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Abstract

Estimates of predicate selectivities by database query optimizers often differ significantly from

those actually encountered during query execution, leading to poor plan choices and inflated

response times. Recently, a novel idea, SEER [1], of mitigating this problem by replacing

selectivity error-sensitive plan choices with alternative plans that provide robust performance

was proposed. The idea was based on the recent observation [10] that even the complex and

dense “plan diagrams” associated with industrial strengthoptimizers can be efficiently reduced

to “anorexic” equivalents featuring only a few plans, without degrading the query processing

quality. The SEER algorithm proposed in [1] has a worst case running time complexity of

O(n.rd), wheren is the number of plans that feature in the original plan diagram, d is the

dimensionality of the plan diagram andr(>> 4) is the resolution of the plan diagram. Thus,

though it works well for 2D plan diagrams, for higher dimensional diagrams, the computa-

tional overheads incurred by SEER are impractical. In this report, we proposeCC-SEER,

a resolution independent algorithm, with a worst case running time complexity ofO(n.4d).

Extensive experimentimation with a representative set of benchmark query templates on com-

mercial optimizers indicates that CC-SEER is an order of magnitude faster than SEER while

being competitive on reduction quality and robustness. TheCC-SEER algorithm has been

implemented in the recently released version 2.0 of Picassooptimizer visualization tool.

A related issue is the universality of the techniques proposed in [1] with regard to optimizer

cost models. We investigate this issue and show that SEER/CC-SEER is applicable only to a

special breed of optimizers which obey the cost model definedin [1], i.e. it is not feasible

to extend these techniques to optimizers with more complex cost models. To address this is-

sue, we proposeWC-SEER, a cost model scalable technique, based on the concept ofmatrix

iii



iv

condition number. The worst case running time complexity of WC-SEER isO(n.2d). Experi-

mental results show that WC-SEER outplays the previous techniques on all grounds (reduction

quality, robustness and computational efficiency).



Contents

Acknowledgements i

Publications ii

Abstract iii

1 Introduction 1
1.1 Robust Plans. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Anorexic Reduction of Plan Diagrams. . . . . . . . . . . . . . . . .. . . . . 2
1.3 Contributions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Organization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Problem Framework 7
2.1 Plan and Reduced Plan Diagrams . . . . . . . . . . . . . . . . . . . . . .. . 7

2.1.1 Plan Diagram Reduction Problem . . . . . . . . . . . . . . . . . . .7
2.1.2 Selectivity Estimation Errors . . . . . . . . . . . . . . . . . . .. . . 8

2.2 Robust Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.1 Robust Reduction Problem. . . . . . . . . . . . . . . . . . . . . . . 10

3 Ensuring Robust Reduction 11
3.1 Modelling Plan Cost Functions . . . . . . . . . . . . . . . . . . . . . .. . . 12
3.2 Replacement Safety Conditions . . . . . . . . . . . . . . . . . . . . .. . . . 13

4 The CC-SEER Algorithm 15
4.1 Safety Checking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.1.1 Extension of CC-SEER to Higher Dimensions . . . . . . . . . .. . 17
4.1.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5 Richer Cost Models 20
5.1 A Motivating Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5.1.1 Characterizing Cost Models . . . . . . . . . . . . . . . . . . . . . .24
5.2 WC-SEER: A Cost Model Scalable Technique . . . . . . . . . . . . .. . . . 24

5.2.1 Condition Number of a Matrix . . . . . . . . . . . . . . . . . . . . . 24
5.2.2 Efficiently Determining the Plan Cost Functions . . . . .. . . . . . 25
5.2.3 Minimizing Condition Number . . . . . . . . . . . . . . . . . . . . 28

v



CONTENTS vi

5.2.4 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

6 Experimental Results 31
6.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31

6.1.1 Physical Design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
6.1.2 Query Location Distribution. . . . . . . . . . . . . . . . . . . . .. . 32
6.1.3 Error Resistance Metrics . . . . . . . . . . . . . . . . . . . . . . . .33
6.1.4 Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . 35

7 Related Work 36

8 Conclusions 38

Bibliography 39



List of Tables

6.1 Plan Stability Performance . . . . . . . . . . . . . . . . . . . . . . . .. . . 32
6.2 Running Time (Sec) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

vii



List of Figures

1.1 Example Query Template: QT8 . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Sample Plan Diagram and Reduced Plan Diagram (QT8). . . . . . . . . 4

4.1 2D Grid of Selectivity Points . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2 The CC-SEER Reduction Algorithm . . . . . . . . . . . . . . . . . . . . . 17
4.3 The Generic CC-SEER Reduction Algorithm . . . . . . . . . . . . . . . . 18
4.4 The CC-SEER Safety Checking Procedure . . . . . . . . . . . . . . . . . 19

5.1 Safety Function- First Derivative Behavior . . . . . . . . . . . . . . . . . 21
5.2 Safety Function Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.3 The WC-SEER Reduction Algorithm . . . . . . . . . . . . . . . . . . . . 29

viii



Chapter 1

Introduction

The query execution plan choices made by database engines often turn out to be poor in prac-

tice because the optimizer’s selectivity estimates are significantly in error with respect to the

actual values encountered during query execution. Such errors, which can even be in orders of

magnitude in real database environments [18], arise due to avariety of reasons [23], including

outdated statistics, attribute-value independence assumptions and coarse summaries.

1.1 Robust Plans.

To address this problem, one obvious approach is to improve the quality of the statistical meta-

data, for which several techniques have been presented in the literature ranging from improved

summary structures [2] to feedback-based adjustments [23]to on-the-fly reoptimization of

queries [15, 18, 4]. A complementary and conceptually different approach, which we consider

in this report, is to identifyrobust plansthat are relatively less sensitive to such selectivity

errors. In a nutshell, to “aim for resistance, rather than cure”, by identifying plans that provide

comparatively good performance over large regions of the selectivity space. Such plan choices

are especially important for industrial workloads where global stability is as much a concern

as local optimality [17].

Over the last decade, a variety of strategies have been proposed to identify robust plans,

1



Chapter 1. Introduction 2

including the Least Expected Cost [6, 7], Robust Cardinality Estimation [3] and Rio [4, 5] ap-

proaches. These techniques provide novel and elegant formulations (summarized in Section 7),

but have to contend with the following issues:

1. They areintrusiverequiring, to varying degrees, modifications to the optimizer engine.

2. They requirespecializedinformation about the workload and/or the system which may

not always be easy to obtain or model.

3. Their query capabilities may belimited compared to the original optimizer – e.g., only

SPJ queries with key-based joins were considered in [3, 4]. Further, [4] has been imple-

mented and evaluated on a non-commercial optimizer.

4. Most importantly, as explained in Section 7, none of them provide, on an individual

query basis, quantitativeguaranteeson the quality of their final plan choice relative to

the original (unmodified) optimizer’s selection. That is, they “cater to the crowd, not

individuals”.

1.2 Anorexic Reduction of Plan Diagrams.

Our techniques are based on theanorexic reduction of plan diagrams, a notion that was re-

cently presented and analyzed in [10]. Specifically, a “plandiagram” [21] is a color-coded

pictorial enumeration of the plan choices of the optimizer for a parametrized query template

over the relational selectivity space. That is, it visuallycaptures the POSP geometry. For

example, consider QT8, the parametrized 2D query template shown in Figure 1.2, based on

Query 8 of TPC-H. Selectivity variations on theSUPPLIERandLINEITEM relations are spec-

ified through thes acctbal :varies and l extendedprice :varies predicates, respectively.

The associated plan diagram for QT8 is shown in Figure 1.2(a), produced with the Picasso

optimizer visualization tool [20] on a popular commercial database engine.

As evident from Figure 1.2(a)1, plan diagrams can be extremely complex and dense, with

1The figures in this report should ideally be viewed from a color copy, as the grayscale version may not clearly
register the features.
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select oyear, sum(case when nation = ’BRAZIL’ then volume else 0 end)/ sum(volume)
from (select YEAR(oorderdate) as oyear, l extendedprice * (1 - ldiscount) as volume,

n2.n name as nation

from part, supplier, lineitem, orders, customer,
nation n1, nation n2, region

where ppartkey = lpartkey and ssuppkey = lsuppkey and lorderkey = oorderkey
and ocustkey = ccustkey and cnationkey = n1.nnationkey and n1.nregionkey
= r regionkey and snationkey = n2.nnationkey and rname = ’AMERICA’ and
p type = ’ECONOMY ANODIZED STEEL’ and
s acctbal :variesandl extendedprice :varies

) as all nations

group by oyear
order by oyear

Figure 1.1:Example Query Template: QT8

a large number of plans covering the space – several such instances spanning a representative

set of benchmark-based query templates on industrial-strength optimizers are available at [20].

However, these dense diagrams can typically be “reduced” tomuch simpler pictures featuring

significantly fewer plans,without materially degrading the processing quality of anyindividual

query. For example in Figure 1.2(a), if users are willing to tolerate a minor cost increase (λ) of

at most 10% for any query point in the diagram, relative to itsoriginal cost, the picture could

be reduced to Figure 1.2(b), where only 7 plans remain – that is, most of the original plans have

been “completely swallowed” by their siblings, leading to ahighly reduced plan cardinality.

A detailed study of the plan diagram reduction problem was presented in [10], and it was

shown that a cost increase threshold ofonly 20 percentis usually amply sufficient to bring

down the absolute number of plans in the final reduced pictureto within or around ten. In

short, that complex plan diagrams can be made “anorexic” while retaining acceptable query

processing performance.

Example. We now show an example of how anorexic reduction helps to identify selectivity-

error-resistant plans: In Figure 1.2(a), estimated selectivities of around (14%,1%) lead

to a choice of planP70. However, if the actual selectivities at runtime turn out tobe
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(a) Plan Diagram

(b) Reduced Diagram (Threshold = 10%)

Figure 1.2:Sample Plan Diagram and Reduced Plan Diagram (QT8)
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significantly different, say (50%,40%), executing withP70, whose cost increases steeply

with selectivity, would be disastrous. In contrast, this error would have had no impact

with the reduced plan diagram of Figure 1.2(b), sinceP1, the replacement plan choice

at (14%,1%), remains the preferred plan for a large range of higher values, including

(50%,40%). Quantitatively, at the run-time location, planP1 has a cost of 135, while

P70’s cost of 402 is aboutthree timesmore expensive.

It is easy to see, as in the above example, that the replacement plan will, by definition, be

a robust choice for errors that lie within its optimality region, i.e. its“endo-optimal” region.

This is the advantage, mentioned earlier, of considering replacements only from the POSP set

of plans. The obvious question then is whether the sizes of these regions are typically large

enough to materially improve the system performance.

A second, and even more important question, is: What if the errors are such that the run-

time locations are“exo-optimal” w.r.t. the replacement plan? For example, if the run-time

location happens to be at (80%,90%), which is outside the optimality region ofP1? In this

situation, nothing can be said upfront – the replacement could be much better, similar or much

worse than the original plan. Therefore, ideally speaking,we would like to have a mecha-

nism through which one could assess whether a replacement isglobally safeover the entire

parameter space.

1.3 Contributions.

Following are the contibutions made in this report:

• CC-SEER We address the scalability concerns of the SEER algorithm proposed in [1].

Specifically, we propose CC-SEER, an order of magnitude faster algorithm with a worst

case running time complexity ofO(n.4d) as againstO(n.rd) of SEER, while being com-

parable with regard to reduction quality and robustness. A novel feature of CC-SEER is

that the computational overheads incurred by it are independent of resolution of the plan

diagram.
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• Investigating universality of SEER/CC-SEER The techniques discussed in [1] and

CC-SEER are predicated on compliance of the optimizer with the cost model defined

in [1]. We investigate the universality of these techniquesand show that it is not feasible

to extend them beyond simple cost models. As an implication of this, the problem of

robust plan identification resurfaces for optimizers with complex cost models containing

higher degree polynomials.

• WC-SEER We propose a cost model oblivious technique of identifying robust plans.

Specifically, we propose WC-SEER, an algorithm based on the concept of matrix condi-

tion number. Because of its model oblivious nature, WC-SEERis potentially applicable

to any optimizer. The running time complexity of WC-SEER isO(n.2d). Experimental

investigations suggest that WC-SEER outplays CC-SEER on all grounds, i.e. reduction

quality, robustness and computational efficiency.

1.4 Organization.

The remainder of this report is organized as follows: In Chapter 2, we present the overall

problem background, framework and motivation. The plan cost models and the checks for

replacement safety are discussed in Chapter 3. The design ofthe CC-SEER reduction algo-

rithm and its analysis are presented in Chapter 4. In Chapter5, we investigate the universality

of SEER/CC-SEER. In Section 5.2, we present WC-SEER, a csostmodel scalable algorithm.

Our experimental framework and performance results are highlighted in Section 6. Related

work is overviewed in Section 7. Finally, in Section 8, we summarize our conclusions.



Chapter 2

Problem Framework

For ease of exposition, we assume in the following discussion that the SQL query template is 2-

dimensional in its selectivity variations – the extension to higher dimensions is straightforward.

2.1 Plan and Reduced Plan Diagrams

From a query templateQ, a plan diagramP is produced on a 2-dimensional[0, 1] selectivity

spaceS by making repeated calls to the optimizer. The selectivity space is represented by a

grid of points where each pointq(x, y) corresponds to a unique query with selectivitiesx, y

in the X and Y dimensions, respectively. Eachq is associated with an optimal (as determined

by the optimizer) planPi, and a costci(q) representing the estimated effort to executeq with

plan Pi. Corresponding to each planPi is a unique colorLi, which is used to color all the

query points that are assigned toPi. As mentioned earlier, the plan diagram is essentially a

visual characterization of the parametric optimal set of plans (POSP) [12]. We useP andS

interchangeably in the remainder of the report based on the context.

2.1.1 Plan Diagram Reduction Problem

. This problem is defined as follows [10]: Given an input plan diagramP, and a maximum-

cost-increase thresholdλ (λ ≥ 0), find a reduced plan diagramR with minimum cardinality

such that for every planPi in P,

7
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1. EitherPi ∈ R, or

2. ∀ q ∈ Pi, the assigned replacement planPj ∈ R guarantees
cj(q)

ci(q)
≤ (1 + λ)

That is, find the maximum possible subset of the plans inP that can be completely “swallowed”

by their sibling plans in the POSP set. A point worth reemphasizing here is that the threshold

constraint applies on anindividual querybasis. For example, settingλ = 10% stipulates that

the cost ofeachquery point in the reduced diagram is within1.1 times its original value.

It was proved in [10] that the above problem is NP-Hard. Therefore, an efficient heuristic-

based online algorithm, calledCostGreedy, was proposed and shown to deliver near-optimal

“anorexic” levels of reduction, wherein the plan cardinality of the reduced diagram usually

came down to around 10 or less for aλ-threshold of only 20%. In a nutshell, complex plan

diagrams can be easily made very simple without materially affecting the query processing

quality.

2.1.2 Selectivity Estimation Errors

Consider a specific query pointqe, whose optimizer-estimated location inS is (xe, ye). De-

note the optimizer’s optimal plan choice at pointqe by Poe. Due to errors in the selectivity

estimates, theactual location ofqe could be different at execution-time – denote this location

by qa(xa, ya), and the optimizer’s optimal plan choice atqa by Poa. Assume thatPoe has been

swallowed by a sibling plan during the reduction process anddenote the replacement plan as-

signed toqe in R by Pre. Finally, extend the definition of query cost (which appliedto the

optimal plan) to haveci(t) denote the cost of an arbitrary POSP planPi at an arbitrary query

point t in S.

With respect toR, the actual query pointqa will be located in one of the following disjoint

regions ofPre that together coverS:

Endo-optimal region of Pre: Here,qa is located in the optimality region of the replacement

planPre, which also implies thatPre ≡ Poa. Sincecre(qa) ≡ coa(qa), it follows that the

cost ofPre at qa, cre(qa) < coe(qa) (by definition of a cost-based optimizer). Therefore,

improved resistance to selectivity errors is alwaysguaranteedin this region.
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Swallow-region ofPre: Here,qa is located in the region “swallowed” byPre during the re-

duction process. Due to theλ-threshold constraint, we are assured thatcre(qa) ≤ (1 +

λ)coa(qa), and by implication thatcre(qa) ≤ (1+λ)coe(qa). Now, there are two possibil-

ities: If cre(qa) < coe(qa), then the replacement plan is again guaranteed to improve the

resistance to selectivity errors. On the other hand, ifcoe(qa) ≤ cre(qa) ≤ (1 + λ)coe(qa),

the replacement is guaranteed to not cause any real harm, given the small values ofλ

that we consider in this report.

Exo-optimal region of Pre: Here,qa is located outside both the endo-optimal and swallow-

regions ofPre. At such locations, we cannot apriori predictPre’s behavior, and therefore

the replacement may not always be a good choice – in principle, it could bearbitrarily

worse. Therefore, we would like to ensure that even if the replacement does not provide

any improvement, it is at least guaranteed to not do any harm.That is, theexo-optimal

region should have the same performance guarantees as the swallow-region. We show

in Chapter 3 how this objective can be efficiently achieved through simple but powerful

checks to decide when replacement is advisable.

2.2 Robust Reduction

From the above discussion, it is clear that we need to ensure that only safe replacements are

permitted. This means that replacement should be permittedonly if the λ threshold criterion

is satisfied not just at the estimated point, butat all locationsin the selectivity space. At the

same time, it is important to ensure that the safety check is not unnecessarily conservative,

preventing most plan replacements, and in the process losing all the error-resistance benefits.

Therefore, the overall goal is to maximize plan diagram reduction without violating safety

considerations. More formally, our problem formulation is:
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2.2.1 Robust Reduction Problem.

Given an input plan diagramP, and a maximum cost-increase-thresholdλ (λ ≥ 0), find a

reduced plan diagramR with minimum plan cardinalitysuch that for every planPi in P,

1. Pi ∈ R, or

2. ∀ q ∈ Pi, the assigned replacement planPj ∈ R guarantees∀ query pointsq′ ∈ P,
cj(q

′)

ci(q′)
≤ (1 + λ)

That is, find the minimum-sized error-resistant “cover” of plans that reduces the plan diagram

P without increasing the cost of any reassigned query point bymore than the cost increase

threshold,irrespective of the actual location of the query at run-time.

It is easy to see that the Robust Reduction problem is NP-Hard, just like the standard Plan

Diagram Reduction problem, and therefore we present a heuristic-based algorithm later in

Chapter 4. But, prior to that, we show in the following section how replacement safety can be

checked efficiently.



Chapter 3

Ensuring Robust Reduction

To find an error-resistant cover of the plan diagram, we need to evaluate the behavior of each

replacement planPre, w.r.t. its swallowing targetPoe, atall pointsin S. This requires, in prin-

ciple, finding the costs ofPoe and all potentialPre at every point in the diagram. Of course,

Poe andPre need not be costed in their respectiveendo-optimalregions, since these values

are already known through the plan diagram production process. The remainingexo-optimal

costs can be obtained using theForeign-Plan-Costingfeature, hereafter referred to asFPC, a

feature that has become available in the current versions ofseveral industrial-strength optimiz-

ers, including DB2[30] (Optimization Profile), SQL Server[31] (XML Plan) and Sybase[32]

(Abstract Plan).

While the above solution is conceptually feasible, it is practically unviable due to its enor-

mous computational overheads. Plan-costing is certainly cheaper than the optimizer’s standard

optimal-plan-searching process [13], but the overall overhead is stillO(nm) wheren andm

are the number of plans and the number of points, respectively, in P. Typical values ofn range

from the several tens to several hundreds, whilem is of the order of several thousands to

several hundreds of thousands, making an exhaustive approach impractical.

The above situation motivates us to study whether it is possible, based on using FPC at

only a few select locations, toinfer the behavior in the rest of the space. In the remainder of

this section, we describe our strategy for making such an inference. It was shown in [1] that it

11
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is possible to characterize plan cost behavior using a simple and accurate parametrized math-

ematical model. The accuracy of the model was substantiatedwith several hundred distinct

plans arising out of TPC-H and TPC-DS-based query templateson industrial optimizers.

3.1 Modelling Plan Cost Functions

The following cost model was proposed in [1] for characterizing plan cost behavior in a

d−dimensional selectivity space :

Cost(x1, ..., xd) =
∑

i1

(ai1xi1 + bi1xi1 log xi1)+

∑

i1<i2

(ai1i2xi1xi2 + bi1i2xi1xi2 log xi1xi2)

+ ... + a12..d(x1x2x3..xd)

+ b12..d(x1x2x3..xd) log(x1x2x3..xd)

+ a0 (3.1)

where thea’s and b’s are the(2d+1 − 1) coefficients and thexi, i = 1...d represent thed

relational selectivities.

For instance, the cost model of a plan for a 2D selectivity space is of the form

Cost(x, y) =a1x + a2y + a3xy + a4x log x + a5y log y+

a6xy log xy + a7 (3.2)

wherea1, a2, a3, a4, a5, a6, a7 are coefficients, andx, y represent the selectivities ofRx andRy,

respectively.

Modeling a specific plan requires suitably choosing the seven coefficients, and this is

achieved through standard surface-fitting techniques, described in [1]
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3.2 Replacement Safety Conditions

For ease of presentation, we will initially assume that our objective is to model the cost behav-

ior of plans with respect to a 2-D selectivity space (e.g. Figure 1.2(a)) corresponding to distinct

relationsRx andRy. The extension to higher dimensions is straightforward andis discussed

later.

For the 2D scenario, using the above7-coefficient cost model, our goal now is to come up

with an efficient mechanism to assess, given an optimal planPoe, candidate replacement plan

Pre and a cost-increase thresholdλ, whether it would be safe from aglobalperspective to have

Pre swallowPoe.

Let the cost functions forPre andPoe be

fre(x, y) = a1x + a2y + a3xy + a4x log x + a5y log y + a6xy log xy + a7 (3.3)

and

foe(x, y) = b1x + b2y + b3xy + b4x log x + b5y log y + b6xy log xy + b7 (3.4)

respectively. Now consider the“safety function”

f(x, y) = fre − (1 + λ)foe (3.5)

which captures the differences between the costs ofPre and aλ-inflated version ofPoe in the

selectivity space. All points wheref(x, y) ≤ 0 are referred to asSafePointswhereas points

that havef(x, y) > 0 are calledViolatingPoints. For a replacement to be globally safe, there

should be no ViolatingPoints anywhere in the selectivity space.

For a specific value ofy, the safety functionf(x, y) can be rewritten as

fy(x) = g1 ∗ x + g2 ∗ x log x + g3

for appropriate coefficientsg1, g2, g3. Similarly, we can definefx(y). With this terminology,

the following theorem provides us with conditions for checking whether the selectivity space

is safe for the plan-pair (Poe,Pre) with regard to replacement.
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Consider the following two lemmas, borrowed from [1], pertaining to safety function be-

havior – the first provides us with a condition that is sufficient to ensure safety of all points on

the straight line segment joining a pair of safe points, while the second describes the behaviour

of the slope. i.e. second derivative, of the safety function.

LEMMA 3.1 (Line Safety).Given a fixedy = yo, and a pair of safe points(x1, yo) and

(x2, yo) with x2 > x1, the straight line joining the two points is safe if the slopef ′

yo
(x) is either

(i) monotonically non-decreasing, OR (ii) strictly decreasing withf ′

yo
(x1) ≤ 0 or f ′

yo
(x2) ≥ 0.

A similar result holds whenx is fixed.

Note that the slope value at a point(xi, yi) along a dimension can be approximated as the

slope of the line joining that point to the next point on that particular dimension. For instance,

f ′

y0
(x1) can be approximated with

f(x1, y0)− f(x2, y0)

x1 − x2

LEMMA 3.2 (Second Derivative Behavior).If the slope of the safety function,f ′

y(x), is

non-decreasing (resp. decreasing) along the line-segments y = y1 andy = y2, then it is non-

decreasing (resp. decreasing) for all line segments in the interval (y1, y2). A similar result

holds forf ′

x(y).

In addition to the above two lemmas, we prove another lemma pertaining to behavior of first

derivative of the safety function. CC-SEER critically draws much of its performance from this

lemma.

LEMMA 3.3 (First Derivative Behavior).Given a fixedy = y0, let g(x) =

(

∂f(x, y)

∂y

)

y0

.

Now, given a pair of points(x1, y0) and(x2, y0) with x1 < x2 such thatg(x1) ≤ 0 andg(x2) ≤

0, ∀x ∈ [x1, x2], g(x) ≤ 0 if the slopeg′(x) is either (i) monotonically non-decreasing, i.e.

g′(x1) ≤ g′(x2), OR (ii) strictly decreasing withg′(x1) ≤ 0 or g′(x2) ≥ 0. A similar result

holds wheny is fixed.

Lemma 3.3 basically says that by computing the value ofg′(x1) andg′(x2) it is possible to

determine whether or not∀x ∈ [x1, x2], g(x) ≤ 0. Similarly, it is also possible to determine

whether or not∀x ∈ [x1, x2], g(x) ≥ 0, by just computing the values ofg′(x1) andg′(x2).

Slope approximation similar to that mentioned for computing the value of first derivative of the

safety function at a point can be employed here also. For instance,g′(x1) can be approximated

with
f ′

x1
(y0)− f ′

x2
(y0)

x1 − x2

.



Chapter 4

The CC-SEER Algorithm

In this section, we will describe the safety checking procedure, which give a plan-pair(Poe, P re),

responds whether the replacement ofPoe by Pre is globally safe throughout the selectivity

spaceS. We then present and analyze the CC-SEER algorithm which uses this procedure to do

error-resistant plan diagram reduction.

In the following, we will assume that the selectivity spaceS is represented by a gridG,

with m = r × r points, i.e. the grid resolution in each dimension isr.

4.1 Safety Checking

Let the points onX axis of G be labelledx1, x2, · · · , xr in ascending order of selectiv-

ity (Fig. 4.1). Similarly, letY -axis points be labelledy1, y2, · · · , yr. Leveraging the Lem-

mas 3.1, 3.2 and 3.3, we use the following safety tests:

Figure 4.1:2D Grid of Selectivity Points

15
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1. Wedge Test

• Ensure safety at corners points ofG, i.e. confirm that the safety function is non-

positive at points:(x1, y1), (xr, y1), (x1, yr), (xr, yr). If coner point are safe, goto

next step. Else, returnUnsafe.

• If f ′

y1
(x1) ≤ f ′

y1
(xr) AND f ′

yr
(x1) ≤ f ′

yr
(xr), returnSafe. Else, goto next step.

• If f ′

x1
(y1) ≤ f ′

x1
(yr) AND f ′

xr
(y1) ≤ f ′

xr
(yr), returnSafe. Else, returnInconclu-

sive

The wedge test corresponds to FPC operations at the points denoted by red color in

Fig. 4.1. Thus, the total number of FPC operations done in thewedge test is atmost

24.

2. CornerCube Test

• If f ′

y1
(x), f ′yr(x) are both strictly decreasing, use Lemma 3.2 to ensure that∀y ∈

[y1, yr], either (i)f ′

y(x1) ≤ 0, OR (ii) f ′

y(xr) ≥ 0. If true, returnSafe. Else, goto

next step.

• If f ′

x1
(y), f ′xr(y) are both strictly decreasing, use Lemma 3.2 to ensure that∀x ∈

[x1, xr], either (i)f ′

x(y1) ≤ 0, OR (ii) f ′

x(yr) ≥ 0. If true, returnSafe. Else, return

Inconclusive.

The cube test corresponds to the red and blue points in Fig. 4.1. Thus, the total number

of FPC operations done in the cube test, in addition to the 24 done in the wedge test,

is atmost 8. Note that inconclusive responses from the safety checking procedure are

conservatively deemed UNSAFE.

The complete CC-SEER algorithm is given in Fig. 4.2. The algorithm, for each plan pair,

calls the wedge test, and the cornercube test is called iff the wedge tests responds ’inconclu-

sive’.
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CC-SEER (Plan DiagramP, Threshold λ)

1. Create a Set-Cover InstanceI = (U,S), whereS = {S1, S2, ..., Sn}, U = {1, 2, ..., n}, corre-
sponding to then plans in the original plan diagramP.

2. Set eachSi = {i},∀i = 1...n

3. For each pair of plans(Pi, Pj) do

if (WEDGE TEST (Pi,Pj ,λ) == Unsafe) then

Continue

if (WEDGE TEST (Pi,Pj ,λ) == Safe) then

Si = Si

⋃

{j}

else if(WEDGE TEST (Pi,Pj ,λ) == Inconlusive AND
CORNERCUBETEST (Pi,Pj ,λ) == Safe) then

Si = Si

⋃

{j}

4. Solve the set-cover instanceI using the Greedy Setcover algorithm to identify the plans retained
in R.

Figure 4.2:The CC-SEER Reduction Algorithm

4.1.1 Extension of CC-SEER to Higher Dimensions

In this section, we will chalk out the generic CC-SEER safetychecking procedure. Given an

plan pair(Poe, Pre), the CC-SEER safety checking procedure responds whether the replace-

ment ofPoe with Pre is globally safe throughout the selectivity spaceS.

In the following, we will assume that the selectivity space is represented by ad-dimensional

grid G. The resolution on each dimension isr. Let X1, X2, · · · , Xd be thed dimensions of

G. Let xi1, xi2, · · · , xir be the selectivity values in the dimensionXi in ascending order of

selectivity.

Let ϕ : S→ R be atarget functionthat assigns each selectivity point inG with some real

number. A target function is said to beIDEAL if it is of the form given by Equation 3.1.

CC-SEER uses an auxillary recursive procedure,IsNonPositive (G, d, ϕ), which when

given ad-dimensional gridG and an ideal target functionϕ as input, responds whether or not

∀s ∈ S, ϕ(s) ≤ 0. An importannt point worth remphasising here is that this procedure is based

on the Lemmas 3.1, 3.2 and 3.3.
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CC-SEER (Plan DiagramP, Threshold λ)

1. Create a Set-Cover InstanceI = (U,S), whereS = {S1, S2, ..., Sn}, U = {1, 2, ..., n}, corre-
sponding to then plans in the original plan diagramP.

2. Set eachSi = {i},∀i = 1...n

3. For each pair of plans(Pi, Pj) do

let f(.) be the safety function pertaining to
the replacement ofPj with Pi.

if IsNonPositive(G, d, f) == Yes

Si = Si

⋃

{j}

4. Solve the set-cover instanceI using the Greedy Setcover algorithm to identify the plans retained
in R.

Figure 4.3:The Generic CC-SEER Reduction Algorithm

4.1.2 Analysis

The total number of FPC operations required by CC-SEER for ad-dimensional selectivity

space isn.4d. The selectivity points at which the safety function is evaluated correspond

to unit hypercubes at the corners of the selectivity space, that is why the name CC-SEER

(CornerCube-SEER). In any robust reduction algorithm, FPCoperations constitute the running

time bottleneck. Thus, the worst case runnning time complexity of CC-SEER isO(n.4d).
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IsNonPositive(G, d, ϕ)

1: if d == 0 then
2: G represent a single selectivity point. Let us call this points.
3: if ϕ(s) ≤ 0 then
4: return Yes
5: else
6: return No
7: end if
8: end if
9: for i = 1 to d do

10: Let G1 andG2 be thed − 1 dimensional selectivity grids given byXi = xi1 andXi = xir

respectively.
11: if IsNonPositive(G1, d− 1, ϕ) == No then
12: return No
13: end if
14: if IsNonPositive(G2, d− 1, ϕ) == No then
15: return No
16: end if

17: Let ϕ : S→ R be a new ideal target function defined as:ϕ′(s) =
∂ϕ(s)

∂Xi

18: Also, letϕ′′(s) =
∂ϕ′(s)

∂Xi

.

19: if ϕ′′ is positive at the corners ofG1 andG2 then
20: return Yes
21: end if
22: if IsNonPositive(G1, d− 1, ϕ′) == Yes OR IsNonPositive(G2, d− 1,−ϕ′) == Yesthen
23: return Yes
24: else
25: Continue
26: end if
27: end for
28: return No

Figure 4.4:The CC-SEER Safety Checking Procedure



Chapter 5

Richer Cost Models

The CC-SEER algorithm, wherein peripheral behavior determines global safety, are applica-

ble only to the class of query optimizers which obey the cost model defined in [1], thereby

limiting the applicability of the technique. Moreover, with advent of new operators, even the

compatible optimizers might cease to be so. For instance, implementing new operators (e.g.

skyline operator) might introduce a square term in the cost model. Hence, it becomes essential

to investigate the problem of robust plan identification forcost models containing higher de-

gree polynomials. In this report, we present a characterization of optimizer cost models with

respect to applicability of the CC-SEER approach. Consequently, we identify the richest class

of optimizers beyond which extending this technique is not feasible without incurring unviable

computational overheads.

5.1 A Motivating Example

Let us consider the following cost model which contains a square term:

Cost(x, y) =a1x + a2y + a3xy + a4x log x + a5y log y+

a6xy log xy + a7x
2 + a8y

2 + a9(xy)2 (5.1)

20
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(a) Non-
Increasing

(b) Non-
Decreasing

(c) One Local
Maxima

(d) One Local
Minima

Figure 5.1:Safety Function- First Derivative Behavior

Cost(x) = c1x + c2x log x + c3x
2 + c4

The safety function is defined asf(x, y) = CostPre
(x, y) − (1 + λ)CostPoe

(x, y).

For a particular value ofy, resulting in a 1D selectivity space, the safety functionf(x, y)

can be rewritten as

fy(x) = g1x + g2x log x + g3x
2 + g4

⇒ f ′

y(x) = g1 + g2(1 + log x) + 2g3x

⇒ f ′′

y (x) =
g2

x
+ 2g3

⇒ f ′′′

y (x) =
−g2

x2
, i.e. f ′′′(x) is monotonic

Our goal is to investigate global safety, i.e. safety at all selectivity points in the 1D selec-

tivity space, ofPre for Poe given the fact thatPre is safe forPoe at x1 andxr. In other words,

we address the following question : “does the safety function fy(x) attain local maxima at any

intermediate pointx∗”. If not, then global safety can be guaranteed just by ensuring safety at

the end points. On the other hand, in casefy(x) does attain local maxima at some selectivity

point x∗ ∈ (x1, xr), global safety ofPre for Poe depending on the value offy(x
∗). However,

in such an event, there is no efficient mechanism to determinethe value offy(x
∗). Therefore,

we are bound to conservatively deny global safety.

The various possible behaviors off(y(x) are shown in Fig. 5.2. For instance, Fig. 5.2(a)

says that the safety function is non-negative and non-increasing as well. The various possible
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(a) Non-Increasing (b) One Local Minima (c) One Local Maxima

(d) Two Extremas (e) Non-Decreasing (f) Two Extremas

Figure 5.2:Safety Function Behavior

behaviors off ′

y(x) with regard to “number of extremas” attained by it in(x1, xr), for this cost

model, are shown in Figure 5.1. We hasten to clarify that Fig.5.1 only captures the possibilities

with regard to the gradient off ′

y(x). For instance, Figure 5.1(a) essentially says thatf ′

y(x) in

this case is non-decreasing, and not thatf ′

y(x) is non-negative. Now, the question posed above

can be categorically addressed by looking at the values off ′

y(x1) andf ′

y(xr).

Case 1:f ′

y(x1) > 0, f ′

y(xr) < 0

The safety function attains local maxima at an intermediatepoint, as shown in Figure 5.2(c).

Hence, safety at end points does not gurantee global safety.We conservatively deny global

safety.

Case 2:f ′

y(x1) < 0, f ′

y(xr) > 0

The safety function attains local minima (but never local maxima) at an intermediate point, as

shown in Figure 5.2(b). Terminal safety therefore gurantees global safety.

Case 3:f ′

y(x1) ≤ 0, f ′

y(xr) ≤ 0

The safety function will either be non-increasing, as shownin Fig. 5.2(a), or will attain two
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extremas, as shown in Fig. 5.2(f). The latter behavior offy(x) corresponds tof ′(x) attaining

a local maxima at some intermediate pointx∗, as shown in Fig. 5.1(d), such thatf ′

y(x
∗) >

0. However, finding out whether or notf ′

y(x) attains local maxima is not possible without

computing the value of second or higher derivatives offy(x) (for e.g.f ′′

y (x1)). The important

point here is that it is not possible to efficiently compute orapproximate such values. We

therefore, conservatively deny safety.

Case 4:f ′

y(x1) ≥ 0, f ′

y(xr) ≥ 0

The safety function will either be non-decreasing, as shownin Fig. 5.2(d), or will attain two

extremas, as shown in Fig. 5.2(d). The latter behavior offy(x) corresponds tof ′

y(x) attaining

a local minima at som intermediate pointx∗, as shown in Fig. 5.1(c), such thatf ′

y(x
∗) < 0.

For reasons similar to those in Case 3, we conservatively deny global safety.

Note that with the cost model defined in [1], whereinf ′′

y (x) is monotonic, we would have

been able to guarantee safety in Cases 3 and 4.

Extending our investigation to a more complex cost model, consider the following cost

model containing a cubic term:

Cost(x, y) =a1x + a2y + a3xy + a4x log x + a5y log y+

a6xy log xy + a7x
2 + a8y

2 + a9(xy)2+

a10x
3 + a11y

3 + a12(xy)3 (5.2)

The safety function for this model can have upto two extremasin (x1, xr). The conlusions

and reasonings with regard to global safety would remain thesame as above, in Cases 1, 3

and 4. However in Case 2, unlike the simpler one defined in (5.1), global safety has to be

denied. This is because of the fact thatf ′

y(x) can attain two extremas (local maxima followed

by local minima) leading to the situation wherefy(x) can attain local maxima. It is again

hard to determine whether or not such a situation occurs without knowing the values of higher

derivatives offy(x). Thus, for this cost model, the CC-SEER based approach wouldalways

deny global safety.
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5.1.1 Characterizing Cost Models

It is possible to characterize various cost models with respect to first derivative of the safety

function, i.e.f ′

y(x). Let k be the maximum number of extremas thatf ′

y(x) can possibly attain

in (x1, xr), i.e. f ′

y(x) can attaink, but never more thank, extremas in(x1, xr). With such a

characterization of optimizer cost models, it can be shown that if k > 2 for a given optimizer

cost model then it is infeasible to extend the CC-SEER approach to such an optimizer. Note

thatk = 0 for the optimizer considered in [1]. Thus, the CC-SEER approach will not work for

the cost models withk > 2.

5.2 WC-SEER: A Cost Model Scalable Technique

In light of the discussion in Chapter 5, we propose a technique of identifying robust plans,

Well Conditioned SEER(WC-SEER), which in principle, because of its cost model scalable

nature, is not confined to a special breed of query optimizers. Specifically, we propose an

efficient and practically accurate technique of identifying robust plans, based on the concept of

condition number of a matrix. Unlike SEER and CC-SEER, which rely on the cost behavior

of plans on the periphery of the selectivity space to deduce global safety, this technique, given

an upper boundf on the number of foreign plan costings, tries to capture the notion: “which

f selectivity points when used to learn the cost function of anexecution plan, lead to the most

accurate fit”. In essence, WC-SEER does not necessarily restrict itself to the periphery of the

selectivity space.

5.2.1 Condition Number of a Matrix

The condiiton number is a measure of stability or sensitivity of a matrix (or the linear system

it represents) to numerical operations. The condition number of a square matrixA is defined

by

κ(A) =







‖A‖‖A−1‖ : |A| 6= 0

∞ : otherwise
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where‖.‖ denotes the norm of a matrix.

The condition number of a singular matrix is alternatively defined as the ratio of its largest

eigen value to smallest eigen value. The condition number forms the basis of the following

well known theorem from linear algebra [24]

THEOREM 1. Given an equation of the formAx = b and that the measurement ofb is

inexact, the relative error in the solutionx = A−1b satisfies

‖δx‖

‖x‖
≤ c
‖δb‖

‖b‖

wherec is the condition number of matrixA.

Matrices with condition numbers near1 are said to bewell-conditioned, i.e. stable, whereas

those with large condition numbers (e.g.105 for a5× 5 Hilbert matrix [25]) are said to beill-

conditioned, i.e. highly sensitive. Matrices with condition number around10 are considered

to be reasonably stable for all practical purposes.

5.2.2 Efficiently Determining the Plan Cost Functions

In this section, we describe an efficient mechanism for determining the parametric coefficients

of a given query execution plan. For the purpose of illustration, let us the consider the optimizer

studied in [1]. However, as it will turn out, the effectiveness of our technique is independent

of the optimizer cost model. Also, let us assume that the plandiagram under consideration is

2-dimensional. The extension to higher dimensions is straightforward. The cost model of a

plan for a 2D selectivity space is of the form,

Cost(x, y) =a1x + a2y + a3xy + a4x log x + a5y log y+

a6xy log xy + a7 (5.3)

Consider the system of linear equations given by,
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XA = C (5.4)

where,

X =





















x1 y1 x1y1 x1 log x1 y1 log y1 x1y1 log x1y1 1

x2 y2 x2y2 x2 log x2 y2 log y2 x2y2 log x2y2 1

x3 y3 x3y3 x3 log x3 y3 log y3 x3y3 log x3y3 1

x4 y4 x4y4 x4 log x4 y4 log y4 x4y4 log x4y4 1

x5 y5 x5y5 x5 log x5 y5 log y5 x5y5 log x5y5 1

x6 y6 x6y6 x6 log x6 y6 log y6 x6y6 log x6y6 1

x7 y7 x7y7 x7 log x7 y7 log y7 x7y7 log x7y7 1





















(5.5)

is a7× 7 location matrix .

A =



































a1

a2

a3

a4

a5

a6

a7



































(5.6)

is the to be determined7× 1 coefficient vectorfor a given planP , and,
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C =



































c1

c2

c3

c4

c5

c6

c7



































(5.7)

is the7× 1 cost vector. Here,ci is the actual cost of planP at the selectivity point(xi, yi).

Let {si = (xi, yi): i = 1 to 7} be some seven selectivity points in the 2D selectivity space.

We can find the cost of a given planP at these seven selectivity points using theforeign plan

costingfeature now available in all major industrial strength optimizers. Thus the matrices

X andC are known to us. If the cost model decribed in (5.3) is a perfect fit for plan P , i.e.

CostP (xi, yi) = ci, then the seven parametric coefficients forP can be obtained by solving the

linear system of equations given by (5.4) , i.e.A = X−1C. However, the cost model is least

likely to be a perfect fit for any query execution plan. Nonetheless, we know from [1] that this

cost model is an almost perfect fit for all execution plans, i.e. the RMS error is very small.

Let ∆i = Cost(xi, yi) − ci be the residual error between the actual cost and fitted cost of

planP at selectivity point(xi, yi). Let ∆ = [∆i] be theresidual vector for planP wrt the

mentioned selectivity points. We know that the vector∆ consists of very small values, i.e.

∆i is very close to zero for alli. Now, let us ask the question that how big is the difference

betweenX−1C andX−1(C + ∆) is going to be, given that the vector∆ consists of values

very close to zero. The answer to this question depends on thecondition number of matrixX.

If X is a well-conditioned matrix then this difference between the two solutions will be very

small. Thus, our task boils down to finding a set of seven selectivity points in the 2D selectivity

space which correspond to a well-conditioned location matrix.

Fig. 5.2.3 gives the pseudocode listing for WC-SEER (for 2D diagrams).
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5.2.3 Minimizing Condition Number

In previous subsection, we elaborated on how minimizing thecondition number of location

matrix can be leveraged to accurately, and without incurring huge overheads, learn the plan

cost functions. In this subsection, we talk about the computaional difficulty of lining up a

well conditioned location matrix. In a space comprised ofm selectivity points, there aremC7

distinct location matrices. As mentioned earlier in the report, m is of the order of several

thousands to several hundreds of thousands. Given this herculian size of the location matrix

search space, exhaustive search can not be used. Therefore,we resort toneighbourhood search

techniques.

Neigbourhood search techniques typically start with a feasible solution. Given a feasible

solution, all its neighbours are considered and the best amongst them is chosen. This process

is repeated till a locally optimal solution is obtained.

In our case, a set of seven uniformly distributed points on principal diagonal of the selectiv-

ity space was fed as solution seed to the search algorithm. The neigbourhood space is defined

such that a solutionM ′ is considered to be a neigbour of another solutionM iff M ′ differs

from M in exactly one of the seven selectivity points. With the above settings, we were able

to find, without incurring large overheads, well-conditioned location matrices. For e.g., for

2D selectivity spaces, the following seven selectivity points corresponding to a location matrix

with condition number of6 can be used:

M = {s1 : (0.3293, 0.9697), s2 : (0.9744, 0.9802),

s3 : (0.1276, 0.3843), s4 : (0.9714, 0.2455),

s5 : (0.6919, 0.0281), s6 : (0.087, 0.00048),

s7 : (0.0226, 0.9812)} (5.8)

An important point to note here is that size of the neigbourhood space scales exponentially

with dimensionality of the search space, i.e.O(rd). Hence, exploring the entire neigbourhhod

space of a candidate solution, particularly in case of higher dimensional selectivity spaces, is
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impractical. Thus, for higher dimensional selectivity spaces,very large scale neighbourhood

search(VLSN) techniques [26] can be employed to avoid explicitly searching over a large

neighbourhood. We hasten to point out that these seven selectivity points are irrespective of

the database or query template. Thus, finding a well conditioned location matrix is a one time

cost and can be done offline.

To confirm the scalability of our approach with the complexity of cost models, we tried

to construct a well conditioned location matrix for a few complex cost models as well. For

instance, for the cost model defined in (5.2), we were able to find a set of 13 selectivity points

which correspond to location matrix with a condition numberof 5.

WC-SEER (Plan DiagramP , Threshold λ)

1: Create a Set-Cover InstanceI = (U,S), whereS = {S1, S2, · · · , Sn}, U = {1, 2, · · · , n}, corre-
sponding to then plans in the original plan diagram.

2: Set eachSi = {i}, ∀i = 1 · · · n
3: for each planPi in the original plan diagramdo
4: constructP ′

i s cost function,CostPi
(.), as explained in Section 5.2.2, using the seven selectivity

points prescribed in (5.8).
5: end for
6: for each pair of plans(Pi, Pj) do
7: safety ← TRUE

8: for each selectivity points ∈ S do
9: if CostPi

(s) ≤ (1 + λ)CostPj
(s) then

10: saftey ← FALSE

11: end if
12: end for
13: if safety == TRUE then
14: Si = Si ∪ {j}
15: end if
16: end for
17: Solve the set-cover instanceI using the Greedy SetCover algorithm to identify the plans retained

in R.

Figure 5.3:The WC-SEER Reduction Algorithm

5.2.4 Analysis

The total number of FPC operations required in the WC-SEER algorithm is equal ton times

the number of parameters in the underlying cost model. For instance, the cost model defined in
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(3.1) has2(d+1) − 1 parameters for ad−dimensional selectivity space. Thus the total number

of FPC operations required isn.(2(d+1) − 1). As we have mentioned before in the report that

FPC operations are the bottleneck of robust reduction algorithms, the running time complexity

of WC-SEER isO(n.2d).



Chapter 6

Experimental Results

6.1 Experimental Setup

The testbed used in our experiments is the Picasso optimizervisualization tool [20], execut-

ing on a Sun Ultra 20 workstation equipped with an Opteron Dual Core 4GHz processor, 4

GB of main memory and 720 GB of hard disk, running the Windows XP Pro operating sys-

tem. The experiments were conducted over plan diagrams produced from a variety of two and

three-dimensionalTPC-H andTPC-DS-based query templates. The TPC-H database con-

tainsuniformly distributed data of size 1GB, while the TPC-DS database hosts skewed data

that occupies 100GB. The plan diagrams were generated with aindustrial-strength commer-

cial database query optimizer.

6.1.1 Physical Design.

We considered two different physical design configurationsin our study:PrimaryKey (PK)

andAllIndex (AI) . PK represents the default physical design of our database engine, wherein

a clustered index is created on each primary key. AI, on the other hand, represents an “index-

rich” situation wherein (single-column) indices are available on all query-related schema at-

tributes.

In the subsequent discussion, we use QTx to refer to a query template based on Queryx of
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Query Orig SEER CC-SEER WC-SEER
Temp- Plans Plans Agg Min Plans Agg Min Plans Agg Min

late # # SERF SERF # SERF SERF # SERF SERF
QT2 60 7 0.22 -0.1 10 0.22 -0.05 6 0.25 -0.1
QT5 51 3 0.48 0 4 0.45 -0.1 2 0.50 0.2
QT8 121 2 0.88 0.1 3 0.88 0.02 2 0.88 0.1
QT9 137 4 0.59 -0.1 5 0.52 -0.3 4 0.62 -0.3
QT10 44 3 0.18 0.01 6 0.2 0 3 0.23 0.01
QT16 32 5 0.21 -0.1 6 0.18 -0.1 3 0.28 0

3DQT5 68 3 0.24 -0.02 3 0.22 -0.01 3 0.27 0
3DQT8 191 4 0.54 0 4 0.50 -0.04 4 0.56 -0.01
3DQT10 75 4 0.32 -0.03 11 0.31 0.01 4 0.43 0.01
AIQT2 87 15 0.71 -0.02 19 0.68 -0.04 10 0.72 -0.05
AIQT5 126 13 0.40 0 15 0.41 0.02 11 0.51 0.01
AIQT8 121 6 0.38 0.02 7 0.38 0.02 7 0.46 0.02
AIQT9 132 12 0.48 -0.01 13 0.42 0 12 0.52 0
AIQT10 37 6 0.11 0 7 0.10 0 6 0.21 0.07
AIQT16 35 8 0.56 -0.03 9 0.55 -0.03 8 0.64 -0.1

3DAIQT5 139 10 0.48 0 15 0.48 0.01 10 0.52 0.01
3DAIQT8 168 9 0.28 -0.03 13 0.30 -0.03 6 0.35 -0.01
3DAIQT10 77 12 0.22 -0.03 14 0.20 0.05 8 0.30 0.05
DSQT12 25 2 0.32 0.01 4 0.32 0 2 0.42 0.07
DSQT18 114 2 0.68 -0.06 3 0.59 -0.06 2 0.73 0
DSQT19 55 4 0.51 0 5 0.48 0 2 0.57 0

3D-DSQT12 33 2 0.36 -0.1 4 0.35 -0.2 4 0.44 -0.1
3D-DSQT183D 222 8 0.68 0 10 0.70 0.1 4 0.70 0.1
3D-DSQT193D 98 7 0.64 -0.01 10 0.60 0 3 0.68 -0.01

Table 6.1: Plan Stability Performance
the TPC-H benchmark, and DSQTx to refer to a query template based on Queryx of the TPC-

DS benchmark, operating in the default PK configuration. We prefix AI the query template

identifiers in describing our results for the AllIndex specialized configuration.

6.1.2 Query Location Distribution.

All the performance results shown initially in this sectionare for plan diagrams generated with

exponentiallydistributed locations for the query points across the selectivity space, resulting

in higher query densities near the selectivity axes and towards the origin. This choice is based

on earlier observations in the literature (e.g. [12, 13, 21]) that plans tend to be densely packed

in precisely these regions of the selectivity space. From a performance perspective, these

diagrams represent the “tough-nut” challenging situations with respect to obtaining anorexic

reduction due to their high plan densities and substantially broader range of plan cost values.
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6.1.3 Error Resistance Metrics

Our quantification of the stability delivered through plan replacement is based on theSERF

error resistance metric introduced in [1]. For a specific error instance, with estimated query lo-

cationqe and cost-optimal planPoe, and a run-time locationqa, theSelectivity Error Resistance

Factor (SERF) of a replacementPre w.r.t. Poe is computed as

SERF (qe, qa) = 1−
c(Pre, qa)− c(Poa, qa)

c(Poe, qa)− c(Poa, qa)
(6.1)

Intuitively, SERF captures thefraction of the performance gapbetweenPoe andPoa at qa

that is closed byPre. In principle, SERF values can range over(−∞, 1], with the following

interpretations: SERF in the range(0, 1], indicates that the replacement is beneficial, with

values close to 1 implying immunity to the selectivity error. For SERF in the range[−λ, 0],

the replacement is indifferent in that it neither helps nor hurts, while SERF values noticeably

belowλ highlight a harmful replacement that materially worsens the performance.

To capture theaggregateimpact of plan replacements on improving the resistance to se-

lectivity errors in the entire spaceS, we computeAggSERFas:1

AggSERF =

∑

qe∈rep(S)

∑

qa∈exooe(S) SERF (qe, qa)
∑

qe∈S

∑

qa∈exooe(S) 1
(6.2)

whererep(S) is the set of query instances inS whose plans were replaced, and the normal-

ization is with respect to the number of error locations thatcould benefit from improved ro-

bustness. Specifically, from the universe of all possible(qe, qa) combinations, we exclude

those scenarios which inherently do not require help – that is, when the error location falls in

safeoe, i.e. the region comprising those selectivity points at which Poe is either optimal or

within (1 + λ) of the optimal plan.

Note that in the above formulation, we assume for simplicitythat the actual locationqa is

equally likely to be anywhere inPoe’s exo-optimal space, that is, that the errors are randomly

distributed over this space. In our future work, we plan to investigate the more generic case

1In [1], the aggregate impact was evaluated based on the locations where replacements were made, whereas
our current formulation is based on the locations where robustness is desired.
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where the error locations have an associated probability distribution.

Apart from AggSERF, we also compute metricsMinSERF andMaxSERF, representing

the minimum and maximum values of SERF over all replacement instances. MaxSERF values

close to the upper bound of 1 indicate that some replacementsprovided immunity to specific

instances of selectivity errors. On the other hand, large negative values for MinSERF indicate

that some replacements were harmful. We measure the proportion of such harmful instances

in our experiments.

An important point to note here is that while it is not possible to provide meaningful assis-

tance insafeoe, we still need to consider the possibility that replacements may end up causing

harm, reflected through negative SERF values, in these regions. This is taken into account in

our calculation of MinSERF by evaluating it over theentireselectivity space.

Query SEER CC-SEER WC-SEER
Template

QT2 5.43 0.8 0.35
QT5 2.99 0.67 0.31
QT8 12.41 1.88 0.86
QT9 10.59 2.14 0.92
QT10 4.28 0.52 0.24
QT16 2.43 0.45 0.26

3DQT5 20.12 3.08 1.44
3DQT8 84.16 8.17 3.5
3DQT10 19.29 3.94 2.0
AIQT2 6.83 1.2 0.52
AIQT5 5.72 1.7 0.73
AIQT8 6.6 1.83 0.81
AIQT9 6.25 2.08 1.0
AIQT10 2.65 0.48 0.2
AIQT16 2.78 0.49 0.21

3DAIQT5 40.97 6.52 2.8
3DAIQT8 50.91 8.96 3.96
3DAIQT10 17.07 4.01 1.72

Table 6.2: Running Time (Sec)
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6.1.4 Performance Metrics

A variety of performance metrics are used to characterize the behavior of the various replace-

ment algorithms:

1. Plan Stability The overall effect of plan replacements on stability is measured through the

AggSERF, MaxSERF and MinSERF statistics.

2. Plan Diagram Cardinality This metric tallies the number of unique plans present in the

plan diagram, with cardinalities that are less than or around twentyconsidered asanorexic

diagrams

The various performance numbers for SEER, CC-SEER, and WC-SEER are given in Ta-

ble 6.1. The computational overheads incurred by these algorithms in terms of running time

are given in Table 6.2. As is evident, CC-SEER is an order of magnitude faster than SEER,

while giving comparable performance in terms of reduction quality and robustness. Also is ev-

ident that WC-SEER virtuallly beats SEER and CC-SEER on all the three grounds of running

time, reduction quality and robustness.



Chapter 7

Related Work

Over the last decade, a variety ofcompile-timestrategies have been proposed to identify robust

plans. For example, in the Least Expected Cost (LEC) approach [6, 7], it is assumed that the

distribution of predicate selectivities is apriori available, and then the plan that has the least-

expected-cost over the distribution is chosen for execution. While the performance of this

approach is likely to be good on average, it could be arbitrarily poor for a specific query as

compared to the optimizer’s optimal choice for that query. Moreover, it may not always be

feasible to provide the selectivity distributions.

An alternative Robust Cardinality Estimation (RCE) strategy proposed in [3] is to model

the selectivity dependency of the cost functions of the various competing plan choices. Then,

given a user-specified “confidence threshold”T , the plan that is expected to have theleast

upper boundwith regard to cost inT percentile of the queries is selected as the preferred

choice. The choice ofT determines the level of risk that the user is willing to sustain with

regard to worst-case behavior. Like the LEC approach, this too may be arbitrarily poor for a

specific query as compared to the optimizer’s optimal choice.

Finally, in the (initial) optimization phase of the Rio approach [4, 5], a set of uncertainty

modeling rules from [15] are used to classify selectivity errors into one of six categories (rang-

ing from “no uncertainty” to “very high uncertainty”) basedon their derivation mechanisms.

Then, these error categories are converted to hyper-rectangular error boxes drawn around the

optimizer’s point estimate. Finally, if the plans chosen bythe optimizer at the corners of

36
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the principal diagonal of the box are the same as that chosen at the point estimate, then this

plan isassumedto be robust throughout the box. However, the conditions under which this

assumption is likely to be valid are not outlined.



Chapter 8

Conclusions

Errors in selectivity estimates are well-documented causes of poor plan choices by database

optimizers. In this report, we investigated whether the optimizer’s choices could be replaced

by alternative plans, more resilient to these errors, from the parametric optimal set over the se-

lectivity space. In particular, we proposed CC-SEER, an order of magnitude faster algorithm

than the SEER algorithm proposed in [1], while being competitive on reduction quality and

robustness. We also investigated the scalability of these techniques with the cost model com-

plexity, thereby showing that how they will not work with complex cost models. To address

this issue, we proposed WC-SEER, a cost model scalable algorithm. Experimental evidence

suggests that the WC-SEER algorithm beats the previous techniques, i.e. SEER/CC-SEER, on

all grounds.
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