These diagrawes graved to be a powerful
metaphor for the analysis and redesign of modern optimizerd are gaining currency in
diverse industrial and academic institutions. Howevegjrthtility is adversely impacted by
the impractically large computational overheads incuwbdn standard brute-force exhaustive
approaches are used for producing high-dimension andregiution diagrams.

In this thesis, we investigate strategies for efficientlgdarcing high-quality approximate
plan diagrams that have low plan-identity and plan-locagaors. Through experimentation
with a representative set of TPC-H-based query templates arsi@mized public domain
optimizer, we show that our techniques are capable of nmgpétientity and location error
bounds as low as 10% while incurring less than 5% of the coatiomal overheads of the
exhaustive approach. In fact, we can virtually guarantee eeor with overheads of less than
10%.

The second problem we address in this thesis is that of fgergirobust plans using plan
diagram reduction. Several plans in these plan diagramsdmly result in inflated query re-
sponse times due to errors in predicate selectivities agtitby the database query optimizer,
which often differ significantly from those actually encoered during query execution. We
investigate here mitigating this problem by replacing stlédy error-sensitive plan choices
with alternative plans that provide robust performancer &proach is based on the recent
observation that even the complex and dense plan diagrasosiated with industrial-strength

optimizers can be efficiently reduced to “anorexic” equevas featuring only a few plans,



without materially impacting query processing quality.

Extensive experimentation with a representative set of HP&hd TPC-DS-based query
templates on a commercial optimizer indicates that plagrdia reduction typically retains
plans that are substantially resistant to selectivity reran the base relations. However, it
can sometimes also be severely counter-productive, withrgplacements performing much
worse. We address this problem through a generalized matieaihcharacterization of plan
cost behavior over the parameter space, which lends isdfficient criteria of when it is
safe to reduce. Our strategies are fully non-invasive amd haen implemented in the Picasso
optimizer visualization tool.

In summary, we present in this thesis efficient plan diagramegation techniques, fol-
lowed by effective strategies to substantially increasestance to selectivity errors by identi-

fying robust plans through plan diagram reduction.
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Chapter 1

Introduction

Modern database systems use a query optimizer to idengfynibst efficient strategy to ex-
ecute the SQL queries that are submitted by users. The efficief the strategies, called
“plans”, is usually measured in terms of query response.ti@ptimization is a mandatory
exercise since the difference between the cost of the bestiggn plan and a random choice
could be in orders of magnitude. The role of query optimi&sbecome especially critical in
recent times due to the high degree of query complexity caraing current data warehous-
ing and mining applications, as exemplified by the TPC-H [2§] ¢he recent TPC-DS [27]
benchmarks.

While commercial query optimizers each have their own “dexaace” to identify the best
plan, the de-facto standard underlying strategy, baseleociassical System R optimizer [22],
is the following: Given a user query, apply a variety of hstics to restrict the combinatorially
large search space of plan alternatives to a manageabjesizvate, with a cost model and a
dynamic-programming based algorithm, the efficiency ohed¢hese candidate plans; finally,

choose the plan with the lowest estimated cost.

1.1 Plan Diagrams and Reduced Plan Diagrams

For a given database and system configuration, a query agtiisiexecution plan choices are

primarily a function of theselectivitiesof the base relations in the query. A “plan diagram” is
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select ayear, sum(case when nation = 'BRAZIL’ then volume else 0 end)v(solume)

from (select YEAR(corderdate) as gear, Lextendedprice * (1 -_Hiscount) as volume
n2.n.name as nation

from part, supplier, lineitem, orders, customer,
nation nl, nation n2, region

where ppartkey = |partkey and suppkey = Isuppkey and_brderkey = corderkey
and acustkey = ccustkey and mationkey = nl1.mationkey and nl.megionkey
= r_regionkey and sationkey = n2.mationkey and mame = 'AMERICA and
p_type ='ECONOMY ANODIZED STEEL and
s acctbal :variesand|_extendedprice :varies

) as allLnations

group by ayear

order by ayear

Figure 1.1: Example Query Template: QT8

a color-coded pictorial enumeration of the plan choiceshefdptimizer for a parameterized
guery template over the relational selectivity space. kan®le, consider QT8, the parame-
terized 2D query template shown in Figure 1.1, based on Qai@fyTPC-H. Here, selectiv-
ity variations on thesurPPLIERandLINEITEM relations are specified through teeacctbal
:varies andl_ extendedprice :varies predicates, respectively. The associated plan diagram
for QT8 is shown in Figure 1.2(a), produced with the Picaggomzer visualization tool [20]
on a popular commercial database engine.

In this picture, each colored region represents a specdit, gind a set of 89 different op-
timal plans,P1 throughP89, cover the selectivity space. The value associated with pan
in the legend indicates the percentage area covered byl#raimpthe diagram — the biggest,
P1, for example, covers about 22% of the space, whereas théestBB9, is chosen in only
0.001% of the spacegNote to Readers: We recommend viewing all diagrams presermted
this thesis directly from the color PDF file, or from a color jmt copy, since the greyscale

version may not clearly register the various features.]
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Figure 1.2: Sample Plan Diagram and Reduced Plan Diagram)(QT8

As evident from Figure 1.2(a) , plan diagrams can be extrgrm@inplex and dense, with
a large number of plans covering the space — several su@noed spanning a representative
set of benchmark-based query templates on industriatgtineptimizers are available at [20].
However, these dense diagrams can typically be “reducewtiuich simpler pictures featuring
significantly fewer plansyithout materially degrading the processing quality of amgividual
query. For example in Figure 1.2(a), if users are willing to totera minor cost increase) of
at most 10% for any query point in the diagram, relative toriginal cost, the picture could
be reduced to Figure 1.2(b), where only 7 plans remain —shatast of the original plans have
been “completely swallowed” by their siblings, leading thighly reduced plan cardinality.

A detailed study of the plan diagram reduction problem was@nted in [11], and it was
shown that a cost increase thresholdoofy 20 percenis usually amply sufficient to bring
down the absolute number of plans in the final reduced pidtukeithin or around ten In
short, that complex plan diagrams can be made “anorexiclewbktaining acceptable query
processing performance.

In this thesis, we solve the following two problems: (1) E#ittly generating plan dia-

grams, and (2) Identifying robust plans using plan diagraduction.
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1.2 Problem I: Efficient Generation of Plan Diagrams

Since their introduction in 2005 [21], plan diagrams hawevpd to be a powerful metaphor for
the analysis and redesign of industrial-strength datafpasey optimizers. Through our inter-
actions with industrial developers, we have found thatdlwsnplex diagrams have proved to
be quite contrary to the prevailing conventional wisdom. M/developers had certainly been
extensively analyzing optimizer behavior mividual queriesplan diagrams provide a com-
pletely different perspective of behaviover an entire spagevividly capturing plan transition
boundaries and optimality geometries. So, in a literal setiey deliver the “big picture”.

Plan diagrams are currently being used in various induisinchacademic sites for a diverse
set of applications including analysis of existing optierizlesigns; visually carrying out op-
timizer regression testing; debugging new query procgdgiatures; comparing the behavior
between successive optimizer versions; investigatingtifuetural differences between neigh-
boring plans in the space; investigating the variationhiengdlan choices made by competing
optimizers; etc. Visual examples of non-monotonic costaledr in commercial optimizers,
indicative of modeling errors, were highlighted in [21].

A particularly compelling immediate utility of plan diagre is that they provide the in-
put to “plan diagram reduction” algorithms. Anorexic plaagtam reduction has significant
practical benefits [11], including quantifying the redundgin the plan search space, enhanc-
ing the applicability of parametric query optimization (BRtechniques [12, 13], identifying
error-resistant and least-expected-cost plans [7, 8]nanonizing the overhead of multi-plan

approaches [2, 15].

1.2.1 Generating Plan Diagrams

The generation and analysis of plan diagrams has beentdéaiiby our development of the
Picasso optimizer visualization tool [20]. Given a muliir@nsional SQL query template like
QT8 and a choice of database engine, the Picasso tool autattyaproduces the associated
plan diagram. It is operational on several major platfornduding IBM DB2, Oracle, Mi-

crosoft SQL Server, Sybase ASE and PostgreSQL. The toothabifreely downloadable, is
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now in use by the development groups of several major dagalEsdors, as also by leading
industrial and academic research labs worldwide.

The diagram production strategy used in Picasso is thewoilp Given ad-dimensional
query template and a plot resolutionsgfthe Picasso tool generatesqueries that are either
uniformly or exponentially (user’s choice) distributedeothe selectivity space. Then, for each
of these query points, based on the associated selectalingy, a query with the appropriate
constants instantiated is submitted to the query optimizbe “explained” —that is, to have its
optimal plan computed. After the plans corresponding tthallpoints are obtained, a different
color is associated with each unique plan, and all querytpaire colored with their associated
plan colors. Then, the rest of the diagram is colored by pajrthe region around each point
with the color corresponding to its plan. For example, in aféh diagram with a uniform
grid resolution of 10, there are 100 real query points, aodrd each such point a square of
dimension 10x10 is painted with the point’s associated ptdar.

The above exhaustive approach is eminently acceptabledgraims with few dimensions
(upto 2D) and low resolutions (upto 100). However, it becenmepractically expensive for
higher dimensions and resolutions due to the exponenialtyrin overheads. For example,
a 3D plan diagram with a resolution of 100 on each selectwityension, requires invoking
the optimizerl003 times — that is, anillion optimizations have to be carried out. Even with a
conservative estimate of about half-second per optinumathe total time required to produce
the picture is close to a week! Therefore, although planrdiag have proved to be extremely
useful, their high-dimensional and high-resolution wvensi pose serious computational chal-

lenges.

1.2.2 The SIGHT Algorithm

In this thesis, we address this issue using SIGHT (Selettimemental Generation of plan
diagrams using HisTory), an algorithm to efficiently prodaccurateplan diagrams. We also
investigate the possibility of producimggh-quality approximation® plan diagrams requiring
extremely low overheads in the ISIGHT algorithm, an inexaetant of the SIGHT algorithm.

Denoting the true plan diagram Bsand the approximation &5, there are two categories of
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errors that arise in this process:

Plan Identity Error ( ¢;): This error metric refers to the possibility of the approxiioa miss-
ing out on a subset of the plans present in the true plan draghais computed as the

percentage of plans lost Arelative toP.

Thee; error is challenging to control since a majority of the planthe plan diagrams,

as seen in Figure 1.2(a), are very small in area, and theratod to find.

Plan Location Error (¢;,): This error metric refers to the possibility of incorrectlysigning
plans to query points in the approximate plan diagram. loreguted as the percentage

of incorrectly (relative td?) assigned points iA.

The ¢;, error is also challenging to control since the plan boursdaras seen in Fig-

ure 1.2(a), can be highly non-linear, and are sometimesieregular in shape [20].

In the remainder of this thesis, we will ugseto denote both; ande;. Accurate plan

diagrams will have = 0.

1.2.3 Results

The SIGHT algorithm generates accurate plan diagrams withna 10% overhead®sf the
brute-force exhaustive method. We improve this in the ISTGit§orithm, where approximate
plan diagrams having values efround10% can be generated incurring overheéalss than

5%.

1.3 Problem IlI: Identifying Robust Plans through Plan Dia-
gram Reduction

The query execution plan choices made by database engteestofn out to be poor in prac-
tice because the optimizer's selectivity estimates aneifsigntly in error with respect to the

actual values encountered during query execution. Suohsemwhich can even be in orders of
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magnitude in real database environments [18], arise dugdadety of reasons [24], including

outdated statistics, attribute-value independence gssoms and coarse summaries.

1.3.1 Robust Plans

To address this problem, one obvious approach is to impravguality of the statistical meta-
data, for which several technigues have been presented litdrature ranging from improved
summary structures [1] to feedback-based adjustmentst{?dh-the-fly reoptimization of
queries [15, 18, 4]. A complementary and conceptually thife approach, which we consider
in this thesis, is to identifyobust plansthat are relatively less sensitive to such selectivity
errors. In a nutshell, to “aim for resistance, rather thaie Gy identifying plans that provide
comparatively good performance over large regions of thecgeity space. Such plan choices
are especially important for industrial workloads wherebgll stability is as much a concern

as local optimality [17].

Related Work

Over the last decade, a varietyadmpile-timestrategies have been proposed to identify robust
plans. For example, in the Least Expected Cost (LEC) approgadi,[it is assumed that the
distribution of predicate selectivities is apriori availle, and then the plan that has the least-
expected-cost over the distribution is chosen for exenutid/hile the performance of this
approach is likely to be good on average, it could be arhigraoor for a specific query as
compared to the optimizer’s optimal choice for that queryor&bver, it may not always be
feasible to provide the selectivity distributions.

An alternative Robust Cardinality Estimation (RCE) strategyppised in [3] is to model
the selectivity dependency of the cost functions of theotericompeting plan choices. Then,
given a user-specified “confidence threshald’the plan that is expected to have tleast
upper boundwith regard to cost ifll” percentile of the queries is selected as the preferred
choice. The choice of’ determines the level of risk that the user is willing to surstaith
regard to worst-case behavior. Like the LEC approach, tusiay be arbitrarily poor for a

specific query as compared to the optimizer’s optimal choice
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Finally, in the (initial) optimization phase of the Rio appoh [4, 5], a set of uncertainty
modeling rules from [15] are used to classify selectivilyoes into one of six categories (rang-
ing from “no uncertainty” to “very high uncertainty”) basead their derivation mechanisms.
Then, these error categories are converted to hyper-igagdemerror boxes drawn around the
optimizer’s point estimate.  Finally, if the plans chosentbg optimizer at the corners of
the principal diagonal of the box are the same as that chastre goint estimate, then this
plan isassumedo be robust throughout the box. However, the conditionseumdhich this
assumption is likely to be valid are not outlined.

The above techniques have provided novel and elegant fations$, but have to contend

with the following issues:
1. They arantrusiverequiring, to varying degrees, modifications to the optanigngine.

2. They requirespecializednformation about the workload and/or the system which may

not always be easy to obtain or model.

3. Their query capabilities may Bienited compared to the original optimizer — e.g., only
SPJ queries with key-based joins were considered in [3,utthEr, [4] has been imple-

mented and evaluated on a non-commercial optimizer.

4. Most importantly, as explained in Section 1.3.1, nonéefrt provide, on an individual
guery basis, quantitativguaranteeon the quality of their final plan choice relative to
the original (unmodified) optimizer’s selection. That isey “cater to the crowd, not

individuals”.

1.3.2 The SEER Algorithm.

In this thesis, we presel8EER (Selectivity-Estimate-Error-Resistance), a new stratiegy
identifying robust plans that can be directly used on opa@mat database environments. More

concretely, it

e Treats the optimizer as a black-box and therefore is inhigréa) completely non-

intrusive, and (b) capable of handling whatever SQL is sugpidy the system. Further,
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it does not expect to have any additional information beybiatiprovided by the engine

interface.

e Provides plan performance guarantees thatratiwidually applicable to queries in the

selectivity space.

e Considers only th@arametric optimal set of plan®OSP) [12] as replacement candi-
dates and therefore delivers, for errors that lie withinrg@dacement plan’s optimality
region, robustness “for free”. In contrast, the previoystgposed algorithms in the

literature may evaluate plans that are not optimal anywimetfee space.

¢ Is validated orcommercialoptimizers on both the classical TPC-H [26] and the recent
TPC-DS [27] benchmarks.

We hasten to add that SEER, due to its non-intrusive desigectg, only attempts to
address selectivity errors that occur on iase relationssimilar to [1]. However, since these
base errors are often the source of poor plan choices due mutiplier effect as they progress
up the plan-tree [14], minimizing their impact could be @frgficant value in practical environ-
ments. Further, since SEER is a purely compile-time apgpraacan be used in conjunction
with run-time techniques such as adaptive query procef8jigr addressing selectivity errors
in the higher nodes of the plan tree.

SEER is based on thanorexic reduction of plan diagrams

Example. We now show an example of how anorexic reduction helps tatiiyeselectivity-
error-resistant plans: In Figure 1.2(a), estimated sglgets of around (14%,1%) lead
to a choice of plaP70. However, if the actual selectivities at runtime turn oubt®
significantly different, say (50%,40%), executing WRAO, whose cost increases steeply
with selectivity, would be disastrous. In contrast, thisoewould have had no impact
with the reduced plan diagram of Figure 1.2(b), sifde the replacement plan choice
at (14%,1%), remains the preferred plan for a large rangegtfen values, including
(50%,40%). Quantitatively, at the run-time location, pRh has a cost of 135, while

P70’s cost of 402 is aboutree timesnore expensive.
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It is easy to see, as in the above example, that the repla¢qaanwill, by definition be
a robust choice for errors that lie within its optimality reg, i.e. its“endo-optimal” region.
This is the advantage, mentioned earlier, of consideripaoements only from the POSP set
of plans. The obvious question then is whether the sizesesiethegions are typically large
enough to materially improve the system performance.

A second, and even more important question, is: What if there@are such that the run-
time locations aréexo-optimal” w.r.t. the replacement plan? For example, if the run-time
location happens to be at (80%,90%), which is outside thengity region of P1? In this
situation, nothing can be said upfront — the replacementidmimuch better, similar or much
worse than the original plan. Therefore, ideally speakimg,would like to have a mecha-
nism through which one could assess whether a replacemgtabally safeover the entire

parameter space.

1.3.3 Contributions and Results

We address the above problem from both theoretical and aabierspectives. Through ex-
tensive experimentation with a representative suite otirdirhensional TPC-H and TPC-DS-
based query templates on leading commercial optimizersheow thatplan diagram reduc-
tion typically produces plan choices that substantiallytail the adverse effects of selectivity
estimation errors Therefore, it clearly has potential to improve perform&nt general, for
both the endo-optimal and exo-optimal regions.

However, we have also encountered occasional situatioeseadnreplacement plan per-
forms much worse in its exo-optimal region than the origiotimizer choice, highlighting
the need to establish an efficient criterion of when a spesifiallowing is globally safe. To
achieve this objective, we present a generalized matheahatiodel of the behavior of plan
cost functions over the selectivity space. The model, alghosimple, is sufficient to capture
the cost behavior of all plans that have arisen from our gtemplates. Using this model, we
then prove that checks on only therimeterof the selectivity space are sufficient to decide the
safety of reduction over the entire space. These checkb/atloe costing offoreign plans”,

that is, of costing plans in their exo-optimal regions, ddeathat has become available in the
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current versions of several industrial-strength optimszéncluding DB2[28] (Optimization
Profile), SQL Server[30] (XML Plan) and Sybase[29] (Abstriatan).

Apart from providing reduction safety, foreign-plan castiis additionally leveraged to
both (a) enhance the reduction levels of the plan diagram,(Bnimprove the complexity
characteristics of the reduction process, as comparedrtearlier CostGreedy reduction al-
gorithm [11]. Note that the increased diagram reductioomatically implieslarger within-
A-of-optimal regiondor the retained plans, upfront guaranteeing more robsstne

In summary, we provide SEER, an efficient, effective and sadehanism for identifying
robust plans that are resistant, as compared to the optimi@eginal choices, to errors in
the base relation selectivity estimates. Through a deltaitedy of benchmark-based query
templates on commercial optimizers, we empirically denrais that SEER provides robust

good performance for industrial-strength database emmients.

1.4 Organization

The remainder of this thesis is organized as follows: Thet8I@Gnd ISIGHT algorithms
for generating plan diagrams are presented in Chapter 2. EB&RSeduction algorithm is
discussed in Chapter 3. Our experimental framework and pedioce results are highlighted
in Chapter 4. Finally, in Chapter 5, we summarize our conchssand outline future research

avenues.



Chapter 2

Efficient Production of Plan Diagrams

In this chapter we present the SIGHT algorithm, which can $eduo efficiently generate
completely accuratplan diagrams. Subsequently, we provide an inexact vatia@iSIGHT
algorithm, which trades error, based on the user’s boundefituction in optimization effort.

Both algorithms require the cost-based optimizer to protheefollowing features:

Optimal Plan (OP): This feature, found in virtually every enterprise databaseluct, pro-

vides the optimal plan (OP), as determined by the optimipe®’ given query.

Foreign Plan Costing (FPC): The “foreign plan costing” (FPC) feature provides an option
for costing plansoutsidetheir native optimality regions. Specifically, the featstg-
ports the “what-if” question: “What is the estimated cost abptimal planp if
utilized at query locatiorg?”. FPC has become available in the current versions of
several industrial-strength optimizers, including DB2][@8ptimization Profile), SQL
Server [30] (XML Plan), and Sybase [29] (Abstract Plan).

Plan Rank List (PRL): The optimizer should support an API that provides not justlibst
plan but a “plan-rank-list” (PRL), enumerating the tbpplans for the query. For ex-
ample, withk = 2, both the best plan and the second-best plan are obtained tivbe
optimizer is invoked on a query. However, to our knowledgés not yet available in
any of the current systems. Therefore, we showcase it$yutiliough our own imple-

mentation in a public-domain optimizer.

12
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Specifically, it is assumed that for each query point, thenaper provides both the best plan
and the second-best plan, and an option to cost the secetngilae at other points in the

selectivity space.

2.1 Obtaining the Second Best Plan

As mentioned in the Introduction, current optimizers useagant of the algorithm used by
the classical System R optimizer [22]. This algorithm usesdynamic programming strategy
to identify the optimal plan for a given query from an expatedr{(on the number of relations
taking part in the query) search space.

This search space can be represented as a search tree,evitotmode representing a
subset of plans applicable for the given query. In the fingp sif the algorithm, the optimal
plan is identified as the cheapest plan among this set of datedplans. At first glance, we
might mistake the second best plan from this set to be theagk#rond best plan. This need
not always be true, since there are multiple ways certaimadjpes can be performed (eg.
either a table-scan or an index-scan can be used to scarabés®) tand it is possible to obtain
a better plan by using a different choice for such operatiomise optimal plan.

In order to find the global second best plan, we only need tockdhe restricted search
space obtained by the path in the search tree taken for themadpgblan and compare the
second-best plan in this space with the second-best caadatn of the original dynamic
programming exercise. This can be accomplished with a simdification to the original
dynamic programming algorithm, where, as we progress tirdhe levels of the search tree,
instead of choosing only the optimal sub-plan, we choosle tha& optimal and the second-best

sub-plan, to be processed in the next step of the algorithm.

Approximate second-best plan: We have observed that second-best candidate plan obtained
from the original dynamic programming exercise can be usednaeffective approximation
for the global second-best plan. Thidiiwially implementablan current optimizers since the

candidate set is constructed by default during the optitisizgrocess.



Chapter 2. Efficient Production of Plan Diagrams 14

2.2 Plan Diagrams

The selectivity spac8 is represented by a grid of points where each pginty) corresponds
to a unique query with selectivities y in the X and Y dimensions, respectively. In a plan
diagramP, generated for a query templafe eachqg € P is associated with an optimal (as
determined by the optimizer) plaR;, and a cost;(q) representing the estimated effort to
executey with plan P,. Corresponding to each plah is a unique colot;, which is used to
color all the query points that are assignedi?o As mentioned earlier, the plan diagram is
essentially a visual characterization of the parametritmd set of plans (POSP) [12]. We

useP andS interchangeably in the remainder of the thesis based orothext.

2.3 The SIGHT Algorithm

The SIGHT algorithm for a 2D query template is shown in Figre. The algorithm starts
with optimizing the query poing(z,.in, Ymin) COrresponding to the bottom-left query point in
the plan diagram. Let; be the optimizer-estimated optimal plangatvith coste; (¢), and let
po be thesecond begplan, with costey(¢). We then assign the plan to all pointsq’ in the
first quadrantrelative tog as the origin, which obey the constraint thafy') < c2(q). After
this step is complete, we then move to the next unassigned ipaiow-major order relative to
¢, and repeat the process, which continues until no unassigpiats remain.

This algorithm is predicated on tiidan Cost Motonicity PCM) assumption that the cost
of a plan is monotonically non-decreasing throughout thecsigity space, which is true in
practice for most query templates [11].

The following theorem proves that the SIGHT algorithm wibetly produce the true plan
diagramP without any approximation whatsoever. Thathsy, definition there is zero plan-
identity and plan-location errors.

THEOREM?Z2.1. The plan assigned by SIGHT to any point in the approximate giagram
A is exactly the same as that assignedPin

Proof. Let P, C P be the set of points which were optimized. Consider a pgiatP \ P,
with a planp,. Letq € P, be the point that was optimized whehwas assigned the plan.
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SIGHT (QueryTemplate QT)

1. LetA be an empty plan diagram.
2. Sth = (xmina ymzn)
3. while (g # null)
(a) Optimize query templat@1 at pointg.
(b) Letp; andp, be the optimal and second-best plaig atespectively.
(c) for all unassigned pointg in the first quadrant of
if (c1(¢") < c2(q)), assign plam; to ¢’
(d) Setq = next unassigned query pointAn

4. ReturnA
5. End Algorithm SIGHT

Figure 2.1: The SIGHT Algorithm

Let p, be the second best planat

For the sake of contradiction, Igt (k # 1), be the optimal plan at. We know that for a
cost-based optimizety(¢') < ¢1(¢’). This implies thaty(¢") < c2(q) (due to the algorithm).
Using the PCM property, we have(q) < cx(q') = c1(q) < cx(q) < c2(g). This means that

p2 IS not the second best plang@ta contradiction(d

2.3.1 Handling non-PCM templates

When a query template features negation operators (e.gff@edce) or short-circuit opera-
tors (e.g. exists), the PCM condition may not hold. Howevetpag as the template exhibits
monotonicity (non-decreasing or non-increasing) alorghed the selectivity axes, the costs
will still remain monotonic in an appropriate quadrant [14$ shown in Table 2.1 for the 2D

case.

Cost Behavior | Cost Behavior | Cost Increase
X dimension Y dimension Quadrant
Non-decreasing Non-decreasing I
Non-increasing| Non-decreasing Il
Non-increasing Non-increasing 1]
Non-decreasing Non-increasing Y

Table 2.1: PCM Behaviour
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The algorithm can be easily modified to take the appropriateitant into consideration.
For example, if the costs are monotonically non-decreaalngg the third quadrant, then
the algorithm starts processing from the top-right of thenpdliagram (Step 2),and the plan
assignment is performed along the third quadrant (Step Bag. quadrant in which the cost
of a plan is non-decreasing can be easily obtained by cong#re costs of the plan at tHe

corners of the selectivity space.

2.4 The ISIGHT Algorithm

While SIGHT always gives zero error, we now investigate thesgmlity of whether it is pos-
sible to utilize the permissible error boundegiven by the user to reduce the computational
overheads of SIGHT. To this end, we propose the followin@I$T algorithm: The plan as-
signment constraint,(¢') < ¢;(q) is relaxed to be;(¢') < (1+0)c;(¢) with (§ > 0), resulting

in fewer optimizations being required to fully assign plamthe diagram. The choice 6fis a
function of the user’s error bound and and;, the slope of the cost functiapnatg. Our empir-
ical assessment indicates that setting 0.1 * y; * € (€.9. withe = 10% andyu; = 1, 9 = 0.01)

is sufficient to both meet the error requirements and simattasly significantly reduce the

overheads. For example= 10% can be achieved with only aroud&o overheads.



Chapter 3

ldentifying Robust Plans through Plan

Diagram Reduction

We now turn our attention to the problem of obtaining plaret #re resilient to selectivity
errors. For ease of exposition, we assume in the followirsgldision that the SQL query
template is 2-dimensional in its selectivity variationshe extension to higher dimensions is

straightforward.

3.1 Problem Framework

3.1.1 Reduced Plan Diagrams

The Plan Diagram Reduction problem is defined as follows [11]: Given an input plan dia-
gramP, and a maximum-cost-increase threshal@\ > 0), find a reduced plan diagra®

with minimum cardinalitysuch that for every pla®; in P,
1. EitherP, € R, or
2. V q € P, the assigned replacement plBne R guaranteesi% < (14X
Thatis, find the maximum possible subset of the plarstimat can be completely “swallowed”

by their sibling plans in the POSP set. A point worth reemiziag here is that the threshold

17
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constraint applies on andividual querybasis. For example, setting= 10% stipulates that
the cost ofeachquery point in the reduced diagram is witHiri times its original value.

It was proved in [11] that the above problem is NP-Hard. Tfeeee an efficient heuristic-
based online algorithm, callgdostGreedy, was proposed and shown to deliver near-optimal
“anorexic” levels of reduction, wherein the plan cardityabf the reduced diagram usually
came down to around 10 or less fonahreshold of only 20%. In a nutshell, complex plan
diagrams can be easily made very simple without materidfgcang the query processing

quality.

3.1.2 Selectivity Estimation Errors

Consider a specific query point, whose optimizer-estimated location $is (., y.). De-
note the optimizer’s optimal plan choice at pointby P,.. Due to errors in the selectivity
estimates, thactuallocation ofg. could be different at execution-time — denote this location
by ¢.(z4,va), @nd the optimizer’s optimal plan choicegtby P,,. Assume thai,. has been
swallowed by a sibling plan during the reduction processdambte the replacement plan as-
signed tog. in R by P,... Finally, extend the definition of query cost (which appliedthe
optimal plan) to have;(t) denote the cost of an arbitrary POSP plarat an arbitrary query
pointtin S.

With respect tdr, the actual query point, will be located in one of the following disjoint

regions ofP,, that together coves:

Endo-optimal region of P,.. Here,q, is located in the optimality region of the replacement
plan P.., which also implies thab,. = P,,. Sincec,.(q,) = ¢.a(qa), it follows that the
cost of P, atqq, ¢e(qa) < coe(qa) (by definition of a cost-based optimizer). Therefore,

improved resistance to selectivity errors is alwgysranteedn this region.

Swallow-region of P..: Here,q, is located in the region “swallowed” b¥,. during the re-
duction process. Due to thethreshold constraint, we are assured thatg,) < (1 +
A)¢oa(¢a), and by implication that,.(¢,) < (14 X)cee(gq). Now, there are two possibil-

ities: If ¢..(q.) < coe(qa), then the replacement plan is again guaranteed to impreve th
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resistance to selectivity errors. On the other hand,.7.) < ¢ye(q.) < (14 N)coe(qa),
the replacement is guaranteed to not cause any real haram tfie small values of

that we consider in this thesis.

Exo-optimal region of P,.: Here,q, is located outside both the endo-optimal and swallow-
regions ofP,.. At such locations, we cannot apriori predi¢t’s behavior, and therefore
the replacement may not always be a good choice — in prindtaeuld bearbitrarily
worse Therefore, we would like to ensure that even if the replam@rdoes not provide
any improvement, it is at least guaranteed to not do any hdimat is, theexo-optimal
region should have the same performance guarantees as thiewswagion We show
in Section 3.2 how this objective can be efficiently achietedugh simple but powerful

checks to decide when replacement is advisable.

3.1.3 Motivational Scenarios

Given the above framework, we now present example scentriosotivate (a) the error-
resistance utility of plan diagram reduction, and (b) thechr safety in this process.

Our first scenario, typical of that seen in most of our experita, demonstrates how the
replacement pla®,. can provide extremely substantial improvemehtesughout the selectiv-
ity space Specifically, on a vanilla PC with a popular commercial ojizier, we generated a
plan diagram for a query template based on TPC-H Q5, with selgosariations on thecus-
TOMER andsuUPPLIERrelations, and carried out reduction with= 10%. For this diagram,
with ¢. = (0.36,0.05), and a representative set of actual locatiopg &long the principal
diagonal ofS, the costs of?,. (P45),P,. (P17) andP,, (the optimal plan at eacl, location)
are shown in Figure 3.1(a) — note that the costs are measnoralbg scale

It is clear from Figure 3.1(a) that the replacement pfanprovidesorders-of-magnitude
benefit w.r.t.P,.. In fact, the error-resistance is to the extent that it altyuprovides “immu-
nity” to the error since the performance Bf, is close to that of théocally optimal planP,,
throughout the space, although the endo-optimal regioR,.otonstitutes only a very small

fraction of this space.
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Estimated Plan Cost
Response Time (sec)

%0 2020 4040 60,60 80,80 100,100 1000 2020 4040 60,60 80,80 100,100
Actual Selectivity Location qa(xa,ya) Actual Selectivity Location qa(xa,ya)
(a) Compile-Time (b) Run-Time

Figure 3.1: Beneficial Impact of Plan Replacement

To demonstrate that the benefits anticipated from the cenatipile analysis do translate to
corresponding improvemeng runtime we show in Figure 3.1(b) the query response times
(again measured onlag scalg of P,. (P45), P.. (P17) andP,, at the samey, locations.

It is vividly clear in this picture that huge savings in presig time are obtained by using
the replacement plan instead of the optimizer's originaich, and that the replacement’s
performance is virtually indistinguishable from the opainshoices.

While performance improvements are usually the order of the there are occasional
situations wherei®,. performs worse thar,. atq,. A particularly egregious example, arising
from thesameplan diagram described above, is shown in Figure 3.2(ajfer (0.03,0.14)

— we see here that it is now the replacement phan(P34), which isorders-of-magnitude
worse thanP,. (P26) in the presence of selectivity errors. This compiteetassessment is

corroborated in Figure 3.2(b) which shows the correspandirery response times.

3.1.4 Robust Reduction

From the above discussion, it is clear that we need to enkateohly safe replacements are

permitted. This means that replacement should be pernuotigdif the \ threshold criterion
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Figure 3.2: Adverse Impact of Plan Replacement

is satisfied not just at the estimated point, auall locationsin the selectivity space. At the
same time, it is important to ensure that the safety checlotisinnecessarily conservative,
preventing most plan replacements, and in the procesgladiithe error-resistance benefits.
Therefore, the overall goal is to maximize plan diagram oéidn without violating safety

considerations. More formally, our problem formulation is

Robust Reduction Problem.Given an input plan diagram, and a maximum cost-increase-
threshold\ (A > 0), find a reduced plan diagra® with minimum plan cardinalitysuch that

for every planp; in P,
1. P, eR,or

2. Y q € P, the assigned replacement pl& € R guarantee¥ query pointsg’ € P,

ci(q')
algy =T

That is, find the minimum-sized error-resistant “cover” tns that reduces the plan diagram

P without increasing the cost of any reassigned query pointbye than the cost increase
thresholdjrrespective of the actual location of the query at run-time
It is easy to see that the Robust Reduction problem is NP-Hastllike the standard Plan

Diagram Reduction problem, and therefore we present a hiedegsed algorithm later in
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Section 3.3. But, prior to that, we show in the following senthow replacement safety can

be checked efficiently.

3.2 Ensuring Robust Reduction

To find an error-resistant cover of the plan diagram, we neevaluate the behavior of each
replacement plarP,., w.r.t. its swallowing target’,., atall pointsin S. This requires, in
principle, finding the costs a?,. and all potentialP,. at every point in the diagram. Of course,
P,. and P,. need not be costed in their respectrelo-optimategions, since these values are
already known through the plan diagram production procEss.remainingexo-optimakosts
can be obtained using the FPC feature, that is now supparntsdvieral industrial-strength
optimizers, as mentioned in the Introduction.

While the above solution is conceptually feasible, it is ficadly unviable due to its enor-
mous computational overheads. Plan-costing is certairdgper than the optimizer’s standard
optimal-plan-searching process [13], but the overall bgad is stillO(nm) wheren andm
are the number of plans and the number of points, respegtind?. Typical values ok range
from the several tens to several hundreds, whiles of the order of several thousands to
several hundreds of thousands, making an exhaustive aghpirog@ractical.

The above situation motivates us to study whether it is ptessbased on using FPC at
only a few select locations, tmfer the behavior in the rest of the space. In the remainder
of this section, we describe our strategy for making suchméarence. We begin by design-
ing a parameterized mathematical model for characterigiag cost behavior. Our model is
grossly simplified in comparison to those used in real ogtars, which are much more com-
plex [19, 18]. However, what we have found in practice (wieral hundred distinct plans
arising out of TPC-H and TPC-DS-based query templates ontndugptimizers) is that with
appropriate settings of the parameters, our simple modglite accurate, both behaviorally
and quantitatively. The reasons are that (a) in our probleaces all parameters, barring the
selectivities, areonstant resulting in complex models degenerating to comparatisiehple

equivalents; (b) we arBtting the model to the observed cost behaviors, rather than ttging
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predictthem; and (c) our modeling is at the level of entire plans,regating the effects of
several individual operators, thereby reducing the vditgbMoreover, the quantitative accu-
racy is a bonus — it is not really required since obBhavioralaccuracy is necessary for our

scheme to work.

3.2.1 Modeling Plan Cost Functions

For ease of presentation, we will initially assume that dyjective is to model the cost behav-
ior of plans with respect to a 2-D selectivity space (e.guFedL.2(a)) corresponding to distinct
relationsR, and R,. The extension to higher dimensions is straightforward iargrovided
later in this section.

In current optimizers, the operators in the execution planadl typically eitherunary or
binarywith regard to their inputs. Therefore, given a specific gparator tree, like the sample
one shown in Figure 3.3 (obtained ong, = LINEITEM, 2, = CUSTOMER selectivity space),

we can define the following types of nodes:

Selectivity Nodes: These are the unary nodes that implement the selectiontaper@an re-
lations R, andR,,. In Figure 3.3, they are colored orange, correspondingdexrscans

on theLINEITEM andCcUSTOMERrelations, respectively.

Dependent Nodes:These are the nodes in the tree that have at least one Sigjetpde in

the sub-tree below them. They are colored blue in Figure 3.3.

Independent Nodes: These are all the remaining nodes in the tree that do not getosither

of the above two categories. They are colored white in Figu8e

3.2.2 Node Cost Models

We now enumerate the cost models that can be associatedhwitbbve node categories on
the 2-D selectivity spac®. Our formulation is based on detailed observations of celstiior
of individual operators on commercial database optimizarghe following, the variables

andy are used to denote the (fractional) selectivities on theaes/e dimensions.
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SELECT STATEMENT
Snrtl
Hash Match |

Hash Match

Clustered Index Scan

NATION | Hash Match | Clustered Index S:anl

CUSTOMER

Clustered Index Scan | Compute Scalar

1 )

ORDERS Clustered Index Scan

LINEITEM |

Merge Join

Figure 3.3: Sample Plan Tree

Independent Nodes: Since these nodes do not have a Selectivity Node in theitreehvari-
ations inx andy do not change their inputs, and consequently their outdutsrefore,

for a given plan, the costs at these nodes remain the samagtiootS.

Selectivity Nodes: The input cardinalities for these nodes will be constantué&btp the corre-
sponding base relation’s cardinality while the output cardinality is directly dependent
on the selectivity value. Therefore, the cost behavior carcdptured by the simple
linear model involving coefficients; anda, shown in Table 3.1. For exampl&éable-
Scanswill have a; = 0, while Index-Scangre likely to have non-zero values for both

constants.

Dependent Unary Nodes:The input cardinalities for these nodes will be a functionzof
and/ory, and the associated family of cost models is as shown in Takle For op-
erators such afggregatesArithmetic ExpressionsScalar functionsetc. the simple
linear model will apply, whereas the logarithmic model wbapply to operators such

asSortandGroup Bythat require multiple passes over the data.

Dependent Binary Nodes: These are the nodes that represent binary set operatorsasuch
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| Node Type | Input Cardinalities | Cost Model |
| Selectivity Node ¢ = z) || n \ ainx + as |
a1 T + as
nx

ainixlognix + as

Dependant Unary Nodes
ainiTy + as

Y

mry ainixy lognizy + as
nix N9 a1 + asng + aznNinNe® + aq
Dependant Binary Nodes njxy o a1n Ty + asng + azninsxry + ay
nix oY aQINIT + ANy + az3NN2TY + a4

Table 3.1: Cost Models for Various Node Types

Join, Union, Minus etc. The different types of input possibilities and theoagsted cost

models are shown in Table 3.1.

Note that we deliberately do not consider the case whetkthe inputs to the binary
node are functions aof (or y or zy). This is because it is easy to prove that such a
situation is not possible unless operators Haiwary outputs- we have not encountered

any such operators in our study.

LEMMA 3.1. There cannot be a binary node that has both inputs to be fomgtofx

(or functions ofy, or functions ofry).

Proof. If there exists a binary nod® with input cardinalities:;z andn,z, then there
should exist some node in its subtree that hamary output However, we know that all
nodes in the plan tree have unary outputs (since there isaie tythe tree). A similar

argument holds for thg andzy casesl

Cost Model of a Complete Plan

The cost function of the entire plan is the aggregate sumedtdsts of the individual nodes.
Considering all possible cost models a node can have, we caucke that the overall cost

model of a plan for a 2D selectivity space is of the form

Cost(z,y) =a1x + asy + azzry + asx log x + asy log y+

agxylog ry + a7 (3.1)
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wherea, as, as, as, as, ag, a7 are coefficients, and, y represent the selectivities &, and Rz,
respectively.
Modeling a specific plan requires suitably choosing the ses@efficients, and this is

achieved through standard surface-fitting techniquesyritesl in Section 4.

3.2.3 Extension to d-dimensional spaces

Generalizing the arguments used in the 2D case, we obtaifollloe/ing cost model for a

d-dimensional selectivity space.

Cost(xy,...,xq) = Z(a,—lxil + b;,x;, logx;, )+

i1

E (@iyiyTiy iy + biyin iy Tip lOg T T4,) + oot

11 <12

a1, q(T129%3..24) + bia.qg(T12223..4) log(x12923..24) + ag (3.2)

where then's andb’s are the coefficients and the, i = 1...d represent the relational selec-

tivities.

3.2.4 Replacement Safety Conditions

For the 2D scenario, using the abdveoefficient cost model, our goal now is to come up with
an efficient mechanism to assess, given an optimal plancandidate replacement pldn,
and a cost-increase thresholdvhether it would be safe fromglobal perspective to haveg,,
swallow P,..

Let the cost functions fof,. and P,. be
Jre(z,y) = a12 + a2y + azzy + agwlog x 4 asylogy + aswylog vy + ar (3.3)

and

foe(x,y) = b1z + boy + byzy + byxlog x + bsylogy + bexy log xy + by (3.4)
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respectively. Now consider tlfsafety function”

f(@,y) = fre = (1+A) foe (3.5)

which captures the differences between the cost’.obnd a\-inflated version ofP,. in the
selectivity space. All points wherg(z,y) < 0 are referred to aSafePointsvhereas points
that havef(z,y) > 0 are calledviolatingPoints For a replacement to be globally safe, there
should be no ViolatingPoint anywhere in the selectivitycsa

In the following, we will use LR-Boundaries to collectivelymge the left and right bound-
aries of the selectivity space, and TB-Boundaries to collelstidenote the top and bottom
boundaries of the space.

For a specific value af, the safety functiorf (x, y) can be rewritten as

fy(®) = g1 *xx+ g2 x xlogz + g3

for appropriate coefficients;, g2, g3. Similarly, we can defing,(y). With this terminology,
the following theorem provides us with conditions for chiagkwhether the selectivity space
is safe for the plan-pairK,.,P,.) with regard to replacement.

THEOREM 3.2. For a plan-pair (P,.,F,.) and a selectivity spac® with corners|(x1, y1),
(x1,92), (T2, 92), (x2,91)], the replacement is safe (i.e., withirthreshold) inS if any one of

the conditions, SC1 through SC6, given in Table 3.2 is satisfied

Left Right Top Bottom
Boundary | Boundary || Boundary | Boundary
SC1 Safe Safe foo(@) >0 | f/ () >0
SC2 || f,(z1) <0 Safe foo() <0 | fy () <0
& Safe
SC3 Safe fy(x2) >0 || fi'(z) <0 | fil(z) <0
& Safe
SC4| fi (y)>0 | fl(y) >0 Safe Safe
SC5| fI () <0 [ fL(y) <0 |[ fi(y) >0 |  Safe
& Safe
SC6 | /7 () <0 | fL(y) <0 | safe | fi(y1) <0
& Safe

Table 3.2: Safety Satisfaction Conditions
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In order to prove the above theorem, we will start with degviwo lemmas — the first provides
us with a condition that is sufficient to ensure safety of aihgs on the straight line segment
joining a pair of safe points, while the second describe®#iaviour of the slope of the safety
function.

LEMMA 3.3 (Line Safety).Given a fixedy = y,, and a pair of safe pointse,, y,) and

(72, Yo) With z, > x4, the straight line joining the two points is safe if the slofjgx) is either

(i) monotonically non-decreasing, OR
(i) monotonically decreasing witff _(z1) < 0or f; (r2) >0

A similar result holds whenm is fixed.

Proof. The various possible behaviors éf(x) are shown in Figure 3.4 as Curves (a)
through (e). When the slopg (x) is monotonically non-decreasing (i.e. Condition (i) is
satisfied), the safety function curve that connects the af® goints is guaranteed to lelow
the straight line joining the two points — Curve (a) in Figurd 8hows an example of this
situation. This ensures that the safety function along iendine segment is always negative

and hence safe.

f,()

)

>\
A
8

(e)
(d)
(©)
(b)
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Figure 3.4: Behavior of the safety functigip(x)

If, on the other handf; (y) is monotonically decreasing, then the possible behavibrs o

the safety functiory, (y) are shown in Curves (b) through (e) in Figure 3.4. Curves (b) and
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(c) denote the behaviour of the safety function when Condifip is satisfied, and clearly the
value of the safety function is again negative in the givergeal

In Figure 3.4, Curve (d) also corresponds to a safe scenar@wever, it is not possible
to differentiate between Curve (d) and the unsafe case, yathele (e), without explicitly
computing the safety function at every point on the giver-l@gment. Hence, wmnserva-
tively categorize both cases as unsafe. We have also observetdlwse corresponding to
Curve (e) occurs rarely in practice.

LEMMA 3.4 (Slope Behavior)if the slope of the safety functioff,(), is non-decreasing
(resp. decreasing) along the line-segments y; andy = -, then it is non-decreasing (resp.
decreasing) for all line segments in the interyal, v»). A similar result holds forf. (y).

Proof. Consider the slope of the safety function

) = Tt 4 g1 1 10g ) 36)

Forz € (0,1), this slope is monotonic and its behavior depends on the &fign. From

Equations 3.3 and 3.4, we know thagtcan be written as the following function of

92(y) = (as — (1 +A)bs) + (as — (1 + A)bs)y
= (k1 + ka2y) (3.7)

wherek; andk, are constants.

Sinceg,(y) is a linear function of;, the Lemma immediately followsl

We now prove Theorem 3.2 using the LineSafety and SlopeBehkrnmas:

Proof. Consider the SC1 condition in Table 3.2: SintEz) > 0 (i.e. slopef,(z) is
non-decreasing) at the TB-boundaries, then from Lemma Z4new that the slopg; (r) is
non-decreasing throughout the rarige, v»).

Moving on to the SC2 and SC3 conditions: Sinfg&x) < 0 (i.e. slopef,(z) is decreas-
ing) at the TB-boundaries, then from Lemma 3.4, we know thasstbpef, () is decreasing
throughout the rangéy,, y2). Further, we know that for a given = vy, € (y1,v2), either
fi.(x1) < 0(SC2) orf; (x2) > 0 (SC3).
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Thus, when SC1, SC2 or SC3 is satisfied, then for all lines betweéns (x,y) and
(x2,9), ¥y € (y1,y2), the end-points are safe (because the LR-boundaries ane aafethe
slope conditions given in Lemma 3.3 are satisfied. Hencespah line-segments are safe, the
union of which is the given region.

Similar arguments can be used to show safety of the regiomwbeditions SC4, SC5 or
SC6 are satisfied. Hence the theorém.

The test criteria of Theorem 3.2 are utilized for determgnieduction safety in the Safe-
tyCheck algorithm, described next. A related point to notes hie that these checks aren-
servativein that it is possible to have global safety even if none ofabeditions are met —i.e.

the test is sufficient, but not necessary.

3.3 The SEER Algorithm

In this section, we first describe the safety checking prosgdvhich given a plan-paitH,.,
P..), responds whether the replacementif by F,. is globally safe throughout the selectiv-
ity spaceS. We then present and analyze the SEER algorithm which usegrbcedure to
perform error-resistant plan diagram reduction.

In the following, we will assume that the selectivity sp&&és represented by a gri@,

with m = r x r points, i.e. the grid resolution in each dimension.is

3.3.1 Safety Checking

To implement safe reduction in a 2-D plan diagram, we neeeé tthite to check for the satisfac-
tion of any of the conditions (SC1 through SC6) stipulated iedrem 3.2. A straightforward

way to achieve this is the followinBerimeter Tesprocedure:

Perimeter Test. First compute the safety function at all points on gegimeterof G — this

is obtained through the foreign-plan-costing (FPC) featdigen, compute the slope behav-
ior (non-decreasing or decreasing) along all the grid linésis is achieved by evaluating the
slopes at the matching end-points on the perimeter and aimgphe values. The slope at a

perimeter point is approximated by computing the value efsifety function at its immediate
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Figure 3.5: Perimeter and Wedge Test

internal neighbor — i.e., along the “inner perimeter”, andleating the slope of the line seg-
ment joining these two points. Finally, use these resuligetdy whether any of the 6 safety
conditions are satisfied.

In the Perimeter test, the number of FPC operatior2s«id(r — 1) for the perimeter (the
2 is due to having to compute boih. and f,.), while the computation of the slopes takes an
additional2 x 4(r — 3) costings of the inner perimeter, leading to a total of appnately 16r.
Note that this is much less than the? FPC operations required by a brute-force approach of
costing both plans at all points in the diagram. For examplth » = 100, the overhead is
brought down by over an order of magnitude. The red and bliggshown in Figure 3.5 are
to be costed in this test.

An obvious minor improvement that could be carried out onltheoverhead is to perform
the inner perimeter costings only when conditions SC1 and $€vialated. In this case, only
one of SC2 or SC3 (resp. SC5 or SC6) can be valid. Hence, we needdop&PC operations

only attwo boundaries of the inner perimeter, one along each dimensius reduces the FPC
overhead td 2r.

Wedge Test.We now present a powerful optimization, calMédge Testhat allows condi-
tions SC1 and SC4 to be checked witbanstanthumber of FPC, specificalB4, irrespective

of the resolution This is based on the observation that the slope of the séfettion is
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a monotonic function (Equation 3.6). Thus, by comparing stopes at the corners of the
space, we can infer the slope behaviour of the safety fumetiong its boundaries. Applying

Lemma 3.3, the safety of the boundaries can also be infefffedce, it is sufficient to perform

FPC only at each corner of the space and its two adjacentspoimthe perimeter boundaries
—that is, at the “corner wedges”. Only the red points showigure 3.5 are to be costed in
this test.

Based on the above observations, we employ a two-stage proteafety-checking — in
the first stage, use the extremely cheap Wedge Test checlgrdwdf it fails, use the more
expensive Perimeter Test to verify replacement safety.

Note that once a plan is costed at a given location, we stesetst in a cache for reuse

later, ensuring no redundant computations.

3.3.2 Plan Diagram Reduction

We now show how the above safety checks are integrated iet®HER procedure for plan dia-
gram reduction. Note that SEER'’s design is completely difiefrom that of CostGreedy [11]
because now reduction is permitted only if it satisfies atgafeterion that is applicable over
S, whereas CostGreedy'’s attention is limited to oAly’'s endo-optimal region.

The complete SEER algorithm is shown in Figure 3.6. Here,taCoger instance is first
created from the input plan diagra Then the two-stage global safety checking procedure
of the Wedge Test, followed by the Perimeter Test, is implaea to evaluate replacement
possibilities across each pair of plandFipand the Set-Cover instance is updated accordingly.
Finally, the resulting instance is solved using the stashdagedy techniques [23, 10] to obtain

the reduced plan diagraR

Analysis. As discussed earlier, each replacement assessment of-pgta?,.,P,.) requires
atmostO(r) FPCs to be performed. There atén?) such comparisons performed by the
algorithm. However, since we cache the already obtainets cite amortized number of FPC
to be performed per plan 3(r). Thus, for gridG with m = r x r points, the comparison of all

plan pairs requires onig(n./m + n?) time. Solving the Set-Cover problem using the Greedy
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SEER (Plan DiagramP, Threshold \)

1. Create a Set-Cover Instante- (U, S), whereS = {51, 5s,...,S,}, U = {1,2,...,n},
corresponding to the plans in the original plan diagraf

2. Seteaclh; = {i},Vi=1...n
3. For each pair of plang’;, P;) do

if WEDGE_TEST (7;,F;,\) == Safe) then

Si = SilU{Jj}
else if (PERIMETERTEST (F,,P;,\) == Safe) then
Si = SiUlJ}

4. Solve the Set-Cover instan¢ausing the Greedy Set-Cover algorithm to identify the
plans retained ifR.

Figure 3.6: The SEER Reduction Algorithm

Set-Cover algorithm [23, 10] requir€xn?) time. This results in a®(n+/m + n?) reduction
algorithm. Further, since the set cover instance createtf Ha= n, the approximation factor
of this reduction algorithm i®(logn).

The above bounds and approximation factors for SEER conveaydavorably with those
of the CostGreedy reduction algorithm [11], which has timmptexity O(nm) and approxi-

mation factor ofO(log m), since typicallyn << m.

3.3.3 Extension to Higher Dimensions

The SafetyCheck algorithm used to verify the safety of théagment ofP,. by P,. in ad-
dimensional selectivity space is given in Figure 3.7. Thavatalgorithm recursively finds the
safe area of thé&l — 1)-dimension “slices” of the inpuf-dimension selectivity space. When
d = 2,the WEDGETEST and PERIMETERTEST methods are used to check for safety. The
SEER algorithm incorporating this checking mechanism e\wshin Figure 3.8.
Eachd-dimensional plan diagram is composedrofd — 1)-dimensional plan diagrams.
The time complexity of the SafetyCheck algorithm for the bease whenl = 2 is O(r).
Thus the SafetyCheck algorithm runsdnr¢-!) time. Given a grid withm = 74 points,
FPC is performe(d)(md%l) times for each plan pair. Thus, the time complexity of the BEE

reduction algorithm for @-dimensional plan diagram @(m ‘@ n + n?).
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SafetyCheck (Plan DiagramP, Threshold A, Plan P,., Plan P,., Dimensiond)
1. if(d==2)
(a) if WEDGETEST P,P;,P;,\) == Safe) then
return true.
else if (PERIMETERTEST @,F;,P;,\) == Safe) then
return true.
(b) return false.

2. else

(a) safety = true;
(b) for each(d — 1)-dimension slicé®’ of P
safety = safetyn SafetyCheckR’ lambda, P, Pre, d — 1)

3. return safety.

Figure 3.7: n-Dimensional SafetyCheck Algorithm

SEER (Plan DiagramP, Threshold ))

1. Create a Set-Cover Instanée= (U, S), whereS = {S51,95,...,5,}, U = {1,2,...,n},

corresponding to the plans in the original plan diagraf
2. Seteacty; = {i},Vi=1..n
3. For each pair of plang’;, P;) do

if (SafetyCheck R\, P;,P;,d) == true) then
S = SiU{s}

4. Solve the set-cover instanéeusing the Greedy Setcover algorithm to identify the plans re-

tained inR.

Figure 3.8: n-Dimensional SEER Reduction Algorithm
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3.4 Variants of SEER

3.4.1 LiteSEER: A Fast Variant

The SEER design makes conscious efforts, as described,dabowaimize the computational
overheads, but these overheads do grow with increasingdiomality of the query template.
Therefore, we have also designed and evaluated LiteSEEghtaweight heuristic-based al-
gorithm that trades SEER'’s safety guarantee for providipgdreunning-times. In LiteSEER,
a replacement is simply assumed to be saédl ithe corner points of the selectivity space are
safe The intuition behind this observation is that when two peire safe, then the straight
line joining them is also usually safe. This is corrobordbgdur experimental results which
indicate that the heuristic provides almost the same safethat obtained through the strict-
checking criteria of SEER.

Given ad-dimensional plan diagraf with »n plans, the LiteSEER algorithm only com-
putes the safety function at ti2é corners of the associated selectivity space. It inmediatel
follows that its overall complexity i©)(2¢n + n?). Since, in most practical scenarios of in-
terest,2? << n (e.g. in the 2-D case? = 4, while n is typically in the several tens, if not
more), the effective complexity turns out to B&n?). Note that, in principle, in the absence
of any apriori information, this is theinimum workequired to be executed by any reduction

algorithm.

3.4.2 PartialSeer

The problem formulation for robust reduction required teplacement plan to bglobally
safe As a generalized variant, the safety criteria can be reléxellow a planp,. to replace
planP,. if P,.is safe in at least a user-definethimum safe fraction (MSFf the area covered
byS (MSF <1).

In order to assess partial safety, we first perform the WED®ST and PERIMETERTEST
checks for global safety. If this fails, we verify whetheetslope criteria of any of the 6 con-

ditions given in Theorem 3.2 is satisfied. If true, we allowarpP,. to replace plarP,. if
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1. Atleast two adjacent boundaries in the perimeteB afe safe; and
2. TheM SF requirement is met i®.

The reason for restricting our attention to situations wlareast two adjacent boundaries
are safe is that, for this case, an efficient algorithm canebes to check satisfaction of the
area requirement, as described below. Figure 3.9 shows ddédied SafetyCheck algorithm
that finds the safe area when the left and bottom boundari€sané safe. The algorithm is
similar when other boundaries are safe.

From Theorem 3.2 we know that the safe (and violating) pdmti® contiguous regions
in S when the slope criteria of at least one of the size conditayessatisfied. Since the left
and bottom boundaries of the grid are safe,ttedy axes form a part of the boundary of the
safe region. The PartialSafetyCheck algorithm traces timaireder of this boundary.

Figure 3.10 shows the flow of the algorithm while tracing tloeidary between the safe
(green) and violating (red) regions of the selectivity spfe a pair of plans. In this figure, the
top and right boundaries of the region violate the safetyiregnent.

We start from the first violating point on the top-boundanytiod grid, and at each stage
either move down or right in the grid. At each interior poihat we move to, we perform
the costing of the plans,. and P,.. The algorithm stops when we reach the bottom or right
boundaries of the grid.

The number ofright or downmovements required to reach this termination situation is
atmost2r movements for a x r grid. Hence, for a pair of plans, atmost extra costings
are needed to obtain the error-resistant area. Steps 1gthi®wf the algorithm require an
additionall2r costings in the worst case scenario — it is usually much emdlhus, the overall
time complexity of the modified PartialSafetyCheck algantfor a 2-dimensional selectivity
space i)(r).

The PartialSeer reduction algorithm, which employs théi&d&afetyCheck safety-checking

technique, is shown in Figure 3.11.
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PartialSafetyCheck (Plan DiagramP, Threshold A, Area allowedViolation, Plan P,., Plan P,.,
Dimensiond)

1. if(d==2)

(a) if (WEDGETEST ,P,¢,Py.,\) == Safe)return allowedViolation
(b) if (PERIMETERTEST P,P,e,Pre,\) == Safe)return allowedViolation
(c) if the slope criteria of the six conditions of Theorem 3.2 are not satjsétgn —1
(d) if (allowedViolation = 0) return —1
(e) if notwo adjacent boundaries are safeturn —1.
(f) Let the first violating point at the top-boundary of the gf®doccur atx = x,. Set
T =2,y =7 — 1, NumViolatingPoints = 0
(9) Whilex # r andy # —1
i. Setcount =0
ii. While current point is violating (i.¢/(x,y) > 0) andy # —1
A. move down (i.ey--)
B. if (NumViolatingPoints+ (r—y—1) x (r—x —1)) > allowedViolation,
return —1
iii. While current point is safe (i.¢(z,y) < 0) andz # r
A. move right (i.e.x++), count++

B. if (NumViolatingPoints+ count x (r —y — 1)) > allowedViolation,
return —1

Iv. NumViolatingPoints + = count X (r —y — 1)
(h) allowedViolation — = NumViolatingPoints

(i) return allowedViolation
2. else

(a) for each(d — 1)-dimension slicé®’ of P
i. allowedViolation = PartialSafetyCheck(,\, allowedViolation, Py, Pye, d—1)

ii. if (allowedViolation < 0)
return allowedViolation;

3. return allowedViolation.

Figure 3.9: The PartialSafetyCheck Algorithm
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Figure 3.10: Working of the PartialSafetyCheck algorithm

PartialSeer (Plan DiagramP, Threshold A, MinSafeFraction M SF’)

1. Create a Set-Cover Instanée= (U, S), whereS = {S1,S5,...,5.}, U = {1,2,...,n},
corresponding to the plans in the original plan diagraf

2. Seteacty; = {i},Vi=1..n
3. For each pair of plang’;, P;) do
(@) SetallowedViolation = (1 — MSF) x Area(P).
(b) if (PartialSafetyCheckR,A,allowedViolation, P;,P;,d) > 0) then
Si =S U{i}

4. Solve the set-cover instanc¢eusing the Greedy Setcover algorithm to identify the plans re-
tained inR.

Figure 3.11: The PartialSeer Reduction Algorithm
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Experimental Results

The testbed used in our experiments is the Picasso optiniggalization tool [20], executing

on a Sun Ultra 20 workstation equipped with an Opteron DuaéQdsGHz processor, 4 GB of
main memory and 720 GB of hard disk, running the Windows XPdprerating system. The
experiments were conducted over plan diagrams produceddnaariety of multi-dimensional
TPC-H and TPC-DS-based query templates. In our discussion, we usg @QTrefer to a
guery template based on Queryf the TPC-H benchmark, and DS®To refer to a query
template based on Quewryof the TPC-DS benchmark. The TPC-H database was of size
1GB, while the TPC-DS database occupies 100GB. We presentegpative results here for

a commercial optimizer anonymously referred to hereake®ptCom, and a public-domain

optimizer, hereafter referred to as OptPub.

4.1 Performance of SIGHT

We now evaluate the two plan generation algorithms, SIGHT I&GHT. For this experi-
ment, the OptPub engine was modified to (a) implement the [ERtife internally, and (b) to
return the second best sibling plan along with the optimahpvhen the “explain” command

is executed.

39
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Dimension/ Query No. of Exhaustive Time taken by Optimizations performed
Resolution Template | Plans | Generation time SIGHT by SIGHT (%)
QT5 22 5 hrs 20 mins 4 mins (1%) 0.17 %
2D: 1000x 1000 QT8 20 6 hrs 10 mins | 2 hrs 47 mins (45%) 44 %
QT5 23 5 hrs 48 mins 13mins (3%) 24%
3D: 100x 100 x 100 QT8 49 5 hrs 58 mins 2 hrs 2 mins (34%) 32%
QT9 22 6 hrs 45 mins 5 mins (1%) 0.24%
QT5 37 4 hrs 50 mins 25 mins (8%) 5.8%
4D: 30 x 30 x 30x 30 QT9 28 6 hrs 10 mins 7 mins (2%) 0.7%

Table 4.1: Performance of SIGHT algorithm

4.1.1 SIGHT

Using the approximate second best plan, we were able toroplan diagrams with no plan
identity error, andalmost zerglan location error. As can be seen in Table 4.1, SIGHT uguall
requires at most0% optimizations to generatgose to accurat@lan diagrams for all query
templates, except those based on Query 8, the reason fan vghdéscussed below. The good
performance of SIGHT can be attributed to the following: Adavith the optimizations being
performed at select points, all points (except the origie)a@sted exactly once. Further, since
the FPC feature is internalized in the optimizer, the rafiplan-costing to plan-searching is
approximately 1:100, making the overheads incurred veallsilso, an important byproduct
of this minor investment is the ability to also obtain thetaiagram corresponding to the plan
diagram.

Though an investment df0% optimizations is usually the order of the day, there are oc-
casional scenarios when the SIGHT algorithm requires atantislly larger number of opti-
mizations to generate the plan diagram. Such a situatiogeis for QT8 — the reason is that
the cost of the second best plan is extremely close to thaeadptimal plan over an extended
region. Even though the actual plan switch occurs much, ldtisrclose-to-optimal cost causes
the algorithm to optimize at frequent intervals as the a@istc; (¢') < c2(q) is easily violated
leading to the algorithm “panicking too quickly” and chaagito optimize a large number of

unnecessary points.
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Query No. Exhaustive | Approximation | Optimizations ISIGHT
Dimension/ Temp- of Generation Time Required by Error (%)
Resolution -late Plans Time Taken ISIGHT (%) €1 €r,
QT5 22 5hrs 20 mins| 3 mins (1%) 0.1% 13% | 11%
2D: 1000x 1000 QT8 20 6 hrs 10 mins| 6 mins (2%) 0.5% 10% | 11%
QT5 23 5hrs 48 mins| 7 mins (2%) 0.95 % 9% | 46%
3D:100x 100 x 100 QT8 49 5hrs 58 mins| 12 mins (4%) 1.8% 16% | 0.2%
QT9 22 6 hrs 45 mins| 5 mins (2%) 0.4% 0% | 49%
QT5 37 4 hrs 50 mins| 15 mins (5%) 3% 8% 1%
4D: 30 x 30 x 30x 30 QT9 28 6 hrs 10 mins 7 mins (2%) 0.4% 3% | 45%

Table 4.2: Performance of ISIGHT algorithm-€ 10%)

4.1.2 ISIGHT

Turning our attention to the ISIGHT algorithm, whose penfance is presented in Table 4.2
for a 10% error bound, we find that it consistently generapgsaximate plan diagrams while
performing less than 5% optimizations. Further and veryartgntly, even for the problematic
QT8, due to the relaxation of the effect of the proximity oé tbecond best plan, the plan
diagram is now obtained incurring only a small overheadalynnote that the identity errors
greater than 10% are usually an artifact of the low numbetlasfgin the original plan diagram.
A related point to note is that the time overheads are a hithee than that of optimization.
The reason is that, although FPC is very cheap, since it hae favoked for a very large

number of points, a small but perceptible time overheadisesu

4.2 Evaluation of SEER

4.2.1 Experimental Setup

Physical Design. Following a methodology similar to that advocated in [6], eansidered
three different physical design configurations in our stué®imaryKey (PK), Allindex
(Al), andTunedindex (TI). PK represents the default physical design of our databagae
wherein a clustered index is created on each primary key.oilthe other hand, represents
an “index-rich” situation wherein (single-column) indgcare available on all query-related
schema attributes. Finally, Tl represents the index enu@nt obtained by implementing the

recommendations of the database engine’s index tuningad{which include multi-column
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indices).

In the subsequent discussion, we usex@ refer to a query template based on Query
of the TPC-H benchmark, and DS®10 refer to a query template based on Queigf the
TPC-DS benchmark, operating in the default PK configuratidfe prefix Al and Tl to the

guery template identifiers in describing our results fosthepecialized configurations.

Query Location Distribution. All the performance results shown initially in this sectiare
for plan diagrams generated wigkponentiallydistributed locations for the query points across
the selectivity space, resulting in higher query densitiegr the selectivity axes and towards
the origin. This choice is based on earlier observationdéliterature (e.g. [12, 13, 21])
that plans tend to be densely packed in precisely thesengiothe selectivity space. From
a performance perspective, these diagrams representahgh“nut” challenging situations
with respect to obtaining anorexic reduction due to theghtplan densities and substantially
broader range of plan cost values.

For completeness, we have also conducted all the expesmaitt auniform distribution

of query locations — these results are detailed in Sect@174.

Performance Metrics. In the remainder of this section, we evaluate the SEER remuatgo-

rithm with regard to the following performance parametges: Diagram Reduction Quality,
(b) Error-resistance obtained through Reduction, (c) $aféReduction, and (d) Computa-
tional Efficiency. As a precursor, we first evaluate the vlidf the plan cost function model

(Section 3.2.1).

4.2.2 Validity of Plan Cost Model

The validity of the plan cost model presented in Equationv@a$ assessed by attempting to
fit the costs of plans generated by OptCorithe experimental data consisted of optimizer-
estimated execution costs over the selectivity space opltnes that appeared in the various

plan diagrams (taken from both exponentially and uniforchtributed query templates). As

We have also validated this plan cost model on another comatefatabase, and found the results to be
similar
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Figure 4.1: Plan Cost Function Modeling

mentioned earlier, the foreign-plan-costing (FPC) featuas used to evaluate plans outside
of their endo-optimal regions.
The surface fitting was carried out with the classical Linesast Squares method [16] and

implemented using Matlab 7.4 [25]. An example 2-D fitted dasttion is:
Cost(z,y) = 17.9x + 45.9y + 1046zy — 39.5x log z + 4.5y log y + 27.6zy log zy + 97.3

For this plan, the complete plots of the actual cost surfakthe fitted cost surface, as a
function of the selectivities of the two base relations, sltewn in Figure 4.1. It is visually
evident that the fit is very good.

As further evidence of the accuracy of our model, Table 4&wshthe quality-of-fit, mea-
sured in terms of the maximum and averd&eot-Mean-Square(RM®)rors, over a large
number of plans featuring in the plan diagrams arising fram suite of multi-dimensional
query templates. The consistently low RMS values suggestitbanodel is sufficiently accu-
rate for our purposes.

Finally, as an additional precaution, we deliberately slead for plan cost functions with
complex shapes to assess the quality-of-fit in these difftages. An example is shown in
Figure 4.2, and we see that even here, the fit is of high quilisyRMS Error is only around

10%). This can be attributed to the fact that our cost modslhaarameters which gives
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Dimension || Number Maximum Average
of Plans | RMS Error (%) | RMS Error(%)
2D (TPC-H) 614 14.20 1.82
2D (TPC-DS) 168 7.31 2.87
3D (TPC-H) 28 6.98 1.92
3D (TPC-DS) 100 2.71 1.58

Table 4.3: RMS Errors in Fitted Cost Surfaces

sufficient freedom to fit most of the plan cost functions foumgbractice. Our curve fitting

technique does not impose any restriction on the behavidiheaost function, and hence we

see for this example, a small PCM violation in the fitted curve.
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(b) Fitted Cost Function
Cost(z,y) = 184.3x+619.9y+524.5xy—1090z log x —1179.9y log y —836.2xy log xy — 1000

RMSError = 10.96%

Figure 4.2: Complex Plan Cost Function

4.2.3 Plan Diagram Reduction Quality

A potentially worrisome aspect of our quest to obtain glbbadbust reduction is whether it
might result in losing out on the anorexic reduction levddsarved in the localized reduction
processes of [11]. This concern is quantitatively allaye@able 4.4, which presents a compar-

ison between SEER and CostGreedy (CG) of the number of plahe iretiuced diagram for
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a diverse suite of multi-dimensional query templates onfR€-H database. The PK physical
design configuration was operational in these experiments.

Atfirst glance, SEER might have been expected to performembien CostGreedy because
its additional safety checks may prevent some plan swaliggvpermitted by CostGreedy— in
fact, this was the source of our concern. However, in Taklewe actually find theonverse
— while CostGreedy does provide anorexic reduction, SEER dwen better. The reason for
this is that CostGreedy follows a conservative cost-boupndipproach to estimate the costs
of plans outside their endo-optimal regions (details in)1BEER, on the other hand, uses
the foreign-plan-costing feature to obtain the exact costhese regions, and therefore has
superior reduction possibilities. Therefore, the FPCueatomes in handy from both quality
and safety perspectives.

A question that immediately arises is how SEER would compagaanst a CostGreedy
variant that also utilized the FPC feature. This issue is atidressed in Table 4.4, where the
performance of this variant (CG-FPC) is presented. We se€BafPC does perform better
or as well as SEER, as should be expected — however, the gawy, italways very small. A
related point to note here is that the SEER reduction quadityains excellent even for the 3D
guery templates, in spite of the fact that the additionaledision increases the possibility of
the safety conditions being violated.

Finally, we observe in Table 4.4 that the Lite SEER fast vait@ppens to provide reduction
quality identical to SEER. Under the Al (and TI) configuragornowever, it occasionally
performs slightly better (see Section 4.2.3), as shoul&kpeated due to its being less stringent

in allowing replacements.

TPC-DS Results. The above results were generated on the TPC-H database, dsalmi-
formly distributed data. Table 4.5 shows a correspondingoseesults for plan diagrams
generated on the TPC-DS database, which features skewedtdatenmediately evident that
the reduction profiles of the various reduction algorithmes\gery similar to those seen with
TPC-H.
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Query Original CG | CG-FPC | SEER | LiteSEER

Template | No. of plans

QT2 (2D) 60 14 3 6 6
QT5 (2D) 51 7 2 2 2
QT8 (2D) 121 7 2 2 2
QT9 (2D) 137 9 3 4 4
QT10 (2D) 44 3 3 3 3
QT16 (2D) 32 11 3 3 3
QT5 (3D) 68 8 3 3 3
QT8 (3D) 191 8 3 3 3
QT10 (3D) 75 10 3 4 4

Table 4.4: Plan Diagram Reduction Quality (TPC-H)

Query Original CG | CG-FPC | SEER | LiteSEER
Template No. of plans
DSQT12 (2D) 25 6 3 2 2
DSQT18 (2D) 114 13 2 2 2
DSQT19 (2D) 55 11 3 4 4
DSQT12 (3D) 33 11 2 2 2
DSQT18 (3D) 222 15 2 4 4
DSQT19 (3D) 98 15 2 4 4

Table 4.5: Plan Diagram Reduction Quality (TPC-DS)

Query Original CG | CG-FPC | SEER | LiteSEER
Template No. of plans
AlIQT2 (2D) 87 12 2 2 2
AIQT5 (2D) 126 14 4 6 5
AlIQT8 (2D) 121 7 3 3 3
AIQT9 (2D) 132 14 3 4 3
AlQT10 (2D) 37 8 4 5 5
AIQT16 (2D) 35 9 2 2 2
AIQTS5 (3D) 139 14 5 7 5
AlQT8 (3D) 168 14 4 6 5
AlQT10 (3D) 77 16 7 8 8

Table 4.6: Plan Diagram Reduction Quality (TPCH-AI)
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Query Original CG | CG-FPC | SEER | LiteSEER
Template No. of plans
TIQT2 (2D) 52 10 4 5 5
TIQT8 (2D) 108 16 3 3 3
TIQT9 (2D) 101 16 6 5 5
TIQT10 (2D) 50 10 4 2 2
TIQT16 (2D) 36 14 4 6 6
TIQTS5 (3D) 84 10 4 5 5
TIQT8 (3D) 181 14 4 6 5
TIQT10 (3D) 78 12 6 8 7

Table 4.7: Plan Diagram Reduction Quality (TPCH-TI)

Reduction Quality with Allindex Configuration

While the PK configuration had only 8 primary-key indices,lAdlex includes an additional
53 (non-clustered) single-column indices covering allrdr@aining query-related schema at-
tributes. The reduction quality results for this indexareonfiguration are shown in Table 4.6.
We first notice that the number of plans in the original diagrasually increases, often sub-
stantially, as should be expected since the optimizerschespace has increased due to the
availability of the additional indices. For example, themher of plans for AIQT5(2D) goes
up to 125 from 51, while AIQT5(3D) jumps to 139 from 68. Howewshen we consider the
reduction quality of the various algorithms, we find thatytkentinue tomaterially adhere to
anorexic levelsalthough the actual cardinalities may have gone up by aleafiplans. For
example, SEER on AIQT5(2D) retains 6 plans as compared ta2rnPK.

Another point to note in Table 4.6 is that we now see LiteSEEBasionally permitting

slightly greater reduction than SEER, due to its relaxedttaimg in allowing replacements.

Reduction Quality with Tuned-Index Configuration

The reduction quality results for thEuned IndeXTl) configuration which implements the
recommendations of the index tuning advisor shipped withGOm is shown in Table 4.7.

The parameters of the tuning advisor were set to their defalues, and the TPC-H bench-
mark queries (generated with the QGen utility) formed thputrworkload. For this setup, the

advisor recommended 20 additional indices beyond the défamary Key configuration.
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We see here that the reduction performance is very simildwatioobtained with the PK and
Al configurations, testifying to SEER’s consistent behawwer a wide variety of database

environments.

4.2.4 Error-resistance and Safety

Having established the retention of diagram reductionityiae now move on to assessing
the extent to which resistance to selectivity errors is jghed through SEER reduction. We

begin with defining a metric that quantitatively capturds #ffect:

Error Resistance Metric. Given an estimated query locatignand an actual locatiogq,, the
Selectivity Error Resistance FactqiSERF) of a replacement plafR,. w.r.t. the optimal plan

P,. is defined as,
Cre(Qa) - Coa(Qa)
(]- + A)Coe(qa) - Coa(qa)

Intuitively, SERF captures the fraction of the performanee detween?,. and P,, that is

SERF (e, q.) =1 —

closed byP,.. In principle, SERF values can range oyerc, 1], with the following interpre-
tations: SERF in the range,, 1] indicates that the replacement is beneficial, with valuesecl
to 1 implying “immunity” to the selectivity error. For SERFthe range0, )], the replacement
is indifferent in that it neither helps nor hurts, while SER#ues below) highlight a harmful
replacement that materially worsens the performance.

The above formula applies to a specific instance of replanéerie capture the net impact

of reduction on improving the resistance inamtire plan diagramwe compute the following

quev'ep(P) aneexooe(P) SERF(qe7 qa)

AvgSERF =
querep(P) aneexooe(P) 1

whererep(P) is the set of points in the plan diagrd?that were replaced during the reduction
process, andzxo,.(P) is the set of points lying in the exo-optimal region definethwespect
to P,., the optimizer's plan choice faf.. The normalization is with respect to the number
of possible selectivity errors in the diagram. (To ensuremrggful AvgSERF values from a

robustness perspective, we exclude the uninterestingagosrwherein both,. andc,. have
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extremely low absolute values, or are both withithreshold of,,.)

Note that in the above formulation, we assume for simplitiigt the actual locatioq, is
equally likely to be anywhere i®,.’'s exo-optimal space, that is, that the errors are uniformly
distributed over this space. However, our conceptual fremnleis also applicable to the more

generic case where the error locations have an associatbdlplity distribution.

Resistance Results-or CostGreedy, SEER and LiteSEER, we show in Table 4.8, th8 BR¥-,
as defined above, as well as MInSERF and MaxSERF, the minimumagiinum values of
SERF over all replacement instances, for the various quergleges. We first see here that for
all the algorithms, plan diagram reduction is capable, stbe board, of providing complete
immunity (MaxSERF tending to 1) to selectivity errors for iwidual replacement instances.
Secondly, and more importantly, the AvgSERF is also quitestsuttial for SEER. For exam-
ple, in DSQT18, on average, more than three-quarters oftfenpnance gap due to selectivity
errors is bridged by the SEER reduction process.

With CostGreedy, on the other hand, the AvgSERF is compahatisegy poor, and oc-
casionally even negative! The important point to note heriat these low averages are an
artifact arising out of a small fraction of points (around2@ points occuring with probabil-
ity of around 0.1) whose performance is grossly adverségcedd by plan replacement. That
is, plan reduction does help in the vast majority of case#iautfew very bad apples”, reflected
by the hugely negative MInSERF values (which sometimes ewemmto the thousands), ruin
the overall performance statistics. More pertinentlystheesults serve to quantitatively and
vividly substantiate the need for safe replacement, thevatain underlying our design of the
SEER algorithm.

Finally, turning our attention to LiteSEER, we see that it®eresistance profile is very
similar to that of SEER — in fact, the AvgSERF and MaxSERF nusbeg identical for most
templates. Further, although like CostGreedy it does natagniee safety, as testified to by the
negative values in the MInSERF column, note that (a) the tateplhaving negative values
are relatively rare, (b) even in these cases, unsafe repkas occur only for about 1% of the
points (with probability less than 0.01), and (c) most impotly, their magnitudes are small

in comparison (the maximum is -10 for AIQT5(2D)).
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Query CG SEER LiteSEER
Template MINSERF | AvgSERF | MaxSERF || MinSERF | AvgSERF | MaxSERF || MIinSERF | AvgSERF | MaxSERF
QT2 (2D) -58.6 0.2 1 0 0.38 0.98 0 0.38 0.98
QT5 (2D) -15.6 0.5 1 0.14 0.51 0.99 0.14 0.51 0.99
QT8 (2D) 2.9 0.82 1 0.3 0.93 1 0.3 0.93 1
QT9 (2D) -46.3 0.37 1 0 0.77 1 0 0.77 1
QT10 (2D) -23.8 0.09 1 0 0.35 1 0 0.35 1
QT16 (2D) -132.5 0.03 0.99 0.04 0.33 0.96 0.04 0.33 0.96
QT5 (3D) -15.4 0.6 1 0.03 0.38 1 0.03 0.38 1
QT8 (3D) -177.7 -0.5 1 0 0.63 1 0 0.63 1
QT10 (3D) -130.7 -2 1 0 0.45 1 0 0.45 1
AIQT2 (2D) -202 -1.1 0.99 0 0.8 0.99 0 0.8 0.99
AlQT5 (2D) -1336 3.1 1 0 0.58 1 -10 0.54 1
AIQT8 (2D) -62.4 0.35 1 0 0.54 1 0 0.54 1
AIQT9 (2D) -9486 -3.1 1 0 0.62 1 -5 0.66 1
AIQT10 (2D) -20.2 0.24 1 0 0.25 0.98 0 0.25 0.98
AIQT16 (2D) -76 0.07 1 0 0.75 1 0 0.75 1
AIQT5 (3D) -2151 0.24 1 0.05 0.62 1 -2 0.66 1
AIQT8 (3D) -103.7 0.43 1 0 0.44 1 -6 0.44 1
AIQT10 (3D) -4680 -4.4 1 0 0.33 1 0 0.33 1
TIQT2 (2D) -161.3 -0.12 0.99 0.01 0.32 0.94 0.01 0.32 0.94
TIQT8 (2D) -550.1 -3.4 1 0 0.54 1 0 0.54 1
TIQT9 (2D) -87.5 0.01 1 0 0.44 1 0 0.44 1
TIQT10 (2D) -671.4 -15.7 1 0 0.27 0.99 0 0.27 0.99
TIQT16 (2D) -14.4 0.11 0.99 0.02 0.39 0.97 0.02 0.39 0.97
TIQT5 (3D) -166.3 -1.42 1 0 0.71 1 0 0.71 1
TIQT8 (3D) -4188.5 -4.23 1 0 0.61 1 -1.3 0.61 1
TIQT10 (3D) -574 -4.97 1 0 0.31 1 -8.9 0.31 1
DSQT12 (2D) -4 0.61 1 0.07 0.44 1 0.06 0.44 1
DSQT18 (2D) -194.75 -2 1 0.07 0.81 1 0.07 0.81 1
DSQT19 (2D) -86 0.17 1 0 0.63 1 0 0.63 1
DSQT12 (3D) -142 -0.32 1 0.06 0.53 1 0.06 0.53 1
DSQT18 (3D) -3104 -0.14 1 0 0.85 1 0 0.85 1
DSQT19 (3D) -106.6 0.33 1 0.02 0.82 1 0.02 0.82 1
Table 4.8: Characterization of Error-Resistance through Btexfu

Safety Example

In the example of Figure 3.2, plan diagram reduction withexlicitly checking for safety led

to situations whereirP,. performed much worse thah,. atq,. The effectiveness of SEER

in avoiding such unsafe replacements is visually highéghih the sequence of pictures in

Figure 4.3, corresponding to the same example.

Assuming that the actual location of a query at run-tigés uniformly distributed over

S, Figure 4.3(a) shows thexpected costor each query point., when executed with its

optimizer-selected plak,.. Note that the peaks in the picture correspond to situatidrese

the plan-choice is highly sensitive to selectivity errors.

Then, Figure 4.3(b) shows the expected cost of each quenyavhen executed witl®,.

from the reduced plan diagram obtained using CostGreedye that virtually all the peaks

in Figure 4.3(a) are substantively eliminated through #m@acement choices in the reduced
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(a) Expected Costs (Optimizer) (b) Expected Costs (CG) (c) Expected Costs (SEER)

Figure 4.3: Safe Error-resistance with SEER

plan diagram — for example, the dark-blue peak at the Igfietrner of Figure 4.3(a) is largely
removed. However, on the down side, some plans suffer oysrreplacements — for e.g.,
the earth-brown colored plan in the left-bottom corner gfure 4.3(a) is now replaced by the
fluorescent-green colored plan in Figure 4.3(b), whose @eplecost is orders of magnitude
greater. That is, CostGreedy in the process of eliminatingtiag peaks, may introduagew
peaks

Finally, in Figure 4.3(c), we show the performance of SEE&®iction. We see here that
(a) it removes all the peaks of Figure 4.3(a) like CostGreadg, (b) it does not introduce any
new peaks courtesy its safety criterion. In a nutshell, favides virtually all the good, and

doesn't introduce any harm”.

4.2.5 Efficiency of Reduction Process

We now move on to profiling the time taken to complete the réda@rocess by SEER as
compared to CostGreedy. These results are shown in Tablerdo@if query template suite.
Focussing initially on the 2D query templates, we see th&fS&performance is quite ac-
ceptable in terms of absolute times (a few minutes per reahj¢ctespecially in comparison to
the original plan diagramroduction time However, it is much slower relative to CostGreedy,

which offers sub-second response times. This might segmnising in light of our analysis in
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Query CG CG-FPC | SEER | LiteSEER Query CG CG-FPC | SEER | LiteSEER
Template (ms) (min) (min) (sec) Template (ms) (min) (min) (sec)
QT2 (2D) 15 53.1 3.6 14.2 AIQT2 (2D) 17 77.4 5.0 20.6
QT5 (2D) 16 45.0 1.0 12 AIQTS5 (2D) 12 112.5 3.7 30.0
QT8 (2D) 17 108 9.6 28.8 AIQTS8 (2D) 11 108.0 6.9 28.8
QT9 (2D) 13 122.4 10.6 32.6 AIQT9 (2D) 18 107.9 9.1 31.4
QT10 (2D) 15 38.7 3.0 10.3 AIQT10(2D) || 12 32.4 2.0 8.6
QT16 (2D) 15 27.9 1.3 7.5 AlQT16 (2D) 12 30.6 2.0 8.2
QT5 (3D) 25 67 19.0 32 AIQT5 (3D) 26 138 37.7 66.2
QT8 (3D) 21 190 65.0 91 AIQT8 (3D) 19 167 47.3 80.2
QT10 (3D) 17 74 16.5 4.5 AIQT10 (3D) 24 76 14.9 36.5

DSQT12 (2D) 14 21.6 2.6 5.8 TIQT2 (2D) 18 45.9 2.9 12.2
DSQT18 (2D) || 13 101.7 9.4 27.1 TIQT8 (2D) 12 96.3 4.9 25.7
DSQT19 (2D) 14 48.6 6.4 13.0 TIQT9 (2D) 16 90.0 7.2 24.0
DSQT12 (3D) 20 32.0 7.4 15.4 TIQT10 (2D) 14 44.1 2.6 11.8
DSQT18 (3D) 25 221.0 89.1 106.1 TIQT16 (2D) 12 31.5 2.0 8.4
DSQT19 (3D) || 23 97.0 35.8 46.6 TIQT5 (3D) 28 83 20.8 39.8

TIQT8 (3D) 24 180 67.8 86.4

TIQT10(3D) || 19 78 15.9 37.0

Table 4.9: Efficiency of Reduction Process

Section 3.3 showing that SEER is @fn/m+n?) algorithm, whereas CostGreedy(i$nm).
The reason for the higher running time of SEER is that theclasst-bounding computation in
CostGreedy is much faster than the foreign-plan-costingatpeprovided by the commercial
optimizers. Our discussions with the development team aCOm have indicated that this is
not due to the costing itself, but is largely an artifact dfisg up the contexts for the costing,
including verifying the validity of the plan with respect tioe query. Therefore, it is possible
that future better implementations of the FPC feature maygBEER’s running time closer
to CostGreedy.

When we consider the 3D query templates, however, the rurtivmes of SEER can be
quite large. It is here that LiteSEER shows its worth sinseuining times are only a few
minutes or even less, across the board for all the query tgegl Taken in conjunction with
its good safety performance (Section 4.2.4), it suggesisliteSEER offers an extremely
attractive compromise between the speed of CostGreedy andlthstness of SEER, making
it a viable first-cut reduction technique in real-world aiftions.

Finally, to normalize the effect of the different costingalementations, the running time of
the CG-FPC algorithm is also shown in Table 4.9 —we see her€thd=PC takes in the order
of several tens or few hundreds of minutecomplete the reduction process. In comparison,
SEER's selective usage of the FPC operator, courtesy Thet2and the two-stage checking

process, does succeed in substantially bringing down tegheads.
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4.2.6 Performance of PartialSeer

Sample results obtained with the PartialSeer algorithmMa¥A = 0.8 are shown in Ta-

ble 4.10, 4.11 and 4.12, for the various metrics of reduafjoality, error resistance and effi-

ciency of the reduction.

Query Original
Template No. of CG | CG-FPC SEER PartialSeer
plans (MSA=1) | (MSA=0.8)
QT4(2D) 16 7 3 3 2
QT5(2D) 51 10 2 2 1
QT16(2D) 32 11 3 3 3
DSQT18(2D) 114 13 2 2 2

Table 4.10: Plan Diagram Reduction Quality= 20%)

Query MINSERF | AvgSERF | MaxSERF Query No of FPC | Time (min)
QT4(2D) -0.28 0.36 0.998 QT4(2D) 2780 2.8
QT5(2D) -15.6 0.37 1 QT5(2D) 8738 8.7

QT16(2D) -0.25 0.37 0.99 QT16(2D) 5046 5.0
DSQT18(2D) -0.26 0.83 1 DSQT18(2D) 27284 27.3

Table 4.11: Error-Resistance of PartialSedrable 4.12: Efficiency of PartialSeeh (=
(\ = 20%, MSA = 0.8) 20%, MSA = 0.8)

4.2.7 Uniform Query Distribution

The results shown thus far were produced with an exponedisaiibution of query points
across the selectivity space. We present here the corrésoresults for plan diagrams gen-
erated with auniform distribution of query points. Tables 4.13 and 4.14 show #tiction
quality over our suite of query templates on the TPC-H and TECdBtabases, respectively,
operating with a PrimaryKey physical configuration. Thefpenance on the Allindex and
Tunedindex configurations are detailed in Tables 4.15 &t despectively. Finally, the error-
resistance quality and the reduction efficiency are showiables 4.17 and 4.18, respectively.

These results are behaviorally similar to those obtaingkl thie exponential distribution.
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Query Original CG | CG-FPC | SEER | LiteSEER

Template No. of plans

QT2 (2D) 25 5 3 3 3
QT5 (2D) 10 3 1 1 1
QT8 (2D) 31 4 2 2 2
QT9 (2D) 21 2 1 1 1
QT10 (2D) 13 3 2 2 2
QT16 (2D) 26 9 2 3 3
QT5 (3D) 18 1 1 1 1
QT8 (3D) 18 6 3 3 3
QT10 (3D) 18 4 2 2 2

Table 4.13: Plan Diagram Reduction Quality (TPC-H, Uniformarptiiagrams)

Query Original CG | CG-FPC | SEER | LiteSEER
Template No. of plans
DSQT12 (2D) 7 4 2 2 2
DSQT18 (2D) 21 3 1 1 1
DSQT19 (2D) 28 5 2 2 2
DSQT12 (2D) 8 2 1 1 1
DSQT18 (3D) 36 2 1 1 1
DSQT19 (2D) 64 2 1 1 1

Table 4.14: Plan Diagram Reduction Quality (TPC-DS, Unifotampliagrams)

Query Original CG | CG-FPC | SEER | LiteSEER
Template No. of plans
AlQT2 (2D) 30 8 3 3 3
AIQTS5 (2D) 25 6 2 2 2
AIQTS8 (2D) 25 3 2 3 3
AIQT9 (2D) 25 5 1 1 1
AIQT10 (2D) 16 4 3 3 3
AlQT16 (2D) 22 14 3 4 4
AIQTS5 (3D) 37 4 2 2 2
AIQTS (3D) 39 5 2 3 3
AlQT10 (3D) 50 9 4 3 3

Table 4.15: Plan Diagram Reduction Quality (TPCH-AI, Unifgpfan diagrams)

Query Original CG | CG-FPC | SEER | LiteSEER
Template No. of plans
TIQT2 (2D) 25 5 3 4 4
TIQT8 (2D) 29 2 1 1 1
TIQT9 (2D) 49 12 3 5 3
TIQT10 (2D) 8 3 2 2 2
TIQT16 (2D) 20 10 3 3 3
TIQT5 (3D) 30 5 3 3 3
TIQT8 (3D) 35 6 2 2 2
TIQT10 (3D) 16 6 2 2 2

Table 4.16: Plan Diagram Reduction Quality (TPCH-TI, Unifgslan diagrams)
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Query CG SEER LiteSEER
Template MINSERF | AvgSERF | MaxSERF || MinSERF | AvgSERF | MaxSERF || MInSERF | AvgSERF | MaxSERF
QT2 (2D) 0 0.76 0.98 0.02 0.62 0.98 0.02 0.62 0.98
QT5 (2D) 0.99 0.99 0.99 0.96 0.98 1 0.96 0.98 1
QT8 (2D) -0.47 0.73 0.99 0.27 0.44 0.99 0.27 0.44 0.99
QT9 (2D) -55.3 -0.56 1 0.86 0.99 1 0.86 0.99 1
QT10 (2D) -0.81 0.4 0.99 0.14 0.34 0.60 0.14 0.34 0.60
QT16 (2D) -0.33 0.49 0.97 0.04 0.46 0.92 0.04 0.46 0.92
QT5 (3D) 0 0.01 0.02 0.78 0.95 1 0.78 0.95 1
QT8 (3D) -22.6 0.41 1 0.15 0.36 0.99 0.15 0.36 0.99
QT10 (3D) -5.5 0.43 1 0.19 0.69 1 0.19 0.69 1
AlIQT2 (2D) -3.95 0.16 0.97 0.15 0.64 0.94 0.15 0.64 0.94
AIQT5 (2D) 0.17 0.38 1 0.28 0.51 1 0.28 0.51 1
AIQT8 (2D) -0.27 0.48 0.99 0.19 0.46 0.99 0.19 0.46 0.99
AIQT9 (2D) -1999.8 -2.1 1 0.96 0.99 1 0.96 0.99 1
AIQT10 (2D) -5.7 0.32 1 0.16 0.33 0.68 0.16 0.33 0.68
AlQT16 (2D) -0.39 0.58 0.96 0 0.58 0.98 0 0.58 0.98
AIQT5 (3D) 0.3 0.6 1 0.05 0.9 1 0.05 0.9 1
AIQT8 (3D) -9.25 0.32 0.99 0.03 0.75 0.99 0.03 0.75 0.99
AIQT10 (3D) -24.6 0.44 1 0.08 0.5 1 0.08 0.5 1
TIQT2 (2D) -4.23 0.52 0.98 0.01 0.49 0.95 0.01 0.49 0.95
TIQT8 (2D) -26.9 0.48 0.92 0.6 0.93 0.99 0.6 0.93 0.99
TIQT9 (2D) -375 0.21 0.99 0 0.32 0.99 -0.27 0.36 0.99
TIQT10 (2D) 0.17 0.18 0.53 0.17 0.32 0.59 0.17 0.32 0.59
TIQT16 (2D) -4.2 0.52 0.96 0.07 0.56 0.98 0.07 0.56 0.98
TIQT5 (3D) -96.9 0.43 0.99 0.22 0.89 0.99 0.22 0.89 0.99
TIQT8 (3D) -9.47 0.22 0.99 0.04 0.67 0.99 0.04 0.67 0.99
TIQT10 (3D) -2.96 0.52 0.99 0.38 0.9 0.99 0.38 0.9 0.99
DSQT12 (2D) -1 0.16 1 0.25 0.32 0.54 0.25 0.32 0.54
DSQT18 (2D) -12.2 0.38 1 0.59 0.99 1 0.59 0.99 1
DSQT19 (2D) -11.8 0.08 1 0.18 0.47 1 0.18 0.47 1
DSQT12 (3D) 1 1 1 1 1 1 1 1 1
DSQT18 (3D) 0.99 0.99 0.99 0.72 0.86 1 0.72 0.86 1
DSQT19 (3D) -0.53 0.74 1 0.77 0.87 1 0.77 0.87 1

Table 4.17: Characterization of Error-Resistance througtugtezh (Uniform plan diagrams)

Query CG CG-FPC | SEER | LiteSEER Query CG CG-FPC | SEER | LiteSEER
Template (ms) (min) (min) (sec) Template (ms) (min) (min) (sec)
QT2 (2D) 15 21.6 2.2 5.8 AIQT2 (2D) 16 26.1 2.8 7.0
QT5 (2D) 14 8.1 0.7 2.2 AIQTS5 (2D) 16 21.6 0.7 5.8
QT8 (2D) 14 27.0 1.9 7.2 AIQT8 (2D) 14 21.5 2.1 5.8
QT9 (2D) 13 18.0 2.1 4.8 AIQT9 (2D) 15 21.6 1.7 5.7
QT10 (2D) 14 10.8 0.7 2.9 AIQT10 (2D) || 13 135 0.7 3.6
QT16 (2D) 13 225 1.4 6.0 AlQT16 (2D) 13 18.9 0.4 5.0
QT5 (3D) 25 17.0 51 8.2 AIQT5 (3D) 23 36.0 12.0 17.3
QT8 (3D) 21 29.0 10.7 13.9 AIQT8 (3D) 20 38.0 14.0 18.2
QT10 (3D) 22 23.0 7.8 11.0 AIQT10 (3D) 20 49.0 14.0 23.5

DSQT12 (2D) 19 5.4 0.07 1.4 TIQT2 (2D) 16 21.6 2.3 5.8
DSQT18 (2D) || 17 18.0 1.2 48 TIQT8 (2D) 16 25.2 1.1 6.7
DSQT19 (2D) 14 24.3 1.7 6.5 TIQT9 (2D) 16 43.2 2.2 115
DSQT12 (3D) 20 7.0 1.2 3.4 TIQT10 (2D) 16 6.3 0.43 1.7
DSQT18 (3D) || 30 35.0 7.2 16.8 TIQT16 (2D) 15 17.1 0.52 4.6
DSQT19 (3D) 26 63.0 12.7 30.2 TIQTS (3D) 16 29 8.7 13.9

TIQT8 (3D) 16 34 11 16.3

TIQT10 (3D) 16 15 2.2 7.2

Table 4.18: Efficiency of Reduction Process (Uniform plargcians)




Chapter 5

Conclusions

We have investigated in this thesis, methods for the effigieneration of plan diagrams, a key
resource in the analysis and redesign of modern databaseaptanizers. For optimizers that
supportplan rank listandforeign plan costingeatures, we proved that the SIGHT algorithm
produced zero errors and was able to do so incurring oveshefdéss than 10%. However,
it performs poorly for query templates that have the sedwoest-plan being very close to the
optimal choice over an extended region. We then demondtthtd the ISIGHT algorithm,
which traded error for performance, was able to satisfy 0% &rror bound with less than 5%
optimizations. It was also able to adequately handle thblpno templates of SIGHT.

As a second complementary problem, we investigated whekieepptimizer's choices
could be replaced by alternative plans from the parameptonal set over the selectivity
space that are more resilient to selectivity estimatioorsrmwhich are well-documented causes
of poor plan choices by database optimizers. In partictiter,recently proposed notion of
anorexic reduction of plan diagrams was used to provideaogphents that had large endo-
optimal regions, making them error-resistant by definitrothese areas. Further, the empirical
evidence suggested that error-resistance was providedievwbe exo-optimal regions in the
vast majority of the cases. However, there were occasidtet®ns where the replacement
could turn out to be significantly worse. To prevent this, weealoped a simple but accurate
model of plan cost behavior. To our knowledge, this modéiesfirst such characterization for

industrial-strength query optimizers. Using this forntida, we devised efficient checks that
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operate only on the boundaries of the space to decide safdiye ientire space. The checks
are implemented utilizing foreign-plan costing featurevpded by the commercial database
engines. A particularly attractive feature of our approadhat the safety guarantee applies on
anindividual query basisAs a bonus, the foreign-plan costing, in addition to prowidsafety,
was leveraged to further improve the quality and compleaftyhe plan diagram reduction
process.

The above techniques were integrated into the SEER algoatid the intended benefits
validated on a representative range of TPC-H and TPC-DS-lzpssg templates on leading
commercial optimizers. We observed that typically at |east-third of the performance gap
due to selectivity errors was bridged by the SEER reductroogss, while in some instances,
virtually complete immunityagainst selectivity errors was obtained. We also presdrited
SEER, a light-weight version of SEER that very cheaply presid high degree of safety by
restricting its attention to only the corners of the selatstispace.

In summary, we present SIGHT to efficiently generate highetision and high-resolution
plan diagrams, with typical overheads beingoager of magnitude lowethan the brute-force
approach. We then provide SEER, an effective and safe costpiiemechanism for substan-
tially increasing resistance to selectivity errors on badations, without requiring modifica-
tions to the optimizer or specialized knowledge of the woakl/system.

Currently, SEER operates as a post-processor after produatithe plan diagram. In
future, we intend to investigate how optimizers could intdize these ideas and be redesigned
to directly produce safe reduced plan diagrams. Also, wil@ssumed a uniform distribution
of selectivity estimation errors, it would be interestingektend our results to incorporate user-
defined probability distributions.

We hope that our results will encourage all database veridangorporate the plan-rank-
list and foreign-plan-costing features, both of which wenigcal to the excellent performance
of SIGHT and SEER, in their optimizer APIs.



Appendix A

Plan Diagram Reduction Variants

A.1 Quality of Plan Diagram Reduction

The CostGreedy algorithm given in [11] computes the redutadgiagram with: plans, such
that the cost of every point in the reduced plan diagram ikiwik of its original cost. It is
possible that there might exist a reduced plan diagram witther set of: plans, where the
maximum cost increase is much lower thanWe would ideally like to obtain the reduced
plan diagram with minimum number of plans that also miniraizee maximum cost-increase
of the query points in the reduced plan diagram.

To solve this problem, we provide a 2-step approximatiomtigm ReduceGreedy, that

provides a bounded performance guarantee.

A.1.1 The ReduceGreedy Algorithm

The ReduceGreedy algorithm is given in Figure A.1. In the §itsp of this algorithm we use
CostGreedy to obtain a reduced plan diagram wighlans. We then use the ThresholdGreedy
algorithm [11] with a budget of plans to obtain a reduced plan diagram which minimizes the
maximum cost-increase over all query points in the planrdiag

We know that the the ThresholdGreedy algorithm guarantesshe solution is atlea8t63
times the optimal solution. Also, it is possible that theusioih obtained through CostGreedy
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ReduceGreedy (Plan DiagranP, Threshold X)
1. LetR; = CostGreedyP, \).
2. Letk = |Ry|.
3. LetRy = ThresholdGreedyP, k).
4. if (Costincreas@r,) > CostincreasgR;)
return R,
else

return Ry

5. End Algorithm ReduceGreedy.

Figure A.1: The ReduceGreedy Algorithm

performs better than the one obtained through Thresho&t{yre Hence, a sanity check is

performed in in step 4 to return the best solution.

A.1.2 Results

Tables A.1, A.2 and A.3 show the quality of plan diagram reiducof ReduceGreedy when
compared to CostGreedy for three commercial optimizerspteeinby OptA, OptB and OptC
respectively. It can be seen that in many situations, usindu&sGreedy helps us obtain a

reduced plan diagram with better quality.

Query | No. of | Reduced Plans Maximum A\ Reached
Template | Plans (A =20%) CostGreedy ReduceGreedy
QT2 14 7 5.4% 5.4%
QT5 11 2 17.2% 17.2%
QT8 36 3 18% 16%
QT9 39 6 19.4% 19.4%
QT10 18 4 11% 11%

Table A.1: Performance of ReduceGreedy (OptA)
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Query | No. of | Reduced Plans Maximum A\ Reached
Template | Plans (A =20%) CostGreedy ReduceGreedy
QT2 20 8 19.8% 19.8%
QT5 12 4 4.7% 4.7%
QT8 16 2 18.1% 18.1%
QT9 18 3 19.5% 19.5%
QT10 7 3 6% 6%

Table A.2: Performance of ReduceGreedy (OptB)

Query | No. of | Reduced Plans Maximum A\ Reached
Template | Plans (A =20%) CostGreedy ReduceGreedy
QT2 44 8 18.4% 18.4%
QT5 23 5 16.4% 11.6%
QT8 50 4 16% 16%
QT9 38 3 19.4% 12.6%
QT10 17 3 13.8% 13.8%

Table A.3: Performance of ReduceGreedy (OptC)
A.2 Batch Reduction

The plan diagram reduction problem defined in [11] requitesdost increase of all query
points in the reduced plan diagram to be less than this section we will consider a variant of
this problem where we require the average cost-increasétbkaguery points in the reduced

plan diagram to be below the giventhreshold. This problem is formally defined as follows:

Batch Reduction Problem Given an input plan diagram, and a maximum-cost-increase

threshold\ (A > 0), find a reduced plan diagraRwith minimum cardinalitysuch that,

qu R Cre (Q)

> ger Coe(4) <@+d

wherec,. andc,. are the costs of the plarii3. and P,. assigned to the query poigin R and

P respectively.
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A.2.1 The BatchReduce algorithm

It can be easily seen that the batch reduction problem is BRLHHence, we provide the
BatchReduce algorithm, that uses a greedy heuristic to doly@toblem.

In this algorithm, we start with the input plan diagram aneach step, we remove a plan
P, such that

1. The total cost increase is withinthreshold after the removal @1, and
2. Removal ofP, has the minimum total cost increase over all plans that caereved.

The algorithm terminates when no plan can be removed frompltrediagram. The com-

plete algorithm is given in Figure A.2

BatchReduce (Plan DiagramP, Threshold \)
1. setR=P
2. setN =
3. For each pla®; € R

(a) Calculate\; = cost increase dR due to the removal oP;
(b) if \; < X
N = \;, plan = P,

4.0f N <\

(&) removeplan from R
(b) goto Step 2

5. return R

6. End Algorithm BatchReduce.

Figure A.2: The BatchReduce Algorithm

This algorithm does not impose any restrictions on the cwsease of an individual query
point. But in some situations, we would like to maintain anempound), on the increase in
cost of every point. This can be easily achieved by a slighdifioation to the above algorithm,
where in addition to checking the overall cost increase, se eheck for the maximum cost

increase of any point, when a plan is removed. Another erdraant that can be made is
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to use the reduced plan diagram obtained through CostGreaedgad ofP in Step 1 of the
algorithm. The advantage of using CostGreedy reductioni§irsto-fold, (a) it ensures that
the reduced plan diagram is the same as the one obtained fretG@edy when, = A, and
(b) the plans in the reduced plan diagram are likely to be sbbunce the more volatile plans

are usually removed by CostGreedy.

A.2.2 Results

In our experiments, we use the modified BatchReduce algorithmeh uses the reduced plan
diagram obtained through CostGreedy in step 1 of the algorgiven in Figure A.2. Tables
A.4, A5 and A.6 show the reduction results for OptA, OptB @mutC respectively, obtained
using a representative cost-increase threshold ef20%. The reduction was performed for
Ay = 00, Where there is no upper bound on the cost-increase of avidndi query point, and

for \, = 200%, which is an acceptable increase in cost for any given queint.p

Query | No. of Reduced Plans Query | No. of Reduced Plans
Template | Plans | (A\; = 00) | (A\; =200%) || Template | Plans | (A\; = o0) | (A, = 200%)
QT2 14 3 5 QT2 20 1 2
QT5 11 1 2 QT5 12 1 2
QT8 36 1 1 QT8 16 1 1
QT9 39 1 1 QT9 18 1 1
QT10 18 1 2 QT10 7 1 2
Table A.4: Performance of BatchReducdable A.5: Performance of BatchReduce
(OptA) (OptB)
Query | No. of Reduced Plans
Template | Plans || (A, = 00) | (Ay = 200%)
QT2 44 2 3
QT5 23 2 2
QT8 50 1 1
QT9 38 1 1
QT10 17 1 2

Table A.6: Performance of BatchReduce (OptC)
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