
Reduction of Query Optimizer Plan

Diagrams

A Thesis

Submitted for the Degree of

Master of Science (Engineering)

in the Faculty of Engineering

By

Pooja N. Darera

Supercomputer Education and Research Centre

INDIAN INSTITUTE OF SCIENCE

BANGALORE – 560 012, INDIA

December 2007

Acknowledgements

First and foremost, I would like to thank my guide Prof. Jayant Haritsa for his enduring support,

encouragement and motivation. I would also like to thank my parents and brother for their

support and guidance.

A special thanks to Harish, who collaborated with me on this work. I would also like to

thank the members of DSL, SSL, Rythmica and Papyrus for making IISc a really fun place to

be in. I’m also grateful to my friends Soumya, Shreya, John, Vipul and Paneendra for always

being extremely supportive. A huge thanks to Dr. Vathsala for her unwavering patience and

encouragement through difficult times.

Last and by no means the least, I would like to thank Suresh, without whose invaluable

support none of this would have been possible.

i

Abstract

Modern database systems use a query optimizer to identify the most efficient strategy, called

“plan”, to execute declarative SQL queries. Optimization is a mandatory exercise since the dif-

ference between the cost of the best plan and a random choice could be in orders of magnitude.

The role of query optimizers is especially critical for the decision-support queries featured in

data warehousing and data mining applications.

For a query on a given database and system configuration, the optimizer’s plan choice is

primarily a function of the selectivities of the base relations participating in the query. A picto-

rial enumeration of the execution plan choices of a databasequery optimizer over this relational

selectivity space is called a “plan diagram”. It has been shown recently that these diagrams

are often remarkably complex and dense, with a large number of plans covering the space.

An interesting research problem that immediately arises iswhether complex plan diagrams can

be reduced to a significantly smaller number of plans, without materially compromising the

query processing quality. The motivation is that reduced plan diagrams provide several bene-

fits, including quantifying the redundancy in the plan search space, enhancing the applicability

of parametric query optimization, identifying error-resistant and least-expected-cost plans, and

minimizing the overhead of multi-plan approaches.

In this thesis, we investigate the plan diagram reduction issue from theoretical, statistical

and empirical perspectives. Our analysis shows that optimal plan diagram reduction, w.r.t.

minimizing the number of plans in the reduced diagram, is an NP-hard problem in general,

and remains so even for a storage-constrained variation. Wethen present CostGreedy, a greedy

reduction algorithm that has tight and optimal performanceguarantees, and whose complexity

scales linearly with the number of plans in the diagram. Next, we construct an extremely fast

ii

ABSTRACT iii

estimator, AmmEst, for identifying the location of the besttradeoff between the reduction in

plan cardinality and the impact on query processing quality. Both CostGreedy and AmmEst

have been incorporated in the publicly-available Picasso optimizer visualization tool.

Through extensive experimentation with a suite of representative multi-dimensional SQL

query templates based on the TPC-H and TPC-DS benchmarks, executed on industrial-strength

database optimizers, over a range of data distributions, query distributions, and memory bud-

gets, we demonstrate the following: Complex plan diagrams can be very substantially reduced

- in fact, they become “anorexic” i.e. reduced to a very small absolute number of plans - with

only a marginal increase in query processing costs. While these results are produced using

a highly conservative upper-bounding of plan costs based ona cost monotonicity constraint,

when the costing is done on “actuals” using abstract plan features, the reduction obtained is

even greater - in fact, often resulting in only a couple of plans in the reduced diagram. We also

experimentally demonstrate some of the benefits of this reduction w.r.t. enhanced resistance to

errors in selectivity estimates of optimizers and present an algorithm to produce reduced plan

diagrams that are inherently resistant to selectivity estimate errors.

In summary, this thesis demonstrates that complex plan diagrams can be efficiently con-

verted to highly anorexic reduced diagrams, a result that could have useful implications for the

design and use of next-generation database query optimizers.

Publications

1. Harish D., Pooja Darera, Jayant Haritsa,

“On The Production of Anorexic Plan Diagrams”,

Proc. of 33rd Intl. Conf. on Very Large Data Bases (VLDB), Vienna, Austria, September

2007.

2. Harish D., Pooja Darera, Jayant Haritsa,

“Reduction of Query Optimizer Plan Diagrams”, Technical Report, TR-2007-01,

DSL/SERC, Indian Institute of Science

http://dsl.serc.iisc.ernet.in/publications/report/TR/TR-2007-01.pdf

iv

Contents

Acknowledgements i

Abstract ii

List of Figures viii

List of Tables x

1 Introduction 1

1.1 Query Templates . 3

1.2 Optimizer Diagrams .. 4

1.3 Plan Diagram Reduction .. 6

1.3.1 Alternative Reduction Techniques 7

1.4 Benefits of Plan Diagram Reduction 8

1.4.1 Quantification of Redundancy in Plan Search Space 8

1.4.2 Enhancement of PQO Usability .8

1.4.3 Identification of Error-Resistant Plans 9

1.4.4 Identification of Least-Expected-Cost Plans 10

1.4.5 Minimization of Overheads of Multi-Plan Approaches 10

1.4.6 Enhanced Support for Plan Clustering 11

1.5 Contributions .11

1.6 Organization .13

v

CONTENTS vi

2 Survey of Related Research 14

2.1 Challenges of Query Optimization 14

2.1.1 Plan Selection Strategy .. 15

2.1.2 Efficient Selection Strategies 16

2.1.3 Run-time Refinements of Plan Choices 18

2.2 Behavior of Industrial Strength Optimizers 20

3 The Plan Diagram Reduction Problem 22

3.1 Preliminaries .22

3.2 The Set Cover Problem .25

3.3 Reducing Set Cover to PlanRed 26

3.4 Single-swallowing PlanRed 30

3.5 Storage-budgeted PlanRed 33

4 Greedy Plan Diagram Reduction 35

4.1 The AreaGreedy Algorithm .. . 35

4.2 The CostGreedy Algorithm .. . 38

4.2.1 Complexity Analysis . 39

4.2.2 Approximation Factor . 42

4.3 The ThresholdGreedy Algorithm 44

5 Estimators for Plan Diagram Reduction 47

6 Experimental Results 50

6.1 Computational Efficiency 51

6.2 Plan Diagram Reduction Quality 52

6.2.1 Skewed Data Distribution .53

6.2.2 Exponential Distribution of Query Points 54

6.2.3 Increased Grid Resolution .. 54

6.2.4 Reduction For Various Cost Diagram Behaviors 55

6.3 Scaling with Dimensions .. . 59

CONTENTS vii

6.4 Estimator Performance .. . 60

6.5 Effect of Memory Availability 61

6.6 TPC-DS . 63

6.7 Abstract Plan Costing Based Reduction 63

6.8 Rationale for Reduction 66

7 Applications of Plan Diagram Reduction 68

7.1 Resistance to errors in selectivity estimates 68

7.2 Producing Robust Reduced Plan Diagrams 71

8 Implementation in Picasso 78

8.1 Algorithm Implementation 79

8.2 System Memory Restrictions 80

8.3 Abstract Plan Costing .. . 80

9 Conclusions 83

9.1 Future Work . 85

A 87

References 103

List of Figures

1.1 Sample SQL Query . 1

1.2 Query Execution Plan .. 2

1.3 Example Query Template: QT8 .. . 3

1.4 Sample Plan and Reduced Plan Diagrams (QT8) 5

1.5 Plan Cardinality vs Cost Threshold 7

3.1 Algorithm Reduce .27

3.2 Example of Algorithm Reduce .. . 28

3.3 Algorithm ReducePlans .. . 34

4.1 Algorithm AreaGreedy .. 36

4.2 Algorithm CostGreedy .. 40

4.3 Algorithm Greedy Setcover 40

4.4 Updatingmincostin Algorithm CostGreedy 41

4.5 Algorithm ThresholdGreedy 45

5.1 Algorithm AvgEst .48

5.2 Algorithm AmmEst . 49

6.1 Reduction Quality (QT8), Res=100 52

6.2 Cost Diagram Behavior .. 56

6.3 Discontinuous Cost Function Example (QT18) 58

6.4 Scaling with Dimensions .. . 59

6.5 Knee Estimates . 60

viii

L IST OF FIGURES ix

6.6 Estimator Performance .. . 62

6.7 Plan Diagram (QT8) . 64

6.8 Reduced Plan Diagram (QT8,λ = 10%) . 65

7.1 Sample Plan and Reduced Plan Diagrams (QT8) 70

7.2 SeRP (QT4,λ = 10%) . 72

7.3 Algorithm RobustCostGreedy 73

7.4 Plan Diagram (QT5) . 74

7.5 Reduced Plan Diagram and SeRP Diagram (QT5,λ = 10%) 76

7.6 Robust Reduced Plan Diagram and SeRP Diagram (QT5,λ = 10%) 77

8.1 Picasso Architecture .. . 79

8.2 Estimator . 80

8.3 Abstract Plan Costing: QT8 82

A.1 QT2 . 88

A.2 QT4 . 89

A.3 QT5 . 90

A.4 QT7 . 91

A.5 QT8 . 92

A.6 QT9 . 93

A.7 QT10 . 94

A.8 QT17 . 95

A.9 QT18 . 96

A.10 QT21 . 97

A.11 DSQT12 . 98

A.12 DSQT17 . 99

A.13 DSQT18 . 100

A.14 DSQT19 . 101

A.15 DSQT25 . 102

List of Tables

3.1 Reduction Quadrants .. 24

6.1 Computational Efficiency (QT8, Res=100) 52

6.2 Plan Diagram Reduction Quality (Res = 100) 53

6.3 Skewed Data Distribution (Res = 100) 53

6.4 Exponential Query Point Distribution (Res = 100) 54

6.5 Increased Grid Resolution (Res = 300) 55

6.6 Multi-dimensional Query Templates 60

6.7 Running Time of Estimators vs CostGreedy 61

6.8 OptA- Varying memory .61

6.9 TPC-DS . 63

6.10 Computational Efficiency (QT8, Res=100) 66

x

Chapter 1

Introduction

The Structured Query Language (SQL) [29] is the international standard for querying relational

database management systems (DBMS) such as IBM’s DB2, Microsoft’s SQL Server, Oracle,

etc., which form the cornerstone of today’s information industry. SQL is a declarative language

in the sense that an SQL query specifieswhathas to be done, nothowit is to be done. A sample

SQL query on the TPC-H benchmark schema [45] is given in Figure 1.1, which lists the mode

of shipping for all items whose quantity is less than or equalto 20, which are a part of an order

of price 100 or less.

selectl shipmode

from orders, lineitem

whereo orderkey = lorderkey

and ototalprice≤ 100

and l quantity≤ 20

group byl shipmode

order byl shipmode

Figure 1.1: Sample SQL Query

Modern database systems use aquery optimizerto identify the most efficient strategy to

execute declarative SQL queries. The efficiency of the strategies, called “query execution plans”

or simply “plans”, is usually evaluated or costed in terms ofthe estimated query response time.

1

CHAPTER 1. INTRODUCTION 2

Figure 1.2: Query Execution Plan

A sample plan for the query given in Figure 1.1 is shown in Figure 1.2. This plan performs a

sequential scan of theORDERSandLINEITEM relations before joining them using thehash join

operator. It finally sorts and groups the results in the required order.

Optimization is a mandatory exercise since the difference between the cost of the best plan

and a random choice could be in orders of magnitude [44]. The role of query optimizers has

become especially critical in recent times due to the high degree of query complexity character-

izing current decision-support applications, as exemplified by the TPC-H benchmark [45], and

its new incarnation, TPC-DS [46].

Query optimization is a difficult problem due to the large number of possible ways to execute

a given query using different access methods, join orders, join operators, etc. While industrial

strength query optimizers each have their own proprietary methods to identify the best plan,

the de-facto standard underlying strategy is based on the classical System-R optimizer [38]

CHAPTER 1. INTRODUCTION 3

proposed about three decades ago. This method is: Given a user query, first apply a variety of

heuristics to restrict the combinatorially large search space of plan alternatives to a manageable

size; then estimate, with a cost model and a dynamic-programming-based processing algorithm,

the efficiency of each of these candidate plans; finally, choose the plan with the lowest estimated

cost.

Query optimization using this cost-based approach is computationally expensive w.r.t. the

time and resources that need to be expended to find the best plan. Therefore, understanding and

characterizing query optimizers with the ultimate objective of improving their performance is a

fundamentally important issue in the database research literature.

1.1 Query Templates

select oyear, sum(case when nation = ’BRAZIL’ then volume else 0 end)/ sum(volume)

from (select YEAR(oorderdate) as oyear, l extendedprice * (1 - ldiscount) as volume, n2.nname as
nation

from part, supplier, lineitem, orders, customer, nation n1, nation n2, region

where ppartkey = lpartkey and ssuppkey = lsuppkey and lorderkey = oorderkey and ocustkey =
c custkey and cnationkey = n1.nnationkey and n1.nregionkey = rregionkey and snationkey =
n2.n nationkey and rname = ’AMERICA’ and ptype = ’ECONOMY ANODIZED STEEL’
ands acctbal≤ C1 andl extendedprice≤ C2

) as all nations

group by oyear

order by oyear

Figure 1.3: Example Query Template: QT8

The cost of a given query execution plan is a function of many parameters, including the

database structure and contents, the engine settings, the system configuration, etc. For a query

on a given database and system configuration, the optimizer’s plan choice is primarily a function

of theselectivitiesof the base relations participating in the query – that is, the estimated number

of rows of each relation relevant to producing the final result. Varying the selectivities of one or

more of the base relations produces the selectivity space w.r.t. these relations. A “parameterized

CHAPTER 1. INTRODUCTION 4

query template” is a query with additional predicates that produce queries across this selectivity

space.

For example, consider QT8, the parameterized 2-D query template shown in Figure 1.3,

based on Query 8 of the TPC-H benchmark, with selectivity variations on theSUPPLIER and

LINEITEM relations through thes acctbal ≤ C1 and l extendedprice ≤ C2 predicates, re-

spectively. By varying the constantsC1 andC2, queries are generated across the selectivity

space.

1.2 Optimizer Diagrams

The behavior of a query optimizer over the selectivity spacecan be captured in a suite of di-

agrams. First, a “plan diagram” [33] denotes a color-coded pictorial enumeration of the ex-

ecution plan choices of a database query optimizer for a parameterized query template over

the relational selectivity space. The plan diagram for QT8 (produced using the Picasso opti-

mizer visualization tool on a popular commercial database engine) is shown in Figure 1.4(a),

where the X and Y axes determine the percentage selectivities of theSUPPLIERandLINEITEM

relations, respectively, and each color-coded region represents a particular plan that has been

determined by the optimizer to be the optimal choice in that region. We find that a set of 89

different optimal plans, P1 through P89, cover the entire selectivity space. The value associated

with each plan in the legend indicates the percentage area coverage of that plan in the diagram

– P1, for example, covers about 22% of the space, whereas P89 is chosen in only 0.001% of

the space.[Note to Readers: We recommend viewing all diagrams presented in this paper di-

rectly from the color PDF file, available at http://dsl.serc.iisc.ernet.in/ pooja/thesisdraft.pdf,

or from a color print copy, since the greyscale version may not clearly register the various

features.]

Complementary to the plan diagram is a “cost diagram”, shownin Figure 1.4(b), which is

a three-dimensional visualization of the estimated plan execution costs over the same relational

selectivity space. The X and Y axes represent the variationsin selectivity and the Z axis rep-

resents the cost. In this picture, the costs are normalized to the maximum cost over the space,

CHAPTER 1. INTRODUCTION 5

(a) Plan Diagram

(b) Cost Diagram (c) Cardinality Diagram

(d) Reduced Diagram (Threshold = 10%)

Figure 1.4: Sample Plan and Reduced Plan Diagrams (QT8)

CHAPTER 1. INTRODUCTION 6

which in this case is 155 and occurs at the point corresponding to maximum selectivity along

the X and Y axes. The minimum and maximum estimated costs are also shown in the side panel

of the diagram.

Finally, a “cardinality diagram”, shown in Figure 1.4(c), is similar to a cost diagram except

that it shows the cardinality of the query result as estimated by the optimizer, instead of ex-

ecution cost. The minimum and maximum estimated cardinalities are also shown in the side

panel.

1.3 Plan Diagram Reduction

As is evident from Figure 1.4(a), plan diagrams can be extremely complex and dense, with a

large number of plans covering the space – several such instances spanning a representative set

of query templates based on the TPC-H benchmark, over a suiteof industrial-strength optimiz-

ers, are available at [30]. An interesting research problemthat now arises is whether these com-

plex diagrams can be “reduced” to much simpler pictures featuring significantly fewer plans,

without adversely affecting the query processing qualityof any individual query point.

For example, if users were willing to tolerate a minor cost increase of at most 10% for

any query point in the diagram relative to its original (optimizer-estimated) cost, Figure 1.4(a)

could be reduced to that shown in Figure 1.4(d), whereonly 7 plans remain– that is, most of the

original plans have been “completely swallowed” by their siblings, leading to a highly reduced

plan cardinality. Further, note that a 10% increase, apart from being small in absolute terms,

is also well within the bounds of theinherenterror that characterizes the estimation process

of modern optimizers [25, 35, 43]. The complete graph of the reduced plan diagram’s plan

cardinality as a function of the cost increase threshold forthis example is shown in Figure 1.5.

The problem of reduction of plan diagrams was first posed in [4, 20]. A primary difference

between their work and ours, as described in more detail in Chapter 2, is that our evaluation is

on industrial-strengthquery templates and query optimizers. Their studies, on theother hand,

profiled basic Select-Project-Join (SPJ) queries on home-grown optimizers. Also, we guarantee

to satisfy the user-specified cost-increase threshold for every single query point, whereas they

CHAPTER 1. INTRODUCTION 7

0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

80

90

100

Cost Increase Threshold (%)

N
um

be
r o

f P
la

ns
 in

 R
ed

uc
ed

 P
la

n
D

ia
gr

am

Figure 1.5: Plan Cardinality vs Cost Threshold

may fail to meet this constraint when plans have nonlinear cost functions, a common occurrence

in practice.

1.3.1 Alternative Reduction Techniques

Ideally, the optimizer itself should be re-engineered to “pre-facto” (i.e. directly) produce the

reduced plan diagram. This could be done by considering, foreach query point, not only the

optimal plan but also alternative plans that have near-optimal costs, and from this set, picking

the plans so as to minimize the total number of plans over the space.

Another solution, proposed in [20], is to sample points across the parameter space and to fill

the remaining space using the PQO assumptions of plan convexity, uniqueness and homogenity

(See Chapter 2 for details).

However, the above solutions are not feasible in our environment for the following reasons:

Firstly, we include commercial optimizers in our test-suite, and therefore the pre-facto option is

inherently ruled out. Secondly, the PQO assumptions, as shown vividly in [33], do not generally

hold in practice for industrial-strength database environments. Therefore, in our work, we use

the more generic, albeit computationally expensive, approach of (a) exhaustively optimizing

each query in the selectivity space (at a given resolution) to produce the plan diagram, and then

(b) performing reduction as a “post-facto” exercise.

CHAPTER 1. INTRODUCTION 8

1.4 Benefits of Plan Diagram Reduction

We now turn our attention to highlighting a variety of benefits of performing plan diagram

reduction. The reduction of plan diagrams can result in two situations:

Case 1: The number of plans in the reduced plan diagram is aproportionalfraction of the number

of plans in the original plan diagram.

Case 2: The number of plans in the reduced plan diagram is within someabsolutenumber ir-

respective of the cardinality of the original plan diagram.An anorexicplan diagram is

defined as a diagram whose plan cardinality is within/arounda small absolute number (10

is the yardstick used in this thesis).

Although most of the benefits listed below are reaped for Cases 1 and 2, some of them become

meaningful only in the case of anorexic reduced diagrams, aswill be clear from the accompa-

nying descriptions.

1.4.1 Quantification of Redundancy in Plan Search Space

Plan diagram reduction quantitatively indicates the extent to which current optimizers might

perhaps be over-sophisticated in that they are “doing too good a job”, not merited by the coarse-

ness of the underlying cost space. This opens up the possibility of redesigning and simplifying

current optimizers to directly produce reduced plan diagrams, in the process lowering the signif-

icant computational overheads of query optimization. For example, a possible approach could

be based on modifying the set of sub-plans expanded in each iteration of the dynamic program-

ming algorithm to (a) include those within the cost increasethreshold relative to the cheapest

sub-plan, and (b) remove, using stability estimators of theplan cost function over the selectivity

space, “volatile” sub-plans; the final plan choice is the most stable within-threshold plan.

1.4.2 Enhancement of PQO Usability

A rich body of literature exists onparametric query optimization(PQO) (e.g.[8, 12, 13, 19,

20, 23]). The goal here is to apriori identify the optimal setof plans for the entire relational

CHAPTER 1. INTRODUCTION 9

selectivity space at compile time, and subsequently to use at run time the actual selectivity

parameter values to identify the best plan – the expectationis that this would be much faster

than optimizing the query from scratch.

A practical difficulty with PQO, however, is the representation of the plan optimality bound-

aries, which could, in principle, be of arbitrary complexity, making it difficult to identify specif-

ically which plan from the set of optimal plans is to be utilized for a newly arrived query. A

workaround for this problem is the following [20]: For the specific query currently supplied by

the user, evaluate its estimated execution cost witheach of the plansin the optimal set. Then,

choose the lowest cost plan for executing the query. For thisworkaround to be viable, the plan

diagram must have, in an absolute sense, only a small number of plans – this is because while

plan-costing is cheap as compared to query optimization [20], the total time taken for many

such costings may become comparable. However, as shown in Figure 1.4(a), the number of

optimal plans can be very large, unless plan diagram reduction is applied.

Therefore, a direct benefit of plan diagram reduction is thatit makes PQO viable from an

implementation perspective even in the highly complex world of industrial-strength optimizers.

1.4.3 Identification of Error-Resistant Plans

Plan diagram reduction can help identify plans that providerobust performance over large re-

gions of the selectivity space. Therefore,errors in the underlying database statistics, a situation

often encountered by optimizers in practice [25], may have much less impact as compared to

using the fine-grained plan choices of the original plan diagram, which may have poor perfor-

mance at other points in the space. As is shown later in this thesis, the cost of the original plan

can be orders-of magnitude greater than the replacement plan.

For example, in Figure 1.4(a), estimated selectivities of (14%,1%) leads to a choice of plan

P70. However, if the actual selectivities at runtime turn out to be significantly different, say

(50%,40%), using plan P70, whose cost increases steeply with selectivity, would be disastrous.

In contrast, this error would have had no impact with the reduced plan diagram of Figure 1.4(d),

since P1, the replacement plan choice at (14%,1%), remains the preferred plan for a large range

of higher values, including (50%,40%). Quantitatively, at(50%, 40%), plan P1 has a cost of

CHAPTER 1. INTRODUCTION 10

135, while P70 is much more expensive, aboutthree timesthis value.

In short, the final plan choices become robust to errors that cause the actual query point

to lie within the optimality regions of the replacement plans. In case of errors causing the

query point to lie outside this optimality region, the replacement plan can be chosen such that

it provides robustness, without effecting the plan reduction process. Such robustness of plan

choices is especially important for industrial workloads where often the goal is to identify plans

with stable good overall performance as opposed to selecting the best local plan with potentially

risky performance characteristics [27].

1.4.4 Identification of Least-Expected-Cost Plans

When faced with unknown input parameter values, today’s optimizers typically approximate the

distribution of the parameter values using some representative value – for example, the mean

or modal value – and then always choose this “least specific cost” plan at runtime. It has been

shown in [6, 7] that a better strategy would be to instead optimize for the “least expected cost”

plan, where the full distribution of the input parameters istaken into account. Computing the

least expected cost plan not only involves substantial computational overhead when the number

of plans is large, but also assumes that the various plans being compared are all modeled at the

same level of accuracy, rarely true in practice. With plan diagram reduction, on the other hand,

both the efficiency and the quality of the comparisons can become substantially better since

there are fewer contending plans.

1.4.5 Minimization of Overheads of Multi-Plan Approaches

A dynamic approach for selecting the best query plan was proposed in [1] wherein multiple

candidate query plans are executedin parallel. Based on the relative rate of progress of the

various plans, slower candidates are terminated along the way. The viability of this strategy

is based on keeping the number of parallel candidate plans toa manageable number given the

available computational resources, and plan diagram reduction can help satisfy this constraint.

An alternative and less resource-intensive multi-plan approach is proposed in [25] wherein

during execution of the best compile-time plan choice, based on the observed run-time per-

CHAPTER 1. INTRODUCTION 11

formance, a change in the query plan could be triggered for the remaining unexecuted portion

of the query. A recently proposed method called “progressive query optimization” (POP) [28]

alters this approach to incorporate plan validity ranges around estimated cardinalities to avoid

unnecessary reoptimization that does not lead to a change ofplans. POP also handles pipelined

results and is therefore a more generalized approach. A further refinement of POP is the very

recent RIO algorithm [3] which uses bounding boxes around cardinality estimates to repre-

sent uncertainty in these estimates, and then attempts to identify plans that retain their quality

throughout the box.

When reoptimization approaches of the above kind are combined with the plan diagram

reduction discussed in this thesis, the likelihood of triggering a re-optimization becomes sub-

stantially lower, thereby reducing the associated overheads.

1.4.6 Enhanced Support for Plan Clustering

Plan diagram reduction fits in perfectly with the query clustering approach previously proposed

in the Plastic plan recycling tool [15, 37, 39, 50], where queries that are expected to have

identical plan templates are grouped together based on similarities in their feature vectors. This

is because the cluster regionsinherentlycoarsen the plan diagram granularity. Further, from

an implementation perspective, having fewer distinct plans makes it easier with regard to both

storage and comparison.

1.5 Contributions

This thesis considers the problem of reducing the dense plandiagrams of modern optimizers

from theoretical, statistical and empirical perspectives. We first show that finding the optimal

(w.r.t. minimizing the plan cardinality) reduced plan diagram is NP-Hard through a reduction

from Set Cover. This result motivates the design of CostGreedy, a greedy algorithm whose

complexity isO(nm), wheren is the number of plans andm is the number of query points

in the diagram(n ≪ m). Hence, for a given picture resolution, CostGreedy’s performance

scaleslinearly with the number of plans in the diagram, making it much more efficient than the

CHAPTER 1. INTRODUCTION 12

O(m2) reduction algorithm of [33]. Further, from the reduction quality perspective, CostGreedy

provides a tight performance guarantee ofO(lnm), which cannot be improved upon by any

alternative deterministic algorithm.

We also consider a storage-constrained variant of the plan diagram reduction problem and

find that it retains the hardness of the general problem. On the positive side, however, we

provide ThresholdGreedy, a greedy algorithm that deliversa performance guarantee of0.63

w.r.t. the optimal.

Using extremely coarse characterizations of the cost distributions of the optimal plans, we

develop fast but effective estimators for determining the expected number of plans retained for

a given cost increase threshold. These estimators can also be used to predict the location of

the best possible tradeoff (i.e. the “knee”) between the plan cardinality reduction and the cost

threshold.

A detailed experimental analysis on the plan diagrams produced by industrial-strength opti-

mizers with TPC-H and TPC-DS based multi-dimensional querytemplates demonstrates that:

1. Plan diagram reduction can be carried out efficiently, in just a few minutes even for ex-

tremely complex diagrams.

2. The CostGreedy algorithm typically gives the optimal reduction or is within a few plans

of the optimal.

3. The analytical estimates of the plan-reduction versus cost-threshold curve are reasonably

accurate and are produced in a few milliseconds.

4. Finally, and most impactfully, a20% cost thresholdis usually amply sufficient to bring the

plan cardinality towithin or around 10, i.e. to make the reduced plan diagram anorexic,

even for high dimensional query templates – this is an especially promising result from a

practical perspective.

Finally, we present RobustCostGreedy, an extension of the basic CostGreedy algorithm that

attempts to maintain the query processing quality of the reduced plan diagram within user spec-

ified bounds, in spite of errors that may occur in the optimizer’s selectivity estimates. An exper-

CHAPTER 1. INTRODUCTION 13

imental analysis indicates that the plans retained by RobustCostGreedy can provide orders-of-

magnitude better performance than the optimizer’s original choices, and are in fact often close

to the optimal at the actual locations. In a nutshell, RobustCostGreedy provides “selectivity-

error-resistance”.

All the algorithms presented in this thesis have been implemented in the Picasso optimizer

visualization tool v1.0 [30].

1.6 Organization

The remainder of this thesis is organized as follows: Related work is reviewed in Chapter 2.

The problem formulation and hardness results are explainedin Chapter 3 which proves NP-

hardness of the plan diagram reduction problem through a reduction from Set Cover. Chapter 4

presents Algorithm CostGreedy and proves that it has a tightand optimal bound. The AmmEst

estimator is explained in Chapter 5. Experimental results are highlighted in Chapter 6. An

interesting application of plan diagram reduction with reference to the enhanced resistance to

errors in selectivity estimates of the optimizer is described in Chapter 7. Implementation issues

are discussed in Chapter 8. Finally, Chapter 9 summarizes the conclusions of our study and

outlines future research avenues.

Chapter 2

Survey of Related Research

There has been extensive work in the area of query optimization for relational database man-

agement systems since the early 70’s, triggered by the advent of declarative query languages.

A number of surveys (eg. [18, 5]) have covered the progress ofquery optimization techniques

over the years. We assume the reader is familiar with the techniques they discuss and only give

a brief overview of the basic concepts here.

2.1 Challenges of Query Optimization

The key constituents of the query evaluation component of anSQL database system are the

query optimizerand thequery execution engine. The query optimizer is responsible for gen-

erating the input for the execution engine. It takes a parsedrepresentation of an SQL query

as input and is responsible for generating an efficient execution plan for the given SQL query

from the space of possible execution plans. One aspect of optimization is where the system

attempts to find an expression equivalent to the given expression, but more efficient to execute.

Another aspect is selecting a detailed strategy for processing the query. The task of an opti-

mizer is computationally challenging since, for a given SQLquery, there can be a large number

of possible execution plans – specifically, for a query withn base relations, the number of plans

in the strategy space is atleastO(n!). Using pruning techniques such as dynamic programming,

the time complexity can at best be brought down toO(3n) [41]. From an absolute time per-

14

CHAPTER 2. SURVEY OF RELATED RESEARCH 15

spective, optimization overheads in the hundreds of seconds have been reported for real-world

database deployments in [21]. The query execution engine implements the set of physical op-

erators specified by the execution plan. Each operator takesas input one or more data streams

and produces an output data stream. Examples of physical operators are sequential scan, index

scan, (external) sort, nested-loop join and sort-merge join.

The design of a query optimizer entails tackling the following challenging issues:

2.1.1 Plan Selection Strategy

A number of selection strategies can be applied for query optimization. These include:

1. Make a random choice.

2. Use a set of heuristic rules.

3. Use randomized algorithms or genetic techniques.

4. Exhaustively enumerate the search space and use a cost-based approach.

The cost-based approach is the most commonly used in modern optimizers, since none of

the others can guarantee the quality of their choices. The pioneering work in the development

of cost-based optimizers was carried out in the System-R project [38]. Their techniques have

been incorporated in many commercial optimizers and continue to be remarkably relevant. In

System-R, the size of the search space is restricted by considering only the set of left-deep

plans, which allows pipelining of the output of one operatorto the input of the next operator. It

also introduced the notion of “interesting orders” into theplan selection process – the ordering

of the output tuples of an operator is called an interesting order if it can become useful in

some subsequent operation. The idea of an interesting orderwas later generalized tophysical

properties[17], which refers to any characteristic of a plan that is notnecessarily shared by

other plans for the same expression, but could impact the cost of subsequent operations.

In an alternative strategy, Chu and Halpern [6, 7] propose the idea of picking theleast

expected cost(LEC) plan rather than the least specific cost (LSC) plan. In their first paper [6],

they propose a set of algorithms to find this LEC plan and guarantee that this plan will be at

CHAPTER 2. SURVEY OF RELATED RESEARCH 16

least as good as the LSC plan, and typically better. They alsoconsider parameters that could

vary during the execution of the plan. They find that “The greater the run-time variation in the

values of parameters that affect the cost of the query plan, the greater the cost advantage of

the LEC plan is likely to be”. They assume that the probability distribution of the values of the

parameters is available at compile-time.

In their second paper [7], they observe that the LSC optimization does, in many cases, yield

the LEC plan. The current optimizers can be coaxed to pick theLEC plan by appropriately

choosing the parameters and their settings. They also studycases where running time is not the

cost measure applied (it may matter if the plan is blocking orproduces results at a constant rate,

etc.) and find that in these scenarios, LEC optimization becomes particularly relevant.

2.1.2 Efficient Selection Strategies

For the cost-based optimizers, System-R proposed the use ofdynamic programming to effi-

ciently find a good plan. The dynamic programming approach isbased on the assumption of

theprinciple of optimality[47], which states that the optimal solution to a problem is acombi-

nation of optimal solutions to its subproblems. While dynamic programming (DP) works very

well for moderately complex queries with up to around a dozenbase relations, it usually fails to

scale beyond this stage in current systems due to its inherent exponential space and time com-

plexity. Therefore, DP becomes practically infeasible forcomplex queries with a large number

of base relations.

To address the above problem, a variety of approaches have been proposed in the literature,

such as Iterative Dynamic Programming (IDP) [26, 40], wherein DP is employed bottom-up un-

til it hits its feasibility limit, and then iteratively restarted with a significantly reduced subset of

the execution plans currently under consideration. A recent alternative approach that improves

on IDP’s performance and scalability is Skyline Dynamic Programming (SDP) [9].

When queries are optimized at the time they are submitted by the user, the selection process

can add a substantial overhead to the execution time of the query. In order to avoid this, the

Parametric Query Optimization (PQO) method was proposed. The goal here is toapriori iden-

tify the parametric optimal set of plans(POSP) for the entire parameter space at compile time,

CHAPTER 2. SURVEY OF RELATED RESEARCH 17

and subsequently to use at run time the actual parameter settings to identify the best plan – the

expectation is that this would be much faster than optimizing the query from scratch. The PQO

method was first proposed in [23] in the context of randomizedalgorithms for plan selection.

They considered buffer size as the primary parameter, although their solution could work with

arbitrary parameters. Subsequently, a number of PQO-basedtechniques have been proposed for

cost-based optimizers:

In the pioneering work of Betawadkar & Ganguly [4], a System-R style optimizer with left-

deep join-tree search space and linear cost models was built, the workload comprising of pure

SPJ query templates with star or linear join-graphs and one-dimensional selectivity variations.

They proposed the idea of finding an approximate POSP given a tolerance factor (cost increase

threshold). Within this context, their experimental results indicate that, for a given cost increase

threshold, plan diagram reduction is more effective with increasing join-graph complexity. They

also find that “if the increase threshold is small, a significant percentageof the plans have to be

retained”. For example, with a threshold of 10%, more than 50% of the plans usually have to

be retained. However, this conclusion is possibly related to the low plan cardinality (less than

20 in all the experiments) in their original plan diagrams.

In subsequent work, Hulgeri & Sudarshan [19, 20] model an optimizer along the lines of

the Volcano query engine [16], and evaluate SPJ query templates with two, three and four-

dimensional relational selectivities. In their first paper[19], they discuss the PQO problem in

the context of linear cost functions where the conventionaloptimizer is unaltered. The optimizer

is treated as a black-box and the plans and costs returned by the optimizer are used to find the

POSP. They also propose a solution to the PQO problem in the presence of piecewise linear cost

functions, which works for an arbitrary number of parameters. This solution involves altering

the current optimizers to handle cost functions in the placeof atomic cost values.

In the second paper [20], they propose a heuristic solution to the PQO problem which works

with arbitrary nonlinear and discontinuous cost functionsand any number of parameters. They

propose an algorithm calledAniPQO(and a variation of it calledDAG-AniPQO), which requires

minimal changes to existing optimizers and attempts to find asubset of the POSP such that

for each point in the parameter space, either the optimal plan or a close-to-optimal plan is in

CHAPTER 2. SURVEY OF RELATED RESEARCH 18

the result set. The closeness to optimality is measured by anoptimality threshold, which is

guaranteed to be maintained in the case of linear cost functions, but cannot be guaranteed in

the presence of nonlinear cost functions, when it is used only as a heuristic. Even with this

relaxation, the final number of plans with a threshold of 10% can be large – for example, a 4-D

query template with 134 original plans is reduced only to 53 with the DAG-AniPOSP algorithm

and to 29 with AniPOSP.

Most of the solutions to the PQO problem are based on assumingcost functions that would

result in one or more of the following:

1. Plan Convexity: If a plan P is optimal at point A and at pointB, then it is optimal at all

points on the line joining the two points;

2. Plan Uniqueness: An optimal plan P appears at only one contiguous region in the entire

space;

3. Plan Homogeneity: An optimal plan P is optimal within the entire region enclosed by its

plan boundaries.

However, it has been found that none of the three assumptionshold true, even approximately,

in the plan diagrams produced by the commercial optimizers [33]. Even in situations where

these assumptions hold, it is very difficult to store the regions of optimality of each of the plans

in the POSP, so as to pick the best one at the time of execution.An alternative proposed by

Hulgeri & Sudarshan in [19, 20], is to estimate the cost of allthe plans that belong to the POSP

at the time of execution and pick the one that gives the minimum cost for the actual parameter

values. This will be faster than optimizing the query from scratch, provided the number of plans

in the POSP is not too large.

2.1.3 Run-time Refinements of Plan Choices

Query optimizers often make poor decisions because their compile-time cost models use inac-

curate estimates of various parameters. There have been several efforts in the past to address

this issue, which can be categorized as – strategies that make decisions at the start of query ex-

ecution and strategies that make decisions during query execution. There are some parameters,

CHAPTER 2. SURVEY OF RELATED RESEARCH 19

like memory availability, whose value cannot be predicted at compile-time, but are accurately

known at the start of execution. Assuming that the values of these parameters remain constant

for the duration of the execution, the following strategieshave been proposed:

1. Perform query optimization just before query execution.This method is not very efficient,

especially if the query is executed repeatedly.

2. Find the best execution plan for all possible values of theparameters and lookup the best

plan for the current parameter values at runtime (PQO).

3. Perform part of the optimization at compile time and deferany decisions that are affected

by the parameter values to execution time.

For parameters whose value cannot be predicted at the start of the execution, like predicate

selectivities, the following strategies can be applied:

1. Antonshenkov [1] proposes a strategy where, in order to execute a query, multiple query

plans are run in parallel. When one plan finishes or makes significant progress, the other

competing plans are killed. This strategy assumes that ample resources are available, and

is applied only to some components of the query execution (typically to individual table

accesses).

2. Reoptimization:

(a) Kabra and DeWitt [25] propose a technique which comparesthe expected cost and

output cardinality associated with chosen operators in theplan with the correspond-

ing runtime values. If there is a significant discrepancy, this information is used to

alter the allocation of shared resources and/or reoptimizethe remaining unexecuted

portion of the query. Checks within a pipelined set of operators are validated at the

termination of the pipeline and a change of plans is conditional to ensuring that the

operations already performed are not wasted.

(b) Markl et al [28] propose a major extension of [25] called “progressive query opti-

mization” (POP). Here, the estimated operator cardinalityis represented as a “va-

lidity range”, denoting the range of ouput cardinalities over which the currently

CHAPTER 2. SURVEY OF RELATED RESEARCH 20

chosen (global) plan is expected to continue to be optimal. At runtime, the cardi-

nality is dynamically compared against this range, and if itgoes outside the range,

reoptimization of the original query is immediately triggered. Oscillation between

reoptimization and execution can occur any number of times.POP improves upon

[25] in that it uses the validity ranges to ensure that reoptimization is triggered only

if a change of plans is expected and not merely because there is a significant dis-

crepancy. Also, since POP triggers reoptimization asynchronously (i.e. it does not

wait for the pipeline containing the range-violating operator to complete execution),

it is a more generalized approach to the problem.

(c) Babu et al [3] propose a refinement to POP called RIO, wherebounding boxes

are computed around cardinality estimates to represent uncertainty in the estimates.

This uncertainty is determined based on the technique used to derive the estimate.

Thus, a bounding box around an estimate defines the likely range of values that may

actually occur at runtime. RIO then tries to identify plans whose performance within

the entire bounding box is either optimal or near-optimal, so as to minimize the need

for reoptimization and the loss of pipelined work.

2.2 Behavior of Industrial Strength Optimizers

Having examined the solutions to the query optimization problem proposed in the literature,

we now shift focus to studying the behavior of industrial strength query optimizers in practice.

In [44], Waas and Galindo devise algorithms for counting, exhaustive generation, and uniform

sampling of plans from the complete search space. Using thisinformation, they study the

cost distribution of query plans. Cost distributions are ofinterest because they can be taken

as obvious indicators of the stochastic difficulty of a problem, by simply considering the ratio

of high quality to low quality plans. They find that, under theprecondition that the queries

are of sufficiently large size, i.e., involving more than 4 or5 joins, the distributions obtained

“correspond to Gamma-distributions with shape parameter close to 1”. They also find that the

percentage of plans that are withintwice the optimum cost is usually around 1% of the total

CHAPTER 2. SURVEY OF RELATED RESEARCH 21

number of plans in the search space.

Reddy and Haritsa [33] study the behavior of industrial strength optimizers from the per-

spective of the optimality space, instead of the search space. They examine the variation of

the plan choices across the selectivity space and find that current optimizers make extremely

fine-grained plan choices. They also observe that the plan optimality regions may have highly

intricate patterns and irregular boundaries, indicating strongly non-linear cost models, that non-

monotonic cost behavior exists where increasing result cardinalities decrease the estimated cost

and, that the basic assumptions underlying the research literature on parametric query optimiza-

tion often do not hold in practice. Further, there is heavy skew in the relative coverage of the

plans, with 80 percent of the space typically covered by 20 percent or less of the plans. They

show that through a process of plan diagram reduction where the query points associated with

a small-sized plan are swallowed by a larger plan, it is possible to bring down the cardinality of

the plan diagram to aboutone-thirdof the original cardinality, without materially affectingthe

query cost.

In this thesis, we study the problem of reducing plan diagrams (which represent the para-

metric optimal set of plans over the selectivity space) arising from industrial-benchmark-based

query templates operating on commercial state-of-the-artquery optimizers. Our results indicate

that even for a small cost increase threshold, it is possibleto efficiently find a small subset of

the POSP that covers the entire space.

Chapter 3

The Plan Diagram Reduction Problem

In this chapter we define the Plan Diagram Reduction Problem,hereafter referred to as PlanRed,

and prove that it is NP-Hard through a reduction from the classical Set Cover Problem [14]. For

ease of exposition, we assume in the following discussion that the source SQL query template

is 2-dimensional – the extension to higher dimensions is straightforward.

3.1 Preliminaries

The input to PlanRed is a Plan Diagram, defined as follows:

Definition 1 Plan Diagram

A Plan DiagramP is a 2-dimensional[0, 100%] selectivity space S, represented by a grid of

points where:

1. Each pointq(x, y) in the grid corresponds to a unique query with (percentage) selectivi-

tiesx, y in the X and Y dimensions, respectively.

2. Each query pointq in the grid is associated with an optimal planPi (as determined by the

optimizer), and a costci(q) representing the estimated effort to executeq with planPi.

3. Corresponding to each planPi is a unique colorLi, which is used to color all the query

points that are assigned toPi.

22

CHAPTER 3. THE PLAN DIAGRAM REDUCTION PROBLEM 23

The set of all colors used in the plan diagramP is denoted byLP . Also, we will usePi to both

denote the actual plan, as well as the set of query points for which Pi is the plan choice – the

interpretation to use will be clear from the context.

With the above framework, PlanRed is defined as follows:

Definition 2 PlanRed

Given an input plan diagramP, and a cost increase thresholdλ (λ ≥ 0), find a reduced

plan diagramR that has minimum plan cardinality, and for every planPi in P,

1. Pi ∈ R, or

2. ∀ query pointsq ∈ Pi, ∃Pj ∈ R, such that
cj(q)

ci(q)
≤ (1 + λ)

That is, find the minimum-sized “cover” of plans that is sufficient to recolorP (using only the

colors inLP) without increasing the cost of any re-colored query point (i.e. whose original plan

is replaced by a sibling plan) by more than the cost increase threshold. Obviously, forλ → 0,

the reduced plan diagram will be almost identical to the original plan diagram, whereas for

λ → ∞, the reduced plan diagram will be completely covered by a single plan.

In the above definition, we need to be able to evaluatecj(q), the cost of executing query

point q with the substitute choicePj . However, this feature is not available in all database

systems and is very expensive in the systems where it is available, therefore we use a bounding

technique instead to limit the value ofcj(q). Note that this means that the reductions we discuss

here areconservativein that, in principle, it may be possible to reduce the diagram even more

– such enhanced reductions will only further support the conclusions drawn later in this thesis.

The specific bounding technique we use is based on assuming the following:

Plan Cost Monotonicity (PCM): The cost function of each of the plans featured in the plan

diagram is monotonically non-decreasing over the entire selectivity space S.

Intuitively, what the PCM condition states is that we expectthe query execution cost of a plan to

increase with base relation selectivities. For most query templates, this is usually the case since

an increase in selectivity corresponds to processing a larger amount of input data. However,

the assumption may not hold for query templates that featurenegation operators such as “set

CHAPTER 3. THE PLAN DIAGRAM REDUCTION PROBLEM 24

difference”, or short-circuit operators like “exists” – wediscuss how to handle such situations

below. For the remainder of this thesis, we consider only thecommon case of plan diagrams in

which the PCM condition applies.

Based on the above, we can now state the following rule:

Definition 3 Cost Bounding Rule

Consider a pair of query points,q1(x1, y1) with optimal planP1 having costc1(q1), and

q2(x2, y2) with optimal planP2 having costc2(q2). Then the cost of executing queryq1 with

planP2, i.e. c2(q1), is upper bounded byc2(q2) if x2 ≥ x1, y2 ≥ y1.

That is, when considering the recoloring possibilities fora query pointq1, only those plan

colors that appear in thefirst quadrant, relative toq1 as the origin, should be considered. Further,

if there exists a differently colored pointq2 in the first quadrant whose cost is within theλ

threshold w.r.t. the optimal cost ofq1, thenq1 can be recolored with the color ofq2 without

violating the query processing quality guarantee. In short, condition 2 of Definition 2 is replaced

by the stronger requirement

∀ query pointsq ∈ Pi, ∃Pj ∈ R, such that∃r ∈ Pj

with r in first quadrant ofq and
cj(r)

ci(q)
≤ (1 + λ).

Handling non-PCM templates. As mentioned above, when a query template features nega-

tion operators (e.g “set difference”) or short-circuit operators (e.g. “exists”), the PCM condition

may not hold. However, as long as the template exhibits monotonicity (non-decreasing or non-

increasing) along each of the selectivity axes, the above Cost Bounding Rule still applies with

an appropriate choice of reduction quadrant, as shown in Table 3.1 for the 2D case.

Table 3.1: Reduction Quadrants
Cost Behavior Cost Behavior Reduction
X dimension Y dimension Quadrant

Non-decreasing Non-decreasing I
Non-increasing Non-decreasing II
Non-increasing Non-increasing III
Non-decreasing Non-increasing IV

CHAPTER 3. THE PLAN DIAGRAM REDUCTION PROBLEM 25

In the remainder of this thesis, we will characterize any plan diagram that has more than

ten plans asdense. We usen andm to denote the number of plans and the number of query

points in the plan diagram, respectively. Further, we usem1 andm2 to denote the diagram

resolution in the X and Y axes, respectively, withm = m1 × m2. Lastly, BottomLeftis used

to denote the(1, 1) point, BottomRightis used to denote the(m1, 1) point, TopLeftis used to

denote the(1, m2) point, andTopRightis used to denote the point with coordinates(m1, m2) in

the diagram.

3.2 The Set Cover Problem

We now move on to the classical Set Cover problem, defined as follows:

Definition 4 Set Cover

Given a finite universal setU , and a collectionS = {S1, S2, . . . Sn} of subsets ofU such

that
⋃n

i=1 Si = U , find the minimum cardinality subsetC ⊆ S, such thatC coversU i.e. all

elements ofU belong to some subset inC.

Let I = (U, S) denote an instance of a Set Cover problem. From a given instanceI, create

a new instanceI ′ = (U ′, Snew) such that:

1. S ′ = {e′}, wheree′ is an element not inU

2. U ′ = U
⋃

S ′, Snew = S
⋃{S ′}

Let C ′ be an optimal solution ofI ′. It is easy to see thatC = C ′ \ {S ′} is an optimal solution of

the original instanceI. Therefore, we will assume henceforth in this section that the Set Cover

instance is of the formI ′.

Lemma 1 Given a set cover instanceI ′, addition of a new elemente to U ′, to subsetS ′, and to

zero or more subsets in{S1, S2, . . . , Sn}, does not change the optimal solution ofI ′.

Proof: Let C = {S ′, Si1, Si2 , . . . , Sik} be the optimal solution ofI ′ before the addition of the

elemente. After addinge to I ′, C still coversU ′, sincee ∈ S ′.

CHAPTER 3. THE PLAN DIAGRAM REDUCTION PROBLEM 26

To see thatC continues to be the optimal solution ofI ′ after addinge, assume the contrary.

Let C ′ be a cover forU ′ with |C ′| < |C|. Removee from all subsets inC ′ that containe. Now

C ′ coversU ′ \ {e}. This contradicts our selection ofC as the optimal solution ofI ′ before the

addition ofe.

3.3 Reducing Set Cover to PlanRed

We now show that the Set Cover problem can be reduced to the plan diagram reduction problem.

Specifically, Algorithm Reduce in Figure 3.1 converts an instance of Set Cover to an instance

of PlanRed. It takes as input the instanceI ′ and thresholdλ and outputs a plan diagram and

another instanceInew = (Unew, S ′
new) of Set Cover.

The data structures used in the algorithm are as follows:

1. cur(q): integer denoting the smallesti such that query pointq ∈ Si (i.e. denotes current

plan thatq belongs to in the plan diagram)

2. belong(q): list storing allj, such thatq ∈ Sj andj 6= cur(q) (denotes the set of plans that

can be used instead of the current plan in the reduced plan diagram)

3. cost(q): value indicating the cost ofq in the plan diagram

4. color(q): integer denoting the color (equivalently, plan) ofq in the plan diagram

In addition, the valuen + 1 is used to denote the setS ′, i.e. Sn+1 = S ′ in cur andbelong.

Algorithm Reduce works as follows: Consider a Set Cover instanceI ′ = (U ′, Snew). For

each subsetSi ∈ Snew, a unique colorLi which represents the planPi is created. Each element

q ∈ U ′ represents a query point inP, and letq be in subsetsSi1 , Si2, . . . Sik for eachSij ∈ Snew,

j = 1, 2, . . . k and i1 < i2 < . . . < ik. PlanPi1 is chosen as the representative forq and

becomes the plan with whichq is associated. For each of the other subsets in whichq is present,

a new query pointr is created and placed to the right ofq in the plan diagram, with its color

corresponding to the subset it represents and its cost being(1+λ) times the cost ofq. Intuitively,

this means that planPi1 can be replaced by plansPij , j = 2, 3 . . . k. Then, a query pointt is

CHAPTER 3. THE PLAN DIAGRAM REDUCTION PROBLEM 27

Reduce(Set CoverI ′)

1. Initialize Inew = I ′; ∀q ∈ U ′, setbelong(q) = NULL

2. For each elementq ∈ U ′

(a) Letq belong to setsSi1, Si2 , . . . , Sik ; 1 ≤ i1 < i2 < . . . < ik ≤ n + 1

(b) Setcur(q) = i1

(c) Add i2, i3, . . . , ik to belong(q)

3. Letm = |U ′|; mx = maxq(|belong(q)|) + 2 , q ∈ U ′; i=1; Initialize cost

4. Createn + 1 colorsL1, L2, . . . , Ln+1

5. Create anm × mx grid

6. For each elementq ∈ U ′

(a) Addq at point(i, 1) in the grid

(b) Setcolor(q) = cur(q); cost(q) = cost; cost = cost ∗ (1 + λ); p = 2

(c) For eachj ∈ belong(q)

i. Create elementr. Setcur(r) = j

ii. ∀z, z ∈ belong(q) such thatz > j, addz to belong(r)

iii. Add (n + 1) to belong(r)

iv. Add r at position(i, p) in the grid.p = p + 1

v. Setcolor(r) = j, cost(r) = cost

vi. Add r to instanceInew such thatr ∈ Sj, if j = cur(r) or j ∈ belong(r)

(d) Create elementt. Setcur(t) = n + 1, belong(t) = NULL

(e) cost = cost ∗ (1 + λ)

(f) Add t at position(i, p) in the grid

(g) Setcolor(t) = n + 1; cost(t) = cost; cost = cost ∗ (1 + λ).

(h) Add t to Inew.

(i) Seti = i + 1

7. For every empty point in the grid:

(a) Create a new elementq. Setcur(q) = n + 1, belong(q) = NULL.

(b) Add q to the empty point. Setcolor(q) = n + 1

(c) Setcost(q) = cost of row’s rightmost point with colorLn+1

(d) Add q to Inew

8. End Algorithm Reduce

Figure 3.1: Algorithm Reduce

CHAPTER 3. THE PLAN DIAGRAM REDUCTION PROBLEM 28

Figure 3.2: Example of Algorithm Reduce

created having planP ′ corresponding to the subsetS ′ with a cost(1 + λ)2 times the cost ofq –

this point is added to the right of all the points that were previously created forq. This means

thatt can in turn replace all the other points that were created forq, but notq itself. (Note that

this process is identical to the element addition process ofLemma 1.) When moving from the

last element of one row to the first element of the next row, thecost is further increased by a

factor of(1 + λ).

Starting from the bottom row and moving upwards, the above procedure is repeated for

each element, resulting in each element and its associated generated points being assigned to

different rows in the plan diagram. Finally, for each empty point in the grid, a new query point

q is created having planP ′ corresponding to the subsetS ′ with a cost equal to the cost of the

rightmost point in its row with the planP ′. An example of this reduction, withλ = 10%, is

shown in Figure 3.2, where each point is represented by a square block. The blocks in the first

column of the output plan diagram represent the elements originally in U , while the remaining

blocks are added during the reduction process. The values inthe blocks represent the costs

associated with the corresponding points, and each subset is associated with a color, as shown

in the legend.

We now show that Algorithm Reduce does indeed produce a plan diagram whose optimal

solution gives the optimal solution to the Set Cover instance used, and hence that PlanRed is

NP-Hard.

CHAPTER 3. THE PLAN DIAGRAM REDUCTION PROBLEM 29

Lemma 2 The gridG produced by Algorithm Reduce is an instance of PlanRed.

Proof:

1. Each point inG is associated with a color (equivalently, plan) and a cost.

2. For any point(x, y) on G, wherex and y represent the row and column respectively,

let c = cost associated with(x, y). At point (x, y + 1), the cost associated is eitherc or

c ∗ (1 + λ). At point (x + 1, y) the cost is greater thanc ∗ (1 + λ) because Algorithm

Reduce increases the cost by a factor of(1 + λ) while moving from one row to the next.

Therefore, the cost bounding rule of Definition 3 holds.

Hence the gridG satisfies the conditions necessary for the Plan Diagram of PlanRed.

Lemma 3 The optimal solution for the instance of the plan diagram generated by Algorithm

Reduce gives the optimal solution for the Set Cover instanceI ′ used as input to the algorithm.

Proof: Consider the plan diagram gridG and the Set Cover instanceInew = (Unew, S ′
new) that

is the output of the algorithm. For every pointq(x, y) on the grid that can be recolored, there

must exist a point with that color to the right ofq(x, y) with cost eitherc or c∗(1+λ) wherec is

the cost ofq(x, y). Also, the color’s index will be in thebelong list of the element corresponding

to that point.

For each such pointq(x, y), there is an elementr in Inew, such thatr belongs to the subsets

Sj ∈ S ′
new, whenevercur(q) = j or j ∈ belong(q). Hence, from the above property, if point

q(x, y) has colorLi in the reduced plan diagramR, then the corresponding element inInew will

be an element of setSi.

Therefore, ifR has colors (plans)LR = {Li1 , Li2 , . . . , Lik} , since every point is colored

with some color inLR, its corresponding element inInew will belong to some subset inCnew =

{Si1 , Si2, . . . , Sik}. Therefore,Cnew coversUnew. Hence we just need to show that ifLR is the

optimal color set (with least number of colors), thenCnew is the optimal set cover forInew.

To prove the above, assume the contrary, that is, thatC ′
new = {Sj1, Sj2, . . . , Sjl

}, l < k is the

optimal cover ofUnew. By construction of the grid, every point in the grid corresponding to an

element inSji
i ∈ {1, 2, ...l}, can be colored with colorLji

. Apply this color to the point in the

CHAPTER 3. THE PLAN DIAGRAM REDUCTION PROBLEM 30

grid and set the cost of this point to be the cost of the point with the matching color to its right.

After recoloring the grid in this manner, we get a new color set L′
R = {Lj1, Lj2, . . . , Ljl

}
that covers the whole grid with|L′

R| < |LR|. This contradicts the assumption thatLR was the

optimal color set. Hence, the optimal solution to the grid gives the optimal solution for the set

cover instanceInew.

The newly created elements that are added toI ′ to createInew by the algorithm are in

accordance with Lemma 1. Hence the optimal solution forI ′ is the same as the optimal solution

of Inew. Thus the optimal solution for the instance of plan diagram generated by Algorithm

Reduce gives the optimal solution for the Set Cover instanceI ′ used as its input.

Armed with the above lemmas, we now state the main theorem:

Theorem 1 The Plan Diagram Reduction Problem is NP-Hard.

Proof: It can be seen that

1. Algorithm Reduce has a polynomial time complexity ofO(nm).

2. ForI ′ = (U ′, Snew), the grid created has in the worst case|U ′| ∗ (|Snew|) elements with

|Snew| plans. It is a valid plan diagram. (Lemma 2)

3. The optimal solution for Set Cover InstanceI ′ can be obtained by the optimal solution of

the plan diagram generated by the algorithm. (Lemma 3)

Hence the theorem.

3.4 Single-swallowing PlanRed

In the hope of finding a polynomial-time optimal solution, wealso considered a situation where,

rather than allowing a plan to be collectively swallowed by agroup of sibling plans, we mandate

that a plan can be swallowed only if it can be entirely replaced by asinglesibling plan. That

is, all query points of a swallowed plan have the identical replacement color. Unfortunately,

however, this constraint does not change the complexity of the problem, as proved below.

The Single-swallowing PlanRed problem is defined as follows:

CHAPTER 3. THE PLAN DIAGRAM REDUCTION PROBLEM 31

Definition 5 Single-swallowing PlanRed

Given an input plan diagramP, and a thresholdλ, find the reduced plan diagramR with

minimum plan cardinality such that for every planPi in P,

1. Pi ∈ R, or

2. ∃Pj ∈ R, such that∀ query pointsq ∈ Pi,
cj(q)

ci(q)
≤ (1 + λ)

Applying the bounding rule of Section 3.1, the second condition is converted to the stronger

requirement:

∃Pj ∈ R, such that∀ query pointsq ∈ Pi ∃r ∈ Pj

with r in first quadrant ofq and
cj(r)

ci(q)
≤ (1 + λ).

We find that enforcing the single-swallowing restriction does not change the NP-Hard com-

plexity of the plan diagram reduction problem and show this by reducing a variation of the

Dominating Set problem in a Directed Graph into an instance of Single-swallowing PlanRed.

For the purpose of our reduction, we will be using an instanceof the Dominating Set problem

where the directed acyclic graphG = (V, E) is connected and has the following structure:

1. |V | = n + m + 1 for some positive integersn, m

2. There is one node(root) withindegree = 0

3. There is a directed edge between the root andn nodes starting from the root.

4. There are a set ofk > 0 edges between the aboven nodes and the remainingm nodes

starting from the set ofn nodes.

Lemma 4 The Dominating Set problem in a Directed graph with the givenstructure is NP-

Hard.

Proof: Let I = (U, S) be a set cover instance with|U | = m and |S| = n. Create a graph

G = (V, E) such that

1. For eachSi ∈ S, create a nodevi (v nodes) and for each elementei ∈ U create a nodeui

(u nodes). Create another nodew.

CHAPTER 3. THE PLAN DIAGRAM REDUCTION PROBLEM 32

2. LetV = {u1, u2, . . . um, v1, v2, . . . vn, w}

3. LetE = {(vi, uj) : ej ∈ Si}
⋃{(w, vi), ∀i = 1 . . . n}

Let D′ = w, ui1, ui2, . . . uik, vj1 , vj2 . . . vjl
be the minimum dominating set forG. Ev-

ery nodeui has a parentvj . Hence, we can get another minimum dominating setD =

w, vz1
, vz2

, . . . vzk
, vj1, vj2 . . . vjl

for G. This means that these set ofv nodes has atleast one

edge to all theu nodes. This implies thatC = {Sz1
, Sz2

, . . . Szk
, Sj1, Sj2, . . . Sjl

} coversU . To

see thatC is the optimal cover, if there was a coverC ′ = {Sx1
, Sx2

, . . . Sxh
}, with |C ′| < |C|,

then we can getD′′ = {w, vx1
, vx2

, . . . vxh
} as a minimum dominating set forG, due to the

construction ofG, with |D′′| < |D|. This contradicts the assumption thatD is the minimum

dominating set.

Hence, we can reduce a Set Cover problem to an instance of the Dominating set problem

for the directed graph structure mentioned above. Hence theLemma.

We now reduce the above dominating set problem to Single-swallowing PlanRed problem.

Theorem 2 The Single-swallowing Plan Diagram Reduction Problem is NP-Hard.

Proof: Let G = (V, E) be a directed acyclic graph having the structure mentioned earlier. Let

V = {v1, v2, ...vn} and setU = ∅

1. For each nodevi create a setSi = {qi} andU = U
⋃{qi}

2. For each edge(vi, vj) performSi = Si

⋃{qj}

It can be seen that(U, S) forms an instance of the set cover problem whose optimal solution

gives the optimal solution of the Directed Dominating Set problem.

This instance of the set cover problem can then be converted into a plan diagram by using

the Algorithm Reduce given in Table 3.1. We make a slight modification in Algorithm Reduce,

wherein, rather than choosing the set with smallest index asits representative color, we will

instead choose the set with the same index as the element as its representative color. (This can

be done because, while a set is created, a corresponding element is also created for it). We know

by Lemma 3 that the optimal solution of the Plan Diagram formed by Algorithm Reduce gives

CHAPTER 3. THE PLAN DIAGRAM REDUCTION PROBLEM 33

the optimal solution of the Set Cover instance used as input to it. Also, this reduction runs in

polynomial time. Hence, it will suffice for us to just show that the optimal solution to the plan

diagram thus formed conforms with the aforementioned restriction.

Let C = {C1, C2, ...Ck} whereCi ∈ S = {S1, S2, ..Sn} be the optimal solution to the plan

diagram reduction problem. (Recall that we represent a Planby its corresponding set inS). Let

planSi /∈ C. Since the only element ofSi that is colored with colorCi in the plan diagram is

xi, it should be in some setSj in the optimal solution. Hence, as required by the restriction, the

planSj completely replacesSi.

3.5 Storage-budgeted PlanRed

In practice, it is often the case that a fixed storage budget isprovided to hold the set of plans for

a query template. That is, a budget in terms of the number of stored plans, sayk, is specified,

and the goal is to identify the best set ofk plans that would minimize the cost increase in

the Reduced Plan Diagram. This problem is thedual of PlanRed, in terms of exchanging the

constraint and the objective, and is defined as follows:

Definition 6 Storage-budgeted PlanRed

Given a plan diagramP and storage constraint of retaining at mostk plans, find thek plans

to be chosen so as to minimize the maximum cost increase of thequery points in the reduced

plan diagramR.

A Karp Reduction [14] can be used to show that Storage-budgeted PlanRed is NP-Hard by

using it to solve the general plan diagram reduction problem, leading to the following theorem:

Theorem 3 The Storage-budgeted Plan Diagram Reduction Problem is NP-Hard.

Proof: We prove the hardness of the problem by using it to solve PlanRed. Assume that a poly-

nomial time algorithm calledFindP lans gives the optimal solution for the Storage-budgeted

PlanRed problem. It takes as input the number of plans and returns the set of plans so as to min-

imize the cost increase threshold. The methodFindThreshold takes as input the set of plans

CHAPTER 3. THE PLAN DIAGRAM REDUCTION PROBLEM 34

ReducePlans(P lanDiagramP , threshold)

1. Initializeminplans = All Plans inP

2. for i = n to 1 do

(a) plans = FindP lans(i)

(b) th = FindThreshold(plans)

(c) if threshold ≤ th

i. returnminplans

(d) minplans = plans

3. End Algorithm ReducePlans

Figure 3.3: Algorithm ReducePlans

to be retained in the reduced plan diagram and returns the minimum cost increase threshold that

results.

Consider the algorithmReduceP lans given in Figure 3.3, which takes as input the cost

increase threshold and returns the minimum number of plans to be retained without violating

this threshold. It can be seen that this algorithm runs in polynomial time as it invokes the

FindP lans method at mostn times wheren is the number of plans in the plan diagram. Thus,

we have a polynomial time solution to the PlanRed Problem if we have polynomial time solution

to the Storage-budgeted PlanRed Problem, which means we have a polynomial time solution to

the Set Cover problem. Hence the theorem.

Chapter 4

Greedy Plan Diagram Reduction

Given the hardness results of the previous section, it is clearly infeasible to provide optimal

plan diagram reduction, and therefore we now turn our attention to developing efficient greedy

algorithms.

We first consider AreaGreedy, the reduction algorithm proposed in [33], where the greedy

heuristic is based on plan areas. Then we present CostGreedy, a new reduction algorithm that

is greedy on plan costs. Its computational efficiency and reduction quality guarantees are quan-

tified for the general PlanRed. We then present a greedy algorithm ThresholdGreedy that has

strong performance bounds for the storage-budgeted version. As before, for ease of exposition,

we assume that the input plan diagram is 2-dimensional – the algorithms can be easily general-

ized to higher dimensions, while the theoretical results are independent of the dimensionality.

4.1 The AreaGreedy Algorithm

The AreaGreedy algorithm [33] first sorts the plans featuring in the plan diagram in ascending

order of their area coverage. It then iterates through this sequence, starting with the smallest-

sized plan, checking in each iteration whether the current plan can be completely swallowed by

the remaining plans – if it can, then all its points are recolored using the colors of the swallower

plans, and these points are added to the query sets of the swallowers.

An important point to note here is that when a plan that has already swallowed some other

35

CHAPTER 4. GREEDY PLAN DIAGRAM REDUCTION 36

1. Create a bucketBi for each different plani in P, and put all query points having the same
plan in the corresponding bucket.

2. Create a border bucketBBi for each different plani in P. Using the Edge Detector algo-
rithm, identify the border points of each contiguous plan region and only insert those points
into the corresponding bucket.

3. Sort the bucketsBi in ascending order of the areas covered by their associated plans inP.
Let this sorted list beB1, B2, . . . , Bn

4. for i = 1 to n

(a) Swallow(Bi) = true

(b) for each pointp in Bi

(c) for j = 1 to n and(j 6= i)

i. find, if available, a pointq in BBj such thatq is in first quadrant w.r.tp, cost(q)
is within [100%, (100 + λ)%] of cost(p), andcost(q) is the minimum across all
such qualifying points inBBj

(d) if one or moreq points are identified from the above step, choose theq point with the
lowestcost(q), and mark that pointp can be assigned toq’s bucket

(e) else Swallow(Bi) = false; break

(f) if Swallow(Bi)= true, move all the points inBi to their assigned replacement buckets,
then deleteBi andBBi

5. Output all the points ofP with their current plan assignments based on their assigned
buckets, and use the associated coloring to form the reducedplan diagramR

6. End Algorithm AreaGreedy

Figure 4.1: Algorithm AreaGreedy

CHAPTER 4. GREEDY PLAN DIAGRAM REDUCTION 37

query points is itself considered for swallowing, then theoriginal costs of the previously swal-

lowed query points are used in computing the cost increase with the current candidate swallow-

ers. This ensures that in the final reduced plan diagram, the cost increase of all query points is

within the threshold even if these points have been subject to multiple swallowings by different

plans in the iterative process.

The intuition behind the design of AreaGreedy is two-fold: First, using an area basis for the

swallowing iterations is likely to reduce the number of small-sized plans. This would contribute

towards plan stability as discussed in the Introduction. Second, small-sized plans tend to be

found near the origin and the axes of the plan diagram [20, 32,33] – this means that they offer

more scope for swallowing since their first quadrants are bigand therefore likely to have many

more candidate swallower plans as compared to the larger-sized plans which occur in the higher

regions of the selectivity space. The algorithm is given in Figure 4.1.

By inspection, it is obvious that AreaGreedy has a time complexity of O(m2), wherem

is the number of query points in the plan diagram. With respect to reduction quality, letAG

denote the solution obtained by AreaGreedy, and letOpt denote the optimal solution. We now

show that the approximation factor
|AG|
|Opt| can be no better than0.5

√
m.

Lemma 5 The approximation factor|AG|
|Opt|

≥ 0.5
√

m

Proof: Construct the plan diagram as follows.

1. Initialize costc.

2. for eachi = 2 . . . n − 1 do

(a) create an element of colorL1, costc andn−1 elements of colorLi, costc× (1+λ),

and an element of colorLn, costc × (1 + λ)2 and add it to rowi − 1 of the grid

(b) setc = c × (1 + λ)3

The plan diagram created above hasm = n2 − n − 2 points. The AreaGreedy algorithm will

output the reduced setPAG = {P2, P3, . . . , Pn} while the optimal solution isPOpt = {P1, Pn}.

Hence
|AG|
|Opt| =

n − 1

2

CHAPTER 4. GREEDY PLAN DIAGRAM REDUCTION 38

It can be seen that √
m + 1 − 1

2
<

n − 1

2
<

√
m + 1

2

Hence, for this plan diagram ,
|AG|
|Opt| ≈ 0.5

√
m

Hence the Lemma.

4.2 The CostGreedy Algorithm

We now propose CostGreedy, a new greedy reduction algorithm, which provides significantly

improved computational efficiency and approximation factor as compared to AreaGreedy.

Consider an instance of PlanRed that has anm1 × m2 grid with n plans andm = m1 × m2

query points. By scanning through the grid, we can populate thecur andbelong data structures

(introduced in Section 3.3) for every point. This can be doneas follows: For each query point

q with planPi in the grid, setcur(q) to bei, and add tobelong(q) all j such thatPj can replace

q. Using this, a Set Cover instanceI = (U, S) can be created with|U | = m and |S| = n.

Here,U will consist of elements that correspond to all the query points andS will consists of

sets corresponding to the plans in the plan diagram. The elements of each set will be the set of

query points that can be associated with the plan corresponding to that set.

The following lemma shows that the reduction solution for the plan diagram can be obtained

from the Set Cover instance created above.

Lemma 6 The optimal solution of the created Set Cover instanceI gives the optimal reduction

solution to the plan diagramP that is used to create the instance.

Proof: Let C = {Si1, Si2 , . . . Sik} be the optimal solution ofI. For each query pointq in

P, if it belongs to a subsetSij ∈ C, then colorq with color Lij . This is a valid coloring

because the elementq will be in subsetSij only if q can be replaced by planPij . Hence,

LR = {Si1 , Si2, . . . Sik} colors all points in the plan diagram.

To show thatLR is optimal, assume that there existsL′
R = {Li1, Li2 , . . . Lil} which covers

all plans in the plan diagram withl < k. The coverC ′ = {Si1, Si2 , . . . Sil} is a cover ofI, since

CHAPTER 4. GREEDY PLAN DIAGRAM REDUCTION 39

if a point can be colored withLij ∈ L′
R, then it will belong to the corresponding setSij . Since

L′
R covers all points in the plan diagram,C ′ coversU . This contradicts the assumption thatC

is the optimal cover ofI. Hence the lemma.

Lemma 6 is explicitly used in the design of CostGreedy, shownin Figure 4.2. In Lines 1

through 6, an instanceI = {U, S} of Set Cover is created. Then, in Line 8, CostGreedy calls

Algorithm Greedy Setcover, shown in Figure 4.3, which takesthis input instance and outputs

the coverC ⊆ S.

By definition, the TopRight query point inP cannot be re-colored since there are no points

in its first quadrant. Therefore, its color inP has to perforce also appear inR. Hence, we remove

its corresponding set from the Set Cover instance (Line 7) before applying Algorithm Greedy

Setcover, and then add it to the solution at the end (Line 10).

Finally, an attractive feature of CostGreedy is that a swallowed point is recoloredonly once,

in contrast to AreaGreedy where a swallowed point can be recolored multiple times.

4.2.1 Complexity Analysis

In the following theorem we show that the time complexity of CostGreedy isO(nm). Since it

is guaranteed thatn ≤ m, and typicallyn ≪ m, this means that CostGreedy is significantly

more efficient than AreaGreedy, whose complexity isO(m2). Further, it also means that for a

given diagram resolution, the performance islinear in the number of plans in the plan diagram.

Theorem 4 The time complexity of CostGreedy isO(mn), wherem andn are the number of

query points and plans, respectively, in the input plan diagramP.

Proof: Let P be anm1 × m2 grid. While populating thebelong andcur lists, we maintain

another two-dimensional arraymincost of dimensionm1 × n. This array is used to store the

minimum costs of the query points corresponding to each planappearing in the partial-column

located above each cell in the row above the one that is currently being processed. The initial

values inmincost are all∞.

We start the scan of the grid from right to left, beginning with the top row of the grid.

For each pointq with plan Pk at columni in the current row, if it can be replaced by any

CHAPTER 4. GREEDY PLAN DIAGRAM REDUCTION 40

CostGreedy (Plan DiagramP, Threshold λ)

1. For each pointq from TopRight to BottomLeft do

(a) setcur(q) = color(q)

(b) updatebelong(q) with plans that are inq’s first quadrant with cost within the given threshold

2. Letm = m1 × m2.

3. Createn setsS = {S1, S2, . . . Sn} corresponding to then plans.

4. LetU = {1, 2, . . . m} correspond to them query points.

5. Define∀i = 1 . . . n, Si = {j : i ∈ belong(r) or i = cur(r) for query pointr corresponding toj,
∀j = 1 . . . m}

6. LetI = (U,S), I be an instance of the Set Cover problem.

7. LetLn be the color of theTopRight point. Remove setSn and all its elements fromI.

8. Apply Algorithm Greedy Setcover toI. Let C be the solution found.

9. C = C
⋃{Sn}

10. Recolor the grid with colors corresponding to the sets inC and update new costs appropriately.
If a point belongs to more than one subset, then color it with the color that requires the least cost
increase.

11. End Algorithm CostGreedy

Figure 4.2: Algorithm CostGreedy

Greedy Setcover(Set CoverI)

1. SetC = ∅

2. WhileU 6= ∅ do:

(a) Select setSj ∈ S, such that|Sj| = max(|Si|);∀Si ∈ S (in case of tie, select set with smallest
index)

(b) U = U \ Sj, S = S \ {Sj}
(c) C = C

⋃{Sj}

3. ReturnC

4. End Algorithm Greedy Setcover

Figure 4.3: Algorithm Greedy Setcover

CHAPTER 4. GREEDY PLAN DIAGRAM REDUCTION 41

Figure 4.4: Updating mincostin Algorithm CostGreedy

other planPj, then mincost[i][Pj] should be within the increase threshold of the cost of

q. Hence, through a single scan ofmincost[i], we can populatebelong(q). Then the cost

of q is updated formincost[i][Pk]. Since the values in the columnmincost[i] are candi-

dates for the minimum values of the columni − 1, mincost[i − 1] is updated with the value

min(mincost[i], mincost[i− 1]). An example is shown in Figure 4.4. The arraymincost con-

tains updated values after processing all the columns of thefirst three rows of the plan diagram.

With the above procedure, when moving to the next row to be processed, the columns

mincost[i] will automatically contain the minimum costs of all the plans appearing in the first

quadrant of the query point at theith column of the previous row. When a query point at column

i is being processed, due to the cumulative updation of the costs of the plans visited on that row,

mincost[i] will be updated with the minimum costs of all the plans in thatpoint’s first quadrant.

So each query point requires2n iterations to be made, and there arem query points. Hence the

time required for populating the data structurescur andbelong is of the orderO(mn).

Obtaining the Set Cover instance from the above data structures takesO(mn) time, and the

Algorithm Greedy Setcover also has a time complexity ofO(mn). Thus the CostGreedy has an

overall time complexity ofO(mn). Hence the theorem.

CHAPTER 4. GREEDY PLAN DIAGRAM REDUCTION 42

4.2.2 Approximation Factor

We now quantitatively assess the approximation factor thatcan always be guaranteed by the

CostGreedy algorithm with respect to the optimal.

Lemma 7 CostGreedy has an approximation factor
|CG|
|Opt| = O(lnm), wherem is the number of query points in the plan diagram.

Proof: It has been shown in [11, 42] that Algorithm Greedy Setcover (GS) has an approxima-

tion factor
|GS|
|Opt| ≤ H(m), wherem is the cardinality of the universal set, andH(m) is the

mth harmonic number. The input to GS can have at most(m − 1) elements in its universal set

(this occurs when the TopRight query point has a unique colornot shared by any other point in

the entire diagram). Therefore,

|CG|
|Opt| =

|GS|
|Opt| ≤ H((m − 1)) = O(lnm) (4.1)

Tightness of Bound. It is shown in [42] that given anyk, l where|Greedy| = k and|Opt| = l,

a Set Cover instance can be generated with(k + l) sets andm elements such thatm ≥ G(k, l),

whereG(k, l) is a recursively defined greedy number:

G(l, l) = l

G(k + 1, l) = ⌈ l

l − 1
∗ G(k, l)⌉

It is also shown in [42] that the following tight bound ofln m for Set Cover can be achieved

using such a construction whenm = G(k, l):

ln m − ln ln m − 0.31 ≤ k

l
≤ ln m − ln ln m + 0.78 (4.2)

These results are used in the following lemma.

Lemma 8 The bound specified by Lemma 7 is tight.

CHAPTER 4. GREEDY PLAN DIAGRAM REDUCTION 43

Proof: The construction process in [42] of the above-mentioned SetCover instance, withm =

G(k, l), is such that every element belongs to exactlytwosets. For a givenk, l, first construct the

Set Cover instance using the construction in [42]. Using this create another Set Cover instance

of the formI ′ with (k + l + 1) sets and(m + 1) elements, as mentioned in Section 3.2. When

Algorithm Reduce is applied to this new instance, it createsa grid with m′ = 3 ∗ (m + 1)

elements. This is because, for each element, since it is in two sets, it can be colored by two

colors in the plan diagram. One of these will represent its current plan, and for the other plan, a

new element will be created and added to its right. Then another element will be created to its

right which can replace this newly created element and having the color representing the plan

corresponding to the setS ′. Hence, each of them + 1 rows will have 3 elements.

From Equation 4.2 we know that

|Greedy|
|Opt| ≥ ln m − ln ln m − 0.31 (4.3)

Sincem =
m′

3
− 1 it is easy to see that

|Greedy|
|Opt| = Θ(lnm′)

Optimality of the Bound. It has been shown in [11] that the bound ofO(lnm) for Set Cover

is the best possible bound below which Set Cover cannot be approximated efficiently, unless

NP has slightly super-polynomial-time algorithms. This result is used in the following theorem:

Theorem 5 The bound specified by Lemma 7 is the best possible threshold below which

PlanRed cannot be approximated efficiently unless NP has slightly super-polynomial-time al-

gorithms.

Proof: Consider a Set Cover instanceI = (U, S) with |U | = m and|S| = n, wheren ≤ m.

The gridG produced by Algorithm Reduce is an instance of PlanRed with|G| = m′, where

2m ≤ m′ ≤ mn ≤ m2.

Thus,log(2m) ≤ log(m′) ≤ 2log(m), which implies that a reduced bound for PlanRed

will provide a reduced bound on Set Cover. But this would contradict the result of [11]. Hence,

this is the optimal bound for PlanRed.

CHAPTER 4. GREEDY PLAN DIAGRAM REDUCTION 44

4.3 The ThresholdGreedy Algorithm

We now turn our attention to developing an efficient greedy algorithm for the Storage-budgeted

variation of the PlanRed problem. Specifically, we present ThresholdGreedy, a greedy algo-

rithm that selects plans based on maximizing the benefits obtained by choosing them. The

benefit of a plan is defined to be the extent to which it decreases the cost thresholdλ of the re-

duced plan diagram when it is chosen, which means that at eachstep ThresholdGreedy greedily

chooses the plan whose selection minimizes the effectiveλ.

The least number of plans that can be in the reduced plan diagram is a single plan

which corresponds to the plan of the TopRight query point in the plan diagram. This can

be always achieved by setting the cost increase thresholdλ to equal the ratio between the

costs of the TopRight and BottomLeft query points in the plandiagram, i.e. λSinP lan =

cost(TopRight)/cost(BottomLeft).

We now bootstrap the selection algorithm by choosing this plan and subsequently choose

additional plans based on their relative benefits. The details of the algorithm can be found in

Figure 4.5. LetBenopt andBengreedy be the total benefit of choosingk plans by the optimal

and greedy algorithms, respectively. This means that the final cost increase threshold with the

optimal selection isλSinP lan − BenOpt, and with the threshold greedy solution isλSinP lan −
BenTG. The following theorem quantifies the approximation factorof ThresholdGreedy:

Theorem 6 Given a storage budget ofk plans, letBenopt be the benefit obtained by the optimal

solution’s selection, andBenTG be the benefit obtained by the ThresholdGreedy algorithm’s

selection. Then

BenTG

BenOpt

≥ 1 − (
k − 1

k
)k

Proof: Given that we need to choosek plans, letTG = {P2, ...Pk} be the plans chosen in

order by the greedy algorithm. LetOpt = {Q1, Q2, ...Qk} be the plans chosen by the optimal

solution. LetBenPi
andBenQi

be the benefits of choosing the plansPi andQi respectively

after choosing the previousi − 1 plans. It can be seen that

BenTG =
k∑

i=0

BenPi
(4.4)

CHAPTER 4. GREEDY PLAN DIAGRAM REDUCTION 45

ThresholdGreedy (P lanDiagramP, Budgetk)

1. LetP1 be the plan of theTopRight query point.

2. SetC = {P1}

3. λ = cost(TopRight)
cost(BottomLeft)

4. for i = 2 to k do

(a) For each plan inP calculate the benefit of choosing that plan in addition to the
plans inC. Let Pj correspond to the plan which gives the maximum benefit.

(b) LetBen correspond to the benefit provided byPj

(c) SetC = C
⋃{Pj}

(d) Setλ = λ − Ben

5. Recolor the grid with colors corresponding to the sets inC and update new costs
appropriately. If a point can be colored with more than one color, then color it with
the color that requires the least cost increase.

6. End Algorithm ThresholdGreedy

Figure 4.5: Algorithm ThresholdGreedy

Benopt =
k∑

i=0

BenQi
(4.5)

DefineBij to be the sum over all plans inP of the amount of the benefitBenQi
that is attributed

to Pj . An inequality that holds for eachj is

k∑

i=1

Bij ≤ BenPj

SinceP2 is chosen first, it can be seen that

∀i, BenQi
≤ BenP2

This is true because if there was someBenQi
> BenP2

, thenQi would have been chosen by

the algorithm instead ofP2.

Similarly for P3 the following inequality can be formed.

∀i, BenQi
− Bi1 ≤ BenP3

.

CHAPTER 4. GREEDY PLAN DIAGRAM REDUCTION 46

This inequality holds because, planQi competes with other plans when selecting the second

plan with its initial benefitBenQi
minus the benefit that was covered byP2.

In general these inequalities can be written as

∀i, BenQi
− Bi1 − Bi2... − Bij−1 ≤ BenPj

.

Adding the above set of equations over alli and using (4.4) and (4.5) we obtain the following

set ofk inequalities.

Benopt ≤ k.BenP2

Benopt ≤ k.BenP3
+ BenP2

Benopt ≤ k.BenP4
+ BenP3

+ BenP2

...

Benopt ≤ k.BenPk
+ BenPk−1

+ BenPk−2
+ BenPk−3

... + BenP2

For a fixedBenTG the tightest bound onBenopt occurs when all of the right side in the above

set of inequalities are equal, in which case we getBenPi
= k

k−1
BenPi+1

. Using this we get

BenTG =
k∑

i=1

(
k

k − 1
)i−1BenPk

Benopt ≤ k(
k

k − 1
)k−1BenPk

Using the above two equations we get

BenTG

Benopt

≥ 1 − (
k − 1

k
)k

Fork = 10, which we consider to be a reasonable budget in practice, theabove ratio works

out to about 0.65, while fork → ∞, the ratio asymptotically goes down to 0.63. In an overall

sense, this means that ThresholdGreedy is always guaranteed to provide close totwo-thirds of

the optimal benefit.

Chapter 5

Estimators for Plan Diagram Reduction

Our experience has been that CostGreedy takes about a minuteto carry out a single reduction

on plan diagrams that have in the order of a million query points. While this appears sufficiently

fast, it is likely that users may need to iteratively try out several reductions with different cost

increase thresholds in order to identify the one appropriate for their purpose. For example, the

user may wish to identify the “knee” of the tradeoff between plan cardinality reduction and

the cost threshold – that is, the location which gives themaximum reduction with minimum

threshold.

In the above situations, using the CostGreedy method repeatedly to find the desired setting

may prove to be extremely cumbersome and slow. Therefore, itwould be helpful to design fast

but accurate estimators that would allow users to quickly narrow down their focus to the inter-

esting range of threshold values. In the remainder of this section, we present such estimators.

Our first estimator,AvgEst , takes as input the plan diagramP and a cost increase threshold

λ, and returns the estimated number of plans in the reduced plan diagramR obtained with that

threshold. It uses the average of the costs of all the query points associated with a plan, to

summarize the plan’s cost distribution. All these averagescan be simultaneously computed

with a single scan of the Plan Diagram. AvgEst then sets up an instance of Set Cover, as

shown in Figure 5.1, with the number of elements equal to the number of plans, and the set

memberships of plans is based on their representative average costs satisfying theλ threshold.

On this instance, the Greedy Set Cover algorithm, introduced earlier in Figure 4.3, is executed.

47

CHAPTER 5. ESTIMATORS FORPLAN DIAGRAM REDUCTION 48

The cardinality of the solution is returned as an estimate ofthe number of plans that will feature

in R.

AvgEst (Plan Diagram P, Threshold λ)

1. LetCost(i),∀i = 1 . . . n denote the average cost of PlanPi

2. SetU = {1, 2, . . . n}

3. SetSi = {1, 2, . . . n}, ∀i = 1 . . . n

4. for each planPi do

(a) For all plansPj such thatCost(j) < Cost(i) or Cost(j) is not within the threshold of
Cost(i), setSj = Sj \ {i}

5. Apply Algorithm Greedy Setcover toI. Let C be the solution found

6. return|C|

7. End Algorithm AvgEst

Figure 5.1: Algorithm AvgEst

Our second estimator,AmmEst , uses in addition to the average value, the minimum and

maximum cost values of the query points associated with a plan. That is, each plan is effectively

represented by a vector of three values. Subsequently, the algorithm is identical to AvgEst, the

only change being that the check for set membership of a plan is based on not just the average

value but on all three representative values (min, max and average) individually satisfying the

membership criterion. This algorithm is shown in Figure 5.2.

By iteratively running the estimator for various cost thresholds, we can quickly plot a graph

of plan cardinality against threshold, and the knee of this curve can be used as the estimated

knee. Our measurements show that this estimation process executes in a few milliseconds,

orders of magnitude faster than calculating the knee using CostGreedy. Further, this estimate

can be used as a starting point to find the actual knee which is likely to be in the neighborhood,

as shown in the experimental results of the following chapter.

CHAPTER 5. ESTIMATORS FORPLAN DIAGRAM REDUCTION 49

AmmEst (Plan Diagram P, Threshold λ)

1. Let Cost(i),Min(i) andMax(i),∀i = 1 . . . n denote the average, minimum and maximum cost
respectively of PlanPi

2. SetU = {1, 2, . . . n}

3. SetSi = {1, 2, . . . n}, ∀i = 1 . . . n

4. for each planPi do

(a) For all plansPj such that at least one ofCost(j), Min(j) andMax(j) is not within the
threshold ofCost(i),Min(i) andMax(i) respectively, setSj = Sj \ {i}

5. Apply Algorithm Greedy Setcover toI. Let C be the solution found

6. return|C|

7. End Algorithm AmmEst

Figure 5.2: Algorithm AmmEst

Chapter 6

Experimental Results

Having considered the theoretical and statistical aspectsof plan diagram reduction in the pre-

vious chapters, we now move on to presenting our experimental results. The testbed is the

Picasso optimizer visualization tool [30], executing on a Sun Ultra 20 workstation equipped

with an Opteron Dual Core 4GHz processor, 4 GB of main memory and 240 GB of hard disk,

running the Windows XP Pro operating system. Through the GUIof the Picasso tool, users

can submit a query template, the grid resolution and distribution at which the instances of this

template should be spread across the selectivity space, theparameterized relations (axes) and

their attributes on which the diagrams should be constructed, and the choice of query optimizer.

With this information, the tool automatically generates the associated SQL queries, submits

them to the optimizer to generate the plans, and finally produces the color-coded plan, cost and

cardinality diagrams.

We conducted our plan diagram reduction experiments over dense plan diagrams produced

from a variety of multi-dimensional TPC-H and TPC-DS based query templates evaluated over

a suite of industrial-strength database query optimizers.The templates were instantiated at a

variety of grid resolutions, based on the experimental objectives and ensuring viable diagram

production times. We also confirmed that all the plan diagrams were in compliance with the

plan cost monotonicity condition, described in Section 3.1. The detailed listing of the query

templates used in this thesis are given in the Appendix – the naming convention used is QTx for

the TPCH-based templates and DSQTx for the TPC-DS based templates, wherex represents

50

CHAPTER 6. EXPERIMENTAL RESULTS 51

the benchmark query number on which the template is based.

A gigabyte-sized database was created using the TPC-H benchmark’s synthetic generator –

while the benchmark models only uniformly distributed data, we extended the generator to also

produce skewed data distributions. The optimizers were alloperated at their default optimiza-

tion levels and resource settings. To support the making of informed plan choices, commands

were issued to collect statistics on all the attributes featuring in the query templates, and the

plan selections were determined using the “explain” feature of the optimizers. It is important to

note here that in all our experiments, the optimizers are treated as “black boxes” and there is no

attempt to customize or fine-tune their behavior. The optimizers that we use include IBM DB2

v8, Oracle 10g and Microsoft SQL Server 2005, which (due to legal restrictions) are randomly

referred to as OptA, OptB and OptC in the remainder of this thesis.

6.1 Computational Efficiency

We start off by first quantitatively evaluating the runtimesof the two greedy algorithms, Area-

Greedy [33] and CostGreedy (proposed in this thesis), as compared to the time taken to produce

the computationally-hard optimal solution. The reductionquality of the algorithms is compared

in the next section. A sample set of results on OptC is shown inTable 6.1 for QT8, the query

template shown in Chapter 1, instantiated at a grid resolution of 100 uniformly distributed

points per dimension1 and reduction carried out at a cost increase threshold of 10%. We see

here that even for this relatively coarse-grained situation, the optimal algorithm takes several

hours to complete. In contrast, AreaGreedy takes only a few seconds, while CostGreedy is an

order-of-magnitude better than AreaGreedy, finishing in a small fraction of a second.

The substantial improvement of CostGreedy with regard to AreaGreedy is, as per the dis-

cussion in Chapter 4, due to itsO(nm) complexity being significantly lower than theO(m2)

of AreaGreedy, asn ≪ m in practice (recall thatn is the number of plans andm is the total

number of query points in the plan diagram).

1The QT8 plan diagram in the Introduction was obtained with a resolution of 300, resulting in a higher plan
cardinality.

CHAPTER 6. EXPERIMENTAL RESULTS 52

Table 6.1: Computational Efficiency (QT8, Res=100)
Algorithm Original Reduced Time

Plans (λ = 10%)
OptRed 50 7 4 hours

AreaGreedy 50 7 2.8 sec
CostGreedy 50 7 0.1 sec

0 5 10 15 20
0

10

20

30

40

50

Cost Increase Threshold (%)

N
u

m
b

e
r

o
f
P

la
n

s

AreaGreedy
CostGreedy
OptRed

Figure 6.1: Reduction Quality (QT8), Res=100

6.2 Plan Diagram Reduction Quality

Turning our attention to the reduction quality, we see in Table 6.1 that AreaGreedy and Cost-

Greedy are identical to the optimal (OptRed), all three producing reduced plan diagrams with

7 plans (in fact, the plans themselves are also the same in this case). The closeness to the

optimal holds across the entire operational range of cost increase thresholds, as shown in Fig-

ure 6.1, which presents the reduced plan cardinalities for the three algorithms as a function of

the threshold – only a few representative points were obtained for OptRed due to its extremely

high computational overheads.

Another point to note in Figure 6.1 is the initial steep decrease in the number of plans

with increasing threshold – we have found this to be a staple feature of all the dense plan

diagrams that we have investigated, irrespective of the specific query template, data or query

point distribution, memory availability, or database optimizer that produced the dense diagram.

These settings may determinewhether or nota dense plan diagram is produced, but if produced,

CHAPTER 6. EXPERIMENTAL RESULTS 53

TPC-H OptA OptB OptC
Query Plan Reduced Reduced Plan Reduced Reduced Plan Reduced Reduced

Number Card Plans Plans Card Plans Plans Card Plans Plans
(λ=10%) (λ=20%) (λ=10%) (λ=20%) (λ=10%) (λ=20%)

2 14 7 7 20 10 8 43 12 8
5 11 4 2 12 4 4 23 6 5
8 36 4 3 16 4 2 50 7 4
9 39 9 6 18 7 3 38 4 3
10 18 5 4 7 3 3 17 4 3

Table 6.2: Plan Diagram Reduction Quality (Res = 100)

TPC-H OptA OptB OptC
Query Plan Reduced Reduced Plan Reduced Reduced Plan Reduced Reduced

Number Card Plans Plans Card Plans Plans Card Plans Plans
(λ=10%) (λ=20%) (λ=10%) (λ=20%) (λ=10%) (λ=20%)

2 12 11 7 23 7 6 52 14 10
5 11 4 2 11 4 3 12 5 2
8 35 5 3 24 4 2 34 6 5
9 49 10 5 34 6 5 46 3 3
10 22 7 7 12 5 4 11 2 2

Table 6.3: Skewed Data Distribution (Res = 100)

subsequently the reduction process produces consistent results. This trend is clearly seen in

Table 6.2, which captures the reduction behavior of Optimizers A, B and C, with various TPCH-

based query templates on which they produced dense plan diagrams.

6.2.1 Skewed Data Distribution

The above results were obtained with uniformly distributeddata generated using the TPC-H

benchmark’s synthetic generator. We extended the generator to also produce skewed data dis-

tributions. When this skewed data was used instead, the observed reduction results did not

materially change. While the specific plan diagram changed,the reduction behavior contin-

ued to be as before. This can be seen in Table 6.3, which captures the behavior of the three

optimizers on their dense plan diagrams with skewed data.

CHAPTER 6. EXPERIMENTAL RESULTS 54

TPC-H OptA OptB OptC
Query Plan Reduced Reduced Plan Reduced Reduced Plan Reduced Reduced

Number Card Plans Plans Card Plans Plans Card Plans Plans
(λ=10%) (λ=20%) (λ=10%) (λ=20%) (λ=10%) (λ=20%)

2 26 12 10 25 12 10 94 26 16
5 41 8 5 18 5 5 74 10 6
8 50 6 3 19 5 3 174 7 5
9 111 12 7 21 9 4 225 18 8
10 37 7 5 11 5 4 56 6 4

Table 6.4: Exponential Query Point Distribution (Res = 100)

6.2.2 Exponential Distribution of Query Points

In the above diagrams, which were produced with a uniform distribution of query points across

the selectivity space, we observed that in most cases, the density of plans is greater in the

regions near the axes, that is, at low selectivity values of the base relations. This motivated us

to alter the arrangement of query points to be exponentiallydistributed with a higher density in

the low selectivity region. As expected, this led to a substantial increase in the cardinality of

the original plan diagram. Despite this, we see that the reduction process remains materially

unaffected. This is highlighted in Table 6.4, where we see that the plan cardinality of the reduced

plan diagram decreases sharply at a low cost increase threshold, irrespective of the number of

plans in the original plan diagram. For example, the plan diagram cardinality increased from 38

to 225 for QT9 on OptC, but the reduced plan diagram cardinality (with λ = 20%) went from 3

plans to only 8 plans.

6.2.3 Increased Grid Resolution

While increasing the grid resolution may increase the number of plans in the original plan

diagram (due to the unearthing of new small-sized plans between the ones found at coarser

resolutions), virtually all of these new plans are swallowed at a low threshold itself. This follows

from the fact that these plans, being optimal over a small region, tend to have costs close to those

of their neighbors and are therefore likely to be easily swallowed.

This is clearly seen in Table 6.5, which captures the reduction behavior of the three opti-

CHAPTER 6. EXPERIMENTAL RESULTS 55

TPC-H OptA OptB OptC
Query Plan Reduced Reduced Plan Reduced Reduced Plan Reduced Reduced

Number Card Plans Plans Card Plans Plans Card Plans Plans
(λ=10%) (λ=20%) (λ=10%) (λ=20%) (λ=10%) (λ=20%)

2 23 9 8 23 12 10 76 20 12
5 18 5 3 14 5 5 31 10 6
8 47 3 3 17 5 2 89 6 6
9 64 10 6 20 8 4 91 9 4
10 25 7 4 8 4 3 31 6 4

Table 6.5: Increased Grid Resolution (Res = 300)

mizers with the TPCH-based query templates at a grid resolution of 300 uniformly distributed

query points per dimension. For example, although the plan diagram cardinality went up from

38 to 91 in case of QT9 on OptC, the reduced plan diagram cardinality (with λ = 20%) went

from 3 plans to only 4 plans. This means that for practical threshold settings, the final plan

cardinality in the reduced diagram is essentially “scale-free” with regard to resolution.

6.2.4 Reduction For Various Cost Diagram Behaviors

The behavior of the cost diagram can affect the plan diagram reduction process as it directly

impacts the possibility of finding a replacement plan withintheλ threshold for an entire plan.

Cost diagrams can be categorized as slowly increasing or steeply increasing depending on the

slope. Plan diagrams, in turn, can be categorized as sparse or dense depending on the number

of plans in the diagram. Thus, the possible combinations are:

1. Slowly increasing and sparse: Since the plan diagram is already sparse, i.e. the plan

cardinality is already small, there is no need for plan diagram reduction. An example of

this combination, generated with QT17 on OptC, can be seen inFigure 6.2(a).

2. Steeply increasing and sparse: Since the plan diagram is already sparse, i.e. the plan

cardinality is already small, there is no need for plan diagram reduction. An example of

this combination, generated with QT7 on OptC, can be seen in Figure 6.2(c).

3. Slowly increasing and dense: Since the dense plan region corresponds to a slowly in-

creasing cost region, this means that the costs of the plans in the dense region are all

CHAPTER 6. EXPERIMENTAL RESULTS 56

(a) Slowly increasing and sparse (b) Slowly increasing and dense

(c) Steeply increasing and sparse (d) Steeply increasing and dense

Figure 6.2: Cost Diagram Behavior

CHAPTER 6. EXPERIMENTAL RESULTS 57

very close to each other and hence they can be swallowed at lowcost increase thresholds,

leading to a significant reduction in plan cardinality. A sample cost diagram with such

behavior, generated with QT8 on OptC, is shown in Figure 6.2(b), where the cardinality

of the original plan diagram is 50 and reduces to 4 with a cost increase threshold of 20%.

4. Steeply increasing and dense: This combination is not very commonly found. From the

perspective of plan diagram reduction, this is a problem situation as the steepness of the

cost function could hinder reduction at low cost increase thresholds. An example of this,

generated with QT2 on OptC, is shown in Figure 6.2(d) where the steep cost regions,

corresponding to low selectivity values on either base relation, have a large number of

plans. The cardinality of the original plan diagram is 43 andreduces to 8 with a cost

increase threshold of 20%. We see that the plan diagram reduction in the steep regions

happens primarily because the plans within the steeply increasing region swallow each

other.

An extreme case of the steeply increasing cost diagram and dense plan diagram would be

when the cost function isdiscontinuousat any region in the diagram. This would lead to

a sudden, sharp variation in the cost. A sample plan diagram of this case, generated with

QT18 on an alternative optimizer, OptD, (as it was not found to occur with Optimizers

A, B or C), having 18 plans is shown in Figure 6.3(a). Its corresponding cost diagram

is shown in Figures 6.3(b) and 6.3(c) (from different 3-D perspectives), where the dis-

continuity is visible at the plane corresponding to about 60% selectivity of theLINEITEM

relation. The reduced plan diagram for the same with a cost increase threshold of 20%

is shown in Figure 6.3(d), where we note that the reduction still results in a small num-

ber of plans (seven) as the swallowing now happens betweenneighboringplans in the

steep region of the cost diagram, in addition to the reduction in the slowly increasing cost

regions.

CHAPTER 6. EXPERIMENTAL RESULTS 58

(a) Plan Diagram (b) Cost Diagram

(c) Cost Diagram (d) Reduced Plan Diagram (λ = 20%)

Figure 6.3: Discontinuous Cost Function Example (QT18)

CHAPTER 6. EXPERIMENTAL RESULTS 59

0 5 10 15 20
0

50

100

150

200

250

Cost Increase Threshold (%)
N

u
m

b
e

r
o

f
P

la
n

s

2D(100)
2D(300)
3D
4D

Figure 6.4: Scaling with Dimensions

6.3 Scaling with Dimensions

The above results were obtained on 2-D query templates, and we now move on to evaluating the

effect of increased template dimensionality. Specifically, evaluating the behavior with 3-D and

4-D versions of the QT8 template (created through the addition of predicatesc acctbal :varies

ando totalprice :varies). This experiment was carried out only with OptC as a representative,

due to the computational effort involved in producing theseplan diagrams.

The results are shown in Figure 6.4 for 2-D with resolutions of 100 and 300 query points

per dimension, 3-D with a resolution of 100 query points per dimension, and 4-D with a res-

olution of 30 query points per dimension. We see here that while the number of plans in the

original plan diagram goes up steeply with increasing dimensionality, the reduction behavior

is qualitatively similar across all the templates. Further, as shown in Table 6.6, the reduction

behavior is remarkably stable: First, the location of the knee of the plan cardinality vs. cost

increase threshold graph varies only marginally, occurring in the neighborhood of 10%. Sec-

ond, the threshold required to bring the reduced plan diagram cardinality down to 10 plans is

within 20%, a very practical value from a user perspective, even in a 4-D setting. Again, this

seems to suggest that for practical threshold settings, thefinal plan cardinality in the reduced

plan diagram is essentially “scale-free” with regard to dimension.

CHAPTER 6. EXPERIMENTAL RESULTS 60

Table 6.6: Multi-dimensional Query Templates
Dim- Original Knee Cost Knee 10-plan Cost
ension Plans Threshold Plans Threshold
2(100) 50 8% 9 7%
2(300) 89 9% 7 7%

3 190 11% 10 11%
4 243 13% 14 20%

2(100) 2(300) 3 4
0

5

10

15

20

Dimension

C
o

s
t
In

c
re

a
s
e

 T
h

re
s
h

o
ld

AvgEst

AmmEst

CostGreedy

Figure 6.5: Knee Estimates

6.4 Estimator Performance

Our next experiment studies the quality of theknee estimatesprovided by the estimators. The

results are shown in Figure 6.5 for QT8 on OptC (the results for other query templates and

database engines are similar in nature) and indicate that AvgEst and AmmEst are reasonably

accurate despite using extremely coarse characterizations of the cost distributions of plans in

their optimality regions. Further, their orders-of-magnitude runtime efficiency relative to the

CostGreedy algorithm, for iteratively computing the knee,is captured in Table 6.7.

The estimator performance in characterizing the full plot of reduced plan cardinality versus

λ is shown in Figures 6.6(a)–6.6(d) for 2D-100, 2D-300, 3D-100 and 4D-30, respectively, the

CostGreedy performance being used as the yardstick. We see here that, in general, the simple

AvgEst estimator provides estimates that are closer to CostGreedy than AmmEst– however,

an advantage of AmmEst is that it producesconservativeestimates, whereas AvgEst can on

occasion slightly overestimate the degree of plan diagram reduction, as is seen in Figures 6.6(a)

CHAPTER 6. EXPERIMENTAL RESULTS 61

and 6.6(b).

Table 6.7: Running Time of Estimators vs CostGreedy
TPC-H Query Estimator Time(ms) CostGreedy time(ms)

Template (for Knee) (for Knee)
2 25 2733
5 8 1675
8 26 3648
9 71 2382
10 12 546

6.5 Effect of Memory Availability

In all the above results, the query parameterization was on the selectivities of the base rela-

tions. Another parameter that is well-known to have significant impact on plan choices is the

amount of system memory available for query processing (e.g. Nested Loop joins may be fa-

vored in low-memory environments, whereas Hash Joins may bea more attractive alternative

in memory-rich situations). In fact, plan costs can be highly non-linear or evendiscontinuous

at low memory availabilities [6, 7].

We conducted experiments wherein the memory was varied fromthe default system memory

to the minimum permitted by the engine. The procedure to change the memory settings is

given in Chapter 8. We found that the memory budget certainlyhad significant impact on the

spatial layouts and cardinalities of the plan diagrams. Forinstance, with QT2 on OptA, the plan

cardinality varied between 21 and 37 with varying memory forthe buffer pages and the sort

heap, as shown in Table 6.8. However, the basic observation that dense plan diagrams can be

reduced to a few plans with low cost increase thresholds remained unchanged as shown in the

Table 6.8: OptA- Varying memory
Buffer Sort Minimum Maximum Original Reduced Plans Reduced Plans
Pages Heap Cost Cost Plans (λ = 10%) (λ = 20%)

10 10 1.54e4 2.75e7 34 16 14
10 50000 1.54e4 2.71e7 21 10 9

50000 10 1.56e4 6.11e5 37 10 9
50000 50000 1.56e4 5.55e5 27 9 7

CHAPTER 6. EXPERIMENTAL RESULTS 62

0 5 10 15 20
0

10

20

30

40

50

Cost Increase Threshold (%)

N
u

m
b

e
r

o
f

P
la

n
s

AvgEst

AmmEst

CostGreedy

(a) Est-2D (100)

0 5 10 15 20
0

20

40

60

80

100

Cost Increase Threshold (%)
N

u
m

b
e

r
o

f
P

la
n

s

AvgEst

AmmEst

CostGreedy

(b) Est-2D (300)

0 5 10 15 20
0

50

100

150

200

Cost Increase Threshold (%)

N
u

m
b

e
r

o
f

P
la

n
s

AvgEst

AmmEst

CostGreedy

(c) Est-3D

0 5 10 15 20
0

50

100

150

200

250

Cost Increase Threshold (%)

N
u

m
b

e
r

o
f

P
la

n
s

AvgEst

AmmEst

CostGreedy

(d) Est-4D

Figure 6.6: Estimator Performance

CHAPTER 6. EXPERIMENTAL RESULTS 63

Table 6.9: TPC-DS
TPC-DS Query Original Reduced Plans Reduced Plans

Template Plans (λ = 10%) (λ = 20%)
12 13 5 4
17 39 2 2
18 47 11 6
19 36 10 8
25 43 2 2

last two columns of Table 6.8.

For OptC, we found that changing the parameter settings for server memory did not ap-

preciably change the cost of the query points. We intend to investigate this issue further in

collaboration with the developers of the OptC database engine.

6.6 TPC-DS

We also validated our results on TPC-DS, the recently released decision support bench-

mark [46]. TPC-DS models the decision support functions of aretail product supplier, including

data loading, multiple types of queries and data maintenance. The database consists of multi-

ple snowflake schemas with shared dimension tables, skewed data and a large query set. We

used a 100 GB sample database which has 24 tables, generated using the TPC-DS benchmark’s

synthetic generator, on OptC. Representative results are shown in Table 6.9 for sample query

templates based on the TPC-DS queries. These plan diagrams were produced with 100 query

points per dimension, uniformly distributed in the selectivity space. We see in the table that

though these plan diagrams are dense, the plan diagram reduction process produces reduced

plan diagrams of low cardinality, seeminglyindependentof the properties and complexity of

the underlying database.

6.7 Abstract Plan Costing Based Reduction

So far, all the reduced plan diagrams were produced by using the upper-bounding rule specified

in Definition 3 (Chapter 3). This made the reduction conservative in terms of the plans that were

CHAPTER 6. EXPERIMENTAL RESULTS 64

Figure 6.7: Plan Diagram (QT8)

considered as potential replacements for other plans. Somecommercial database engines now

provide the feature of costing a sub-optimal plan at a query point, which is called the Abstract

Plan costing feature. Thus, we can now perform plan diagram reduction without having to

adhere to the Cost Bounding Rule. This could enhance reduction as the accurate cost of a

potential swallower plan at a query point could comply with the cost-increase threshold in cases

where the upper-bound did not. Also, instead of restrictingattention to plans in a particular

quadrant which can upper bound the cost of replacement, we can find the optimizer-estimated

cost ofall plans in the plan diagram at a query point and choose the best replacement.

The only drawback of this approach is that it is computationally very expensive as the ab-

stract plan of every plan in the original plan diagram has to be extracted and its cost has to be

evaluated for every query point in the diagram.

Experimentally, we have observed that Abstract-Plan-based reduction results in a very small

number of plans in the reduced plan diagram - sometimesonly one plan. This one plan is thus

close to optimal for all query points, which provides some additional benefits as we will see in

Chapter 7. Let us see an example of this reduction. The plan diagram of QT8 with a resolution

of 10 and an exponential distribution of query points is shown in Figure 6.7. This diagram has

CHAPTER 6. EXPERIMENTAL RESULTS 65

(a) Reduced Plan Diagram - CostGreedy

(b) Reduced Plan Diagram - Abstract Plan Costing

Figure 6.8: Reduced Plan Diagram (QT8,λ = 10%)

CHAPTER 6. EXPERIMENTAL RESULTS 66

Table 6.10: Computational Efficiency (QT8, Res=100)
Algorithm Original Reduced Time

Plans (λ = 10%)
Cost Bounding 50 7 0.17 sec

Abstract Plan based (I quadrant) 50 4 1.25 hrs
Abstract Plan based (All quadrants) 50 3 7.8 hrs

37 plans and cost-bounded reduction (withλ = 10%) results in 5 plans (Figure 6.8(a)), whereas

Abstract-Plan-based reduction retains only a single plan as shown in Figure 6.8(b).

Another way to perform Abstract-Plan cost-based reductionis to consider only plans in

the first quadrant of a point as potential swallowers. This could help offset some of the com-

putational cost of this method. The times taken by the cost-bounded plan diagram reduction,

the abstract-plan-based reduction considering only first-quadrant plans, and the abstract-plan-

based reduction considering all plans, are all shown in Table 6.10. It is clear from the table that

while abstract-plan-based reduction results in very low cardinality reduced plan diagrams, it is

computationally expensive, even when we consider only firstquadrant plans as potential swal-

lowers. Specifically, abstract-plan based reduction takeshours in comparison to the seconds

taken by cost-bounded reduction. For users willing to bear this increased computational cost,

this reduction could provide the ideal solution.

6.8 Rationale for Reduction

Having seen experimental evidence of anorexic plan diagramreduction, we now try to present

the intuition behind this phenomenon. It has been observed in [44] that for any query point,

the percentage of plans that are within twice the cost of its optimum plan is around 1% of

the total number of plans in the search space. Further, our own evaluation of a public-domain

optimizer, OptD, has found that the fraction of plans withinten to twenty percent of the optimal

is around 0.01 percent. Since the search space is usually in the several tens of thousands,

it means that each query point in the plan diagram has a small but definite bucket of close-

to-optimal plans associated with it. Further, it is very likely that there are some common plans

between neighboring buckets as a plan that is close-to-optimal at a query point usually continues

CHAPTER 6. EXPERIMENTAL RESULTS 67

to be so in the neighborhood of the point. Due to this and the fact that the plans within a bucket

have nearly equivalent costs, the likelihood of different plans being picked as optimal in a region

is high. Thus, a plan that belongs to the optimality space might be only slightly more expensive

at some points outside its region of optimality. These are the points that this plan could cover,

given a cost increase threshold by the user. This provides the scope for plan diagram reduction.

We have also experimentally observed that the number of close-to-optimal plans is greater

for query points that are close to the origin and axes. The presence of more contenders for

the optimal plan might explain why the cardinality of plan diagrams is usually greater in these

regions.

We intend to investigate the phenomenon of plan diagram reduction more formally in our

future work.

Chapter 7

Applications of Plan Diagram Reduction

In the previous chapters, we studied the plan diagram reduction problem and the techniques

to perform this reduction. We now turn our attention to sample applications of plan diagram

reduction. The numerous benefits that result from reductionof plan diagrams were enumerated

in Section 1.4 such as enhancement of PQO usability, identification of least-expected-cost plans,

etc. Most of the benefits listed there are proportional to thenumber of plans eliminated during

the plan diagram reduction process, but the identification of error-resistant plans (Section 1.4.3)

is a function of thebehaviorof the plans that are retained rather than the number of plans.

7.1 Resistance to errors in selectivity estimates

Plan diagram reduction can help to identify plans that provide robust performance over large

regions of the selectivity space. Therefore,errors in the underlying database statistics, a situa-

tion often encountered by optimizers in practice [25], may have much less impact as compared

to using the fine-grained plan choices of the original plan diagram, which may have poor per-

formance at other points in the space.

The estimated location of the query point in the selectivityspace could differ from the actual

location due to a variety of reasons, such as:

1. Out-of-date statistics: Database engines use statistics to determine the resultant cardinal-

ity and thereby the cost of each plan. These statistics, being expensive to maintain, are

68

CHAPTER 7. APPLICATIONS OFPLAN DIAGRAM REDUCTION 69

usually not continuously kept up-to-date.

2. Coarseness of the statistics: The statistics maintainedby the DBMS are inherently coarse.

For example, histograms store information in a fixed number of buckets, usually about 20,

and the frequency of a value in a bucket is approximated by theaverage of the frequencies

of all values in the bucket.

3. Caching of plans: Some optimizers might cache the plan that is best for the most fre-

quently occurring query point in the selectivity space, anduse the plan for all other points.

A selectivity error made by the optimizer can result in one oftwo situations:

1. The actual location of the point iswithin the optimality region (endo-optimal) of the plan

that covers the estimated location in the reduced plan diagram.

2. The actual location of the point isoutsidethe optimality region (exo-optimal) of the plan

that covers the estimated location in the reduced plan diagram.

Plan diagram reduction increases the likelihood that a selectivity error will result in the

endo-optimal situation. This is due to the fact that each plan that remains in the reduced plan

diagram covers an area larger than or equal to the area it covered in the original plan diagram.

Reduced plan diagrams are inherently robust to errors of this type as the cost of the replacement

plan is guaranteed to be within aλ threshold of the cost of the optimal plan at the actual location.

For example, in Figure 7.1(a) (same as Figure 1.4(a)), estimated selectivities of (14%,1%)

leads to a choice of plan P70. However, if the actual selectivities at runtime turn out to be

significantly different, say (50%,40%), using plan P70, whose cost increases steeply with se-

lectivity, would be disastrous. In contrast, this error would have had no impact with the re-

duced plan diagram of Figure 7.1(b) (same as Figure 1.4(d)),since P1, the replacement plan

choice at (14%,1%), remains as the preferred plan for a largerange of higher values, including

(50%,40%). Quantitatively, at (50%, 40%), plan P1 has a costof 135, while P70 is much more

expensive, aboutthree timesthis value.

For selectivity errors that result in the exo-optimal case however, the upper bound on the

costcannotbe guaranteed. Experimental observation indicates that the plans retained after plan

CHAPTER 7. APPLICATIONS OFPLAN DIAGRAM REDUCTION 70

(a) Plan Diagram

(b) Reduced Diagram (λ = 10%)

Figure 7.1: Sample Plan and Reduced Plan Diagrams (QT8)

CHAPTER 7. APPLICATIONS OFPLAN DIAGRAM REDUCTION 71

diagram reduction tend to be more robust than the ones eliminated by the reduction process.

In order to measure this robustness, we define what we call the“Selectivity-error Resistance

Power” (SeRP) of a replacement plan w.r.t. the original plan at a specific query point.

Consider a query pointq with selectivities(x, y), having optimal planPi in the original 2-

dimensional plan diagramP and assigned planPj in the reduced plan diagramR (the extension

to n-dimensions is straightforward). Suppose the error in selectivity estimation causes the query

point to shift toq′ with selectivities(x′, y′) which was assigned planPk in the original plan

diagram. Then, SeRP is defined as:

SeRP (q, q′) =
ci(q

′)

ck(q′)
∗ ci(q

′) − cj(q
′)

ci(q′) − ck(q′)
(7.1)

whereci(q) is the cost of executing queryq with planPi.

The first term of the SeRP represents the window of benefit thatis available due to the

difference in costs betweenPi andPk at q′. The second term measures the fraction of benefit

actually garnered by the replacement plan w.r.t. the original plan. The magnitude of the SeRP

value denotes the extent of variation between the robustness of the original and replacement

plans.

The SeRP is measured across different distances in the selectivity space with the distance

representing the error in selectivity estimates. In principle, any distance metric can be used to

represent selectivity errors, here we use Euclidean distance. For every distinct pair of points,

Figure 7.2 shows the variation of the SeRP for different distances in QT4 on OptC. As we can

see here, the reduced plan diagram provides substantially better resistance to errors in selectivity

estimates than the original plan diagram, with the SeRP value as high as +23.

7.2 Producing Robust Reduced Plan Diagrams

It should be noted that, in principle, the SeRP can take values from−∞ to +∞. An SeRP

value greater than zero indicates that the replacement planis more robust than the original

plan, whereas an SeRP value lesser than zero indicates that the original plan is preferable as

compared to the replacement plan. In a plan diagram, the costof a plan is unknown in its

CHAPTER 7. APPLICATIONS OFPLAN DIAGRAM REDUCTION 72

0 10 20 30 40 50
0

5

10

15

20

25

S
e

R
P

Selectivity Error Distance

Figure 7.2: SeRP (QT4,λ = 10%)

exo-optimal region. Thus, there is no guarantee that the SeRP value for a selectivity error that

causes a query point to fall in the exo-optimal region of its replacement plan in the reduced

plan diagram will be non-negative. However, if the replacement plan were chosen such that it

complies with theλ threshold w.r.t. the original plan not just at the query point of estimated

selectivity, but throughout the selectivity space, the SeRP value for this replacement would be

bounded. Thus the problem can be stated as follows:

Definition 7 ErrorResistantPlanRed

Given an input plan diagramP, and a cost increase thresholdλ (λ ≥ 0), find a reduced

plan diagramR that has minimum plan cardinality, and for every planPi in P,

1. Pi ∈ R, or

2. ∀ query pointsq ∈ Pi, ∃Pj ∈ R, such that∀ query pointsq′ ∈ P,
cj(q

′)

ci(q′)
≤ (1 + λ)

That is, find the minimum-sized error-resistant “cover” of plans that is sufficient to recolor

P (using only the colors inLP) without increasing the cost of any re-colored query point by

CHAPTER 7. APPLICATIONS OFPLAN DIAGRAM REDUCTION 73

RobustCostGreedy (Plan DiagramP, Threshold λ)

1. For each pointq from TopRight to BottomLeft do

(a) setcur(q) = color(q)

(b) updatebelong(q) with plans that are inq’s first quadrant with cost within the given threshold
at q and at all the corners

2. Letm = m1 × m2.

3. Createn setsS = {S1, S2, . . . Sn} corresponding to then plans.

4. LetU = {1, 2, . . . m} correspond to them query points.

5. Define∀i = 1 . . . n, Si = {j : i ∈ belong(r) or i = cur(r) for query pointr corresponding toj,
∀j = 1 . . . m}

6. LetI = (U,S), I be an instance of the Set Cover problem.

7. LetLn be the color of theTopRight point. Remove setSn and all its elements fromI.

8. Apply Algorithm Greedy Setcover toI. Let C be the solution found.

9. C = C
⋃{Sn}

10. Recolor the grid with colors corresponding to the sets inC and update new costs appropriately.
If a point belongs to more than one subset, then color it with the color that requires the least cost
increase.

11. End Algorithm RobustCostGreedy

Figure 7.3: Algorithm RobustCostGreedy

CHAPTER 7. APPLICATIONS OFPLAN DIAGRAM REDUCTION 74

Figure 7.4: Plan Diagram (QT5)

more than the cost increase threshold,irrespective of the actual location of the query point at

run-time.

In order to find this error-resistant cover of the plan diagram, we need to compare the be-

havior of each replacement plan with the original plan it is replacing atall points in the plan

diagram. This requires us to find the cost of this original plan and all potential replacement

plans at every point in the diagram. This can be done by using the Abstract-Plan feature ex-

plained in Chapter 6. But, as we have already seen there, thisfeature is extremely expensive.

In order to provide a computationally feasible solution, weconsider the costs of the original

and potential replacement plans at the extreme corner querypoints of the plan diagram to be

representative of the interior points and compare the costsat these points. An extended version

of the CostGreedy algorithm called RobustCostGreedy that incorporates this corner-heuristic is

shown in Figure 7.3.

For most query templates, our experience has been that the SeRP≥ 0, indicating that the

replacement was beneficial. But, there do exist templates where the replacement proves to be

harmful – an extreme case where the SeRP is≪ 0 arises with QT5 on OptC. For this combina-

tion, the plan diagram (Figure 7.4) contains 51 plans. The reduced plan diagram produced by

CHAPTER 7. APPLICATIONS OFPLAN DIAGRAM REDUCTION 75

CostGreedy forλ = 10% is shown in Figure 7.5(a), which has 15 plans. The SeRP diagram for

this reduction, showing the minimum and maximum SeRP for every pair of points at a given

distance is shown in Figure 7.5(b). As is clear from this figure, there are cases where the cost of

the replacement plan is orders-of-magnitude greater than that of the original plan at the actual

location. In fact, in this case the SeRP takes a value as low as-2500!

The average SeRP is computed by summing up all the SeRP valuesfor the corresponding

distance and dividing this value by the number of distinct points that occur at this distance.

Thus, the average SeRP for a particular distance weighs the benefit to the losses incurred by the

replacement across all points that have this selectivity error between them. The average SeRP

diagram for this reduction is shown in Figure 7.5(c).

When the reduction is carried out with RobustCostGreedy, the reduced plan diagram shown

in Figure 7.6 results. The reduced number of plans in this case is also 15, although some of the

plans chosen are different from those chosen by the CostGreedy algorithm. The SeRP diagram

for this reduction, showing the minimum and maximum SeRP forevery pair of points at a

given distance is shown in Figure 7.6(b). The magnitudes of the minimum SeRP values here

are significantly greater than those in Figure 7.5(b), whichmeans that the replacement plan

does not have a cost much greater than the original planirrespective of the error in selectivity

estimates. The average SeRP diagram for this reduction is shown in Figure 7.6(c). The negative

SeRP values we saw earlier have almost disappeared here!

Thus, we see that robust plan diagram reduction is feasible and enhances the resistance to

selectivity estimate errors in the reduced plan diagram by many orders-of-magnitude. However,

this kind of reduction is available only in systems that provide the Abstract-Plan costing feature.

Even in these systems, the computational cost of performingthis operation prevents us from

comparing the cost of the original and replacement plans at all points in the plan diagram.

Having demonstrated the benefits provided by abstract-plan-based plan diagram reduction

and the enhanced resistance to selectivity estimate errorsusing abstract-plan costing, we hope

that commercial optimizer designers will provide this feature in all optimizers and, further,

make it computationally viable to perform many such costings in an efficient manner.

CHAPTER 7. APPLICATIONS OFPLAN DIAGRAM REDUCTION 76

(a) Reduced Plan Diagram

0 5 10 15 20 25 30 35 40 45
−3000

−2000

−1000

0

1000

2000

3000

S
e

R
P

Selectivity Error Distance

(b) SeRP Diagram – Min and Max SeRP

0 5 10 15 20 25 30 35 40 45
−50

−40

−30

−20

−10

0

10

20

30

40

50

S
e

R
P

Selectivity Error Distance

(c) SeRP Diagram – Average SeRP

Figure 7.5: Reduced Plan Diagram and SeRP Diagram (QT5,λ = 10%)

CHAPTER 7. APPLICATIONS OFPLAN DIAGRAM REDUCTION 77

(a) Robust Reduced Plan Diagram

0 5 10 15 20 25 30 35 40 45
−3000

−2000

−1000

0

1000

2000

3000

S
e

R
P

Selectivity Error Distance

(b) SeRP Diagram – Min and Max SeRP

0 5 10 15 20 25 30 35 40 45
−50

−40

−30

−20

−10

0

10

20

30

40

50

S
e

R
P

Selectivity Error Distance

(c) SeRP Diagram – Average SeRP

Figure 7.6: Robust Reduced Plan Diagram and SeRP Diagram (QT5, λ = 10%)

Chapter 8

Implementation in Picasso

The CostGreedy, ThresholdGreedy, RobustCostGreedy and AmmEst algorithms proposed in

this thesis have been implemented in the publicly availablequery optimizer visualization tool

– Picasso v1.0 [30]. Picasso has been developed in the Database Systems Lab [48] at the

Indian Institute of Science, for visually analyzing the behavior of industrial-strength relational

query optimizers. It generates a host of diagrams that throwlight on the functioning of the

optimizer for a parameterized query template over the relational selectivity space. Given a query

template, the grid resolution, the distribution at which the instances of this template should be

spread across the selectivity space, the parameterized relations (axes) and their attributes on

which the diagrams should be constructed, and the choice of query optimizer, the Picasso tool

automatically generates the associated SQL queries, submits them to the optimizer to generate

the plans, and finally produces the color-coded plan, cost and cardinality diagrams.

A block diagram of the Picasso architecture is shown in Figure 8.1. Every request from the

user is passed on from the Picasso client to the Picasso server, which handles communication

with the database engine and the production of diagrams. ThePicasso client is responsible for

the visualization of these diagrams. The Picasso server communicates with the database en-

gines through their JDBC interfaces, treating the optimizers as “black boxes”. Picasso currently

supports DB2, SQL Server, Oracle, Sybase and PostgreSQL.

78

CHAPTER 8. IMPLEMENTATION IN PICASSO 79

Figure 8.1: Picasso Architecture

8.1 Algorithm Implementation

The CostGreedy algorithm, described in Chapter 4, is implemented in the client module of

the Picasso tool. It executes much faster than the AreaGreedy algorithm (Figure 4.1), which

was originally used in Picasso v0.5b, as seen in the experimental evaluation of Chapter 6. The

CostGreedy algorithm (Figure 4.2) uses themincostdata structure explained in Figure 4.4,

which is implemented as a 2-dimensional array. The minimum,average and maximum cost

increases that result from the plan diagram reduction process are also computed.

The AmmEst algorithm is used to auto-suggest the estimated knee of the plan cardinality vs.

cost increase threshold graph and the cost-increase-threshold required to obtain a user-specified

number of plans as shown in Figure 8.2. In this example, the user-specified number of plans is

10, which can be changed by the user by setting a parameter in the PicassoConstants file. For

each plan, we find the minimum, average and maximum costs of the points associated with it

and use these costs as representative of the plan. A planPi can be swallowed by a planPj if

and only if all three cost values ofPj are within threshold of the corresponding cost values of

Pi.

The RobustCostGreedy algorithm introduced in Chapter 7 is implemented in the same

way as the CostGreedy algorithm. The additional check here is performed by finding the

estimated cost of all plans at the four extreme corners of theplan diagram, that is the

TopRight, TopLeft, BottomRight and BottomLeft points, and comparing the estimated

costs of the original and replacement plans at these points in addition to the point where the

CHAPTER 8. IMPLEMENTATION IN PICASSO 80

Figure 8.2: Estimator

replacement is being considered. These costs are computed using the Abstract Plan Costing

feature described later.

8.2 System Memory Restrictions

We were able to restrict the number of buffer pages and the sort heap size that the optimizer can

allocate to the plan in OptA [49]. The command used to do this is “db2fopt<dbname> update

opt buffpage<value>”.

In OptB, we found theDB CACHE SIZE parameter that specifies the minimum buffer

size, but could not find one that supports setting the maximumsize.

Finally, in OptC, we tried to restrict the memory by alteringthe parameters “min server

memory” and “max server memory” in the sys.configurationstable [personal communication

Nicolas Bruno]. As mentioned earlier, we found that this did not appreciably change the cost of

the query points. We intend to investigate this issue further in collaboration with the developers

of the OptC database engine.

8.3 Abstract Plan Costing

The Abstract Plan costing based reduction feature explained in Chapter 7 is implemented only

on OptC as this feature is not available in the other optimizers. OptC allows the user to specify,

CHAPTER 8. IMPLEMENTATION IN PICASSO 81

as a hint, the plan to be used to execute a given query. It then verifies the validity of the plan

for the query and computes the estimated cost of execution. Parameter-level changes might

be made to the plan if the optimizer considers this necessary, but generally, the plan is not

materially changed.

We use this feature of OptC to find the estimated cost of a plan at a query point where it is

sub-optimal. In order to do this, we set the parameter “showplanxml” to on and retrieve the

plan from the database engine in the form of an XML string. This plan is then appended to the

query template as a hint, as shown in Figure 8.3, and queries based on this modified template

are now sent to the optimizer to be evaluated. Thus, we obtainthe cost of running the query

with this plan throughout the selectivity space. The plan diagram is then reduced using these

localized costs instead of using the Cost Bounding Rule.

CHAPTER 8. IMPLEMENTATION IN PICASSO 82

select oyear, sum(case when nation = ’BRAZIL’ then volume else 0 end)/ sum(volume)

from (select YEAR(oorderdate) as oyear, l extendedprice * (1 - ldiscount) as volume,
n2.n name as nation

from part, supplier, lineitem, orders, customer, nation n1, nation n2, region

where ppartkey = lpartkey and ssuppkey = lsuppkey and lorderkey = oorderkey and
o custkey = ccustkey and cnationkey = n1.nnationkey and n1.nregionkey = rregionkey
and snationkey = n2.nnationkey and rname = ’AMERICA’ and ptype = ’ECONOMY
ANODIZED STEEL’
ands acctbal :variesandl extendedprice :varies

) as all nations

group by oyear

order by oyear

–PicassoAbstractPlan

option (use plan N‘

<ShowPlanXML xmlns=”http://schemas.microsoft.com/sqlserver/2004/07/showplan”
Version=”1.0” Build=”9.00.1399.06”>

<BatchSequence>

<Batch>

<Statements>
.
.

<OutputList>

<ColumnReference Database=”[tpch]” Schema=”[dbo]” Ta-
ble=”[LINEITEM]” Column=”L EXTENDEDPRICE”/>

<ColumnReference Database=”[tpch]” Schema=”[dbo]” Ta-
ble=”[LINEITEM]” Column=”L DISCOUNT”/>

<ColumnReference Database=”[tpch]” Schema=”[dbo]” Ta-
ble=”[NATION]” Alias=”[n1]” Column=”N REGIONKEY”/>

<ColumnReference Database=”[tpch]” Schema=”[dbo]” Ta-
ble=”[NATION]” Alias=”[n2]” Column=”N NAME”/>

<ColumnReference Column=”Expr1022”/>

<ColumnReference Column=”Expr1027”/>

</OutputList>
.
.

</Statements>

</Batch>

</BatchSequence>

</ShowPlanXML>

Figure 8.3: Abstract Plan Costing: QT8

Chapter 9

Conclusions

The plan diagrams of industrial-strength database query optimizers are often remarkably com-

plex and dense, with a large number of plans covering the space. In this thesis, we investigated

from a variety of perspectives, the problem of reducing the cardinality of dense plan diagrams

produced by modern query optimizers, without adversely affecting the query processing qual-

ity specified by the user through a cost increase threshold. Plan diagram reduction has useful

implications for the design and usage of query optimizers, including quantifying redundancy in

the plan search space, enhancing useability of parametric query optimization, identifying error-

resistant and least-expected-cost plans, and minimizing the overheads of multi-plan approaches.

Our analysis showed that while finding the optimal reductionwas NP-hard, the CostGreedy

algorithm proposed here was able to efficiently provide a tight and optimal performance guar-

antee. Further, the experimental assessment using the dataand query templates generated from

the TPC-H benchmark on commercial optimizers indicated that, in practice, CostGreedy was

always within a plan or two of the optimal, frequently givingthe optimal itself. The AvgEst and

AmmEst estimators were able to rapidly provide a fairly accurate assessment of the tradeoff be-

tween reduced plan cardinality and the cost threshold, helping users to focus on the interesting

threshold ranges. Also, the experimental study indicated that the graph of cardinality versus

threshold was typically steep and that the number of plans inthe reduced plan diagram was

likely to be brought down toanorexiclevels (within/around ten) with cost increase thresholds

of just twenty percenteven for high-dimensional query templates. We also validated these re-

83

CHAPTER 9. CONCLUSIONS 84

sults on the recently released benchmark TPC-DS, which showed that plan diagram reduction

is largely independent of the characteristics of the underlying database.

These results are even more striking when we consider that they areconservativesince a

cost bounding rule was used, rather than the optimizer-estimated costs of replacement plans at

query points. When the optimizer-estimated costs were usedthrough Abstract-Plan costing, the

reduction obtained was much greater – often retaining only acouple of plans over the entire

selectivity space.

We also considered a storage-budgeted variant of the plan diagram reduction where the goal

was to identify the best set ofk plans that would minimize the cost increase in the reduced plan

diagram. To solve this problem, we presented ThresholdGreedy, a greedy algorithm that selects

plans based on maximizing the benefits obtained by choosing them and saw that Threshold-

Greedy is always guaranteed to provide close totwo-thirds of the optimal benefit.

In some cases, the reduced plan diagram produced by the CostGreedy algorithm could have

very poor performance in the presence of errors in selectivity estimates by the optimizer. In

order to offset this poor performance, we proposed the RobustCostGreedy algorithm that retains

the plans that are resistant to errors in selectivity estimates made by the optimizer, by checking

the robustness of the plans at some representative points inthe plan diagram. We saw that the

reduced plan diagrams produced by this algorithm were inherently more robust than the original

plan diagram.

In closing, our study has shown that plan diagram reduction can be carried out efficiently

and can bring down the plan cardinality to a manageable number of plans while maintaining

acceptable query processing quality. It has also shown thatwhile the optimization process is

sensitive to many parameters including query construction, data distribution, memory resources,

etc., the reduction process, on the other hand, is relatively indifferent to these factors. We have

also demonstrated a sample application of plan diagram reduction that results in improved plan

choices by the optimizer.

In summary, this thesis demonstrates that complex plan diagrams can be efficiently con-

verted to anorexic reduced plan diagrams, a result that could have useful implications for the

design and use of next-generation database query optimizers.

CHAPTER 9. CONCLUSIONS 85

9.1 Future Work

The work that we have presented in this thesis can be extendedin the following ways:

1. In PlanRed, it is required to guarantee that the cost ofevery individualswallowed query

point in the original diagram is not increased by more thanλ. An alternative problem

formulation could be one where it is only required to guarantee that theaveragecost

increase in the reduced diagram is not more thanλ. The goal here is to come up with

heuristic algorithms to efficiently achieve maximum reduction for this alternative metric.

2. A limitation of the RobustCostGreedy algorithm that we have proposed is that, since it

only checks the robustness of the replacement plans at the corner points, it is still possi-

ble to get a negative SeRP value for some selectivity errors.An alternative approach to

provide error-resistance could be to first analyze and characterize the kinds of plan cost

functions that arise in industrial-strength optimizers, and then, to investigate the kinds of

mathematical cost functions under which it would be possible to provide global guaran-

tees on the cost of a plan in the face of selectivity errors.

3. The PlanRed problem is NP-Hard, as was shown in this thesis. An interesting extension to

this problem is to assess whether a fixed-parameter tractable solution [10] can be designed

for PlanRed. That is, can a parameterk (which can possibly be the solution size) be

identified, leading to an algorithm for optimally solving PlanRed whose running time is

polynomial in the input size (number of points and plans in the input plan diagram), while

it may be exponential ink.

4. As we have seen in Table 6.10, the Abstract Plan costing based plan diagram reduction,

while highly effective, is prohibitively expensive. One ofthe reasons for this could be

that when an abstract plan is sent to the optimizer to be evaluated, the optimizer may also

be checking the validity of the plan for the given query. While this might be essential

for a plan formulated by the user, if aplan generated by the optimizeris returned to

it for a different selectivity value, the validity check would be redundant. Therefore, a

useful alternative would be to provide the abstract plan costing feature without the validity

CHAPTER 9. CONCLUSIONS 86

check, which could make this method of plan diagram reduction feasible. We hope the

results shown here will encourage commercial optimizers tosupport abstract-plan costing

without validity checking.

5. We intend to conduct a more formal investigation of the phenomenon of plan diagram

reduction.

6. Finally, and most importantly, to use these results and re-engineer current optimizers to

directly produce reduced plan diagrams in the first instance, which could potentially speed

up the complex process of query optimization, in addition toproviding the other benefits

mentioned in this thesis.

Appendix A

87

APPENDIX A. 88

select
s_acctbal,
s_name,
n_name,
p_partkey,
p_mfgr,
s_address,
s_phone,
s_comment

from
part,
supplier,
partsupp,
nation,
region

where
p_partkey = ps_partkey
and s_suppkey = ps_suppkey
and p_retailprice :varies
and s_nationkey = n_nationkey
and n_regionkey = r_regionkey
and r_name = ’EUROPE’
and ps_supplycost <= (

select
min(ps_supplycost)

from
partsupp, supplier, nation, region

where
p_partkey = ps_partkey
and s_suppkey = ps_suppkey
and s_nationkey = n_nationkey
and n_regionkey = r_regionkey
and r_name = ’EUROPE’
and ps_supplycost :varies

)
order by

s_acctbal desc,
n_name, s_name, p_partkey

Figure A.1: QT2

APPENDIX A. 89

select
o_orderpriority,
count(*) as order_count

from
orders

where
o_totalprice :varies
and exists (

select

*
from

lineitem
where

l_orderkey = o_orderkey
and l_extendedprice :varies

)
group by

o_orderpriority
order by

o_orderpriority

Figure A.2: QT4

APPENDIX A. 90

select
n_name,
sum(l_extendedprice * (1 - l_discount)) as revenue

from
customer,
orders,
lineitem,
supplier,
nation,
region

where
c_custkey = o_custkey
and l_orderkey = o_orderkey
and l_suppkey = s_suppkey
and c_nationkey = s_nationkey
and s_nationkey = n_nationkey
and n_regionkey = r_regionkey
and r_name = ’ASIA’
and o_orderdate >= ’1994-01-01’
and o_orderdate < ’1995-01-01’
and c_acctbal :varies
and s_acctbal :varies

group by
n_name

order by
revenue desc

Figure A.3: QT5

APPENDIX A. 91

select
supp_nation,
cust_nation,
l_year,
sum(volume)

from
(

select
n1.n_name as supp_nation,
n2.n_name as cust_nation,
YEAR (l_shipdate) as l_year,
l_extendedprice * (1 - l_discount) as volume

from
supplier,
lineitem,
orders,
customer,
nation n1,
nation n2

where
s_suppkey = l_suppkey
and o_orderkey = l_orderkey
and c_custkey = o_custkey
and s_nationkey = n1.n_nationkey
and c_nationkey = n2.n_nationkey
and (

(n1.n_name = ’FRANCE’
and n2.n_name = ’GERMANY’)
or (n1.n_name = ’GERMANY’
and n2.n_name = ’FRANCE’)

)
and l_shipdate between ’1995-01-01’
and ’1996-12-31’

and o_totalprice :varies
and c_acctbal :varies

)as shipping
group by

supp_nation,
cust_nation,
l_year

order by
supp_nation,
cust_nation,
l_year

Figure A.4: QT7

APPENDIX A. 92

select
o_year,
sum(case

when nation = ’BRAZIL’ then volume
else 0

end) / sum(volume)
from

(
select

YEAR(o_orderdate) as o_year,
l_extendedprice * (1 - l_discount) as volume,
n2.n_name as nation

from
part,
supplier,
lineitem,
orders,
customer,
nation n1,
nation n2,
region

where
p_partkey = l_partkey
and s_suppkey = l_suppkey
and l_orderkey = o_orderkey
and o_custkey = c_custkey
and c_nationkey = n1.n_nationkey
and n1.n_regionkey = r_regionkey
and r_name = ’AMERICA’
and s_nationkey = n2.n_nationkey
and p_type = ’ECONOMY ANODIZED STEEL’
and s_acctbal :varies
and l_extendedprice :varies

) as all_nations
group by

o_year
order by

o_year

Figure A.5: QT8

APPENDIX A. 93

select
n_name,
o_year,
sum(amount)

from
(

select
n_name,
YEAR(o_orderdate) as o_year,
l_extendedprice * (1 - l_discount) -
ps_supplycost * l_quantity as amount
from

part,
supplier,
lineitem,
partsupp,
orders,
nation
where

s_suppkey = l_suppkey
and ps_suppkey = l_suppkey
and ps_partkey = l_partkey
and p_partkey = l_partkey
and o_orderkey = l_orderkey
and s_nationkey = n_nationkey
and p_name like ’%green%’
and s_acctbal :varies
and ps_supplycost :varies
) as profit
group by

n_name,
o_year

order by
n_name,
o_year desc

Figure A.6: QT9

APPENDIX A. 94

select
c_custkey,
c_name,
sum(l_extendedprice * (1 - l_discount)) as revenue,
c_acctbal,
n_name,
c_address,
c_phone,
c_comment

from
customer,
orders,
lineitem,
nation

where
c_custkey = o_custkey
and l_orderkey = o_orderkey
and o_orderdate >= ’1993-10-01’
and o_orderdate < ’1994-01-01’
and c_nationkey = n_nationkey
and c_acctbal :varies
and l_extendedprice :varies

group by
c_custkey,
c_name,
c_acctbal,
c_phone,
n_name,
c_address,
c_comment

order by
revenue desc

Figure A.7: QT10

APPENDIX A. 95

select
sum(l_extendedprice) / 7.0 as avg_yearly

from
lineitem,
part

where
p_partkey = l_partkey
and p_retailprice :varies
and l_quantity < (

select
0.2 * avg(l_quantity)

from
lineitem

where
l_partkey = p_partkey
and l_extendedprice :varies

)

Figure A.8: QT17

APPENDIX A. 96

select
c_name,
c_custkey,
o_orderkey,
o_orderdate,
o_totalprice,
sum(l_quantity)

from
customer,
orders,
lineitem

where
o_orderkey in (

select
l_orderkey

from
lineitem

where l_extendedprice :varies
group by

l_orderkey having
sum(l_quantity) > 300

)
and c_custkey = o_custkey
and o_orderkey = l_orderkey
and c_acctbal :varies

group by
c_name,
c_custkey,
o_orderkey,
o_orderdate,
o_totalprice

order by
o_totalprice desc,
o_orderdate

Figure A.9: QT18

APPENDIX A. 97

select
s_name,
count(*) as numwait

from
supplier,
lineitem l1,
orders,
nation

where
s_suppkey = l1.l_suppkey
and o_orderkey = l1.l_orderkey
and o_orderstatus = ’F’
and exists (

select

*
from

lineitem l2
where

l2.l_orderkey = l1.l_orderkey
and l2.l_suppkey <> l1.l_suppkey

)
and not exists (

select

*
from

lineitem l3
where

l3.l_orderkey = l1.l_orderkey
and l3.l_suppkey <> l1.l_suppkey
and l3.l_receiptdate > l3.l_commitdate

)
and s_nationkey = n_nationkey
and s_acctbal :varies
and l1.l_extendedprice :varies
and n_name = ’SAUDI ARABIA’

group by
s_name

order by
numwait desc,
s_name

Figure A.10: QT21

APPENDIX A. 98

select
i_item_desc,
i_category,
i_class,
i_current_price,
sum(ws_ext_sales_price) as itemrevenue,
sum(ws_ext_sales_price)*100/sum(sum(ws_ext_sales_price))
over (partition by i_class) as revenueratio

from
web_sales,
item,
date_dim

where
ws_item_sk = i_item_sk
and ws_sold_date_sk = d_date_sk
and d_date between ’1998-05-16’ and ’998-06-16’
and i_current_price :varies
and ws_list_price :varies

group by
i_item_id,
i_item_desc,
i_category,
i_class,
i_current_price

order by
i_category,
i_class,
i_item_id,
i_item_desc,
revenueratio

Figure A.11: DSQT12

APPENDIX A. 99

select
i_item_id,
i_item_desc,
s_state,
count(ss_quantity) as store_sales_quantitycount,
avg(ss_quantity) as store_sales_quantityave,
stdev(ss_quantity) as store_sales_quantitystdev,
stdev(ss_quantity)/avg(ss_quantity)
as store_sales_quantitycov,

count(sr_return_quantity)
as_store_returns_quantitycount,

avg(sr_return_quantity)
as_store_returns_quantityave,

stdev(sr_return_quantity)
as_store_returns_quantitystdev,

stdev(sr_return_quantity)/avg(sr_return_quantity)
as store_returns_quantitycov,

count(cs_quantity) as catalog_sales_quantitycount,
avg(cs_quantity) as catalog_sales_quantityave,
stdev(cs_quantity)/avg(cs_quantity)
as catalog_sales_quantitystdev,

stdev(cs_quantity)/avg(cs_quantity)
as catalog_sales_quantitycov

from
store_sales, store_returns, catalog_sales,
date_dim d1, date_dim d2, date_dim d3, store, item

where
d1.d_quarter_name = ’2002Q1’
and d1.d_date_sk = ss_sold_date_sk
and i_item_sk = ss_item_sk
and s_store_sk = ss_store_sk
and ss_customer_sk = sr_customer_sk
and ss_item_sk = sr_item_sk
and ss_ticket_number = sr_ticket_number
and sr_returned_date_sk = d2.d_date_sk
and d2.d_quarter_name in (’2002Q1’,’2002Q2’,’2002Q3’)
and sr_customer_sk = cs_bill_customer_sk
and sr_item_sk = cs_item_sk
and cs_sold_date_sk = d3.d_date_sk
and d3.d_quarter_name in (’2002Q1’,’2002Q2’,’2002Q3’)
and ss_list_price :varies
and cs_list_price :varies

group by
i_item_id, i_item_desc, s_state

order by
i_item_id, i_item_desc, s_state

Figure A.12: DSQT17

APPENDIX A. 100

select
i_item_id,
ca_country,
ca_state,
ca_county,
avg(cs_quantity) agg1,
avg(cs_list_price) agg2,
avg(cs_coupon_amt) agg3,
avg(cs_sales_price) agg4,
avg(cs_net_profit) agg5,
avg(c_birth_year) agg6,

avg(cd1.cd_dep_count) agg7
from

catalog_sales,
customer_demographics cd1,
customer_demographics cd2,
customer,
customer_address,
date_dim,
item

where
cs_sold_date_sk = d_date_sk
and cs_item_sk = i_item_sk
and cs_bill_cdemo_sk = cd1.cd_demo_sk
and cs_bill_customer_sk = c_customer_sk
and cd1.cd_gender = ’F’
and cd1.cd_education_status = ’Unknown’
and c_current_cdemo_sk = cd2.cd_demo_sk
and c_current_addr_sk = ca_address_sk
and c_birth_month in (3,11,9,5,8,10)
and d_year = 2000
and ca_state in (’NC’,’AK’,’PA’,’AK’,’CA’,’MA’,’WV’)
and cs_list_price :varies
and i_current_price :varies

group by
i_item_id,
ca_country,
ca_state,
ca_county

order by
ca_country,
ca_state,
ca_county

Figure A.13: DSQT18

APPENDIX A. 101

select
i_brand_id brand_id,
i_brand brand,
i_manufact_id,
i_manufact,
sum(ss_ext_sales_price) ext_price

from
date_dim,
store_sales,
item,
customer,
customer_address,
store

where
d_date_sk = ss_sold_date_sk
and ss_item_sk = i_item_sk
and d_moy=12
and d_year=1999
and ss_customer_sk = c_customer_sk
and c_current_addr_sk = ca_address_sk
and substring(ca_zip,1,5) <> substring(s_zip,1,5)
and ss_store_sk = s_store_sk
and ss_list_price :varies
and i_current_price :varies

group by
i_brand,
i_brand_id,
i_manufact_id,
i_manufact

order by
ext_price desc,
i_brand,
i_brand_id,
i_manufact_id,
i_manufact

Figure A.14: DSQT19

APPENDIX A. 102

select
i_item_id,
i_item_desc,
s_store_id,
s_store_name,
sum(ss_net_profit) as store_sales_profit,
sum(sr_net_loss) as store_returns_loss,
sum(cs_net_profit) as catalog_sales_profit

from
store_sales,
store_returns,
catalog_sales,
date_dim d1,
date_dim d2,
date_dim d3,
store,
item

where
d1.d_moy = 4
and d1.d_year = 1999
and d1.d_date_sk = ss_sold_date_sk
and i_item_sk = ss_item_sk
and s_store_sk = ss_store_sk
and ss_customer_sk = sr_customer_sk
and ss_item_sk = sr_item_sk
and ss_ticket_number = sr_ticket_number
and sr_returned_date_sk = d2.d_date_sk
and d2.d_moy between 4 and 4+6
and d2.d_year = 1999
and sr_customer_sk = cs_bill_customer_sk
and sr_item_sk = cs_item_sk
and cs_sold_date_sk = d3.d_date_sk
and d3.d_moy between 4 and 4+6
and d3.d_year = 1999
and ss_list_price :varies
and cs_list_price :varies

group by
i_item_id,
i_item_desc,
s_store_id,
s_store_name

order by
i_item_id,
i_item_desc,
s_store_id,
s_store_name;

Figure A.15: DSQT25

References

[1] G. Antonshenkov, “Dynamic Query Optimization in Rdb/VMS”, Proc. of 9th IEEE Intl.
Conf. on Data Engineering (ICDE), March 1993.

[2] B. Babcock and S. Chaudhuri, “Towards a Robust Query Optimizer: A Principle and
Practical Approach”,Proc. of ACM SIGMOD Intl. Conf. on Management of Data, June
2005.

[3] S. Babu, P. Bizarro, D. DeWitt, “Proactive Re-Optimization”, Proc. of ACM SIGMOD Intl.
Conf. on Management of Data, June 2005.

[4] A. Betawadkar, “Query Optimization with One Parameter”, Master’s Thesis, Dept. of
Computer Science & Engineering, IIT Kanpur, February 1999.

[5] S. Chaudhuri, “An Overview of Query Optimization in Relational Systems”,Proc. of ACM
Principles of Database Systems (PODS), June 1998.

[6] F. Chu, J. Halpern and P. Seshadri, “Least Expected Cost Query Optimization: An Exer-
cise in Utility”, Proc. of ACM Principles of Database Systems (PODS), May 1999.

[7] F. Chu, J. Halpern and J. Gehrke, “Least Expected Cost Query Optimization: What Can
We Expect”,Proc. of ACM Principles of Database Systems (PODS), May 2002.

[8] R. Cole and G. Graefe, “Optimization of Dynamic Query Evaluation Plans”,Proc. of ACM
SIGMOD Intl. Conf. on Management of Data, May 1994.

[9] G. Das and J. Haritsa “Robust Heuristics for Scalable Optimization of Complex SQL
Queries”, Proc. of 23rd IEEE Intl. Conf. on Data Engineering (ICDE), April 2007

[10] R. Downey, M. Fellows and U. Stege, “Parameterized Complexity: A Framework for
Systematically Confronting Computational Intractability”, DIMACS Vol. 49, 1999.

[11] U. Feige, “A threshold of ln n for approximating set cover”, Journal of ACM, 45(4), 1998.

[12] S. Ganguly, “Design and Analysis of Parametric Query Optimization Algorithms”,Proc.
of 24th Intl. Conf. on Very Large Data Bases (VLDB), August 1998.

[13] S. Ganguly and R. Krishnamurthy, “Parametric Query Optimization for Distributed
Databases based on Load Conditions”,Proc. of COMAD Intl. Conf. on Management of
Data, December 1994.

[14] M. Garey and D. Johnson, “Computers and Intractability: A Guide to the Theory of NP-
Completeness”, W. H. Freeman & Co, 1979.

[15] A. Ghosh, J. Parikh, V. Sengar and J. Haritsa, “Plan Selection based on Query Clustering”,
Proc. of 28th Intl. Conf. on Very Large Data Bases (VLDB), August 2002.

103

REFERENCES 104

[16] G. Graefe and W. McKenna, “The Volcano optimizer generator: Extensibility and efficient
search”,Proc. of 9th IEEE Intl. Conf. on Data Engineering (ICDE), April 1993.

[17] G. Graefe and D. DeWitt, “The Exodus Optimizer Generator”, Proc. of ACM SIGMOD
Intl. Conf. on Management of Data, June 1987.

[18] G. Graefe, “Query Evaluation Techniques for Large Databases”,ACM Computing Survey,
1993.

[19] A. Hulgeri and S. Sudarshan, “Parametric Query Optimization for Linear and Piecewise
Linear Cost Functions”,Proc. of 28th Intl. Conf. on Very Large Data Bases (VLDB), Au-
gust 2002.

[20] A. Hulgeri and S. Sudarshan, “AniPQO: Almost Non-intrusive Parametric Query Opti-
mization for Nonlinear Cost Functions”,Proc. of 29th Intl. Conf. on Very Large Data
Bases (VLDB), September 2003.

[21] I. Ilyas et al, “Estimating Compilation Time of a Query Optimizer”, Proc. of ACM SIG-
MOD Intl. Conf. on Management of Data, June 2003.

[22] Y. E. Ioannidis and Y. C. Kang, “Left-Deep vs. Bushy Trees: An Analysis of Strategy
Spaces and its Implications for Query Optimization”,Proc. of ACM SIGMOD Intl. Conf.
on Management of Data, May 1991.

[23] Y. Ioannidis, R. Ng, K. Shim and T. Sellis, “Parametric Query Optimization”,Proc. of
18th Intl. Conf. on Very Large Data Bases (VLDB), August 1992.

[24] M. Jarke and J. Koch. “Query optimization in database systems” ACM Computing Sur-
veys, 16(2):111-152, June 1984.

[25] N. Kabra and D. DeWitt, “Efficient Mid-Query Re-Optimization of Sub-Optimal Query
Execution Plans”,Proc. of ACM SIGMOD Intl. Conf. on Management of Data, May 1998.

[26] D. Kossmann and K. Stocker, “Iterative dynamic programming: a new class of query
optimization algorithms”,ACM Trans. on Database Systems (TODS), December 2000.

[27] L. Mackert and G. Lohman, “R* Optimizer Validation and Performance Evaluation for
Local Queries”,Proc. of ACM SIGMOD Intl. Conf. on Management of Data, May 1986.

[28] V. Markl et al, “Robust Query Processing through Progressive Optimization”Proc. of
ACM SIGMOD Intl. Conf. on Management of Data, June 2004.

[29] J. Melton and A. Simon, “Understanding The New SQL: A Complete Guide”,Morgan
Kaufmann, May 1993.

[30] Picasso Database Query Optimizer Visualizer,http://dsl.serc.iisc.ernet.in/projects/PICASSO/index.html

[31] T. Ramsinghani, “Picasso 1.0: Design and Analysis”,Master’s Thesis, Dept. of Computer
Science and Automation, IISc Bangalore, July 2007.

[32] S. Rao, “Parametric Query Optimization: A Non-Geometric Approach”,Master’s Thesis,
Dept. of Computer Science & Engineering, IIT Kanpur, March 1999.

[33] N. Reddy and J. Haritsa, “Analyzing Plan Diagrams of Database Query Optimizers”,Proc.
of 31st Intl. Conf. on Very Large Data Bases (VLDB), August 2005.

[34] N. Reddy, “Next Generation Relational Query Optimizers”, Master’s Thesis, Dept. of
Computer Science and Automation, IISc Bangalore, June 2005.

REFERENCES 105

[35] F. Reiss and T. Kanungo, “A Characterization of the Sensitivity of Query Optimization to
Storage Access Cost Parameters”,Proc. of ACM SIGMOD Intl. Conf. on Management of
Data, June 2003.

[36] P. Roy, S. Seshadri, S. Sudarshan, S. Bhobe, “Efficient and Extensible Algorithms for
Multi Query Optimization”,Proc. of ACM SIGMOD Intl. Conf. on Management of Data,
May 2000.

[37] P. Sarda and J. Haritsa, “Green Query Optimization: Taming Query Optimization Over-
heads through Plan Recycling”,Proc. of 30th Intl. Conf. on Very Large Data Bases
(VLDB), September 2004.

[38] P. Selinger, M. Astrahan, D. Chamberlin, R. Lorie and T.Price, “Access Path Selection
in a Relational Database System”,Proc. of ACM SIGMOD Intl. Conf. on Management of
Data, June 1979.

[39] V. Sengar and J. Haritsa, “PLASTIC: Reducing Query Optimization Overheads through
Plan Recycling”,Proc. of ACM SIGMOD Intl. Conf. on Management of Data, June 2003.

[40] E. Shekita and H. Young, “Iterative Dynamic Programming”, IBM Tech. Report, 1998.

[41] A. Silberschatz, H. Korth and S. Sudarshan, “Database System Concepts”, McGrawHill,
1997

[42] P. Slavik, “A tight analysis of the greedy algorithm forset cover”,Proc. of 28th ACM
Symp. on Theory of Computing, 1996.

[43] M. Stillger, G. Lohman, V. Markl and M. Kandil, “LEO – DB2’s LEarning Optimizer”,
Proc. of 27th Intl. Conf. on Very Large Data Bases (VLDB), September 2001.

[44] F. Waas and C. Galindo-Legaria, “Counting, enumerating, and sampling of execution plans
in a cost-based query optimizer”,Proc. of ACM SIGMOD Intl. Conf. on Management of
Data, May 2000.

[45] http://www.tpc.org/tpch

[46] http://www.tpc.org/tpcds

[47] http://en.wikipedia.org/wiki/Bellmanequation

[48] http://dsl.serc.iisc.ernet.in/

[49] http://www-128.ibm.com/developerworks/db2/library/techarticle/dm-0508kapoor/

[50] http://dsl.serc.iisc.ernet.in/projects/PLASTIC

