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Abstract

Plastic [7] is a recently-proposed tool to help query optimizers significantly amortize optimiza-

tion overheads through a technique of plan recycling. This tool groups similar queries into

clusters and uses the optimizer-generated plan for the cluster representative to execute all fu-

ture queries assigned to the cluster. We have now significantly extended the scope, useability

and efficiency of Plastic by incorporating a host of new features, includingdynamic variable-

sizedclustering withL∞Normas the distance metric,decision-tree-basedquery classifier, inte-

gratedplan-costandplan-cardinalitydiagrams and an extendedplan-diff module that considers

operator-specificdetails and can compare plans across database systems. Plastic which origi-

nally worked on DB2 and Oracle has now been ported toMS-SQL ServerandPostgreSQL.

Plastic reduces optimization overheads by amortizing the cost of producing an optimal plan.

Picasso [18], a tool conceived and developed by us, can help in reducing the cost of producing

the optimal plan itself. In this context, we define aplan diagram[7] as a pictorial enumeration

of the execution plan choices of a database query optimizer over the relational selectivity space.

Using Picasso, we present and analyze representative plan diagrams on a suite of popular com-

mercial query optimizers for queries based on the TPC-H benchmark. These diagrams, which

often appear similar to cubist paintings, provide a variety of interesting insights, including that

current optimizers make extremely fine-grained plan choices, which may often be supplanted

by less efficient options without substantively affecting the quality; that the plan optimality re-

gions may have highly intricate patterns and irregular boundaries, indicating strongly non-linear

cost models; that non-monotonic cost behavior exists where increasing result cardinalities de-

crease the estimated cost; and, that the basic assumptions underlying the research literature on

parametric query optimization often do not hold in practice. We hope that these inputs can be

vii
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used to simplify the design of modern query optimizers and thereby reduce query optimization

overheads.



Chapter 1

Introduction

Modern database systems use aquery optimizerto identify the most efficient strategy to execute

the SQL queries that are submitted by users. The efficiency of these strategies, called “plans”,

is usually measured in terms of query response time. Optimization is a mandatory exercise

since the difference between the cost of the best execution plan and a random choice could be

in orders of magnitude. The role of query optimizers has become especially critical in recent

times due to the high degree of query complexity characterizing current data warehousing and

mining applications, as exemplified by the TPC-H decision support benchmark [45].

While commercial query optimizers each have their own “secret sauce” to identify the best

plan, the de-facto standard underlying strategy, based on the classical System R optimizer [24],

is the following: Given a user query, apply a variety of heuristics to restrict the combinatorially

large search space of plan alternatives to a manageable size; estimate, with a cost model and

a dynamic-programming-based processing algorithm, the efficiency of each of these candidate

plans; finally, choose the plan with the lowest estimated cost.

These well known inherent costs are compounded by the fact that a new query submitted to

the database system is typically optimized afresh, providing no opportunity to amortize these

overheads over prior optimizations. While current commercial query optimizers do provide

facilities for reusing execution plans (e.g. “stored outlines” in Oracle [41]), the query matching

is extremely restrictive – only if the incoming query has a closetextual resemblancewith one

of the stored queries then the associated plan is reused to execute the new query.

1
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The Plastic Tool

Recently, in [7], a tool calledPlastic (PLan Selection Through Incremental Clustering) was

proposed to be used by query optimizers to significantly increase the scope of plan reuse and

amortize the optimization overheads through a technique of “plan recycling”. The tool is based

on the observation that queries which differ in projection, selection, join predicates, and even in

the base tables themselves, may still have identicalplan templates– that is, they share a common

database operator tree. By identifying such similarities in the plan space, Plastic materially

improves the utility of plan cacheing.

Specifically, Plastic attempts to capture these similarities by characterizing queries in terms

of a feature vector that includes structural attributes such as the number of tables and joins in the

query, as well as statistical quantities such as the sizes of the tables participating in the query.

Using a distance function defined on these feature vectors, queries are grouped into clusters.

Clusters are built incrementally using theleaderalgorithm proposed by Hartingan [10]. Each

cluster has a representative for whom the template of the optimizer-generated execution plan

is persistently stored, and this plan template is used to execute all future queries assigned to

the cluster. In short, Plastic recycles plan templates based on the expectation that its clustering

mechanism is likely to assign an execution plan that is identical to what the optimizer would

have produced on the same query. A sample output depicting clustering in Plastic forquery

template1 Q2, is shown in Figure 1.1. Here, the axes represent the selectivities of a pair of

the participating relations, namelyPART andPARTSUPPand the dots represent the cluster rep-

resentatives (leaders). Experiments with a variety of TPC-H based queries on a commercial

optimizer showed that Plastic predicts the correct plan choice in most cases, thereby providing

significantly improved query optimization times. Further, even when errors were made, the

additional execution cost incurred due to the sub-optimal plan choices was marginal.

Apart from the obvious advantage of speeding up the optimization, Plastic also improves

query execution efficiency since it makes it possible for optimizers to always run at their highest

optimization level as the cost of such optimization is amortized over all future queries that reuse

1A query template represents a query in which some or all of the constants in the where-clause predicates have
been replaced by bind variables.
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Figure 1.1: Fixed-Sized clustering

these plans. Yet another important advantage is that the benefits of “plan hints”, a common

technique for influencing optimizer plan choices for specific queries, automatically percolate

to the entire set of queries that are associated with this plan. Lastly, since the assignment of

queries to clusters is completely based on database statistics, the plan choice for a given query

is adaptiveto the current state of the database.

Earlier demos [26, 23] had presented two implementations of Plastic, one that demonstrated

the basic prototype, and another which improved upon the first. We have now significantly

extended the scope, useability, and efficiency of Plastic, by incorporating a host of new features,

including:

• Implementation of Plastic in MS-SQL Server.

• Implementation of Plastic in PostgreSQL.

•L∞Normas the distance metric to better match boundaries in the plan space.

•Dynamic variable-sizedclustering to match volatility in plan space.

• Integration of a C4.5 decision tree classifier for fast cluster identification.

•An extendedplan-diff module that compares plans considering theoperator-levelattributes

and can compare plans across database systems.
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Plan and Cost Diagrams

For a query on a given database and system configuration, the optimal plan choice is primarily a

function of theselectivitiesof the base relations participating in the query – that is, the estimated

number of rows of each relation relevant to producing the final result. In this report, we use the

term “plan diagram” to denote a color-coded pictorial enumeration of the execution plan choices

of a database query optimizer over the relational selectivity space. An example two dimensional

plan diagram is shown in Figure 1.2(a), for a query based on Query 7 of the TPC-H benchmark,

with selectivity variations on theORDERSandCUSTOMERrelations2.

[Note to Readers: We recommend viewing all diagrams presented in this paper directly from the

color PDF file, available at [32], or from a color print copy, since the greyscale version may not clearly

register the various features.]

In this picture, produced with a popular commercial query optimizer, a set of six optimal3

plans, P1 through P6, cover the selectivity space. The value associated with each plan in the

legend indicates the percentage space coverage of that plan – P1, for example, covers about

38% of the area, whereas P6 is chosen in only 1% of the region.

Complementary to the plan diagram is a “cost diagram”, shown in Figure 1.2(b), which is

a three-dimensional visualization of the estimated plan execution costs over the same relational

selectivity space (in this picture, the costs are normalized to the maximum cost over the space,

and the colors reflect the relative magnitude with blue indicating low cost, white – medium cost,

and red – high cost.)

The Picasso Tool

Plastic reduces optimization overheads by amortizing the cost of producing an optimal plan –

that is, in a given cluster, once the optimizer generates a plan for theleader, Plastic optimizes

the cost of generating plans for thefollowers. On the other hand, Picasso [18], a tool conceived

and developed by us, can help in reducing thecostof producing theoptimal planfor the leader.

2Specifically, the variation is on theo totalprice andc acctbal attributes of these relations.
3The optimality is with respect to the optimizer’s restricted search space, and not in a global sense.
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In certain cases, as detailed later, Picasso can also help in improving thequality of theoptimal

plan itself.

Given a query and a relational engine, Picasso automatically generates the associated plan

and cost diagrams. In this report, we describe the plan/cost/cardinality diagrams output by

Picasso on a suite of three popular commercial query optimizers for queries based on the TPC-

H benchmark. [Due to legal restrictions, these optimizers are randomly identified as OptA,

OptB and OptC, in the sequel.]

Our evaluation shows that a few queries in the benchmark do produce “well-behaved” or

“smooth” plan diagrams like that shown in Figure 1.2(a). A substantial remainder, however, re-

sult in complex and intricate plan diagrams that appear similar tocubist paintings[35]4, provid-

ing rich material for investigation. A particularly compelling example is shown in Figure 1.3(a)

for Query 8 of the TPC-H benchmark with OptA5, where no less than 68 plans cover the space

in a highly convoluted manner! Further, even this cardinality is aconservativeestimate since it

was obtained with a query grid of 100 x 100 – a finer grid size of 300 x 300 resulted in the plan

cardinality going up to 80 plans!

Before we go on, we hasten to clarify that our goal in this paper is to provide a broad

overview of the intriguing behavior of modern optimizers, butnot to make judgements on spe-

cific optimizers, nor to draw conclusions about the relative qualities of their execution plans.

Further, not being privy to optimizer internals, some of the conclusions drawn here are perforce

speculative in nature and should therefore be treated as such. Our intention is primarily to alert

database system designers and developers to the phenomena that we have encountered during

the course of our study, with the hope that they may prove useful in building the next generation

of optimizers.

Analysis of Plan and Cost Diagrams

Analyzing the TPC-H based query plan and cost diagrams provides a variety of interesting

insights, including the following:

4Hence, the name of our tool – Pablo Picasso is considered to be a founder of the cubist painting genre [35].
5Operating at its highest optimization level.
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Fine-grained Choices: Modern query optimizers often make extremelyfine-grained plan

choices, exhibiting a marked skew in the space coverage of the individual plans. For

example, 80 percent of the space is usually covered by less than 20 percent of the plans,

with many of the smaller plans occupying less thanone percentof the selectivity space.

Using the well-known Gini index [34], which ranges over [0,1], to quantify the skew, we

find that all the optimizers,across the board, exhibit a marked skew in excess of 0.5 for

most queries, on occasion going even higher than 0.8.

Further, and more importantly, we show that the small-sized plans may often be sup-

planted by larger siblingswithout substantively affecting the quality. For example, the

plan diagram of Figure 1.3(a) which has 68 plans can be “reduced” to that shown in Fig-

ure 1.3(b) featuring as few assevenplans, without increasing the estimated cost of any

individual query point by more than 10 percent.

Overall, this leads us to the hypothesis that current optimizers may perhaps be over-

sophisticated in that they are “doing too good a job”, not merited by the coarseness of the

underlying cost space. Moreover, if it were possible to simplify the optimizer to produce

only reduced plan diagrams, it is plausible that the considerable processing overheads

typically associated with query optimization could be significantly lowered.

Complex Patterns: The plan diagrams exhibit a variety of intricate tessellated patterns, in-

cludingspeckles, stripes, blinds, mosaicsandbands, among others. For example, witness

the rapidly alternating choices between plans P12 (dark green) and P16 (light gray) in

the bottom left quadrant of Figure 1.3(a). Further, the boundaries of the plan optimal-

ity regions can be highly irregular – a case in point is plan P8 (dark pink) in the top

right quadrant of Figure 1.3(a). These complex patterns appear to indicate the presence

of strongly non-linear and discretized cost models, again perhaps an over-kill in light of

Figure 1.3(b).

Non-Monotonic Cost Behavior: We have found quite a few instances where, although the

base relation selectivities and the result cardinalities are monotonically increasing, the
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cost diagram doesnot show a corresponding monotonic behavior.6 Sometimes, the non-

monotonic behavior arises due to a change in plan, perhaps understandable given the

restricted search space evaluated by the optimizer. But, more surprisingly, we have also

encountered situations where a plan shows such behavior eveninternal to its optimality

region.

Validity of PQO: A rich body of literature exists onparametric query optimization(PQO) [1,

2, 11, 12, 5, 6, 14, 16, 17]. The goal here is to apriori identify the optimal set of plans for

the entire relational selectivity space at compile time, and subsequently to use at run time

the actual selectivity parameter settings to identify the best plan – the expectation is that

this would be much faster than optimizing the query from scratch. Much of this work is

based on a set of assumptions, that we do not find to hold true,even approximately, in the

plan diagrams produced by the commercial optimizers.

For example, one of the assumptions is that a plan is optimal within theentire region

enclosed by its plan boundaries. But, in Figure 1.3(a), this is violated by the small (brown)

rectangle of plan P14, close to coordinates (60,30), in the (light-pink) optimality region

of plan P3, and there are several other such instances.

On the positive side, however, we show that some of the important PQO assumptions do

hold approximately forreducedplan diagrams.

1.1 Organization

In this report we present a walk-through of the upgraded Plastic tool, and explain how it helps

to significantly amortize the overheads of query optimization. We also present the Picasso tool,

and show how it serves as a research, educational and administrative tool for understanding the

intricacies of query plan generation.

The remainder of this report is organized as follows: In Section 2, we discuss related work.

6Our query setup is such that in addition to the result cardinality monotonically increasing as we travel outwards
along the selectivity axes, the result tuples are alsosupersetsof the previous results.
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Integrated architecture of Plastic and Picasso are discussed in Section 3. The new features in-

corporated into Plastic are discussed in Section 4. The Picasso tool and the testbed environment

for our experiments is presented in Section 5. Then, in Section 6, the skew in the plan space

distribution, as well as techniques for reducing the plan set cardinalities, are discussed. The

relationship to PQO is explored in Section 7. Interesting plan motifs are presented in Section 8.

Finally, in Section 9, we summarize the conclusions of our study and outline future research

avenues.
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(a) Plan Diagram

(b) Cost Diagram

Figure 1.2: Smooth Plan and Cost Diagram (Query 7)
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(a) Complex Plan Diagram

(b) Reduced Plan Diagram

Figure 1.3: Complex Plan and Reduced Plan Diagram (Query 8, OptA)



Chapter 2

Related Work

2.1 Related Work for Plastic

Techniques such asmulti-query optimization(MQO) [21, 27, 25, 8, 15] andparametric query

optimization(PQO) [14, 2, 6, 5, 11, 12, 1, 17, 16] have been previously proposed for enhancing

the query optimization process. Both these techniques are inherently computationally hard – for

example, the search space in MQO is doubly exponential in the size of the queries. This has led

to the design of heuristic-based solutions, such as those presented in [21].

Plastic approach is fundamentally different from MQO in that it do not attempt tooptimize

queries but merely to make effective use of theresultsof prior optimizations. Moreover, while

Plastic does group queries into clusters, the plan selection is applicable on a per-query basis

and is therefore not restricted to query batches. Finally, Plastic optimization is not limited to

a temporal window of queries, but can be utilized across widely dispersed query sets. Moving

on to PQO, its coverage of the query space is typically an off-line process. In contrast, Plastic

approach can be implemented in either an off-line manner where artificial queries are generated

so as to create clusters that cover the query space, or more practically as an online process

with regard to both cluster formation and query plan selection. That is, the query space can

be covered incrementally on demand when user queries arrive at the database system. Another

significant difference with PQO is that Plastic plan selection process involves only the traversal

of a simple decision tree, whereas PQO requires a spatial storage and indexing mechanism. This

11
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is because the scheme requires storing not only the set of optimal plans but also the regions in

which each of these plans are optimal. Even for simple linear cost functions, the shapes of these

regions turn out to be convex polyhedrons [5], mandating spatial storage and access in order to

identify which plan is to be utilized for a newly arrived query. This issue assumes importance

since supporting spatial databases is well-known to be an expensive proposition [29]. Finally,

while PQO is concerned with completely characterizing the plan space for a given query, our

approach extends tosharingof plans across similar queries.

2.1.1 Comparison with Modern Optimizers

Some modern optimizers also provide plan reuse facilities. We discuss Oracle9i Optimizer

[41] here and how adding Plastic, to any such optimizer, can augment its capabilities. The

Oracle database system provides a mechanism, called “stored outlines”, for preserving queries

and execution plans. When the system parameterUSE STORED OUTLINES is set to true, the

optimizer compares the incoming query with the stored queries and if anidentical match is

found, the associated plan is used. The point to note here is that the query matching is done at

the syntacticlevel. There needs to be a one-to-one correspondence between SQL text and its

stored outline. If a different literal is specified in a predicate, then a different outline applies.

To avoid this, Oracle also allows bind variables to be used instead of constants to allow a wider

coverage. This approach is still somewhat limited in several ways. Firstly, the query matching

is very strict – a slight change in the structure of query, for example, adding or replacing of

a projection attribute, will result in the optimizer not utilizing the existing plan. Secondly, it

does not take into account the fact that several selection predicates on a particular table can

together generate a selectivity for the table which is similar to that of a previously stored query.

Thirdly, a more serious problem is that the query plan is the same for thecomplete range of

valuesof a bind variable since Oracle adopts the heuristic of assuming small values for the

selectivity of bind variable-based predicates. Specifically, it chooses a selectivity of 0.05 for

all range predicates associated with bind variables, a heuristic that can prove very costly for

database environments with higher selectivity values. Plastic approach, on the other hand, tries

to address all these three issues in a much more flexible and fine-grained manner.
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It should thus be noted that Plastic does not just map a parametric space based on changes

in bind variables of selection predicates but works at the level of sharingbetweenqueries, a

feature expected to bedesirablein practice.

2.2 Related Work for Picasso

To the best of our knowledge, there has been no prior work on the analysis of plan diagrams

with regard toreal-world industrial-strengthquery optimizers. However, similar issues have

been studied in the parametric query optimization (PQO) literature in the context of simplified

self-crafted optimizers. Specifically, in [1, 16, 17], an optimizer modeled along the lines of

the original System R optimizer [24] is used, with the search space restricted to left-deep join

trees, and the workload comprised of pure SPJ queries with “star” or “linear” join-graphs. The

metrics considered include the cardinality and spatial distribution of the set of optimal plans

– while [1] considered only single-relation selectivities, [16, 17] evaluated two-dimensional

relational selectivity spaces, similar to those considered in this paper. Their results in the 2-D

case indicate that for linear queries, the average number of optimal plans is linear in the number

of join relations, while for star queries, this number is almost quadratic. Also, the optimal

plans are found to be densely packed close to the origin and the selectivity axes. An analysis

of plan reduction possibilities in [1], given a plan optimality tolerance threshold, indicates that

a larger fraction of plans can be removed with increasing query complexity. In [11, 12], an

optimizer modeled along the lines of the Volcano query optimizer [9] is used, and they find the

cardinality of the optimal plan set for queries with two, three and four-dimensional relational

selectivities. They also present efficient techniques for approximating the optimal plan set.

Finally, a complexity analysis of the optimal plan set cardinality is made in [5] for the specific

case of linear (affine) cost functions in two parameters.

While the above efforts do provide important insights, the results presented in this paper

indicate that plan diagrams with sophisticated real-world optimizers and queries show much

more variability with regard to both plan set cardinalities and spatial distributions, as compared

to those anticipated from the PQO literature. For example, as mentioned earlier, we find that
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plan densities can be high even in regions far from the plan diagram axes, and that the optimality

region geometries can have extremely irregular boundaries.

There has also been work on characterizing the sensitivity of query optimization to storage

access cost parameters [19], but this work focuses on the robustness of optimal plan choices

to inaccuracies in the optimizer input parameters, and when suboptimal choices are made, the

impact of these errors. So, the focus is on planquality, not quantity or spatial distribution.

Further, their analysis shows that when all tables and indexes are on a single device (as in our

case), the optimizer proved relatively insensitive to inaccurate resource costs in terms of plan

choices – however, we find strong sensitivity with regard toselectivity values. Further, many of

the queries for which they did find some degree of sensitivity also feature in our list of “dense”

queries.

Cost-based attempts to reduce the optimizer’s search space include a “pilot-pass” ap-

proach [20], where a complete plan is initially computed and the cost of this plan is used

to prune the subsequent dynamic programming enumeration by removing all subplans whose

costs exceed that of the complete plan. But, it has been reported [13] that such pruning has only

marginal impact in real-world environments. Finally, a preliminary study of a sampling-based

approach to find acceptable quality plans, evaluated on a commercial optimizer, is discussed in

[30], but its impact on theoptimalplan set cardinality is an open issue.



Chapter 3

Architecture of Plastic and Picasso

A block-level diagram that shows the integrated architecture of Plastic and Picasso is shown in

Figure 3.1. In this picture, the solid lines show the sequence of operations in the situation where

a matching cluster or a matching plan diagram is found for the new query, while the dashed

lines represent the converse situation where no match is available and a fresh cluster or a new

plan diagram has to be created.

3.1 Architecture of Plastic

The query given to Plastic is first processed by theFeature Vector Extractorwhich also accesses

the system catalogs and obtains the information required to produce the feature vector. The

Similarity Checkmodule establishes whether this feature vector has a sufficiently close match

with any of the cluster representatives in theQuery Cluster Database. If a match is found (solid

lines in Figure 3.1), the plan template for the matching cluster representative is accessed from

thePlan Template Database. A plan template is a plan that has database operators but does not

have the specific values of the inputs like table names, index names to these operators. This

plan template is converted into a complete plan by thePlan Generatormodule, which fills in

the operator inputs based on the specifics of the input query.

On the other hand, if no matching cluster is found (dashed lines in Figure 3.1), the Query

Optimizer is invoked in the traditional manner and the plan it generates is used for executing the

15
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Figure 3.1: Integrated Architecture of Plastic and Picasso

query. This plan is also passed to thePlan Template Generatorwhich converts the plan into its

template representation and stores it in thePlan Template Database. Concurrently, the feature

vector of the query is stored in theQuery Cluster Database, as a new cluster representative.

Periodically, the cluster database may be reorganized to suit constraints such as a memory

budget or a ceiling on the number of clusters. For example, it may be decided to purge the

feature vectors and plan templates of “outlier” queries that rarely result in matches with the

current query workload.

3.2 Architecture of Picasso

Picasso takes as input the query, the grid granularity at which queries should be distributed

across the plan space, the relations (axes) on which the selectivities should be varied to construct
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the plan diagram (can be deduced from the query itself if there are only two relations in the

query), and the choice of query optimizer.

The query and the grid granularity given to Picasso is first processed by theSelectivity Esti-

matormodule which also accesses the system catalogs and obtains the information required to

produce the conditions on the chosen two relations for achieving a particular selectivity. These

conditions are given to theQuery Generatormodule that generates the query for a specified

value of selectivity. This query is fed to theQuery Optimizerthat generates a plan to execute

the query. Once plans have been generated for each of the points at the specified granularity, the

entire set of plans with their corresponding positions in the plan space are persistently stored in

thePlan Databaseso that the next time when the same plan diagram is needed, it does not need

to be generated. These set of plans and their corresponding positions are also given as input to

a3D Visualizermodule that generates both plan-cost and plan-cardinality diagrams.



Chapter 4

New Features in Plastic

In this section, we describe in detail the new features of Plastic that have been implemented.

These new features significantly extend the scope, useability, and efficiency of Plastic as ex-

plained below.

4.1 MS-SQL Server and PostgreSQL

Plastic originally worked on DB2 and Oracle. We have ported it to work onMS-SQL Server

andPostgreSQL. Thus Plastic now works on all popular database platforms. With this im-

plementation, we now have a tool that can be used to compare the plans generated for queries

across all popular database platforms. This feature of Plastic is very useful, especially in the

industry where it could be used to identify areas of the plan space where an inferior plan is be-

ing chosen by one optimizer while a relatively better plan is being chosen by another optimizer.

Further, it provides a base that can be used to compare the quality of plans produced by different

optimizers, having same database and system configuration.

4.2 Clustering in Plastic

For comparing various mechanisms in clustering, we usequery templateQ-21 from the TPC-H

benchmark (the nested sub-query and group-by operations have been removed). Here :1 and :2

18
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are “bind variables” that are replaced by constants in an actual query. The query template is

given in Figure 4.1.

select * from
supplier,
lineitem,
orders,
nation

where
s_suppkey = l_suppkey
and o_orderkey = l_orderkey
and s_nationkey = n_nationkey
and l_quantity = : 1
and n_regionkey = : 2

Figure 4.1: Query-21 (template) of TPC-H Benchmark

4.2.1 Static Variable-Sized Clustering

N

A

T

I

O

N

Figure 4.2: Static Variable-Sized clustering

Plastic originally implementedfixed-sizeclusters. The distance metric employed is shown

below.

Distance(Q1, Q2) =
K∑

i=1

| ETSi
1 − ETSi

2 |
max(TSi

1, TSi
2)

(4.1)
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whereQ1 andQ2 are queries involving K tables andTSi
1, ETSi

1 is original and (estimated)

effective size ofith table inQ1. Similar explanation holds forTSi
2, ETSi

2.

Fixed-size clustering resulted in the twin problems of insufficient clusters in thehigh-

volatility (rapid changes in plan choices) regions of the plan space and redundant clusters in

the low-volatility (gradual changes in plan choices) regions.

To overcome this,static variable-sizedclustering was implemented in Plastic [22], which

provided several small-sized clusters in the high-volatility region and a few large-sized clusters

in the low-volatility region. This scheme was based on the assumption that the high-volatility

region is typically present in the highly-selective region of the plan space and the low-volatility

region is typically present in the low-selectivity region. The modified distance metric is shown

below.

Distance(Q1, Q2) =
K∑

i=1

| ETSi
1 − ETSi

2 |
max(ETSi

1, ETSi
2)

(4.2)

A sample output of static variable-sized clustering for query template Q-21 for the DB2

optimizer, is shown in Figure 4.2. Here, the axes represents the selectivities of a pair of the

participating relations, namelyNATION andLINEITEM , the dots represent the cluster represen-

tatives, and the background shows the associated plan diagram.

Though this technique improves the accuracy of clustering, it still has some disadvantages.

• Firstly note that theL1Norm (also known asManhattandistance metric) is not a good

metric for clustering because, theplan spacegenerally hashorizontalboundaries rather

thandiagonalboundaries, whereas withL1Norm we getdiagonalboundaries.

• The observation that the high-volatility region is typically present in the highly-selective

region of the plan space is generally true but need not be always. In Figure 4.2, we see

that even though we have only one plan when selectivities of both tablesLINEITEM and

NATION are below 20%, we have a number of clusters in this area. Theideal case would

be to cluster the query-space based on the underlying plan diagram. Thus, we require

dynamic variable clustering.
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4.3 Improvements in Clustering

In this section, we introduceL∞Norm as the new distance metric for clustering, followed by an

algorithm that performs dynamic variable clustering. We then empirically show that dynamic

variable clustering usingL∞Norm is better than previous approaches of clustering presented in

Plastic.

4.3.1 Distance Function

SinceL1Norm is not adequate, we need a distance function that forms clusters that have a

square shape or preferably a rectangle.L∞Norm (also known asChessboarddistance metric)

is one such metric. It clusters the entire query space into squares, the size of each square being

determined by the threshold value. The new distance metric usingL∞Norm is shown below.

Distance(Q1, Q2) = max
i

(
| ETSi

1 − ETSi
2 |

max(TSi
1, TSi

2)
) (4.3)

We can determine thethreshold valuefor the distance function that needs to be set given the

number of clusters1.

Figure 4.3: Square Shaped Cluster

Consider a single cluster as shown in Figure 4.3. Letδ be the threshold value. Let ‘A’ be

the total size of the query-space that needs to be clustered. Let ‘c’ be the desired number of

clusters.

The area of each cluster is thenA/c. If ‘s’ is the side of a square (shape of the cluster), then

s2 = A/c. Thus

1The number of clusters can be calculated from the space budget available for storing the clusters.
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δ2 = (
(Z −X)

max(TSi
1, TSi

2)
)2 =

s2

4K2
=

A

4cK2

where K=max(TSi
1, TSi

2) is the difference between the sizes of the two tables in the given

query and hence does not change. Thus the required threshold is

δ = d 1

2K
∗

√
A

c
e (4.4)

If the cluster has n-dimensions, we can similarly show that the required threshold is

δ = d 1

2K
∗ n

√
A

c
e (4.5)
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Figure 4.4: Fixed clustering withL∞Norm

Our initial experiments have shown that usingL∞Norm as the distance metric itself in-

creases the accuracy of clustering and makes it comparable to that ofstatic-variableclustering

usingL1Norm. For this particular query template Q-21 shown in Figure 4.1, we got an accu-

racy of 82.39% which is infact slightly more than the accuracy 81% we got forstatic-variable

clustering. A sample output of fixed-sized clustering usingL∞Norm for query templateQ-21

given in Figure 4.1 is shown in Figure 4.4.
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4.3.2 Dynamic Variable Clustering

The algorithm for dynamic variable clustering is shown in Figure 4.5. This algorithm works on

a fixed budget of clusters – given’c’ number of clusters, it merges and divides clusters in such a

way that finally at most’c’ clusters are present. For each cluster, it identifies all the neighboring

clusters that have same plan and merges them if the resulting cluster is in the form of a square.

INPUT : C number of fixed size clusters
OUTPUT: K ≤ C number of dynamic sized clusters

DYNCLUSTER
{

Let l be a bound on the size of the smallest cluster
Let h be a bound on the size of the largest cluster
Initial size of each fixed cluster s =d√l ∗ he

Get all eligible clusters ’E’.
// A cluster is eligible if any 7 out of the 9 points shown in Figure 4.6
// have the same plan.

1. For each eligible cluster in E, gets its four cluster neighbors
2. If all of them have same plan, cluster-size *= 4

3. Repeat steps 1-4 with new cluster-size

4. Sort clusters in decreasing order of their sizes

// Initially removed[i]=false for all clusters
6. For each eligible cluster in sorted list, if it is not removed

Remove all clusters whose centers are within the boundary of this cluster

Get the number of clusters removed = R
// Since we only have a fixed budget,
// clusters removed = clusters that can be added

7. For each ineligible cluster, divide into four smaller clusters
Decrement R by 4. ifR ≤ 0 then break

}

Figure 4.5: Dynamic Clustering Algorithm
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The initial size of each fixed cluster is taken as the geometric mean of the size of the max-

imum possible cluster to the size of the smallest allowed cluster. Then checking is done to

determine the clusters eligible for merging. A cluster is eligible if it has the same plan for any

7 out of the 9 points shown in Figure 4.6. If a cluster is eligible and has four eligible neighbors

with the same plan, then the size of the cluster is increased by a factor of 4. This is repeated for

all the clusters.

Figure 4.6: Points considered for eligibility

Next, starting from the cluster with the largest size, all clusters that have their centers within

the boundary of this cluster are removed. This process is repeated for each cluster in decreasing

order of their sizes, provided they are not already removed by clusters before them in the sorted

order.
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Figure 4.7: Dynamic Variable-Sized clustering
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Finally theineligible clustersare divided, generating four new clusters, subject to the con-

dition that the number of new clusters generated can be atmost the number of clusters reduced

in the previous step. A sample output ofdynamic-variableclustering usingL∞Norm for query

templateQ-21 is shown in Figure 4.7.

Our initial experiments have confirmed our belief thatdynamic-variableclustering increases

the accuracy of clustering. For query template Q-21 shown in Figure 4.1, we obtained an

accuracy of 89.95% with the same’c’ number of clusters which is substantially better than

81%, the accuracy obtained by usingstatic-variableclustering.

4.4 Decision-Tree Classifier

In the original tool, identifying the matching cluster (if any) for the new query, was achieved

by comparing the new query with the cluster representatives until either a similar representa-

tive was found, or all were found to be dissimilar. This process can become computationally

expensive when a large number of clusters are present, as would often be the case.

Accordingly, we needed a faster technique such as decision tree or hierarchical clustering [3]

– we have explored the former option since it naturally suits our problem. This is because most

of our query features are deterministic as well as common to a small group of clusters and we

can therefore have a set of comparisons that zero-in on the required cluster very quickly. For

example, the feature set:Degree SequenceandJoin Predicate Index Counts, will be the same

for all the queries within the cluster and thus can be considered to be a characteristic of the

cluster acting as a decision rule for selecting clusters. Another important advantage of decision

trees is that once we have the rules generated, we can even drop the source query feature vectors

and simply interpret clusters as leaves of the decision tree.

So, to hasten the process of cluster identification, we have now incorporated the popular

C4.5 [43] decision-tree classifier which is present in the classifier module of the architecture

diagram(see Figure 3.1). This new classifier module operates on the clusters in the database,

after grouping them based on plan commonality – that is, clusters sharing the same plan are

grouped together and a classifier is built on these groups.
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To optimize the grouping process, initially the plan template of each query representative is

traversed in post-order and an MD5 hash signature of this traversal is computed. Subsequently,

these signatures, rather than the plans themselves, are compared to decide plan commonality

among clusters. Such grouping significantly reduces the number of class labels in the cluster

database, and has twofold advantages: Firstly, it increases the accuracy of the classifier, and

secondly, results in a decision tree of lesser height, thereby requiring lesser time for classifi-

cation. Quantitatively, our experiments show that the cluster identification time reduces by an

order of magnitude, at only a small cost in the overall matching accuracy [22]. In fact, with the

classifier, the identification cost is proportional to theheterogeneityof the clusters, whereas in

the earlier version, the cost was proportional to thecardinalityof the clusters. The decision tree

also helps to identify the attributes of the query feature vector that have the most impact on plan

choices.

We have preferred C4.5 over the newer version C5.0 since both have almost the same accu-

racy but the former is an open source and also works on both Windows and Linux Platforms.

OC1 [36], another popular decision tree classifier which has oblique splits contrary to access

parallel splits in C4.5, provides slightly better performance than C4.5 but unfortunately is not

supported on the Windows Platform. A sample output of the classifier module is shown in Fig-

ure 4.8 (here, ETS refers to Effective Table Size, a query feature vector component [7] and there

are three cluster groups).

Figure 4.8: Classifier Module Output
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4.5 Plan-Diff Module

Theplan-diff module, intended for analyzing the specific differences between a pair of query

execution plans, has been extended to compare plans across the four database platforms (DB2,

Oracle, SQL-Server, PostgreSQL). This module identifies differences between plans using an

adaption of theX-Diff [31] algorithm (which was proposed for computing differences between

XML documents). This module now compares plans considering theoperator-levelattributes

also. It can be used in two ways: (a) to compare plan choices for different versions of a query

on a single platform, or (b) to compare choices for the same query across database platforms.

Part of a sample output of the module, showing the differences between Plan 3 and Plan 4 of

Figure 4.7, is shown in Figure 4.9 (the source plans are omitted because of their complexity

and size). From this figure, we can see that these two plans differ only in the access method

(index scan versustable scan) for theLINEITEM relation. We expect that this module will be

especially beneficial for database administrators and query optimization researchers/students to

help understand plan choices made by the optimizer.

Figure 4.9: Plan Differences
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Picasso: Testbed Environment

In this section, we overview the Picasso tool and the experimental environment under which the

plan and cost diagrams presented here were produced. We also show the integratedplan-cost

andplan-cardinalitydiagrams that have been implemented in Picasso.

5.1 Picasso Tool

The Picasso tool is a value added tool that helps in understanding the intriguing behavior of

modern optimizers. Through its GUI, users can submit aquery template[7], the grid granularity

at which instances of this template should be distributed across the plan space, the relations

(axes) and their attributes on which the diagrams should be constructed, and the choice of

query optimizer. A snapshot of the interface for a template based on Query 2 of the TPC-H

benchmark, is shown in Figure 5.1 (the predicates “p size < C1 ” and “ps supplycost

< C2” determine the selectivity axes).

With this information, the tool automatically generates SQL queries that are evenly spaced

across the relational selectivity space (the statistics present in the database catalogs are used to

compute the selectivities). For example, with a grid spacing of 100 x 100, a plan diagram is

produced by firing 10000 queries, each query covering 0.01 percent of the plan diagram area.

The resulting plans are stored persistently in the database, and in the post-processing phase, a

unique color is assigned to each distinct plan, and the area covered by the plan is also estimated.

28
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Figure 5.1: Picasso GUI

The space is then colored according to this assignment, and the legend shows (in ranked order)

the space coverage of each plan. Differences between specific plans are easily identified using

a PlanDiff component[22] that only requires dragging the cursor from one plan to the other in

the plan diagram.

5.2 Database and Query Set

The database was created using the synthetic generator supplied with the TPC-H decision sup-

port benchmark, which represents a commercial manufacturing environment, featuring the fol-

lowing relations:REGION, NATION , SUPPLIER, CUSTOMER, PART, PARTSUPP, ORDERSand

LINEITEM . A gigabyte-sized database was created on this schema, resulting in cardinalities of

5, 25, 10000, 150000, 200000, 800000, 1500000 and 6001215, for the respective relations.

All query templates were based on the TPC-H benchmark, which features a set of 22 queries,

Q1 through Q22. To ensure coverage of the full range of selectivities, the relational axes in the

plan diagrams are chosen only from the large-cardinality tables occurring in the query (i.e.

NATION and REGION, which are very small, are not considered). An additional restriction
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is that the selected tables should feature only in join predicates in the query, but not in any

constant predicates. For a given choice of such tables, additional one-sided range predicates

on attributes with high-cardinality domains in these tables are added to the queries to support

a fine-grained continuous variation of the associated relational selectivities. As a case in point,

the plan diagram in Figure 1.3(a) on theSUPPLIERandLINEITEM relations, was produced after

adding to Q8 the predicatess acctbal < C1 andl quantity < C2, whereC1 andC2

are constants that are appropriately set to generate the desired selectivities on these relations.

For making these changes we used ZQL [37], a SQL parser written in Java. In the remainder of

this paper, for ease of exposition, we will use the benchmark query numbers for referring to the

associated Picasso templates.

While plan and cost diagrams have been generated for most of the benchmark queries, we

focus in the remainder of this paper only on those queries that have “dense” plan diagrams –

that is, diagrams whose optimal plan set cardinality is 10 or more, making them interesting for

analysis – for at least one of the commercial optimizers. For computational tractability, a query

grid spacing of 100 x 100 is used, unless explicitly mentioned otherwise. Further, for ease of

presentation and visualization, the query workloads are restricted to 2-dimensional selectivity

spaces (with the exception of queries Q1 and Q6, which feature only a single relation, and

therefore have a 1-D selectivity space by definition).

5.3 Relational Engines

The relational engines evaluated in our study are IBM DB2 v8.1 [39], Oracle 9i [41] and Mi-

crosoft SQL Server 2000 [40]. DB2 offers a range of optimization levels, going from 1 (lowest

quality) through 5 (default) to 9 (highest quality). Oracle also has two optimization modes –

first rows n andall rows (default) – the former optimizes latency, while the latter optimizes

query completion time.

While we have evaluated all the DB2 levels and all Oracle modes, for ease of exposition,

the diagrams presented here, unless explicitly mentioned otherwise, were all obtained with the

default of Level 5 for DB2, andoptimize-all-rowsfor Oracle. An additional issue with regard to
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DB2 is that inclusion ofhash-joinas a candidate join operator has to be explicitly set, and this

was done. To support the making of informed plan choices, commands were issued to collect

statistics on all the attributes participating in the queries. Finally, for every query submitted to

the database systems, commands were issued to only “explain” the plan – that is, the plan to

execute the query was generated, but not executed. This is because our focus here is on plan

choices, and not on evaluating the accuracy of the associated cost estimations. As said earlier,

due to legal restrictions, we randomly identify the three commercial optimizers as OptA, OptB

and OptC, in the rest of the report.

5.4 Computational Platform

A vanilla platform consisting of a Pentium-IV 2.4 GHz PC with 1 GB of main memory and

120 GB of hard disk, running the Windows XP Pro operating system, was used in our exper-

iments. The three relational engines were all installed with their default configurations for all

parameters, including those related to physical resources, except as mentioned above. For this

platform, the complete set of evaluated queries and their associated plan, cost, and reduced-plan

diagrams, over all three optimizers, are available at [32] – in the remainder of this report, we

discuss their highlights.

5.5 Integrated Plan-Cost/Plan-Cardinality Diagrams

An integratedplan-costdiagram is a 3D plan diagram with the Z-axis showing the normalized

cost of each plan bounded in the interval [0, 1]. On similar lines, we define an integratedplan-

cardinality diagram, as a 3D plan diagram which shows the normalized result cardinality on

Z-axis. These diagrams are more useful when compared to an isolated plan diagram as they

provide a more holistic view of the changes in plan space as a function of cost and result cardi-

nalities. We have implemented a 3-D visualizer module, using VisAD [44] for generating these

integrated plan-cost and plan-cardinality diagrams. VisAD, an acronym for ”Visualization for

algorithm development”, has been developed actively by programmers in SSEC Visualization

project at the university of Wisconsin Madison.
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Sample 3D plan-cost and plan-cardinality diagrams for Query 7 of the TPC-H benchmark

for the OptB optimizer are shown in Figure 5.2.

(a) Integrated 3D Plan-Cost Diagram

(b) Integrated 3D Plan-Cardinality Diagram

Figure 5.2: 3D Plan-Cost/Plan-Card Diagrams (Query 7, OptB)

Though plan-cost diagrams and plan-cardinality diagrams are more useful in understanding
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the intricacies of optimizers, they are difficult to comprehend when presented as an image in

a report. This can be seen by comparing the plan diagram shown in Figure 1.2(a) with the

integrated plan-cost diagram shown in Figure 5.2(a). Hence we show only plan diagrams in the

rest of the paper. Their corresponding cost diagrams shown in report are obtained by feeding the

query points and their associated costs to a commercial 3-D visualizer – currently, the freeware

Plot3D [38] is being used for this purpose.
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Skew in Plan Space Coverage

We start off our analysis of plan diagrams by investigating theskewin the space coverage of the

optimal set of plans. In Table 6.1, we show for the various benchmark queries, three columns for

each optimizer: First, the cardinality of the optimal plan set; second, the (minimum) percentage

of plans required to cover 80 percent of the space; and, third, the Gini index [34], a popular

measure of income inequality in economics – here we treat the space covered by each plan as

its “income”. Our choice of the Gini index is due to its desirable statistical properties including

being Lorenz-consistent, and bounded on the closed interval [0,1], with 0 representing no skew

and 1 representing extreme skew. Finally, the averages across alldense queries(10 or more

plans in the plan diagram) are also given at the bottom of Table 6.1.

These statistics show that the cardinality of the optimal plan set can reach high values for a

significant proportion of the queries. For example, the average (dense) cardinality is consider-

ably in excess oftwenty, across all three optimizers. Q9, in particular, results in more than 40

plans for all the optimizers. But it is also interesting to note that high plan density is not solely

query-specific since there can be wide variations between the optimizers on individual queries

– for example, Q18 results in 13 plans for OptB, but only 5 plans each for OptA and OptC.

Conversely, OptB requires only 6 plans for Q7, but OptA and OptC employ 13 and 19 plans,

respectively. It should also be noted that a common feature between Q8 and Q9, which both

have large number of plans across all three systems, is that they are join-intensive nested queries

with the outer query featuringdynamicbase relations (i.e. the relations in thefrom clauseare

34
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TPC-H OptA OptB OptC
Query Plan 80% Gini Plan 80% Gini Plan 80% Gini

Number Card Coverage Index Card Coverage Index Card Coverage Index
2 22 18% 0.76 14 21% 0.72 35 20% 0.77
5 21 19% 0.81 14 21% 0.74 18 17% 0.81
7 13 23% 0.73 6 50% 0.46 19 15% 0.79
8 31 16% 0.81 25 25% 0.72 38 18% 0.79
9 63 9% 0.88 44 27% 0.70 41 12% 0.83
10 24 16% 0.78 9 22% 0.69 8 25% 0.75
18 5 60% 0.33 13 38% 0.57 5 20% 0.75
21 27 22% 0.74 6 17% 0.80 22 18% 0.81

Avg(dense) 28.7 17% 0.79 24.5 23% 0.72 28.8 16% 0.8

Table 6.1: Skew in Plan Space Coverage

themselves the output of SQL queries).

When the fractional cardinality required to cover 80 percent of the space is considered, we

see that on average it is in the neighborhood of 20 percent, highlighting the inequity in the plan

space distribution. This is comprehensively captured by the Gini index values, which are mostly

in excess of 0.5, and even reaching 0.8 on occasion, indicating very high skew in the plan space

distribution. Further, note that this skew is present,across the board, in all the optimizers.

Overall, the statistics clearly demonstrate that modern optimizers tend to make extremely

fine-grained choices. Further, these numbers areconservativein that they were obtained with a

100 x 100 grid – with finer-granularity grids, as mentioned in the Introduction, the number of

plans often increased even further. For example, using a 1000 x 1000 grid for Q9 on OptB, the

number of plans increased from 44 to 60!

6.1 Plan Cardinality Reduction by Swallowing

Motivated by the above skewed statistics, we now look into whether it is possible to replace

many of the small-sized plans by larger-sized plans in the optimal plan set, without unduly

increasing the cost of the query points associated with the small plans. That is, can small plans

be “completely swallowed” by their larger siblings, leading to a reduced plan set cardinality,

without materially affecting the associated queries.

To do this, we first fix a threshold,λ, representing the maximum percentage cost increase
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that can be tolerated. Specifically, no query point in the original space should have its cost

increased,post-swallowing, by more thanλ. Next, to decide whether a plan can be swallowed,

we use the following formulation:

Cost Domination Principle: Given a pair of distinct query pointsq1(x1, y1) andq2(x2, y2) in

the two-dimensional selectivity space, we say that pointq2 dominatesq1, symbolized by

q2 Â q1, if and only ifx2 ≥ x1, y2 ≥ y1, and result cardinalityRq2 ≥ Rq1 (note that result

cardinality estimations are, in principle, independent of plan choices).1 Then, if points

q1(x1, y1) andq2(x2, y2), are associated with distinct plansP1 andP2, respectively, in the

original space,C2
1 , the cost of executing queryq1 with planP2 is upper-bounded byC2

2 ,

the cost of executingq2 with P2, if and only if q2 Â q1.

Intuitively, what is meant by the cost domination principle is that we expect the optimizer

cost functions to be monotonically non-decreasing with increasing base relation selectivities

and result cardinalities. Equivalently, a plan that processes a superset of the input, and produces

a superset of the output, as compared to another plan, is estimated to be more costly to execute.

However, as discussed later in Section 8, this (surprisingly) does not always prove to be the case

with the current optimizers, and we therefore have to explicitly check for the applicability of

the principle.

Based on the above principle, when considering swallowing possibilities for a query point

qs, we only look for replacements by “foreign” (i.e. belonging to a different plan) query points

that are in thefirst quadrantrelative toqs as the origin, since these points upper-bound the cost

of the plan at the origin. This is made clear in Figure 6.1, which shows that, independent of

the cost model of the dominating plan, the cost of any foreign query point in the first quadrant

will be an upper bound on the cost of executing the foreign plan at the swallowed point. We

now need to find the set of dominating foreign points that are within theλ threshold, and if such

points exist, choose one replacement from among these – currently, we choose the point with

the lowest cost as the replacement. Finally, anentire plancan be swallowed if and only ifall

its query points can be swallowed by either a single plan or a group of plans. In our processing,

1Result cardinalities are usually monotonically non-decreasing with increasingx andy, but this need not always
be the case, especially for nested queries.
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we first order the plans in ascending order of size, and then go up the list, checking for the

possibility of swallowing each plan.

Note that the cost domination principle is conservative in that it does not capture all swal-

lowing possibilities, due to restricting its search only to the first quadrant. But, as we will show

next, substantial reductions in plan space cardinalities can be achieved even with this conserva-

tive approach.

Figure 6.1: Dominating Quadrant

For the experiments presented here, we setλ, the cost increase threshold, to 10 percent.

Note that in any case the cost computations made by query optimizers are themselves statis-

tical estimates, and therefore allowing for a 10 percent “fudge factor” may be well within the

bounds of theinherenterror in the estimation process. In fact, as mentioned recently in [19, 28],

cost estimates can often be signficantly off due to modeling errors, prompting the new wave of

“learning” optimizers (e.g. LEO [28]) that iteratively refine their models to improve their esti-

mates.

When the above plan-swallowing technique is implemented on the set of plans shown in

Table 6.1, and withλ = 10%, the resulting reductions (as a percentage) in the plan cardinalities

are shown in Table 6.2. We see here that the reductions are very significant – for example,

Q8 reduces by 87% (31 to 4), 84% (25 to 4) and 86% (38 to 5), for OptA, OptB and OptC,
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OptA OptB OptC
TPC-H % Avg Max % Avg Max % Avg Max
Query Card Cost Cost Card Cost Cost Card Cost Cost

Number Dec Inc Inc Dec Inc Inc Dec Inc Inc
2 59.2 1.0 4.4 64.2 0.6 5.9 77.1 3.2 6.4
5 67.3 2.6 8.1 42.9 0.1 0.6 61.1 0.2 8.1
7 46.1 0.1 9.5 16.6 0.4 0.7 54.5 1.1 9.5
8 87.6 0.4 9.4 84 0.9 9.1 86.8 1.2 8.4
9 84.4 1.6 8.6 36.4 1.4 8.9 80.5 2.1 8.3
10 67.6 0.8 4.4 44.4 0.5 6.1 62.5 0.4 2.4
18 40.0 0.1 0.5 46.2 3.7 9.6 00.0 0.0 0.0
21 59.8 0.0 0.2 66.7 0.9 2.5 68.2 0.7 6.9

Avg(dense) 67.4 0.9 6.4 56.9 0.7 6.1 71.4 1.4 7.9

Table 6.2: Plan Cardinality Reduction by Swallowing

respectively. On average over dense queries, the reductions are of the order of 60% across all

three optimizers, with OptC going over 70%. Also note that these reductions areconservative

because when the grid granularity is increased – from 100 x 100 to, say, 1000 x 1000 – the

new plans that emerge tend to be very small and are therefore highly likely to be subsequently

swallowed. In a nutshell, the following thumb rule emerges from our results:“two-thirds of

the plans in a dense plan diagram are liable to be eliminated through plan swallowing”.

In Table 6.2, we have also shown theaveragepercentage increase in the costs of swallowed

query points, as well as themaximumcost increase suffered across all query points. Note that,

although the threshold is set to 10%, theactualaverage cost increase is rather low – less than

2%, which means that most of the swallowed query pointshardly suffer on account of the re-

placement by an alternative plan. In fact, even the maximum increase does not always reach the

threshold setting. Further, note that these averages and maxima areupper bounds, and the real

cost estimates of the replacement plans at the swallowed points may be even lower in practice.

Overall, our observation is that there appears to be significant potential todrastically reduce the

complexity of plan diagrams without materially affecting the query processing quality.

A key implication of the above observation is the following:Suppose it were possible to

simplify current optimizers to produce only reduced plan diagrams, then the considerable com-

putational overheads typically associated with the query optimization process may also be sub-

stantially lowered. We suggest that this may be an interesting avenue to be explored by the



CHAPTER 6. SKEW IN PLAN SPACE COVERAGE 39

database research community.

6.2 Plan Reduction6= Optimization Levels

As mentioned earlier, optimizers typically have multiple optimization levels that trade off plan

quality versus optimization time, and at first glance, our plan reduction technique may appear

equivalent to choosing a coarser optimization level. However, the two concepts are completely

different because the optimal plan sets chosen at different levels by the optimizer may be vastly

dissimilar. A striking example is Q8, wherenoneof the 68 plans chosen by OptA at the highest

level are present among the 8 plans chosen at the lowest level. Further, going to a coarser level

of optimization does notnecessarilyresult in lower plan cardinalities – a case in point is OptA

on Q2, producing only 4 plans at the highest level, but as many as 22 plans at a lower level.

Again, there is zero overlap between the two optimal plan sets.

In contrast, with plan reduction by swallowing, only a subset of theoriginal planschosen by

the optimizer are used to cover the entire plan space. In fact, plan reduction fits in perfectly with

the query clustering approach previously proposed in our Plastic plan recycling tool [7, 23, 26,

33], where queries that are expected to have identical plan templates are grouped together based

on similarities in their feature vectors. This is because the cluster regionsinherentlycoarsen the

plan diagram granularity.
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Relationship to PQO

A rich body of literature exists onparametric query optimization(PQO) [1, 2, 11, 12, 5, 6, 14,

16, 17]. The goal here is to apriori identify the optimal set of plans for the entire relational

selectivity space at compile time, and subsequently to use at run time the actual selectivity

parameter settings to identify the best plan – the expectation is that this would be much faster

than optimizing the query from scratch. Most of this work is based on assuming cost functions

that would result in one or more of the following:

Plan Convexity: If a plan P is optimal at point A and at point B, then it is optimal at all points

on the line joining the two points;

Plan Uniqueness:An optimal plan P appears at only one contiguous region in the entire space;

Plan Homogeneity: An optimal plan P is optimal within the entire region enclosed by its plan

boundaries.

However, we find thatnone of the threeassumptions hold true, even approximately, in the

plan diagrams produced by the commercial optimizers. For example, in Figure 1.3(a), plan

convexity is severely violated by the regions covered by plans P12 (dark green) and P16 (light

gray). The plan uniqueness property is violated by plan P4 (maroon) which appears in two

non-contiguous locations in the top left quadrant, while plan P18 appears in finely-chopped

pieces. Finally, plan homogeneity is violated by the small (brown) rectangle of plan P14, close

to coordinates (60,30), in the (light-pink) optimality region of plan P3.

40
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The prior literature [12, 17] had also estimated thathigh plan densitiesare to be expected

only along the selectivity axes – that is, where one or both base relations in the plan diagram

are extremely selective, providing only a few tuples. However, we have found that high plan

densities can be present elsewhere in the selectivity space also – for example, see the region

between plans P5 (dark brown) and P11 (orange) in Figure 1.3(a). This is also the reason for our

choosing a uniform distribution of the query instances, instead of the exponential distribution

towards lower selectivity values used in [12].

In the following section, more detailed statistics about the violations of the above assump-

tions are presented, as part of a discussion on interesting plan diagram patterns.
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Interesting Plan Diagram Patterns

We now move on to presenting representative instances of a variety of interesting patterns that

emerged in the plan diagrams across the various queries and optimizers that we evaluated in our

study.

8.1 Plan Duplicates and Plan Islands

In several plan diagrams, we noticed that a given optimal plan may haveduplicatesin that it

may appear in several different disjoint locations. Further, these duplicates may also be spatially

quite separated. For example, consider the plan diagram for Q10 with OptA in Figure 8.1. Here,

we see that plan P3 (dark pink) is present twice, being present both in the center, as well as along

the right boundary of the plan space. An even more extreme example is plan P6 (dark green),

which is present around the 20% and 95% markers on theCUSTOMERselectivity axis.

A different kind of duplicate pattern is seen for Q5 with OptC, shown in Figure 8.2, where

plan P7 (magenta) is present in three different locations, all within the confines of the region

occupied by plan P1 (dark orange). When plans P7 and P1 are compared, we find that the

former uses anested-loops join between the small relationsNATION and REGION, whereas

the latter employs asort-merge-join instead.

Apart from duplicates, we also see that there are instances ofplan islands, where a plan

region is completely enclosed by another. For example, plan P18 is a (magenta) island in the

42



CHAPTER 8. INTERESTING PLAN DIAGRAM PATTERNS 43

Figure 8.1: Duplicates and Islands (Query 10, OptA)

Figure 8.2: Duplicates and Islands (Query 5, OptC)

optimality region of the (dark green) plan P6 in the lower left quadrant of Figure 8.1. Investi-

gating the internals of these plans, we find that plan P18 has ahash-join betweenCUSTOMER

andNATION followed by ahash-join with a sub-tree whose root is anested-loop join. The

only difference in plan P6 is that it first hash-joins theCUSTOMER relation with the sub-tree,
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and then performs the hash-join withNATION .

The number of such duplicates and islands for each optimizer, over all dense queries of the

benchmark, is presented in Table 8.1 (Original columns). We see here that all three optimizers

generate a significant number of duplicates; OptA also generates a large number of islands,

whereas OptB and OptC have relatively few islands.

Databases # Duplicates # Islands
Original Reduced Original Reduced

OptA 130 13 38 3
OptB 80 15 1 0
OptC 55 7 8 3

Table 8.1: Duplicates and Islands

In general, the reason for the occurrence of such duplicates and islands is that two or more

competing plans have fairly close costs in that area. So, the optimizer due to its extremely

fine grained plan choices, obtains plan diagrams with these features. This is confirmed from

Table 8.1 (Reduced columns), where after application of the plan reduction algorithm, a signif-

icant decrease is observed in the number of islands and duplicates. This also means that PQO,

which, as mentioned in the previous section, appears ill-suited to directly capture the complexi-

ties of modern optimizers, may turn out to be a more viable proposition in the space of reduced

plan diagrams.

8.2 Plan Switch Points

In several plan diagrams, we find lines parallel to the axes that run through theentireselectivity

space, with a plan shift occurring forall plans bordering the line, when we move across the line.

We will hereafter refer to such lines as “plan switch-points”.

In the plan diagram of Figure 8.3, obtained with Q9 on OptA, an example switch-point

appears at approximately 30% selectivity of theSUPPLIERrelation. Here, we found acommon

changein all plans across the switch-point – thehash-join sequencePARTSUPP./ SUPPLIER

./ PART is altered toPARTSUPP./ PART ./ SUPPLIER, suggesting an intersection of the cost
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function of the two sequences at this switch-point.

Figure 8.3: Plan Switch-Point (Query 9, OptA)

Figure 8.4: Venetian Blinds Pattern (Query 9, OptB)

For the same Q9 query, an even more interesting switch-point example is obtained with

OptB, shown in Figure 8.4. Here we observe, between 10% and 35% on theSUPPLIERaxis,

six planssimultaneously changing with rapid alternations to produce a “Venetian blinds” effect.
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Specifically, the optimizer changes from P6 to P1, P16 to P4, P25 to P23, P7 to P18, P8 to P9,

and P42 to P47, from one vertical strip to the next.

The reason for this behavior is that the optimizer alternates between aleft-deephash join

and aright-deephash join across theNATION , SUPPLIERandLINEITEM relations. Both vari-

ations have almost equal estimated cost, and their cost-models are perhaps discretized in a

step-function manner, resulting in the observed blinds.

8.3 Speckle Pattern

Operating Picasso with Q17 on OptA results in Figure 8.5. We see here that the entire plan

diagram is divided into just two plans, P1 and P2, occupying nearly equal areas, but that plan

P1 (bright green) also appears as speckles sprinkled in P2’s (red) area.

The only difference between the two plans is that an additionalSORT operation is present

in P1 on thePART relation. However, the cost of this sort is very low, and therefore we find

intermixing of plans due to the close and perhaps discretized cost models.

Figure 8.5: Speckle Pattern (Query 17, OptA)
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8.4 Footprint Pattern

(a) Footprint Pattern

(b) Reduced Footprint Pattern

Figure 8.6: Plan Diagram and Reduced Plan Diagram (Query 7, OptA)

A curious pattern, similar to footprints on the beach, shows up in Figure 8.6(a), obtained



CHAPTER 8. INTERESTING PLAN DIAGRAM PATTERNS 48

with Q7 on the OptA optimizer, where we see plan P7 exhibiting a thin (cadet-blue) broken

curved pattern in the middle of plan P2’s (orange) region. The reason for this behavior is that

both plans are of roughly equal cost, with the difference being that in plan P2, theSUPPLIERre-

lation participates in asort-merge-join at the top of the plan tree, whereas in P7, thehash-join

operator is used instead at the same location. This is confirmed in the corresponding reduced

plan diagram e 8.6(b) where the footprints disappear.

8.5 Non-Monotonic Cost Behavior

The example switch-points shown earlier, were allcost-basedswitch-points, where plans were

switched to derive lower execution costs. Yet another example of such a switch-point is seen in

Figure 8.7(a), obtained with query Q2 on OptA, at 97% selectivity of thePART relation. Here,

the common change in all plans across the switch-point is that thehash-join between relations

PART andPARTSUPPis replaced by asort-merge-join.

But, in the same picture, there are switch-points occurring at 26% and 50% in thePARTSUPP

selectivity range, that result in a counter-intuitivenon-monotoniccost behavior, as shown in the

corresponding cost diagram of Figure 8.7(b). Here, we see that although the result cardinalities

are monotonically increasing, the estimated costs for producing these results show a marked

non-monotonic step-down behavior in the middle section. Specifically, at the 26% switch-point,

an additional‘sort’ operator (onps supplycost ) is added, which substantially decreases the

overall cost – for example, in moving from plan P2 to P3 at 50%PART selectivity, the estimated

cost decreases by a factor of 50! Conversely, in moving from P3 to P1 at the 50% switch-point,

the cost of the optimal plan jumps up by a factor of 70 at 50%PART selectivity.

Step-function upward jumps in the cost with increasing input cardinalities are known to

occur – for example, when one of the relations in a join ceases to fit completely within the

available memory – however, what is surprising in the above is the step-function costdecrease

at the 26% switch-point. We conjecture that such disruptive cost behavior may arise either due

to the presence of rules in the optimizer, or due to parameterized changes in the search space

evaluated by the optimizer.
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The above example showed non-monotonic behavior arising out of a plan-switch. However,

more surprisingly, we have also encountered situations where a plan shows non-monotonic

behaviorinternal to its optimality region. A specific example is shown in Figure 8.8 obtained

for Q21 with OptA. Here, the plans P1, P3, P4 and P6, show a reduction in their estimated costs

with increasing input and result cardinalities. An investigation of these plans showed that all of

them feature anested-loops join, whose estimated costdecreaseswith increasing cardinalities

of its input relations – this may perhaps indicate an inconsistency in the associated cost model.

Further, such instances of non-monotonic behavior were observed with all three optimizers.
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(a) Plan Diagram

(b) Cost Diagram

Figure 8.7: Plan-Switch Non-Monotonic Costs (Query 2, OptA)
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(a) Plan Diagram

(b) Cost Diagram

Figure 8.8: Intra-plan Non-Monotonic Costs (Query 21, OptA)
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Conclusions and Future Work

In this report, we have attempted to improve both the speed and the quality of results of the op-

timizer. Plastic, a tool that significantly improves the speed of the optimizer, has been improved

by incorporating a host of new features into it.

Using L∞Norm as the distance metric, we have proposed and implementeddynamic

variable-sizedthat can adjust gracefully to both high-volatility and low-volatility regions of

plan space. Through query template Q-21 shown in Figure 4.1, we have demonstrated that

dynamic-variableclustering improves classification accuracy when compared tostatic-variable

clustering. We have incorporated C4.5 decision tree into Plastic for fast cluster identification.

We first group the clusters based on plan commonality and then build a classifier on these groups

of clusters. We have extended theplan-diff module, which can now be used to compare plan

choices across database platforms, along with comparing plan choices for different versions of

same query. This plan comparison is currently performed taking into consideration operator-

level attributes of the plans.

We have conceived and developed a tool called Picasso that helps in gaining useful in-

sights in understanding the intriguing behavior of modern optimizers. Using Picasso, we have

attempted to analyze the behavior of (1-D and 2-D) plan and cost diagrams produced by mod-

ern optimizers on queries based on the TPC-H benchmark. Our study shows that many of the

queries result in highly intricate diagrams, with several tens of plans covering the space. Further,

there is heavy skew in the relative coverage of the plans, with 80 percent of the space typically
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covered by 20 percent or less of the plans. We showed that through a process of plan reduction

where the query points associated with a small-sized plan are swallowed by a larger plan, it

is possible to significantly bring down the cardinality of the plan diagram, without materially

affecting the query cost.

We also demonstrated that a variety of complex and intricate patterns are produced in the

diagrams, which may be an overkill given the coarseness of the underlying cost space. These

patterns also indicate that the basic assumptions of parametric query optimization literature do

not hold in practice. However, with reduced plan diagrams, the gap between theory and practice

is considerably narrowed.

Not being privy to the internals of optimizers, our work is perforce speculative in nature.

However, we hope that it may serve as a stimulus to the database research community to in-

vestigate mechanisms for pruning the plan search space so as to directly generate reduced plan

diagrams, and thereby perhaps achieve substantial savings in the significant overheads normally

associated with the query optimization process.

In future, we plan to extend Plastic, which currently only handles basic SPJ queries, to sup-

port nested queries, groups and aggregates. We would also like to conduct a deeper investigation

into the kinds of queries that result in dense plan diagrams, such as, for example, the presence

of dynamic base relations. Also, a major limitation of our current work is its restriction to 1-D

and 2-D plan diagrams – in practice, there may be many more schema and system dimensions

affecting plan choices. Therefore, we intend to investigate higher dimensional plan diagrams in

our future research.
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Appendix

Towards the end of the project, we have also evaluated the PostgreSQL 8.0.3 [42] relational en-

gine. This optimizer [4] has two optimization levels, one which usesGenetic Query Optimizer,

and the other that does exhaustive search. We could do only a preliminary study for Post-

greSQL. We hope to do a more detailed study of the plan diagrams generated in PostgreSQL as

part of our future work. We present here the results of our preliminary experiments for the op-

timization level that uses Genetic Query Optimizer here. The complete set of evaluated queries

and their associated plan, cost, and reduced-plan diagrams for PostgreSQL is available at [32].

TPC-H PostgreSQL
Query Plan 80% Gini

Number Cardinality Coverage Index
2 7 28% 0.75
5 15 20% 0.80
7 19 21% 0.77
8 23 13% 0.82
9 9 22% 0.78
10 11 27% 0.72
18 19 31% 0.70
21 25 20% 0.79

Avg(dense) 18.6 22% 0.77

Table 10.1: Skew in Plan Space Coverage for PostgreSQL
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PostgreSQL
TPC-H % Avgerage Maximum
Query Cardinality Cost Cost

Number Decrease Increase Increase
2 28.5 6.2 6.4
5 33.3 1.5 6.1
7 68.4 2.0 9.2
8 82.6 1.1 4.3
9 77.7 0.5 2.6
10 36.4 1.2 2.6
18 47.4 1.9 9.9
21 80.0 0.0 0.0

Avg(dense) 58.0 1.3 5.4

Table 10.2: Plan Cardinality Reduction by Swallowing in PostgreSQL

Databases # Duplicates # Islands
Original Reduced Original Reduced

PostgreSQL 59 4 10 0

Table 10.3: Duplicates and Islands in PostgreSQL
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