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Abstract

Modern database systems use a query optimizer to idengfynbst efficient strategy, called
“plan”, to execute declarative SQL queries. Optimizati®a imandatory exercise since the dif-
ference between the cost of the best plan and a random claitetlze in orders of magnitude.
The role of query optimizers is especially critical for thectsion-support queries featured in
data warehousing and data mining applications.

For a query on a given database and system configuration ptiaiper’s plan choice is
primarily a function of the selectivities of the base raas participating in the query. A picto-
rial enumeration of the execution plan choices of a datafyasey optimizer over this relational
selectivity space is called a “plan diagram”. It has beenwshtecently that these diagrams
are often remarkably complex and dense, with a large numbplaas covering the space.
An interesting research problem that immediately aris@gisther complex plan diagrams can
be reduced to a significantly smaller number of plans, withoaterially compromising the
guery processing quality. The motivation is that reduceshgliagrams provide several bene-
fits, including quantifying the redundancy in the plan shagace, enhancing the applicability
of parametric query optimization, identifying error-r&sint and least-expected-cost plans, and
minimizing the overhead of multi-plan approaches.

In this thesis, we investigate the plan diagram reductisnesfrom theoretical, statistical
and empirical perspectives. Our analysis shows that opfia& diagram reduction, w.r.t.
minimizing the number of plans in the reduced diagram, is &Hdrd problem in general,
and remains so even for a storage-constrained variatiorih&vepresent CostGreedy, a greedy
reduction algorithm that has tight and optimal performaguarantees, and whose complexity

scales linearly with the number of plans in the diagram. Nextconstruct an extremely fast
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estimator, AmmEst, for identifying the location of the b&sideoff between the reduction in
plan cardinality and the impact on query processing qualtygth CostGreedy and AmmEst
have been incorporated in the publicly-available Picaggimozer visualization tool.

Through extensive experimentation with a suite of repriege multi-dimensional SQL
guery templates based on the TPC-H and TPC-DS benchmadgajtex on industrial-strength
database optimizers, over a range of data distributiorsygdistributions, and memory bud-
gets, we demonstrate the following: Complex plan diagraamshe very substantially reduced
- in fact, they becomednorexi¢ i.e. reduced to a very small absolute number of plans - with
only a marginal increase in query processing costs. Whaedhresults are produced using
a highly conservative upper-bounding of plan costs based oost monotonicity constraint,
when the costing is done on “actuals” using abstract platufeg, the reduction obtained is
even greater - in fact, often resulting in only a couple ohglan the reduced diagram. We also
experimentally demonstrate some of the benefits of thisatemluw.r.t. enhanced resistance to
errors in selectivity estimates of optimizers and preseralgorithm to produce reduced plan
diagrams that are inherently resistant to selectivityneste errors.

In summary, this thesis demonstrates that complex plarratiag) can be efficiently con-
verted to highly anorexic reduced diagrams, a result thaliddoave useful implications for the

design and use of next-generation database query optsnizer



Publications

1. Harish D., Pooja Darera, Jayant Haritsa,
“On The Production of Anorexic Plan Diagraimns
Proc. of 33rd Intl. Conf. on Very Large Data Bases (VLDB), M, Austria, September
2007.

2. Harish D., Pooja Darera, Jayant Haritsa,
“Reduction of Query Optimizer Plan DiagraimsTechnical Report, TR-2007-01,
DSL/SERC, Indian Institute of Science
http://dsl.serc.iisc.ernet.in/publications/repoR/TR-2007-01.pdf



Contents

Acknowledgements i
Abstract il
List of Figures viii
List of Tables X
1 Introduction 1

1.1 QueryTemplates . . . . . . . . . . . . . e

1.2 OptimizerDiagrams . . . . . . . . . o i e 4
1.3 PlanDiagram Reduction . . . . . . . . .. . .. 6
1.3.1 Alternative Reduction Techniques . . . .. .. ... ... ..... 7
1.4 Benefits of Plan Diagram Reduction . . . . . .. .. .. ... .. ....... 8
1.4.1 Quantification of Redundancy in Plan Search Space . . . .. . .. 8
1.4.2 Enhancement of PQO Usability . . .. .. .............. 8
1.4.3 Identification of Error-ResistantPlans . . . .. ... ........ 9
1.4.4 Identification of Least-Expected-CostPlans . . . . ...... . . ... 10
1.4.5 Minimization of Overheads of Multi-Plan Approaches. . . . . . .. 10
1.4.6 Enhanced Support for Plan Clustering . . . ... ... .. ... . 11
1.5 Contributions . . . . . . . . . 11
1.6 Organization. . . . . . . . . . e 13



CONTENTS

Vi

2 Survey of Related Research

2.1

2.2

Challenges of Query Optimization . . . .. ... ... ......
2.1.1 PlanSelectionStrategy . . . . .. ... ... ... ....
2.1.2 Efficient Selection Strategies . . . . . ... ... .. ...

2.1.3 Run-time Refinements of Plan Choices

Behavior of Industrial Strength Optimizers. . . . . . . .. .. ..

3 The Plan Diagram Reduction Problem

3.1
3.2
3.3
3.4
3.5

Preliminaries . . . . . . . . . ... . .. ...
The SetCoverProblem . . . . . ... ... ... ... .. ....
Reducing Set CovertoPlanRed . . . . . .. .. ... ... ....
Single-swallowingPlanRed . . . . . . .. ... .. ... .....

Storage-budgetedPlanRed . . . . . ... ... ... ......

4 Greedy Plan Diagram Reduction

4.1
4.2

4.3

The AreaGreedy Algorithm . . . . . . ... ... ... .. ....
The CostGreedy Algorithm . . . . . . .. ... ... ... ....
4.2.1 ComplexityAnalysis . . .. .. ... ... .........
4.2.2 ApproximationFactor . .. ... .. .. ..........
The ThresholdGreedy Algorithm . . . . . . .. ... ... ....

5 Estimators for Plan Diagram Reduction

6 Experimental Results

6.1
6.2

6.3 Scaling with Dimensions

Computational Efficiency . . . . . . ... ... ... .......
Plan Diagram ReductionQuality . . . . .. ... ... ... ...
6.2.1 Skewed Data Distribution . . . . . ... ... ... ...
6.2.2 Exponential Distribution of Query Points . . . . . .. ..
6.2.3 Increased Grid Resolution . . . . .. ... ... .....

6.2.4 Reduction For Various Cost Diagram Behaviors . . . . ...... . ..

14
14
15
16

. 18

20

22
22
25
26
30
33

50
51
52
53
54
54
55



CONTENTS

Vil

6.4 Estimator Performance . . . . . . . . . . .

6.5 Effect of Memory Availability . . . . ... ... ... ... ... ...

6.6 TPC-DS . . . . . . e

6.7 Abstract Plan Costing Based Reduction

6.8 Rationalefor Reduction . . . . . . . . . . .. e

7 Applications of Plan Diagram Reduction
7.1 Resistance to errors in selectivity estimates

7.2 Producing Robust Reduced Plan Diagrams . . . . . . .. .. ... ....

8 Implementation in Picasso
8.1 Algorithm Implementation . . . . .. .. ... .. .. ... ... .. ...
8.2 System Memory Restrictions . . . . . . .. ... ... L L 0

8.3 AbstractPlanCosting . . . . . . . . . ... e

9 Conclusions

9.1 FutureWork . . . . . . .

References

68
68
71

78
79
80
80

103



List of Figures

11
1.2
1.3
1.4
15

3.1
3.2
3.3

4.1
4.2
4.3
4.4
4.5

5.1
5.2

6.1
6.2
6.3
6.4
6.5

Sample SQLQUErY . . . . . . . . e e e
Query ExecutionPlan . . . . . . . . .. 2
Example Query Template: QT8 . . . . . . . . . . . .. ... ... ... ... 3
Sample Plan and Reduced Plan Diagrams (QT8) . . . . . .. ....... b5
Plan Cardinality vs Cost Threshold . . . . . . .. .. ... ... ...... 7
AlgorithmReduce . . . . . . . . . . . . . . e 27
Example of AlgorithmReduce . . . . . . . ... ... ... ... ..... 28
AlgorithmReducePlans . . . . . . . . . . . . . . ... ... e 34
Algorithm AreaGreedy . . . . . . . . . . 36
Algorithm CostGreedy . . . . . . . . . . . . 40
Algorithm Greedy Setcover . . . . . . . . . . . . . . . . . . 40
Updatingnincostin Algorithm CostGreedy . . . . . . . ... .. .. .. ... 41
Algorithm ThresholdGreedy . . . . . ... ... ... ... ... ..... 45
Algorithm AvgESt . . . . . . . . 48
Algorithm AmmESt . . . . . . . . . . 94
Reduction Quality (QT8), Res=100. . . . . . . . . . . . . . . . uu... 52
CostDiagram Behavior . . . . . . . . . ... 56
Discontinuous Cost Function Example (QT18) . ... ... ...... .. .. 58
ScalingwithDimensions . . . . . . . . . . . .. . ... 59
Knee Estimates . . . . . . . . . . . . . e 0 6



LIST OF FIGURES iX

6.6 Estimator Performance . . .. ... .. .. ... ... ... ... .. 62
6.7 PlanDiagram (QT8) . . . . . . . . . . . e 4 6
6.8 Reduced Plan Diagram (QT8B=10%) . . . . . . . . . . . ... 65

7.1 Sample Plan and Reduced Plan Diagrams (QT8) . . . . . . . .. ... .. 70

7.2 SeRP (QTAN = 10%) . . o o o oo e e 72
7.3 Algorithm RobustCostGreedy . . . . . .. .. .. ... ... .. .. u.. 73
7.4 Plan Diagram (QT5) . . . . . . . . . 4 7
7.5 Reduced Plan Diagram and SeRP Diagram (Q&5,10%) . . .. ... ... 76
7.6 Robust Reduced Plan Diagram and SeRP Diagram (®¥510%) . . .. .. 77
8.1 Picasso Architecture . . . . . . .. ... 79
8.2 Estimator . . . . . . . . . . 80
8.3 Abstract Plan Costing: QT8. . . . . . . . . . . . . . . . . e 82
Al QT2 . . e e 88
A2 QT4 . . e 89
A3 QTS5 . 90
Al QTT e 91
AS QT8 . . e 92
A6 QT . 93
AT QTI0 . o oo o 94
A8 QTL7 . . 95
A9 QTI18 . . . 96
AL0 QT2L o ot 97
ALLDSQTI2 . o o oo 98
A12 DSQTL7 . . . e e 99
AL3DSOTI8 . o o o o o, 100
A4 DSQTI19 . . . . e 101

ALSDSQT25 . . . . e 102



List of Tables

3.1 ReductionQuadrants . . . . . . . . . . . . ... 24
6.1 Computational Efficiency (QT8,Res=100) . . . . ... .. ... .. .... b2
6.2 Plan Diagram Reduction Quality (Res = 100) 53
6.3 Skewed Data Distribution (Res=100) . . . ... .. ... ... . ... 53
6.4 Exponential Query Point Distribution(Res=100) . . . . .......... b4
6.5 Increased Grid Resolution (Res=300) . . . .. .. .. .. .. o ... 55
6.6 Multi-dimensional Query Templates . . . . . . . . .. .. ... ... ... 60
6.7 Running Time of Estimatorsvs CostGreedy . . ... .. ... ......... 61
6.8 OptA-Varyingmemory . . . . . . . . o e e 61
6.9 TPC-DS . . . . .

6.10 Computational Efficiency (QT8,Res=100) . . . .. .. .. .......... 66



Chapter 1

Introduction

The Structured Query Language (SQL) [29] is the internalistandard for querying relational
database management systems (DBMS) such as IBM’'s DB2, Btiftte SQL Server, Oracle,
etc., which form the cornerstone of today’s informationustty. SQL is a declarative language
in the sense that an SQL query specifiggmthas to be done, ndiowit is to be done. A sample
SQL query on the TPC-H benchmark schema [45] is given in Eidut, which lists the mode
of shipping for all items whose quantity is less than or eqa&l0, which are a part of an order

of price 100 or less.

selectl_shipmode
from orders, lineitem
whereo_orderkey = lorderkey

and atotalprice< 100
and Lquantity< 20

group byl_shipmode

order byl_shipmode

Figure 1.1: Sample SQL Query

Modern database systems usqueery optimizerto identify the most efficient strategy to
execute declarative SQL queries. The efficiency of theeggras, called “query execution plans”

or simply “plans”, is usually evaluated or costed in term¢haf estimated query response time.
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Figure 1.2: Query Execution Plan

A sample plan for the query given in Figure 1.1 is shown in Fegl.2. This plan performs a
sequential scan of theRDERSandLINEITEM relations before joining them using thash join
operator. It finally sorts and groups the results in the negLorder.

Optimization is a mandatory exercise since the differeretezéen the cost of the best plan
and a random choice could be in orders of magnitude [44]. ©heaf query optimizers has
become especially critical in recent times due to the higjrelof query complexity character-
izing current decision-support applications, as exengaliby the TPC-H benchmark [45], and
its new incarnation, TPC-DS [46].

Query optimization is a difficult problem due to the large mugmnof possible ways to execute
a given query using different access methods, join ordens,gperators, etc. While industrial
strength query optimizers each have their own proprietagthods to identify the best plan,

the de-facto standard underlying strategy is based on #ssichl System-R optimizer [38]
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proposed about three decades ago. This method is: Giverr gussg, first apply a variety of
heuristics to restrict the combinatorially large searcicgpof plan alternatives to a manageable
size; then estimate, with a cost model and a dynamic-proguiagrbased processing algorithm,
the efficiency of each of these candidate plans; finally, sbabe plan with the lowest estimated
cost.

Query optimization using this cost-based approach is coatipnally expensive w.r.t. the
time and resources that need to be expended to find the basflplarefore, understanding and
characterizing query optimizers with the ultimate obpeetf improving their performance is a

fundamentally important issue in the database reseagsttiitre.

1.1 Query Templates

select ayear, sum(case when nation = 'BRAZIL then volume else 0 érsdim(volume)

from (select YEAR(corderdate) as _gear, Lextendedprice * (1 -_Hiscount) as volume, n2.name as
nation

from part, supplier, lineitem, orders, customer, nationnation n2, region

where ppartkey = Lpartkey and suppkey = Isuppkey and_brderkey = aorderkey and austkey
c_custkey and mationkey = nl.mationkey and nl.megionkey = rregionkey and sationkey =
n2.nnationkey and.name ='AMERICA’ and ptype ='ECONOMY ANODIZED STEEL
ands_acctbal < ¢y andl_extendedprice< Cs

) as allLnations

group by ayear

order by ayear

Figure 1.3: Example Query Template: QT8

The cost of a given query execution plan is a function of maawameters, including the
database structure and contents, the engine settinggjsteasconfiguration, etc. For a query
on a given database and system configuration, the optiraizkan choice is primarily a function
of theselectivitieof the base relations participating in the query — that is gbtimated number
of rows of each relation relevant to producing the final restdrying the selectivities of one or

more of the base relations produces the selectivity spadethese relations. A “parameterized
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guery template” is a query with additional predicates tmatlpce queries across this selectivity
space.

For example, consider QT8, the parameterized 2-D query l&gephown in Figure 1.3,
based on Query 8 of the TPC-H benchmark, with selectivityati@mns on thesuppPLIER and
LINEITEM relations through the_acctbal < C; andl_extendedprice < C, predicates, re-
spectively. By varying the constan€s and C,, queries are generated across the selectivity

space.

1.2 Optimizer Diagrams

The behavior of a query optimizer over the selectivity speme be captured in a suite of di-
agrams. First, a “plan diagram” [33] denotes a color-codetbpal enumeration of the ex-
ecution plan choices of a database query optimizer for anpetexrized query template over
the relational selectivity space. The plan diagram for Q@i®duced using the Picasso opti-
mizer visualization tool on a popular commercial databaggre) is shown in Figure 1.4(a),
where the X and Y axes determine the percentage seleciotihesuPPLIERaNdLINEITEM
relations, respectively, and each color-coded regionesapnts a particular plan that has been
determined by the optimizer to be the optimal choice in tegian. We find that a set of 89
different optimal plans, P1 through P89, cover the entikectiwity space. The value associated
with each plan in the legend indicates the percentage areaage of that plan in the diagram
— P1, for example, covers about 22% of the space, whereassR83®s$en in only 0.001% of
the space[Note to Readers: We recommend viewing all diagrams presdrit this paper di-
rectly from the color PDF file, available at http://dsl.sejicsc.ernet.in/ pooja/thesisiraft. pdf,
or from a color print copy, since the greyscale version mayt itearly register the various
features.]

Complementary to the plan diagram is a “cost diagram”, shimwigure 1.4(b), which is
a three-dimensional visualization of the estimated plataton costs over the same relational
selectivity space. The X and Y axes represent the variatioeslectivity and the Z axis rep-

resents the cost. In this picture, the costs are normal@z#uet maximum cost over the space,
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which in this case is 155 and occurs at the point correspgndimaximum selectivity along
the X and Y axes. The minimum and maximum estimated costdsoshown in the side panel
of the diagram.

Finally, a “cardinality diagram”, shown in Figure 1.4(c3,similar to a cost diagram except
that it shows the cardinality of the query result as estichdig the optimizer, instead of ex-
ecution cost. The minimum and maximum estimated cardiaaldre also shown in the side

panel.

1.3 Plan Diagram Reduction

As is evident from Figure 1.4(a), plan diagrams can be exhgrmomplex and dense, with a
large number of plans covering the space — several sucmgegapanning a representative set
of query templates based on the TPC-H benchmark, over aduitdustrial-strength optimiz-
ers, are available at [30]. An interesting research prolfenhnow arises is whether these com-
plex diagrams can be “reduced” to much simpler picturesufaay significantly fewer plans,
without adversely affecting the query processing qualitsny individual query point.

For example, if users were willing to tolerate a minor costréase of at most 10% for
any query point in the diagram relative to its original (optzer-estimated) cost, Figure 1.4(a)
could be reduced to that shown in Figure 1.4(d), wietg 7 plans remair- that is, most of the
original plans have been “completely swallowed” by thellisigs, leading to a highly reduced
plan cardinality. Further, note that a 10% increase, apan fbeing small in absolute terms,
is also well within the bounds of thimherenterror that characterizes the estimation process
of modern optimizers [25, 35, 43]. The complete graph of #duced plan diagram’s plan
cardinality as a function of the cost increase thresholdHisrexample is shown in Figure 1.5.

The problem of reduction of plan diagrams was first posed,i@(4. A primary difference
between their work and ours, as described in more detail ap€n 2, is that our evaluation is
onindustrial-strengthguery templates and query optimizers. Their studies, omtiher hand,
profiled basic Select-Project-Join (SPJ) queries on horoesgoptimizers. Also, we guarantee

to satisfy the user-specified cost-increase thresholdvienyesingle query point, whereas they
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may fail to meet this constraint when plans have nonlinestftmctions, a common occurrence

in practice.

1.3.1 Alternative Reduction Techniques

Ideally, the optimizer itself should be re-engineered toe*facto” (i.e. directly) produce the
reduced plan diagram. This could be done by consideringgedoh query point, not only the
optimal plan but also alternative plans that have neamwgdtcosts, and from this set, picking
the plans so as to minimize the total number of plans overphees

Another solution, proposed in [20], is to sample points asithe parameter space and to fill
the remaining space using the PQO assumptions of plan cioywaxiqueness and homogenity
(See Chapter 2 for details).

However, the above solutions are not feasible in our enuikmt for the following reasons:
Firstly, we include commercial optimizers in our test-spyénd therefore the pre-facto option is
inherently ruled out. Secondly, the PQO assumptions, asrshiwidly in [33], do not generally
hold in practice for industrial-strength database envitents. Therefore, in our work, we use
the more generic, albeit computationally expensive, aggrof (a) exhaustively optimizing
each query in the selectivity space (at a given resolutmpydduce the plan diagram, and then

(b) performing reduction as a “post-facto” exercise.
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1.4 Benefits of Plan Diagram Reduction

We now turn our attention to highlighting a variety of berefif performing plan diagram

reduction. The reduction of plan diagrams can result in tiiv@sons:

Case 1: The number of plans in the reduced plan diagramrgortionalfraction of the number

of plans in the original plan diagram.

Case 2: The number of plans in the reduced plan diagram isnasttmeabsolutenumber ir-
respective of the cardinality of the original plan diagraAn anorexicplan diagram is
defined as a diagram whose plan cardinality is within/arausichall absolute number (10

is the yardstick used in this thesis).

Although most of the benefits listed below are reaped for €asand 2, some of them become
meaningful only in the case of anorexic reduced diagramsiilabe clear from the accompa-

nying descriptions.

1.4.1 Quantification of Redundancy in Plan Search Space

Plan diagram reduction quantitatively indicates the exterwhich current optimizers might
perhaps be over-sophisticated in that they are “doing t@al @gjob”, not merited by the coarse-
ness of the underlying cost space. This opens up the pagsdiiredesigning and simplifying
current optimizers to directly produce reduced plan diagan the process lowering the signif-
icant computational overheads of query optimization. B@neple, a possible approach could
be based on modifying the set of sub-plans expanded in ezettictn of the dynamic program-
ming algorithm to (a) include those within the cost incretgeshold relative to the cheapest
sub-plan, and (b) remove, using stability estimators opiaa cost function over the selectivity

space, “volatile” sub-plans; the final plan choice is the nsteble within-threshold plan.

1.4.2 Enhancement of PQO Usability

A rich body of literature exists oparametric query optimizatioPQO) (e.g.[8, 12, 13, 19,

20, 23]). The goal here is to apriori identify the optimal eéplans for the entire relational
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selectivity space at compile time, and subsequently to tusanatime the actual selectivity
parameter values to identify the best plan — the expectaitimat this would be much faster
than optimizing the query from scratch.

A practical difficulty with PQO, however, is the represematof the plan optimality bound-
aries, which could, in principle, be of arbitrary complgxinaking it difficult to identify specif-
ically which plan from the set of optimal plans is to be utizfor a newly arrived query. A
workaround for this problem is the following [20]: For theesjific query currently supplied by
the user, evaluate its estimated execution cost aaith of the plang the optimal set. Then,
choose the lowest cost plan for executing the query. Fomtbrgaround to be viable, the plan
diagram must have, in an absolute sense, only a small nurhpéars — this is because while
plan-costing is cheap as compared to query optimizatioh [pe total time taken for many
such costings may become comparable. However, as showmgyumeFi.4(a), the number of
optimal plans can be very large, unless plan diagram resluctiapplied.

Therefore, a direct benefit of plan diagram reduction is thiatakes PQO viable from an

implementation perspective even in the highly complex doflindustrial-strength optimizers.

1.4.3 Identification of Error-Resistant Plans

Plan diagram reduction can help identify plans that provadmist performance over large re-
gions of the selectivity space. Therefoegrorsin the underlying database statistics, a situation
often encountered by optimizers in practice [25], may hauvehress impact as compared to
using the fine-grained plan choices of the original plan i@diag which may have poor perfor-
mance at other points in the space. As is shown later in tesghthe cost of the original plan
can be orders-of magnitude greater than the replacement pla

For example, in Figure 1.4(a), estimated selectivitiesld#,1%) leads to a choice of plan
P70. However, if the actual selectivities at runtime turt twube significantly different, say
(50%,40%), using plan P70, whose cost increases steepilyselictivity, would be disastrous.
In contrast, this error would have had no impact with the cediplan diagram of Figure 1.4(d),
since P1, the replacement plan choice at (14%,1%), remaenweferred plan for a large range
of higher values, including (50%,40%). Quantitatively(39%, 40%), plan P1 has a cost of
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135, while P70 is much more expensive, abibuee timeshis value.

In short, the final plan choices become robust to errors thase the actual query point
to lie within the optimality regions of the replacement @anin case of errors causing the
guery point to lie outside this optimality region, the remeent plan can be chosen such that
it provides robustness, without effecting the plan reducrocess. Such robustness of plan
choices is especially important for industrial workloadsene often the goal is to identify plans
with stable good overall performance as opposed to setettimbest local plan with potentially

risky performance characteristics [27].

1.4.4 Identification of Least-Expected-Cost Plans

When faced with unknown input parameter values, todaysmapeérs typically approximate the
distribution of the parameter values using some represeatealue — for example, the mean
or modal value — and then always choose this “least speci§it ptan at runtime. It has been
shown in [6, 7] that a better strategy would be to insteadhage for the “least expected cost”
plan, where the full distribution of the input parametersaisen into account. Computing the
least expected cost plan not only involves substantial caatipnal overhead when the number
of plans is large, but also assumes that the various plang lsempared are all modeled at the
same level of accuracy, rarely true in practice. With plaagdam reduction, on the other hand,
both the efficiency and the quality of the comparisons camimecsubstantially better since

there are fewer contending plans.

1.4.5 Minimization of Overheads of Multi-Plan Approaches

A dynamic approach for selecting the best query plan wasqgseg in [1] wherein multiple
candidate query plans are executegarallel. Based on the relative rate of progress of the
various plans, slower candidates are terminated along #ye Whe viability of this strategy
is based on keeping the number of parallel candidate plaasianageable number given the
available computational resources, and plan diagram tistucan help satisfy this constraint.
An alternative and less resource-intensive multi-planreg@gh is proposed in [25] wherein

during execution of the best compile-time plan choice, base the observed run-time per-
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formance, a change in the query plan could be triggered #rémaining unexecuted portion
of the query. A recently proposed method called “progresgivery optimization” (POP) [28]
alters this approach to incorporate plan validity rangesiiadl estimated cardinalities to avoid
unnecessary reoptimization that does not lead to a changars. POP also handles pipelined
results and is therefore a more generalized approach. Aeiurefinement of POP is the very
recent RIO algorithm [3] which uses bounding boxes aroundigality estimates to repre-
sent uncertainty in these estimates, and then attemptgmtifiyl plans that retain their quality
throughout the box.

When reoptimization approaches of the above kind are coadbwith the plan diagram
reduction discussed in this thesis, the likelihood of teiggg a re-optimization becomes sub-

stantially lower, thereby reducing the associated ovethiea

1.4.6 Enhanced Support for Plan Clustering

Plan diagram reduction fits in perfectly with the query ctnstg approach previously proposed
in the Plastic plan recycling tool [15, 37, 39, 50], where g that are expected to have
identical plan templates are grouped together based ofasitieis in their feature vectors. This
is because the cluster regiomherentlycoarsen the plan diagram granularity. Further, from
an implementation perspective, having fewer distinct plarakes it easier with regard to both

storage and comparison.

1.5 Contributions

This thesis considers the problem of reducing the densediagrams of modern optimizers
from theoretical, statistical and empirical perspectivd first show that finding the optimal
(w.r.t. minimizing the plan cardinality) reduced plan diagn is NP-Hard through a reduction
from Set Cover. This result motivates the design of Cost@rea greedy algorithm whose
complexity isO(nm), wheren is the number of plans ana is the number of query points
in the diagram(n < m). Hence, for a given picture resolution, CostGreedy’s perénce

scaledinearly with the number of plans in the diagram, making it much mofieieft than the
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O(m?) reduction algorithm of [33]. Further, from the reductioratity perspective, CostGreedy
provides a tight performance guaranteetfnm), which cannot be improved upon by any
alternative deterministic algorithm.

We also consider a storage-constrained variant of the pgrain reduction problem and
find that it retains the hardness of the general problem. @mptsitive side, however, we
provide ThresholdGreedy, a greedy algorithm that delieeperformance guarantee @63
w.r.t. the optimal.

Using extremely coarse characterizations of the costibligions of the optimal plans, we
develop fast but effective estimators for determining tkygeeted number of plans retained for
a given cost increase threshold. These estimators can alssda to predict the location of
the best possible tradeoff (i.e. the “knee”) between tha pkrdinality reduction and the cost
threshold.

A detailed experimental analysis on the plan diagrams predby industrial-strength opti-

mizers with TPC-H and TPC-DS based multi-dimensional qoemyplates demonstrates that:

1. Plan diagram reduction can be carried out efficientlyust p few minutes even for ex-

tremely complex diagrams.

2. The CostGreedy algorithm typically gives the optimalugtebn or is within a few plans

of the optimal.

3. The analytical estimates of the plan-reduction versgsttweshold curve are reasonably

accurate and are produced in a few milliseconds.

4. Finally, and mostimpactfully,20% cost threshol@ usually amply sufficient to bring the
plan cardinality towithin or around 10Qi.e. to make the reduced plan diagram anorexic,
even for high dimensional query templates — this is an eaffgg@romising result from a

practical perspective.

Finally, we present RobustCostGreedy, an extension ofdbelCostGreedy algorithm that
attempts to maintain the query processing quality of theeed plan diagram within user spec-

ified bounds, in spite of errors that may occur in the optimszeelectivity estimates. An exper-
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imental analysis indicates that the plans retained by RGmssGreedy can provide orders-of-
magnitude better performance than the optimizer’s origihaices, and are in fact often close
to the optimal at the actual locations. In a nutshell, RobastGreedy provides “selectivity-
error-resistance”.

All the algorithms presented in this thesis have been implged in the Picasso optimizer

visualization tool v1.0 [30].

1.6 Organization

The remainder of this thesis is organized as follows: Rdlaterk is reviewed in Chapter 2.
The problem formulation and hardness results are explamé&hapter 3 which proves NP-
hardness of the plan diagram reduction problem throughuctesh from Set Cover. Chapter 4
presents Algorithm CostGreedy and proves that it has aaigtitoptimal bound. The AmmEst
estimator is explained in Chapter 5. Experimental resukshaéghlighted in Chapter 6. An
interesting application of plan diagram reduction witherehce to the enhanced resistance to
errors in selectivity estimates of the optimizer is deslin Chapter 7. Implementation issues
are discussed in Chapter 8. Finally, Chapter 9 summarizesdhclusions of our study and

outlines future research avenues.



Chapter 2

Survey of Related Research

There has been extensive work in the area of query optimizdtr relational database man-
agement systems since the early 70’s, triggered by the adb¥eleclarative query languages.
A number of surveys (eg. [18, 5]) have covered the progresgiefy optimization techniques
over the years. We assume the reader is familiar with thentgabs they discuss and only give

a brief overview of the basic concepts here.

2.1 Challenges of Query Optimization

The key constituents of the query evaluation component d5@h database system are the
guery optimizerand thequery execution enginerhe query optimizer is responsible for gen-
erating the input for the execution engine. It takes a parsptesentation of an SQL query
as input and is responsible for generating an efficient éx@tplan for the given SQL query
from the space of possible execution plans. One aspect ohiggation is where the system
attempts to find an expression equivalent to the given egfesbut more efficient to execute.
Another aspect is selecting a detailed strategy for praegdbe query. The task of an opti-
mizer is computationally challenging since, for a given Sfdlery, there can be a large number
of possible execution plans — specifically, for a query withase relations, the number of plans
in the strategy space is atle@stn!). Using pruning techniques such as dynamic programming,

the time complexity can at best be brought dowr@") [41]. From an absolute time per-

14
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spective, optimization overheads in the hundreds of sechade been reported for real-world

database deployments in [21]. The query execution engip&ements the set of physical op-

erators specified by the execution plan. Each operator &kegut one or more data streams
and produces an output data stream. Examples of physicaltopgare sequential scan, index
scan, (external) sort, nested-loop join and sort-merge joi

The design of a query optimizer entails tackling the follegvchallenging issues:

2.1.1 Plan Selection Strategy

A number of selection strategies can be applied for quenyropation. These include:
1. Make a random choice.
2. Use a set of heuristic rules.
3. Use randomized algorithms or genetic techniques.
4. Exhaustively enumerate the search space and use a sest-dgaproach.

The cost-based approach is the most commonly used in mog@gémizers, since none of
the others can guarantee the quality of their choices. Toweggiring work in the development
of cost-based optimizers was carried out in the System-ke@r{88]. Their techniques have
been incorporated in many commercial optimizers and caatio be remarkably relevant. In
System-R, the size of the search space is restricted bydsyirgy only the set of left-deep
plans, which allows pipelining of the output of one operatothe input of the next operator. It
also introduced the notion of “interesting orders” into iean selection process — the ordering
of the output tuples of an operator is called an interestirtgoif it can become useful in
some subsequent operation. The idea of an interesting watetater generalized fghysical
properties[17], which refers to any characteristic of a plan that is netessarily shared by
other plans for the same expression, but could impact thteo€ssibsequent operations.

In an alternative strategy, Chu and Halpern [6, 7] proposeidlea of picking thdeast
expected cog.EC) plan rather than the least specific cost (LSC) planhértfirst paper [6],
they propose a set of algorithms to find this LEC plan and guaeathat this plan will be at
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least as good as the LSC plan, and typically better. Theyaasider parameters that could
vary during the execution of the plan. They find th@ihé greater the run-time variation in the
values of parameters that affect the cost of the query plaa gteater the cost advantage of
the LEC plan is likely to be They assume that the probability distribution of the \eHwf the
parameters is available at compile-time.

In their second paper [7], they observe that the LSC optiticraloes, in many cases, yield
the LEC plan. The current optimizers can be coaxed to pick.th€ plan by appropriately
choosing the parameters and their settings. They also sagis where running time is not the
cost measure applied (it may matter if the plan is blockingroduces results at a constant rate,

etc.) and find that in these scenarios, LEC optimization tressoparticularly relevant.

2.1.2 Efficient Selection Strategies

For the cost-based optimizers, System-R proposed the udgnaimic programming to effi-
ciently find a good plan. The dynamic programming approadiasged on the assumption of
theprinciple of optimality[47], which states that the optimal solution to a problem t®mbi-
nation of optimal solutions to its subproblems. While dyimaprogramming (DP) works very
well for moderately complex queries with up to around a ddzase relations, it usually fails to
scale beyond this stage in current systems due to its inhexponential space and time com-
plexity. Therefore, DP becomes practically infeasibledomplex queries with a large number
of base relations.

To address the above problem, a variety of approaches hangdoeposed in the literature,
such as Iterative Dynamic Programming (IDP) [26, 40], wheB is employed bottom-up un-
til it hits its feasibility limit, and then iteratively reatted with a significantly reduced subset of
the execution plans currently under consideration. A reaklarnative approach that improves
on IDP’s performance and scalability is Skyline Dynamicd?eanming (SDP) [9].

When queries are optimized at the time they are submittedoyser, the selection process
can add a substantial overhead to the execution time of theyqin order to avoid this, the
Parametric Query Optimization (PQO) method was proposkd.gbal here is tapriori iden-

tify the parametric optimal set of plan®OSP) for the entire parameter space at compile time,
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and subsequently to use at run time the actual parametergsetiv identify the best plan — the
expectation is that this would be much faster than optingitie query from scratch. The PQO
method was first proposed in [23] in the context of randomigarithms for plan selection.
They considered buffer size as the primary parameter, @tin¢heir solution could work with
arbitrary parameters. Subsequently, a number of PQO-heskdiques have been proposed for
cost-based optimizers:

In the pioneering work of Betawadkar & Ganguly [4], a SystBmstyle optimizer with left-
deep join-tree search space and linear cost models wastheilivorkload comprising of pure
SPJ query templates with star or linear join-graphs anddimensional selectivity variations.
They proposed the idea of finding an approximate POSP giveleahce factor (cost increase
threshold). Within this context, their experimental résirdicate that, for a given cost increase
threshold, plan diagram reduction is more effective wittré@asing join-graph complexity. They
also find that if the increase threshold is small, a significant percentaghe plans have to be
retained. For example, with a threshold of 10%, more than 50% of tlenplusually have to
be retained. However, this conclusion is possibly relatetthé low plan cardinality (less than
20 in all the experiments) in their original plan diagrams.

In subsequent work, Hulgeri & Sudarshan [19, 20] model aimupér along the lines of
the Volcano query engine [16], and evaluate SPJ query téespiaith two, three and four-
dimensional relational selectivities. In their first pafpE®], they discuss the PQO problem in
the context of linear cost functions where the conventiopéimizer is unaltered. The optimizer
is treated as a black-box and the plans and costs returndemptimizer are used to find the
POSP. They also propose a solution to the PQO problem in @sepce of piecewise linear cost
functions, which works for an arbitrary number of param&térhis solution involves altering
the current optimizers to handle cost functions in the pt#@omic cost values.

In the second paper [20], they propose a heuristic solutiding PQO problem which works
with arbitrary nonlinear and discontinuous cost functiand any number of parameters. They
propose an algorithm calleshiPQO(and a variation of it calle®AG-AniPQQ, which requires
minimal changes to existing optimizers and attempts to firsdilaset of the POSP such that

for each point in the parameter space, either the optimal ptaa close-to-optimal plan is in
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the result set. The closeness to optimality is measured kyp&imality threshold, which is
guaranteed to be maintained in the case of linear cost fumgtibbut cannot be guaranteed in
the presence of nonlinear cost functions, when it is usey asla heuristic. Even with this
relaxation, the final number of plans with a threshold of 1@ be large — for example, a 4-D
guery template with 134 original plans is reduced only to %B #he DAG-AniPOSP algorithm
and to 29 with AniPOSP.

Most of the solutions to the PQO problem are based on assuwuostdunctions that would

result in one or more of the following:

1. Plan Convexity: If a plan P is optimal at point A and at pd&nthen it is optimal at all

points on the line joining the two points;

2. Plan Uniqueness: An optimal plan P appears at only onegrants region in the entire

space;

3. Plan Homogeneity: An optimal plan P is optimal within thtiee region enclosed by its

plan boundaries.

However, it has been found that none of the three assumgtadsrue, even approximately,
in the plan diagrams produced by the commercial optimiz&$. [ Even in situations where
these assumptions hold, it is very difficult to store thewagiof optimality of each of the plans
in the POSP, so as to pick the best one at the time of execufioralternative proposed by
Hulgeri & Sudarshan in [19, 20], is to estimate the cost oftal plans that belong to the POSP
at the time of execution and pick the one that gives the mimngast for the actual parameter
values. This will be faster than optimizing the query fromasch, provided the number of plans

in the POSP is not too large.

2.1.3 Run-time Refinements of Plan Choices

Query optimizers often make poor decisions because theipite-time cost models use inac-
curate estimates of various parameters. There have beerakefforts in the past to address
this issue, which can be categorized as — strategies tha deadisions at the start of query ex-

ecution and strategies that make decisions during queguéra. There are some parameters,
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like memory availability, whose value cannot be predictedampile-time, but are accurately
known at the start of execution. Assuming that the valueb@&dé¢ parameters remain constant

for the duration of the execution, the following stratediese been proposed:

1. Perform query optimization just before query executibmis method is not very efficient,

especially if the query is executed repeatedly.

2. Find the best execution plan for all possible values optrameters and lookup the best

plan for the current parameter values at runtime (PQO).

3. Perform part of the optimization at compile time and defey decisions that are affected

by the parameter values to execution time.

For parameters whose value cannot be predicted at the 6thd execution, like predicate

selectivities, the following strategies can be applied:

1. Antonshenkov [1] proposes a strategy where, in orderécwe a query, multiple query
plans are run in parallel. When one plan finishes or makesfisigmnt progress, the other
competing plans are killed. This strategy assumes thatearepburces are available, and
is applied only to some components of the query executigrigiyly to individual table

accesses).
2. Reoptimization:

(a) Kabra and DeWitt [25] propose a technique which comptregxpected cost and
output cardinality associated with chosen operators impliue with the correspond-
ing runtime values. If there is a significant discrepancig ihformation is used to
alter the allocation of shared resources and/or reoptithzeemaining unexecuted
portion of the query. Checks within a pipelined set of opmiaare validated at the
termination of the pipeline and a change of plans is conaiitco ensuring that the
operations already performed are not wasted.

(b) Markl et al [28] propose a major extension of [25] callgntdgressive query opti-

mization” (POP). Here, the estimated operator cardin@itsepresented as a “va-

lidity range”, denoting the range of ouput cardinalitiessowhich the currently
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chosen (global) plan is expected to continue to be optimaltuAtime, the cardi-
nality is dynamically compared against this range, andgbis outside the range,
reoptimization of the original query is immediately triggd. Oscillation between
reoptimization and execution can occur any number of tink&3P improves upon
[25] in that it uses the validity ranges to ensure that reog@tion is triggered only
if a change of plans is expected and not merely because thersignificant dis-
crepancy. Also, since POP triggers reoptimization asyorobusly (i.e. it does not
wait for the pipeline containing the range-violating ogerdao complete execution),

it is a more generalized approach to the problem.

(c) Babu et al [3] propose a refinement to POP called RIO, wherending boxes
are computed around cardinality estimates to represemtriamaty in the estimates.
This uncertainty is determined based on the technique wsddrive the estimate.
Thus, a bounding box around an estimate defines the likeberahvalues that may
actually occur at runtime. RIO then tries to identify plartsose performance within
the entire bounding box is either optimal or near-optimaks to minimize the need

for reoptimization and the loss of pipelined work.

2.2 Behavior of Industrial Strength Optimizers

Having examined the solutions to the query optimizatiorbfgm proposed in the literature,
we now shift focus to studying the behavior of industriaéatyth query optimizers in practice.
In [44], Waas and Galindo devise algorithms for countindyaastive generation, and uniform
sampling of plans from the complete search space. Usingirtfasmation, they study the
cost distribution of query plans. Cost distributions arartérest because they can be taken
as obvious indicators of the stochastic difficulty of a pesb] by simply considering the ratio
of high quality to low quality plans. They find that, under theecondition that the queries
are of sufficiently large size, i.e., involving more than 450joins, the distributions obtained
“correspond to Gamma-distributions with shape parameteseto I. They also find that the

percentage of plans that are withimice the optimum cost is usually around 1% of the total
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number of plans in the search space.

Reddy and Haritsa [33] study the behavior of industrialrgite optimizers from the per-
spective of the optimality space, instead of the searchesp@bey examine the variation of
the plan choices across the selectivity space and find thegrduoptimizers make extremely
fine-grained plan choices. They also observe that the plamality regions may have highly
intricate patterns and irregular boundaries, indicatingngly non-linear cost models, that non-
monotonic cost behavior exists where increasing resutlicgalities decrease the estimated cost
and, that the basic assumptions underlying the reseaechtlire on parametric query optimiza-
tion often do not hold in practice. Further, there is heawwskn the relative coverage of the
plans, with 80 percent of the space typically covered by 20qy or less of the plans. They
show that through a process of plan diagram reduction winerguery points associated with
a small-sized plan are swallowed by a larger plan, it is fds$0 bring down the cardinality of
the plan diagram to abowne-thirdof the original cardinality, without materially affectirtbe
query cost.

In this thesis, we study the problem of reducing plan diagré&which represent the para-
metric optimal set of plans over the selectivity space)@girom industrial-benchmark-based
guery templates operating on commercial state-of-thgtaaty optimizers. Our results indicate
that even for a small cost increase threshold, it is possibédficiently find a small subset of

the POSP that covers the entire space.



Chapter 3

The Plan Diagram Reduction Problem

In this chapter we define the Plan Diagram Reduction Prolhieneafter referred to as PlanRed,
and prove that it is NP-Hard through a reduction from thesitad Set Cover Problem [14]. For
ease of exposition, we assume in the following discussianttie source SQL query template

is 2-dimensional — the extension to higher dimensions @égitforward.

3.1 Preliminaries

The input to PlanRed is a Plan Diagram, defined as follows:

Definition 1 Plan Diagram
A Plan DiagramP is a 2-dimensiong, 100%| selectivity space S, represented by a grid of

points where:

1. Each poiny(z,y) in the grid corresponds to a unique query with (percentagégctivi-

tiesx,y in the X and Y dimensions, respectively.

2. Each query poing in the grid is associated with an optimal pld? (as determined by the

optimizer), and a cost;(q) representing the estimated effort to executeéth plan 7.

3. Corresponding to each plaR is a unique colorZ;, which is used to color all the query

points that are assigned 6.

22
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The set of all colors used in the plan diagr&ns denoted by ». Also, we will useP; to both
denote the actual plan, as well as the set of query points fiichn”; is the plan choice — the
interpretation to use will be clear from the context.

With the above framework, PlanRed is defined as follows:

Definition 2 PlanRed
Given an input plan diagran®, and a cost increase thresholM(A\ > 0), find a reduced

plan diagramR that has minimum plan cardinality, and for every pl&nin P,
1. P, eR,or

2. V query points; € P,, 3P; € R, such thatcqui
ci\q

< (14X

That is, find the minimum-sized “cover” of plans that is suéit to recoloP (using only the
colors inLp) without increasing the cost of any re-colored query paiet (vhose original plan
is replaced by a sibling plan) by more than the cost incredasshold. Obviously, foA — 0,
the reduced plan diagram will be almost identical to theinabplan diagram, whereas for
A — o0, the reduced plan diagram will be completely covered by glsiplan.

In the above definition, we need to be able to evalugte), the cost of executing query
point ¢ with the substitute choicé’;. However, this feature is not available in all database
systems and is very expensive in the systems where it issél@jltherefore we use a bounding
technique instead to limit the value @f(¢). Note that this means that the reductions we discuss
here areconservativen that, in principle, it may be possible to reduce the diageven more
— such enhanced reductions will only further support thecke@mions drawn later in this thesis.

The specific bounding technique we use is based on assunaigllihwing:

Plan Cost Monotonicity (PCM): The cost function of each of the plans featured in the plan

diagram is monotonically non-decreasing over the entiecteity space S.

Intuitively, what the PCM condition states is that we exghetquery execution cost of a plan to
increase with base relation selectivities. For most quamyplates, this is usually the case since
an increase in selectivity corresponds to processing @fdagnount of input data. However,

the assumption may not hold for query templates that featagation operators such as “set
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difference”, or short-circuit operators like “exists” — wléscuss how to handle such situations
below. For the remainder of this thesis, we consider onlycimamon case of plan diagrams in
which the PCM condition applies.

Based on the above, we can now state the following rule:

Definition 3 Cost Bounding Rule

Consider a pair of query pointsy; (z1,y;) with optimal planP; having cost(¢;), and
¢2(x2, y2) With optimal planP, having costey(¢2). Then the cost of executing querywith
plan P, i.e. c3(q1), is upper bounded by (o) if 29 > x1,y2 > 5.

That is, when considering the recoloring possibilitiesdajuery point;;, only those plan
colors that appear in tHast quadrant relative tog, as the origin, should be considered. Further,
if there exists a differently colored poirt in the first quadrant whose cost is within the
threshold w.r.t. the optimal cost qf, theng; can be recolored with the color @f without
violating the query processing quality guarantee. In sleortdition 2 of Definition 2 is replaced

by the stronger requirement

V query points; € P, 3P; € R, such thallr € P,

c;(r)
S < (14 ),

with r in first quadrant of; and

Handling non-PCM templates. As mentioned above, when a query template features nega-
tion operators (e.g “set difference”) or short-circuit oggers (e.g. “exists”), the PCM condition
may not hold. However, as long as the template exhibits noomaity (non-decreasing or non-
increasing) along each of the selectivity axes, the abost Bounding Rule still applies with

an appropriate choice of reduction quadrant, as shown ileTal for the 2D case.

Table 3.1: Reduction Quadrants

Cost Behavior | Cost Behavior | Reduction
X dimension Y dimension | Quadrant
Non-decreasing Non-decreasing I
Non-increasing| Non-decreasing Il
Non-increasing| Non-increasing i
Non-decreasing Non-increasing v
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In the remainder of this thesis, we will characterize anyhpleagram that has more than
ten plans aslense We usen andm to denote the number of plans and the number of query
points in the plan diagram, respectively. Further, we miseandm, to denote the diagram
resolution in the X and Y axes, respectively, with= m; x msy. Lastly, BottomLeftis used
to denote the1, 1) point, BottomRightis used to denote th@n,, 1) point, TopLeftis used to
denote thé1, m,) point, andTopRightis used to denote the point with coordinates , m.) in

the diagram.

3.2 The Set Cover Problem

We now move on to the classical Set Cover problem, definedllasvi

Definition 4 Set Cover
Given a finite universal sdt, and a collectionS = {54, 5,,...S,} of subsets of/ such
that U}, S; = U, find the minimum cardinality subsét C S, such thatC' coversU i.e. all

elements ot/ belong to some subset@n

Let I = (U, S) denote an instance of a Set Cover problem. From a given itesfacreate

a new instancé’ = (U’, S,,) such that:
1. 5" = {€'}, wheree’ is an element not itV
2.U=UUY, Spew = SU{S"}

Let C’ be an optimal solution of . It is easy to see that = C’\ {5’} is an optimal solution of
the original instancé. Therefore, we will assume henceforth in this section that3et Cover

instance is of the fornd’.

Lemma 1 Given a set cover instandé, addition of a new elemeantto U’, to subsets’, and to

zero or more subsets S, Ss, . .., S, }, does not change the optimal solution/af

Proof: LetC = {5’ S;,,S.,...,S5; } be the optimal solution of’ before the addition of the

element. After addinge to I’, C still coversU’, sincee € 5.
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To see that’ continues to be the optimal solution Bfafter addinge, assume the contrary.
Let C’ be a cover fol’’ with |C’| < |C|. Removee from all subsets i’ that contaire. Now
C' coversU’ \ {e}. This contradicts our selection 6f as the optimal solution of before the

addition ofe. n

3.3 Reducing Set Cover to PlanRed

We now show that the Set Cover problem can be reduced to theliglgram reduction problem.
Specifically, Algorithm Reduce in Figure 3.1 converts artanse of Set Cover to an instance
of PlanRed. It takes as input the instan¢end threshold\ and outputs a plan diagram and
another instancé,.., = (Uyew, Sh.,,) Of Set Cover.

The data structures used in the algorithm are as follows:

1. cur(q): integer denoting the smallessuch that query point € S; (i.e. denotes current

plan thaty belongs to in the plan diagram)

2. belong(q): list storing allj, such thay € S; andj # cur(q) (denotes the set of plans that

can be used instead of the current plan in the reduced plgnedig
3. cost(q): value indicating the cost afin the plan diagram
4. color(q): integer denoting the color (equivalently, plan),ah the plan diagram

In addition, the value: + 1 is used to denote the sgt, i.e. S,,.; = S’ in cur andbelong.
Algorithm Reduce works as follows: Consider a Set Coverainse!’ = (U’, S, ). FOr
each subset; € S,...,, a unique coloi; which represents the plaf is created. Each element

q € U' represents a query pointi and lety be in subsets;,, S;,, . . . S;, for eachS;; € S.cw,
j=12,...kandi; < iy < ... < i,. PlanP, is chosen as the representative foand
becomes the plan with whichis associated. For each of the other subsets in whislpresent,
a new query point is created and placed to the rightofn the plan diagram, with its color
corresponding to the subset it represents and its cost being) times the cost of. Intuitively,

this means that plaf;, can be replaced by plarfg,,j = 2,3... k. Then, a query point is
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1.
2.

oo o &M w

ReduceSet Coverl’)

Initialize I, = I'; Vq € U’, setbelong(q) = NULL
For each elemente U’

(a) Letg belong to sets;,,S;,,..., 5,1 <i1 <ix<...<ip<n+1
(b) Setcur(q) =11
(c) Addisg,is, ..., ik tobelong(q)

Letm = |U’|; mz = maxy(|belong(q)|) + 2 ,¢ € U’; i=1; Initialize cost
Createn + 1 colorsLy, Lo, ..., Ly

Create amn x mx grid

For each elemente U’

(a) Addq at point(z, 1) in the grid
(b) Setcolor(q) = cur(q); cost(q) = cost;cost = cost x (1 + N\);p = 2
(c) Foreachj € belong(q)

i. Create element. Setcur(r) = j

ii. Vz,z € belong(q) such that: > j, addz to belong(r)

iii. Add (n+ 1) to belong(r)

iv. Add r at position(i,p) inthe grid.p =p+1

V. Setcolor(r) = j, cost(r) = cost

vi. Add r to instancel,,.,, such that- € S, if j = cur(r) orj € belong(r)
(d) Create elemerit Setcur(t) = n+ 1, belong(t) = NULL
(€) cost = cost* (1+ \)
() Add ¢t at position(z, p) in the grid
(9) Setcolor(t) = n + 1;cost(t) = cost; cost = cost * (1 + \).
(h) Addt to Ipeq-
(i) Seti=i+1

7. For every empty point in the grid:

(a) Create a new element Setcur(q) = n + 1,belong(q) = NULL.
(b) Addq to the empty point. Seblor(q) =n + 1

(c) Setcost(q) = cost of row’s rightmost point with colak,, 1

(d) Addq to I,eq

8. End Algorithm Reduce

Figure 3.1: Algorithm Reduce
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U=1{1,2,3,4,5)
Si1={1,2} S;=1{2,3} S3={3,4} S'={5}

Input Set Cover Instance

31.37|137.95]37.95
S 5
1
4 23.57]28.52]28.52
S, 3 17.71]19.48] 21.43
Ss ) 13.31| 14.64| 16.1
1 10 |12.1 |12.1
SI
Legend Output Plan Diagram

Figure 3.2: Example of Algorithm Reduce

created having pla®’ corresponding to the subsgtwith a cost(1 + \)? times the cost of —
this point is added to the right of all the points that werevymesly created for,. This means
thatt can in turn replace all the other points that were created,fbut notq itself. (Note that
this process is identical to the element addition procesenfma 1.) When moving from the
last element of one row to the first element of the next row,cib& is further increased by a
factor of (1 + \).

Starting from the bottom row and moving upwards, the abowequiure is repeated for
each element, resulting in each element and its associategtafed points being assigned to
different rows in the plan diagram. Finally, for each emptynp in the grid, a new query point
q is created having plai’ corresponding to the subsgt with a cost equal to the cost of the
rightmost point in its row with the pla®’. An example of this reduction, with = 10%, is
shown in Figure 3.2, where each point is represented by aedpeck. The blocks in the first
column of the output plan diagram represent the elememnggatly in U, while the remaining
blocks are added during the reduction process. The valudsiblocks represent the costs
associated with the corresponding points, and each subassociated with a color, as shown
in the legend.

We now show that Algorithm Reduce does indeed produce a pégrain whose optimal
solution gives the optimal solution to the Set Cover instansed, and hence that PlanRed is

NP-Hard.
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Lemma 2 The gridG produced by Algorithm Reduce is an instance of PlanRed.

Proof:
1. Each pointin7 is associated with a color (equivalently, plan) and a cost.

2. For any point(z,y) on GG, wherexz andy represent the row and column respectively,
let ¢ = cost associated witfw, y). At point (x,y + 1), the cost associated is eitheor
cx* (14 X). At point (x + 1,y) the cost is greater thanx (1 + \) because Algorithm
Reduce increases the cost by a factoflof- ) while moving from one row to the next.

Therefore, the cost bounding rule of Definition 3 holds.

Hence the gridy satisfies the conditions necessary for the Plan Diagrameoffdd. =

Lemma 3 The optimal solution for the instance of the plan diagramegated by Algorithm

Reduce gives the optimal solution for the Set Cover instdhgsed as input to the algorithm.

Proof: Consider the plan diagram gr@ and the Set Cover instanég..,, = (Unew, She,,) that
is the output of the algorithm. For every poifitr, y) on the grid that can be recolored, there
must exist a point with that color to the right@fz, ) with cost either or cx (1+ \) wherec is
the cost ofy(z, y). Also, the color’s index will be in théelong list of the element corresponding
to that point.

For each such point(z, y), there is an elementin I,..,,, such that belongs to the subsets

SjES,

new’!

wheneverur(q) = j or j € belong(q). Hence, from the above property, if point
q(z,y) has colorL; in the reduced plan diagraRy then the corresponding elementljp,, will
be an element of s¢&t..

Therefore, ifR has colors (plansir = {L;,, Li,,. .., L; } , since every point is colored
with some color inL g, its corresponding element i), will belong to some subset ifi,,.,, =
{Si,, Sis, - .., 5. }. Therefore(,,.,, coversU,.,,. Hence we just need to show thatlif; is the
optimal color set (with least number of colors), thép.,, is the optimal set cover faf,.,,.

To prove the above, assume the contrary, thatis@hat = {S;,, Sj,....,5;,}, | < kisthe
optimal cover ofU,,.,,. By construction of the grid, every point in the grid corresging to an

elementinS;, i € {1,2,...l}, can be colored with colat;,. Apply this color to the point in the
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grid and set the cost of this point to be the cost of the poitt tie matching color to its right.
After recoloring the grid in this manner, we get a new coldrisg = {L;,, Lj,, ..., L;}
that covers the whole grid withl;| < |Lg|. This contradicts the assumption that was the
optimal color set. Hence, the optimal solution to the grickgithe optimal solution for the set
cover instancd,,.,,.

The newly created elements that are added’tto createl,.,, by the algorithm are in
accordance with Lemma 1. Hence the optimal solutior fés the same as the optimal solution
of I,....,. Thus the optimal solution for the instance of plan diagranegated by Algorithm

Reduce gives the optimal solution for the Set Cover instdhosed as its input. =

Armed with the above lemmas, we now state the main theorem:

Theorem 1 The Plan Diagram Reduction Problem is NP-Hard.

Proof: It can be seen that
1. Algorithm Reduce has a polynomial time complexity(fnm).

2. Forl’ = (U, S,ew), the grid created has in the worst ca&¥| « (|S,...,|) elements with

| Snew| Plans. It is a valid plan diagram. (Lemma 2)

3. The optimal solution for Set Cover Instanean be obtained by the optimal solution of

the plan diagram generated by the algorithm. (Lemma 3)

Hence the theorem. =

3.4 Single-swallowing PlanRed

In the hope of finding a polynomial-time optimal solution, also considered a situation where,
rather than allowing a plan to be collectively swallowed lgraup of sibling plans, we mandate
that a plan can be swallowed only if it can be entirely repdalog asinglesibling plan. That
is, all query points of a swallowed plan have the identicalaeement color. Unfortunately,
however, this constraint does not change the complexitig@ptoblem, as proved below.

The Single-swallowing PlanRed problem is defined as follows
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Definition 5 Single-swallowing PlanRed
Given an input plan diagrar®, and a threshold\, find the reduced plan diagraR with

minimum plan cardinality such that for every plahin P,

1. P, eR,or

cj(q)
ci(q)

Applying the bounding rule of Section 3.1, the second coolits converted to the stronger

2. 3P; € R, such thatv query points; € P,

< (14X

requirement:

3dP; € R, such tha¥/ query points; € P, 3r € P,
¢;(r)

< (IT+M).
alg =Y

We find that enforcing the single-swallowing restrictioredamot change the NP-Hard com-

with r in first quadrant of; and

plexity of the plan diagram reduction problem and show thigdducing a variation of the
Dominating Set problem in a Directed Graph into an instarfcgingle-swallowing PlanRed.
For the purpose of our reduction, we will be using an instaosfdee Dominating Set problem

where the directed acyclic gragh= (V, £) is connected and has the following structure:
1. |V| = n+ m + 1 for some positive integers, m
2. There is one node(root) withdegree = 0
3. There is a directed edge between the rootranddes starting from the root.

4. There are a set d¢f > 0 edges between the abovenodes and the remaining nodes

starting from the set of nodes.

Lemma 4 The Dominating Set problem in a Directed graph with the gisgncture is NP-
Hard.

Proof: Let I = (U, S) be a set cover instance witl/| = m and|S| = n. Create a graph
G = (V, E) such that

1. For eachs; € S, create a node; (v nodes) and for each elemente U create a node;

(u nodes). Create another node
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2. LetV = {uy,ug, ... Uy, v, v, ... 05w}
3. LetE = {(vi,u;) 1 e; € S} U{(w,v;),Vi=1...n}

Let D' = w,u;,, wiy, ... U, v, ...v; be the minimum dominating set fa¥. Ev-
ery nodeu; has a parent;. Hence, we can get another minimum dominating Bet=
W, Vs, Vs, - - - Usy, Uy, U, - .. 05, fOr G. This means that these setwfnodes has atleast one
edge to all the: nodes. This implies that' = {S.,, S.,,... S, S, S, ..5;} coversU. To

see thatU is the optimal cover, if there was a cowet = {S,,, Su,, - .. S, }, with |C'| < |C

then we can geD"” = {w, v,,, Vs, ... vy, } @S @ minimum dominating set fa¥, due to the
construction ofG, with |D”| < |D|. This contradicts the assumption thatis the minimum
dominating set.

Hence, we can reduce a Set Cover problem to an instance ofdtmn@Ating set problem

for the directed graph structure mentioned above. Hencedhena. m
We now reduce the above dominating set problem to Singldéieamiag PlanRed problem.
Theorem 2 The Single-swallowing Plan Diagram Reduction Problem isH#rd.

Proof: LetG = (V, E') be a directed acyclic graph having the structure mentioadde Let
V ={vy,vs,..v,} and set/ = ()

1. For each node; create a set; = {¢;} andU = U U{¢;}
2. For each edggy;, v;) performS; = S; U{q;}

It can be seen thal/, S) forms an instance of the set cover problem whose optimatisalu
gives the optimal solution of the Directed Dominating Setippem.

This instance of the set cover problem can then be convertediiplan diagram by using
the Algorithm Reduce given in Table 3.1. We make a slight ication in Algorithm Reduce,
wherein, rather than choosing the set with smallest indetsagpresentative color, we will
instead choose the set with the same index as the elemeastrapriesentative color. (This can
be done because, while a set is created, a correspondingrélenalso created for it). We know

by Lemma 3 that the optimal solution of the Plan Diagram fairbg Algorithm Reduce gives
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the optimal solution of the Set Cover instance used as impilt tAlso, this reduction runs in
polynomial time. Hence, it will suffice for us to just show tlilhe optimal solution to the plan
diagram thus formed conforms with the aforementioned ict&in.

LetC' = {C4, Cy, ...CL} whereC; € S = {5}, S, ..S,, } be the optimal solution to the plan
diagram reduction problem. (Recall that we represent al®fats corresponding set ifi). Let
planS; ¢ C. Since the only element df; that is colored with coloc’; in the plan diagram is
x;, it should be in some sét; in the optimal solution. Hence, as required by the restictthe

planS; completely replaceS;,. =

3.5 Storage-budgeted PlanRed

In practice, it is often the case that a fixed storage budgebigded to hold the set of plans for
a query template. That is, a budget in terms of the numbeoédtplans, say, is specified,
and the goal is to identify the best set lofplans that would minimize the cost increase in
the Reduced Plan Diagram. This problem is doal of PlanRed, in terms of exchanging the

constraint and the objective, and is defined as follows:

Definition 6 Storage-budgeted PlanRed
Given a plan diagran® and storage constraint of retaining at mdsplans, find the: plans
to be chosen so as to minimize the maximum cost increase qtirg points in the reduced

plan diagramR.

A Karp Reduction [14] can be used to show that Storage-beddelanRed is NP-Hard by

using it to solve the general plan diagram reduction probleading to the following theorem:
Theorem 3 The Storage-budgeted Plan Diagram Reduction Problem igHsR}-

Proof: We prove the hardness of the problem by using it to solve RtdnRssume that a poly-
nomial time algorithm called”ind Plans gives the optimal solution for the Storage-budgeted
PlanRed problem. It takes as input the number of plans anthethe set of plans so as to min-

imize the cost increase threshold. The metlhGddT hreshold takes as input the set of plans
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ReducePlansPlanDiagramP, threshold)
1. Initializeminplans = All Plans in P
2. fori=ntoldo

(a) plans = FindPlans(i)
(b) th = FindT hreshold(plans)
(c) if threshold < th

I. returnminplans

(d) minplans = plans

3. End Algorithm ReducePlans

Figure 3.3: Algorithm ReducePlans

to be retained in the reduced plan diagram and returns thienmim cost increase threshold that
results.

Consider the algorithnReduce Plans given in Figure 3.3, which takes as input the cost
increase threshold and returns the minimum number of plahe tretained without violating
this threshold. It can be seen that this algorithm runs irymahial time as it invokes the
FindPlans method at most times wheren is the number of plans in the plan diagram. Thus,
we have a polynomial time solution to the PlanRed Probleneifvave polynomial time solution
to the Storage-budgeted PlanRed Problem, which means veealaslynomial time solution to

the Set Cover problem. Hence the theorem.



Chapter 4

Greedy Plan Diagram Reduction

Given the hardness results of the previous section, it @riglenfeasible to provide optimal
plan diagram reduction, and therefore we now turn our atierib developing efficient greedy
algorithms.

We first consider AreaGreedy, the reduction algorithm pseploin [33], where the greedy
heuristic is based on plan areas. Then we present CostGieeey reduction algorithm that
is greedy on plan costs. Its computational efficiency andatdn quality guarantees are quan-
tified for the general PlanRed. We then present a greedyiddgoil hresholdGreedy that has
strong performance bounds for the storage-budgeted verambefore, for ease of exposition,
we assume that the input plan diagram is 2-dimensional -¢fogilhms can be easily general-

ized to higher dimensions, while the theoretical resuksiatiependent of the dimensionality.

4.1 The AreaGreedy Algorithm

The AreaGreedy algorithm [33] first sorts the plans featymthe plan diagram in ascending
order of their area coverage. It then iterates through #gsience, starting with the smallest-
sized plan, checking in each iteration whether the currkam pan be completely swallowed by
the remaining plans — if it can, then all its points are repadicusing the colors of the swallower
plans, and these points are added to the query sets of thiower.

An important point to note here is that when a plan that hasadly swallowed some other

35
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1. Create a buckeB; for each different plan in P, and put all query points having the same
plan in the corresponding bucket.

2. Create a border bucké&tB; for each different plan in P. Using the Edge Detector algo-
rithm, identify the border points of each contiguous plagioa and only insert those points
into the corresponding bucket.

3. Sort the bucket®; in ascending order of the areas covered by their associtdad pP.
Let this sorted list be3,, B, ..., B,

4. fori=1ton

(a) Swallow(B;) = true
(b) for each poinp in B;
(c) forj=1tonand(j # 1)
i. find, if available, a point in BB; such tha is in first quadrant w.r.p, cost(q)
is within [100%, (100 4+ X\)%] of cost(p), andcost(q) is the minimum across &l
such qualifying points irB B,
(d) if one or morey points are identified from the above step, choose;theint with the
lowestcost(q), and mark that point can be assigned igs bucket

(e) else Swallow B;) = false; break
(f) if Swallow(B;)= true, move all the points if; to their assigned replacement buckets,
then deleteB; and BB;

5. Output all the points oP with their current plan assignments based on their assigne
buckets, and use the associated coloring to form the redaleaeddiagraniR

6. End Algorithm AreaGreedy

Figure 4.1: Algorithm AreaGreedy
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guery points is itself considered for swallowing, then diigginal costs of the previously swal-
lowed query points are used in computing the cost increatfetiaé current candidate swallow-
ers. This ensures that in the final reduced plan diagram,asigincrease of all query points is
within the threshold even if these points have been sulgauiuitiple swallowings by different

plans in the iterative process.

The intuition behind the design of AreaGreedy is two-foldsE using an area basis for the
swallowing iterations is likely to reduce the number of srsated plans. This would contribute
towards plan stability as discussed in the Introductioncoid, small-sized plans tend to be
found near the origin and the axes of the plan diagram [2033p-- this means that they offer
more scope for swallowing since their first quadrants areahajtherefore likely to have many
more candidate swallower plans as compared to the larged-pians which occur in the higher
regions of the selectivity space. The algorithm is giveniguFe 4.1.

By inspection, it is obvious that AreaGreedy has a time cexipt of O(m?), wherem
is the number of query points in the plan diagram. With respceduction quality, leAG
denote the solution obtained by AreaGreedy, andlgtdenote the optimal solution. We now

Ci|| can be no better than5/m.
p

Lemma 5 The approximation facto%’;“ > 0.5y/m

show that the approximation fact

Proof: Construct the plan diagram as follows.

1. Initialize coste.
2. foreachh=2...n—1do

(a) create an element of colég, costc andn — 1 elements of colok;, coste x (14 ),

and an element of colat,,, coste x (1 + \)? and add it to row — 1 of the grid

(b) setc=c x (1+\)?

The plan diagram created above has= n? — n — 2 points. The AreaGreedy algorithm will
output the reduced séty = { P, P, ..., P,} while the optimal solution i$%,; = { Py, P, }.

Hence
|AG|  n—1
|Opt| 2
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It can be seen that
vm+1-1 <n—1 - vm+1
2 2 2

Hence, for this plan diagram ,
|AG]

- ~0.5y/m
|Opt|

Hence the Lemma. =

4.2 The CostGreedy Algorithm

We now propose CostGreedy, a new greedy reduction algarithmeh provides significantly
improved computational efficiency and approximation fag®compared to AreaGreedy.

Consider an instance of PlanRed that hasank m, grid with n plans andn = m; x ms
guery points. By scanning through the grid, we can populaeitr andbelong data structures
(introduced in Section 3.3) for every point. This can be dasdollows: For each query point
q with plan P; in the grid, setur(q) to bei, and add tdelong(q) all j such thatP; can replace
g. Using this, a Set Cover instanée= (U, S) can be created with/| = m and|S| = n.
Here,U will consist of elements that correspond to all the queryntgoandsS will consists of
sets corresponding to the plans in the plan diagram. Theeglenof each set will be the set of
guery points that can be associated with the plan correspgmtal that set.

The following lemma shows that the reduction solution fa phan diagram can be obtained

from the Set Cover instance created above.

Lemma 6 The optimal solution of the created Set Cover instahgares the optimal reduction

solution to the plan diagrar® that is used to create the instance.

Proof: Let C' = {S;,,S;,,...S; } be the optimal solution of. For each query poinj in
P, if it belongs to a subse$;, € C, then colorq with color L;,. This is a valid coloring
because the elementwill be in subsetS;; only if ¢ can be replaced by plaf;,. Hence,
Lr ={S;,S:,...S: } colors all points in the plan diagram.

To show thatLy, is optimal, assume that there exiéts = {L;,, L;,, ... L; } which covers

all plans in the plan diagram with< k. The covelC’ = {S,,,S;,,...S; } is acover ofl, since
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if a point can be colored witlh,;, € L7, then it will belong to the corresponding s&t. Since
L', covers all points in the plan diagram; coversU. This contradicts the assumption tigat

is the optimal cover of. Hence thelemma. =

Lemma 6 is explicitly used in the design of CostGreedy, showigure 4.2. In Lines 1
through 6, an instancé = {U, S} of Set Cover is created. Then, in Line 8, CostGreedy calls
Algorithm Greedy Setcover, shown in Figure 4.3, which tatkes input instance and outputs
the coverC C S.

By definition, the TopRight query point iR cannot be re-colored since there are no points
in its first quadrant. Therefore, its colorkhhas to perforce also appeaHence, we remove
its corresponding set from the Set Cover instance (Line #rbeapplying Algorithm Greedy
Setcover, and then add it to the solution at the end (Line 10).

Finally, an attractive feature of CostGreedy is that a swed point is recolorednly once

in contrast to AreaGreedy where a swallowed point can bdassd multiple times.

4.2.1 Complexity Analysis

In the following theorem we show that the time complexity afsBGreedy i) (nm). Since it
is guaranteed that < m, and typicallyn < m, this means that CostGreedy is significantly
more efficient than AreaGreedy, whose complexit@)isn?). Further, it also means that for a

given diagram resolution, the performancéngar in the number of plans in the plan diagram.

Theorem 4 The time complexity of CostGreedy(gmn), wherem andn are the number of

guery points and plans, respectively, in the input plan caagP.

Proof: Let P be anm; x msy grid. While populating théelong and cur lists, we maintain
another two-dimensional arrayincost of dimensionm; x n. This array is used to store the
minimum costs of the query points corresponding to each gtgeearing in the partial-column
located above each cell in the row above the one that is diyreeing processed. The initial
values inmincost are alloo.

We start the scan of the grid from right to left, beginninghwihe top row of the grid.

For each poing with plan P, at column: in the current row, if it can be replaced by any



CHAPTER 4. GREEDY PLAN DIAGRAM REDUCTION 40

CostGreedy (Plan DiagramP, Threshold \)
1. For each poing from TopRight to BottomLe ft do

(@) setcur(q) = color(q)
(b) updatebelong(q) with plans that are iq’s first quadrant with cost within the given thresho

2. Letm = mq X ma.

3. Createn setsS = {51, S9,....S,} corresponding to the plans.

4. LetU = {1,2,...m} correspond to the: query points.

5. DefineVi =1...n,S; = {j : i € belong(r) ori = cur(r) for query pointr corresponding tg,
Vi=1...m}

6. Letl = (U, S), I be an instance of the Set Cover problem.

7. LetL, be the color of th& opRight point. Remove se$,, and all its elements from.

8. Apply Algorithm Greedy Setcover th Let C be the solution found.

9. C =CU{Sn}

increase.

11. End Algorithm CostGreedy

Figure 4.2: Algorithm CostGreedy

Greedy Setcover(Set Cover)
1. SetC = ()
2. WhileU # ( do:

index)
(b) U=U\S; 5 =5\{9}
() ¢ =CU{s;}
3. ReturnC

4. End Algorithm Greedy Setcover

Figure 4.3: Algorithm Greedy Setcover

d

10. Recolor the grid with colors corresponding to the set€'iand update new costs appropriately.
If a point belongs to more than one subset, then color it withdolor that requires the least cpst

(a) Selectses; € S, suchthatS;| = max(|S;]); VS; € S (in case of tie, select set with smallest
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C1 C2 C3 C4 C5 R B Y G
C1(55] 38| 36/ 45

C2| 55| 44| 40| 45
C3[55] 58 45
C4|55|% |« [ 50
Lh | B |9 [o2 [w0

8

Plan Diagram mincost

Figure 4.4: Updating mincostin Algorithm CostGreedy

other planP;, then mincost[i][P;] should be within the increase threshold of the cost of
q. Hence, through a single scan wofincost[i], we can populatéelong(q). Then the cost
of ¢ is updated formincostli][P;]. Since the values in the columnincost|i] are candi-
dates for the minimum values of the column- 1, mincost[i — 1] is updated with the value
min(mincost[i], mincost[i — 1]). An example is shown in Figure 4.4. The arrayncost con-
tains updated values after processing all the columns dirtehree rows of the plan diagram.

With the above procedure, when moving to the next row to begwssed, the columns
mincost[i| will automatically contain the minimum costs of all the pdasppearing in the first
quadrant of the query point at th& column of the previous row. When a query point at column
1 is being processed, due to the cumulative updation of this ob¢he plans visited on that row,
mincost[i] will be updated with the minimum costs of all the plans in ghaint’s first quadrant.
So each query point requir@s iterations to be made, and there aitequery points. Hence the
time required for populating the data structures andbelong is of the ordeiO(mn).

Obtaining the Set Cover instance from the above data stestakes)(mn) time, and the
Algorithm Greedy Setcover also has a time complexit@)¢fnn). Thus the CostGreedy has an

overall time complexity oD (mn). Hence the theorem. m
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4.2.2 Approximation Factor

We now gquantitatively assess the approximation factor ¢hatalways be guaranteed by the

CostGreedy algorithm with respect to the optimal.

Lemma 7 CostGreedy has an approximation factor
¢G|

opt| O(Inm), wherem is the number of query points in the plan diagram.
p

Proof: It has been shown in [11, 42] that Algorithm Greedy Setco@S$)(has an approxima-
|GS]

tion factorm < H(m), wherem is the cardinality of the universal set, aft{m) is the
P

m'™ harmonic number. The input to GS can have at nfest- 1) elements in its universal set

(this occurs when the TopRight query point has a unique cadoshared by any other point in

the entire diagram). Therefore,

ICG| |GS| _
Eﬁﬂ_ﬁﬁﬂfgﬂﬂm—n)—(XMm) (4.1)

Tightness of Bound. Itis shown in [42] that given any, [ where|Greedy| = k and|Opt| = |,
a Set Cover instance can be generated With /) sets andn elements such that > G(k, 1),

whereG (k, 1) is a recursively defined greedy number:
G(l,1)=1

Gk+1l)=]

— Gk 1)

It is also shown in [42] that the following tight bound bf m for Set Cover can be achieved

using such a construction when= G(k, [):
k
lnm—lnlnm—0.31§7§1nm—1n1nm+0.78 (4.2)
These results are used in the following lemma.

Lemma 8 The bound specified by Lemma 7 is tight.
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Proof: The construction process in [42] of the above-mentioned_8ger instance, withn, =
G(k, 1), is such that every element belongs to examtiysets. For a giveh, [, first construct the
Set Cover instance using the construction in [42]. Using theate another Set Cover instance
of the form” with (k + [ + 1) sets andm + 1) elements, as mentioned in Section 3.2. When
Algorithm Reduce is applied to this new instance, it creaegid withm’ = 3 % (m + 1)
elements. This is because, for each element, since it isarsets, it can be colored by two
colors in the plan diagram. One of these will represent itsetu plan, and for the other plan, a
new element will be created and added to its right. Then analement will be created to its
right which can replace this newly created element and Igatfia color representing the plan
corresponding to the sét. Hence, each of the, + 1 rows will have 3 elements.

From Equation 4.2 we know that

|Greedy|

> Inm—Inlnm — 0.31 4.3
O] @3

!/

Sincem = m? — 1itis easy to see that

|Greedyl| ,
— 2 =0(lnm
opr] U

Optimality of the Bound. It has been shown in [11] that the bound(@fln m) for Set Cover
is the best possible bound below which Set Cover cannot bezipmated efficiently, unless

NP has slightly super-polynomial-time algorithms. Thisukis used in the following theorem:

Theorem 5 The bound specified by Lemma 7 is the best possible thresletdav bwhich
PlanRed cannot be approximated efficiently unless NP hgbtblisuper-polynomial-time al-

gorithms.

Proof: Consider a Set Cover instanfe= (U, S) with |U| = m and|S| = n, wheren < m.

The gridG produced by Algorithm Reduce is an instance of PlanRed @th= m’, where

om < m' < mn < m?.

Thus,log(2m) < log(m’) < 2log(m), which implies that a reduced bound for PlanRed

will provide a reduced bound on Set Cover. But this would gttt the result of [11]. Hence,

this is the optimal bound for PlanRed.
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4.3 The ThresholdGreedy Algorithm

We now turn our attention to developing an efficient greedpathm for the Storage-budgeted
variation of the PlanRed problem. Specifically, we presemesholdGreedy, a greedy algo-
rithm that selects plans based on maximizing the benefitgirdd by choosing them. The
benefit of a plan is defined to be the extent to which it decetsecost threshold of the re-
duced plan diagram when it is chosen, which means that atstepThresholdGreedy greedily
chooses the plan whose selection minimizes the effegative

The least number of plans that can be in the reduced planadiags a single plan
which corresponds to the plan of the TopRight query pointhi@ plan diagram. This can
be always achieved by setting the cost increase threshatd equal the ratio between the
costs of the TopRight and BottomLeft query points in the pitiagram, i.e. Asinpian =
cost(TopRight)/cost(BottomLe ft).

We now bootstrap the selection algorithm by choosing thes @nd subsequently choose
additional plans based on their relative benefits. The ldethithe algorithm can be found in
Figure 4.5. LetBen,, and Beng..q, be the total benefit of choosingplans by the optimal
and greedy algorithms, respectively. This means that tla dwst increase threshold with the
optimal selection iS\si,pian — Benoyt, and with the threshold greedy solution)s;,, pia, —

Benrg. The following theorem quantifies the approximation facbi hresholdGreedy:

Theorem 6 Given a storage budget éfplans, letBen,,; be the benefit obtained by the optimal
solution’s selection, an®enrs be the benefit obtained by the ThresholdGreedy algorithm’s

selection. Then

21
Proof: Given that we need to choogeplans, letT’G = {P,...P;} be the plans chosen in
order by the greedy algorithm. Létpt = {Q1, Q-, ...Q } be the plans chosen by the optimal
solution. LetBenp, and Beng, be the benefits of choosing the plaRsand(); respectively
after choosing the previous- 1 plans. It can be seen that

k
Benrg = Z Benp, (4.4)

1=0
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ThresholdGreedy (PlanDiagramP, Budgetk)
1. Let P, be the plan of th& opRight query point.
2. SetC = {P}

\ = cost(TopRight)
™ cost(BottomLeft)

fori =2tokdo

W

(a) For each plan i calculate the benefit of choosing that plan in addition tq the
plans inC'. Let P; correspond to the plan which gives the maximum benefit.

(b) Let Ben correspond to the benefit provided By
(c) SetC = CU{P;}
(d) SetA =\ — Ben

5. Recolor the grid with colors corresponding to the set§'iand update new costs

appropriately. If a point can be colored with more than ornlergthen color it with
the color that requires the least cost increase.

(o]

. End Algorithm ThresholdGreedy

Figure 4.5: Algorithm ThresholdGreedy

k
Beng, = Y _ Beng, (4.5)

=0
Define B;; to be the sum over all plans iA of the amount of the benefiten,, that is attributed

to P; . Aninequality that holds for eachis

SinceP; is chosen first, it can be seen that
Vi, Beng, < Benp,

This is true because if there was soifdeng, > Benp,, then@; would have been chosen by
the algorithm instead aP,.

Similarly for P; the following inequality can be formed.

Vi, Beng, — Biy < Benp,.
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This inequality holds because, plgh competes with other plans when selecting the second
plan with its initial benefitBen, minus the benefit that was covered By

In general these inequalities can be written as
Vi, BenQi - Bil - Bi2-~- - Bij—l S Benpj.

Adding the above set of equations overiadnd using (4.4) and (4.5) we obtain the following

set ofk inequalities.

Bengy, < k.Benp,

Bengy < k.Benp, + Benp,

Beng, < k.Benp, + Benp, + Benp,

Bengy < k.Benp, + Benp, , + Benp, , + Benp, ,... + Benp,

For a fixedBenr¢ the tightest bound o®en,,; occurs when all of the right side in the above

set of inequalities are equal, in which case weBetp, = *; Benp,,,. Using this we get

k
k .
Benyg = Z(ﬁ)’_lBenpk
i=1 v
k
Benopt S k(m)k_lBenpk

Using the above two equations we get

Benpg 51 k—1
Beng, —

For & = 10, which we consider to be a reasonable budget in practicglibee ratio works
out to about 0.65, while fok — oo, the ratio asymptotically goes down to 0.63. In an overall
sense, this means that ThresholdGreedy is always guadaioi@eovide close tdwo-thirds of

the optimal benefit



Chapter 5

Estimators for Plan Diagram Reduction

Our experience has been that CostGreedy takes about a nontaery out a single reduction
on plan diagrams that have in the order of a million query fgiwWhile this appears sufficiently
fast, it is likely that users may need to iteratively try oaveral reductions with different cost
increase thresholds in order to identify the one appropfi@t their purpose. For example, the
user may wish to identify the “knee” of the tradeoff betwedanpcardinality reduction and
the cost threshold — that is, the location which gives rtteximum reduction with minimum
threshold

In the above situations, using the CostGreedy method reglgab find the desired setting
may prove to be extremely cumbersome and slow. Thereformutd be helpful to design fast
but accurate estimators that would allow users to quickiyavadown their focus to the inter-
esting range of threshold values. In the remainder of thiB@® we present such estimators.

Our first estimatorAvgEst , takes as input the plan diagrdfrand a cost increase threshold
A, and returns the estimated number of plans in the reduceddpgramR obtained with that
threshold. It uses the average of the costs of all the quentpassociated with a plan, to
summarize the plan’s cost distribution. All these averaggas be simultaneously computed
with a single scan of the Plan Diagram. AvgEst then sets umsatamce of Set Cover, as
shown in Figure 5.1, with the number of elements equal to timaber of plans, and the set
memberships of plans is based on their representativegevests satisfying the threshold.

On this instance, the Greedy Set Cover algorithm, introd@eelier in Figure 4.3, is executed.

47
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The cardinality of the solution is returned as an estimate@humber of plans that will feature

in R.

AvgEst (Plan Diagram P, Threshold X)
1. LetCost(i),¥i = 1...n denote the average cost of PIBn
2. SetU ={1,2,...n}
3. SetS; ={1,2,...n},Vi=1...n
4

. for each plarP; do

=

(a) For all plansP; such thatCost(j) < Cost(i) or Cost(j) is not within the threshold g
COSt(i), SetSj = Sj \ {Z}

5. Apply Algorithm Greedy Setcover th Let C be the solution found

6. return|C|

7. End Algorithm AvgEst

Figure 5.1: Algorithm AvgEst

Our second estimatoAmmEst , uses in addition to the average value, the minimum and
maximum cost values of the query points associated withra fdlaat is, each plan is effectively
represented by a vector of three values. Subsequentlylgbethm is identical to AvgEst, the
only change being that the check for set membership of a plaased on not just the average
value but on all three representative values (min, max aedage) individually satisfying the
membership criterion. This algorithm is shown in Figure.5.2

By iteratively running the estimator for various cost threlsls, we can quickly plot a graph
of plan cardinality against threshold, and the knee of thive can be used as the estimated
knee. Our measurements show that this estimation processitess in a few milliseconds,
orders of magnitude faster than calculating the knee usogj@&eedy. Further, this estimate
can be used as a starting point to find the actual knee whidtely ko be in the neighborhood,

as shown in the experimental results of the following chapte



CHAPTER 5. ESTIMATORS FORPLAN DIAGRAM REDUCTION 49

AmmEst (Plan Diagram P, Threshold \)

1. LetCost(i),Min(i) and Maz(i),Vi = 1...n denote the average, minimum and maximum
respectively of PlarP;

2. SetU ={1,2,...n}
3. SetS; ={1,2,...n},Vi=1...n
4. for each plarP; do

(a) For all plansP; such that at least one @fost(j), Min(j) and Max(j) is not within the
threshold oiCost (i), Min(i) andMax(i) respectively, sef; = S; \ {i}

5. Apply Algorithm Greedy Setcover th Let C be the solution found
6. return|C|

7. End Algorithm AmmEst

COoSt

Figure 5.2: Algorithm AmmEst



Chapter 6

Experimental Results

Having considered the theoretical and statistical aspgqtéan diagram reduction in the pre-
vious chapters, we now move on to presenting our experirheggalts. The testbed is the
Picasso optimizer visualization tool [30], executing onua $Jltra 20 workstation equipped
with an Opteron Dual Core 4GHz processor, 4 GB of main memody2:0 GB of hard disk,
running the Windows XP Pro operating system. Through the Githe Picasso tool, users
can submit a query template, the grid resolution and diginb at which the instances of this
template should be spread across the selectivity spacpatheneterized relations (axes) and
their attributes on which the diagrams should be constd,eted the choice of query optimizer.
With this information, the tool automatically generates #issociated SQL queries, submits
them to the optimizer to generate the plans, and finally presithe color-coded plan, cost and
cardinality diagrams.

We conducted our plan diagram reduction experiments oveselplan diagrams produced
from a variety of multi-dimensional TPC-H and TPC-DS basedrg templates evaluated over
a suite of industrial-strength database query optimizéte templates were instantiated at a
variety of grid resolutions, based on the experimental ailyjes and ensuring viable diagram
production times. We also confirmed that all the plan diagrarare in compliance with the
plan cost monotonicity condition, described in Section 3The detailed listing of the query
templates used in this thesis are given in the Appendix —ain@mg convention used is QTor

the TPCH-based templates and DS€Xor the TPC-DS based templates, whereepresents

50
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the benchmark query number on which the template is based.

A gigabyte-sized database was created using the TPC-H imamkls synthetic generator —
while the benchmark models only uniformly distributed date extended the generator to also
produce skewed data distributions. The optimizers wereparated at their default optimiza-
tion levels and resource settings. To support the makingfofmed plan choices, commands
were issued to collect statistics on all the attributesufiéiag) in the query templates, and the
plan selections were determined using the “explain” featdithe optimizers. It is important to
note here that in all our experiments, the optimizers asderkas “black boxes” and there is no
attempt to customize or fine-tune their behavior. The optérs that we use include IBM DB2
v8, Oracle 10g and Microsoft SQL Server 2005, which (due galleestrictions) are randomly
referred to as OptA, OptB and OptC in the remainder of thisithe

6.1 Computational Efficiency

We start off by first quantitatively evaluating the runtinedghe two greedy algorithms, Area-
Greedy [33] and CostGreedy (proposed in this thesis), apaced to the time taken to produce
the computationally-hard optimal solution. The reductjmality of the algorithms is compared
in the next section. A sample set of results on OptC is showrabie 6.1 for QT8, the query
template shown in Chapter 1, instantiated at a grid resmiudf 100 uniformly distributed
points per dimensionand reduction carried out at a cost increase threshold of ¥ see
here that even for this relatively coarse-grained sitmatibe optimal algorithm takes several
hours to complete. In contrast, AreaGreedy takes only a émeryds, while CostGreedy is an
order-of-magnitude better than AreaGreedy, finishing imalfraction of a second.

The substantial improvement of CostGreedy with regard ta&reedy is, as per the dis-
cussion in Chapter 4, due to i€(nm) complexity being significantly lower than th@(m?)
of AreaGreedy, as < m in practice (recall that is the number of plans and is the total

number of query points in the plan diagram).

The QT8 plan diagram in the Introduction was obtained witlesolution of 300, resulting in a higher plan
cardinality.
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Table 6.1: Computational Efficiency (QT8, Res=100)
Algorithm | Original | Reduced| Time
Plans | (A =10%)

OptRed 50 7 4 hours
AreaGreedy 50 7 2.8 sec
CostGreedy 50 7 0.1 sec

—% AreaGreedy
-6~ CostGreedy
20! OptRed

w
o

)
o

Number of Plans

107

0 5 10 15 20
Cost Increase Threshold (%)

Figure 6.1: Reduction Quality (QT8), Res=100
6.2 Plan Diagram Reduction Quality

Turning our attention to the reduction quality, we see inl@dhl that AreaGreedy and Cost-
Greedy are identical to the optimal (OptRed), all three poialg reduced plan diagrams with
7 plans (in fact, the plans themselves are also the samedrcéise). The closeness to the
optimal holds across the entire operational range of casease thresholds, as shown in Fig-
ure 6.1, which presents the reduced plan cardinalitieshthree algorithms as a function of
the threshold — only a few representative points were obthior OptRed due to its extremely
high computational overheads.

Another point to note in Figure 6.1 is the initial steep daseein the number of plans
with increasing threshold — we have found this to be a stagd¢ufe of all the dense plan
diagrams that we have investigated, irrespective of theipeuery template, data or query
point distribution, memory availability, or database agter that produced the dense diagram.

These settings may determiwiether or nota dense plan diagram is produced, but if produced,
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TPC-H OptA OptB OptC
Query | Plan Reduced Reduced| Plan Reduced Reduced| Plan Reduced Reduced
Number | Card Plans Plans Card Plans Plans Card Plans Plans
(A=10%) (A\=20%) (A=10%) (A\=20%) (A=10%) (A\=20%)
2 14 7 7 20 10 8 43 12 8
5 11 4 2 12 4 4 23 6 5
8 36 4 3 16 4 2 50 7 4
9 39 9 6 18 7 3 38 4 3
10 18 5 4 7 3 3 17 4 3
Table 6.2: Plan Diagram Reduction Quality (Res = 100)
TPC-H OptA OptB OptC
Query | Plan Reduced Reduced| Plan Reduced Reduced| Plan Reduced Reduced
Number | Card Plans Plans Card Plans Plans Card Plans Plans
(A=10%) (A\=20%) (A=10%) (A\=20%) (A=10%) (A\=20%)
2 12 11 7 23 7 6 52 14 10
5 11 4 2 11 4 3 12 5 2
8 35 5 3 24 4 2 34 6 5
9 49 10 5 34 6 5 46 3 3
10 22 7 7 12 5 4 11 2 2

Table 6.3: Skewed Data Distribution (Res = 100)

subsequently the reduction process produces consistaiitse This trend is clearly seen in
Table 6.2, which captures the reduction behavior of Op&nsA, B and C, with various TPCH-

based query templates on which they produced dense plaradiag

6.2.1 Skewed Data Distribution

The above results were obtained with uniformly distributkeda generated using the TPC-H
benchmark’s synthetic generator. We extended the gemdoatdso produce skewed data dis-
tributions. When this skewed data was used instead, thenadzbeeduction results did not
materially change. While the specific plan diagram changfeel reduction behavior contin-
ued to be as before. This can be seen in Table 6.3, which eaptine behavior of the three

optimizers on their dense plan diagrams with skewed data.
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TPC-H OptA OptB OptC
Query | Plan Reduced Reduced| Plan Reduced Reduced| Plan Reduced Reduced
Number | Card Plans Plans Card Plans Plans Card Plans Plans
(A=10%) (A=20%) (A=10%) (A=20%) (A=10%) (A=20%)
2 26 12 10 25 12 10 94 26 16
5 41 8 5 18 5 5 74 10 6
8 50 6 3 19 5 3 174 7 5
9 111 12 7 21 9 4 225 18 8
10 37 7 5 11 5 4 56 6 4

Table 6.4: Exponential Query Point Distribution (Res = 100)

6.2.2 Exponential Distribution of Query Points

In the above diagrams, which were produced with a uniforrritligion of query points across
the selectivity space, we observed that in most cases, th&tgef plans is greater in the
regions near the axes, that is, at low selectivity valuefiefiase relations. This motivated us
to alter the arrangement of query points to be exponentiglyibuted with a higher density in
the low selectivity region. As expected, this led to a sultsdhincrease in the cardinality of
the original plan diagram. Despite this, we see that theatsolu process remains materially
unaffected. Thisis highlighted in Table 6.4, where we sagttie plan cardinality of the reduced
plan diagram decreases sharply at a low cost increase thdestespective of the number of
plans in the original plan diagram. For example, the plagmian cardinality increased from 38
to 225 for QT9 on OptC, but the reduced plan diagram cardin@liith A\ = 20%) went from 3
plans to only 8 plans.

6.2.3 Increased Grid Resolution

While increasing the grid resolution may increase the nunabelans in the original plan
diagram (due to the unearthing of new small-sized plans émtwthe ones found at coarser
resolutions), virtually all of these new plans are swalldweéa low threshold itself. This follows
from the fact that these plans, being optimal over a smaibregend to have costs close to those
of their neighbors and are therefore likely to be easily twad.

This is clearly seen in Table 6.5, which captures the redndtiehavior of the three opti-
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TPC-H OptA OptB OptC
Query | Plan Reduced Reduced| Plan Reduced Reduced| Plan Reduced Reduced
Number | Card Plans Plans Card Plans Plans Card Plans Plans
(A=10%) (A\=20%) (A=10%) (A\=20%) (A=10%) (A\=20%)
2 23 9 8 23 12 10 76 20 12
5 18 5 3 14 5 5 31 10 6
8 47 3 3 17 5 2 89 6 6
9 64 10 6 20 8 4 91 9 4
10 25 7 4 8 4 3 31 6 4

Table 6.5: Increased Grid Resolution (Res = 300)

mizers with the TPCH-based query templates at a grid rasalof 300 uniformly distributed
guery points per dimension. For example, although the pilagrdm cardinality went up from
38 to 91 in case of QT9 on OptC, the reduced plan diagram citiffwith A\ = 20%) went
from 3 plans to only 4 plans. This means that for practicaéshold settings, the final plan

cardinality in the reduced diagram is essentially “scaéef with regard to resolution.

6.2.4 Reduction For Various Cost Diagram Behaviors

The behavior of the cost diagram can affect the plan diagesduation process as it directly
impacts the possibility of finding a replacement plan wittiia A threshold for an entire plan.

Cost diagrams can be categorized as slowly increasing eplgtencreasing depending on the
slope. Plan diagrams, in turn, can be categorized as spadanse depending on the number

of plans in the diagram. Thus, the possible combinations are

1. Slowly increasing and sparse: Since the plan diagranréa@dy sparse, i.e. the plan
cardinality is already small, there is no need for plan diagreduction. An example of

this combination, generated with QT17 on OptC, can be seEigure 6.2(a).

2. Steeply increasing and sparse: Since the plan diagraireesdst sparse, i.e. the plan
cardinality is already small, there is no need for plan diagreduction. An example of

this combination, generated with QT7 on OptC, can be seeiginré&6.2(c).

3. Slowly increasing and dense: Since the dense plan regisasponds to a slowly in-

creasing cost region, this means that the costs of the phatieidense region are all
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very close to each other and hence they can be swallowed a&dstincrease thresholds,
leading to a significant reduction in plan cardinality. A gdencost diagram with such
behavior, generated with QT8 on OptC, is shown in Figurel®,2¢here the cardinality

of the original plan diagram is 50 and reduces to 4 with a gostiase threshold of 20%.

4. Steeply increasing and dense: This combination is ngte@mmonly found. From the
perspective of plan diagram reduction, this is a problenmesibn as the steepness of the
cost function could hinder reduction at low cost increasegholds. An example of this,
generated with QT2 on OptC, is shown in Figure 6.2(d) wheeestieep cost regions,
corresponding to low selectivity values on either baseticeia have a large number of
plans. The cardinality of the original plan diagram is 43 aeduces to 8 with a cost
increase threshold of 20%. We see that the plan diagramtiedun the steep regions
happens primarily because the plans within the steeplyasing region swallow each

other.

An extreme case of the steeply increasing cost diagram amgkbg#an diagram would be
when the cost function idiscontinuoust any region in the diagram. This would lead to
a sudden, sharp variation in the cost. A sample plan diagfamsocase, generated with
QT18 on an alternative optimizer, OptD, (as it was not foumddcur with Optimizers
A, B or C), having 18 plans is shown in Figure 6.3(a). Its cgpanding cost diagram
is shown in Figures 6.3(b) and 6.3(c) (from different 3-Dgparctives), where the dis-
continuity is visible at the plane corresponding to abobg®lectivity of theLINEITEM
relation. The reduced plan diagram for the same with a caséase threshold of 20%
is shown in Figure 6.3(d), where we note that the reductidiresults in a small num-
ber of plans (seven) as the swallowing now happens betwegghboringplans in the
steep region of the cost diagram, in addition to the redadtidhe slowly increasing cost

regions.
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Number of Plans
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Figure 6.4: Scaling with Dimensions
6.3 Scaling with Dimensions

The above results were obtained on 2-D query templates, ambw move on to evaluating the
effect of increased template dimensionality. Specificajluating the behavior with 3-D and
4-D versions of the QT8 template (created through the amddf predicates_acctbal :varies
ando_totalprice :varies). This experiment was carried out only with OptC as a repredive,
due to the computational effort involved in producing thpks diagrams.

The results are shown in Figure 6.4 for 2-D with resolutioh4@) and 300 query points
per dimension, 3-D with a resolution of 100 query points perahsion, and 4-D with a res-
olution of 30 query points per dimension. We see here thalevthe number of plans in the
original plan diagram goes up steeply with increasing disi@mality, the reduction behavior
is qualitatively similar across all the templates. Furtlaer shown in Table 6.6, the reduction
behavior is remarkably stable: First, the location of the&iof the plan cardinality vs. cost
increase threshold graph varies only marginally, occgrimthe neighborhood of 10%. Sec-
ond, the threshold required to bring the reduced plan diagrardinality down to 10 plans is
within 20%, a very practical value from a user perspectivenan a 4-D setting. Again, this
seems to suggest that for practical threshold settingdjrtkeplan cardinality in the reduced

plan diagram is essentially “scale-free” with regard to elirsion.
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Table 6.6: Multi-dimensional Query Templates

Dim- | Original | Knee Cost| Knee | 10-plan Cost
ension| Plans | Threshold | Plans| Threshold
2(100) 50 8% 9 7%
2(300) 89 9% 7 7%

3 190 11% 10 11%
4 243 13% 14 20%
201
-Angst
-AmmEst
157 -CostGreedy

101

Cost Increase Threshold

2(100) 2(300) 3 4
Dimension

Figure 6.5: Knee Estimates
6.4 Estimator Performance

Our next experiment studies the quality of kreee estimategrovided by the estimators. The
results are shown in Figure 6.5 for QT8 on OptC (the resultother query templates and
database engines are similar in nature) and indicate thgiEgtvand AmmEst are reasonably
accurate despite using extremely coarse characterizatibthe cost distributions of plans in
their optimality regions. Further, their orders-of-magde runtime efficiency relative to the
CostGreedy algorithm, for iteratively computing the knisegaptured in Table 6.7.

The estimator performance in characterizing the full pfaeduced plan cardinality versus
A is shown in Figures 6.6(a)—6.6(d) for 2D-100, 2D-300, 3M-a0d 4D-30, respectively, the
CostGreedy performance being used as the yardstick. WeesedHat, in general, the simple
AvgEst estimator provides estimates that are closer to@estdy than AmmEst— however,
an advantage of AmmeEst is that it producemservativeestimates, whereas AvgEst can on

occasion slightly overestimate the degree of plan diageatagtion, as is seen in Figures 6.6(a)
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and 6.6(b).
Table 6.7: Running Time of Estimators vs CostGreedy
TPC-H Query | Estimator Time(ms) | CostGreedy time(ms)
Template (for Knee) (for Knee)
2 25 2733
5 8 1675
8 26 3648
9 71 2382
10 12 546

6.5 Effect of Memory Availability

In all the above results, the query parameterization washerseélectivities of the base rela-
tions. Another parameter that is well-known to have sigaiftdmpact on plan choices is the
amount of system memory available for query processing (eegted Loop joins may be fa-
vored in low-memory environments, whereas Hash Joins mayiere attractive alternative
in memory-rich situations). In fact, plan costs can be higidn-linear or evemliscontinuous
at low memory availabilities [6, 7].

We conducted experiments wherein the memory was variedtfierdefault system memory
to the minimum permitted by the engine. The procedure to ghahe memory settings is
given in Chapter 8. We found that the memory budget certdialy significant impact on the
spatial layouts and cardinalities of the plan diagrams.ifigiance, with QT2 on OptA, the plan
cardinality varied between 21 and 37 with varying memorytfa buffer pages and the sort
heap, as shown in Table 6.8. However, the basic observdtairdense plan diagrams can be

reduced to a few plans with low cost increase thresholdsiresdainchanged as shown in the

Table 6.8: OptA- Varying memory

Buffer | Sort | Minimum | Maximum | Original | Reduced Plans| Reduced Plans
Pages | Heap Cost Cost Plans (A =10%) (A =20%)
10 10 1.54e4 2.75e7 34 16 14
10 50000| 1.54e4 2.71e7 21 10 9
50000 | 10 1.56e4 6.11e5 37 10 9
50000 | 50000| 1.56e4 5.55e5 27 9 7
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Table 6.9: TPC-DS

TPC-DS Query | Original | Reduced Plans| Reduced Plans
Template Plans (A =10%) (A =20%)
12 13 5 4
17 39 2 2
18 47 11 6
19 36 10 8
25 43 2 2

last two columns of Table 6.8.
For OptC, we found that changing the parameter settingsdiwes memory did not ap-
preciably change the cost of the query points. We intend \tesiigate this issue further in

collaboration with the developers of the OptC databasenengi

6.6 TPC-DS

We also validated our results on TPC-DS, the recently rekbatecision support bench-
mark [46]. TPC-DS models the decision support functionsretail product supplier, including

data loading, multiple types of queries and data maintemambe database consists of multi-
ple snowflake schemas with shared dimension tables, skeatadadd a large query set. We
used a 100 GB sample database which has 24 tables, genesatgdhe TPC-DS benchmark’s
synthetic generator, on OptC. Representative resultshemersin Table 6.9 for sample query
templates based on the TPC-DS queries. These plan diagraregwoduced with 100 query
points per dimension, uniformly distributed in the selatyi space. We see in the table that
though these plan diagrams are dense, the plan diagramticdpcocess produces reduced
plan diagrams of low cardinality, seeminglydependentf the properties and complexity of

the underlying database.

6.7 Abstract Plan Costing Based Reduction

So far, all the reduced plan diagrams were produced by usenggper-bounding rule specified

in Definition 3 (Chapter 3). This made the reduction cond@rgan terms of the plans that were
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Figure 6.7: Plan Diagram (QT8)

considered as potential replacements for other plans. $omenercial database engines now
provide the feature of costing a sub-optimal plan at a quemgtpwhich is called the Abstract
Plan costing feature. Thus, we can now perform plan diagesnation without having to
adhere to the Cost Bounding Rule. This could enhance reduess the accurate cost of a
potential swallower plan at a query point could comply with tost-increase threshold in cases
where the upper-bound did not. Also, instead of restrictittgntion to plans in a particular
guadrant which can upper bound the cost of replacement, wérghthe optimizer-estimated
cost ofall plans in the plan diagram at a query point and choose the é@sicement.

The only drawback of this approach is that it is computatilgnaery expensive as the ab-
stract plan of every plan in the original plan diagram hasd@ktracted and its cost has to be
evaluated for every query point in the diagram.

Experimentally, we have observed that Abstract-Plandbesguction results in a very small
number of plans in the reduced plan diagram - sometiomsone plan This one plan is thus
close to optimal for all query points, which provides somdiidnal benefits as we will see in
Chapter 7. Let us see an example of this reduction. The pigralin of QT8 with a resolution

of 10 and an exponential distribution of query points is shawFigure 6.7. This diagram has
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Table 6.10: Computational Efficiency (QT8, Res=100)

Algorithm Original | Reduced | Time
Plans | (A =10%)
Cost Bounding 50 7 0.17 sec
Abstract Plan based (I quadrant 50 4 1.25 hrs
Abstract Plan based (All quadrants) 50 3 7.8 hrs

37 plans and cost-bounded reduction (With 10%) results in 5 plans (Figure 6.8(a)), whereas
Abstract-Plan-based reduction retains only a single pdashawn in Figure 6.8(b).

Another way to perform Abstract-Plan cost-based redudsoto consider only plans in
the first quadrant of a point as potential swallowers. Thisdddelp offset some of the com-
putational cost of this method. The times taken by the cosntded plan diagram reduction,
the abstract-plan-based reduction considering only diustdrant plans, and the abstract-plan-
based reduction considering all plans, are all shown ineT&HlO. It is clear from the table that
while abstract-plan-based reduction results in very lowdicality reduced plan diagrams, it is
computationally expensive, even when we consider onlydusidrant plans as potential swal-
lowers. Specifically, abstract-plan based reduction tékess in comparison to the seconds
taken by cost-bounded reduction. For users willing to blerihcreased computational cost,

this reduction could provide the ideal solution.

6.8 Rationale for Reduction

Having seen experimental evidence of anorexic plan diageaiaction, we now try to present
the intuition behind this phenomenon. It has been obsenmvgd4] that for any query point,
the percentage of plans that are within twice the cost of pishaum plan is around 1% of
the total number of plans in the search space. Further, onremaluation of a public-domain
optimizer, OptD, has found that the fraction of plans wittan to twenty percent of the optimal
is around 0.01 percent. Since the search space is usualheisdveral tens of thousands,
it means that each query point in the plan diagram has a smatidéfinite bucket of close-
to-optimal plans associated with it. Further, it is veryelikthat there are some common plans

between neighboring buckets as a plan that is close-torapét a query point usually continues
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to be so in the neighborhood of the point. Due to this and tbtfet the plans within a bucket
have nearly equivalent costs, the likelihood of differdaing being picked as optimal in a region
is high. Thus, a plan that belongs to the optimality spacehtrbg only slightly more expensive
at some points outside its region of optimality. These aeeptbints that this plan could cover,
given a cost increase threshold by the user. This providesdbpe for plan diagram reduction.

We have also experimentally observed that the number oédlm®ptimal plans is greater
for query points that are close to the origin and axes. Thegmee of more contenders for
the optimal plan might explain why the cardinality of plamagliams is usually greater in these
regions.

We intend to investigate the phenomenon of plan diagramctemtumore formally in our

future work.



Chapter 7

Applications of Plan Diagram Reduction

In the previous chapters, we studied the plan diagram remuproblem and the techniques
to perform this reduction. We now turn our attention to sargghplications of plan diagram
reduction. The numerous benefits that result from reductigotan diagrams were enumerated
in Section 1.4 such as enhancement of PQO usability, idestidin of least-expected-cost plans,
etc. Most of the benefits listed there are proportional tain@ber of plans eliminated during
the plan diagram reduction process, but the identificatfarror-resistant plans (Section 1.4.3)

is a function of thébehaviorof the plans that are retained rather than the number of plans

7.1 Resistance to errors in selectivity estimates

Plan diagram reduction can help to identify plans that mleviobust performance over large
regions of the selectivity space. Therefoeerorsin the underlying database statistics, a situa-
tion often encountered by optimizers in practice [25], mayehmuch less impact as compared
to using the fine-grained plan choices of the original plaagcam, which may have poor per-
formance at other points in the space.

The estimated location of the query point in the selectisfigice could differ from the actual

location due to a variety of reasons, such as:

1. Out-of-date statistics: Database engines use stattstidetermine the resultant cardinal-

ity and thereby the cost of each plan. These statisticsgleipensive to maintain, are

68
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usually not continuously kept up-to-date.

2. Coarseness of the statistics: The statistics maintdipdae DBMS are inherently coarse.
For example, histograms store information in a fixed numbbuokets, usually about 20,
and the frequency of a value in a bucket is approximated bsteeage of the frequencies

of all values in the bucket.

3. Caching of plans: Some optimizers might cache the plahishiaest for the most fre-

guently occurring query point in the selectivity space, asélthe plan for all other points.
A selectivity error made by the optimizer can result in onénad situations:

1. The actual location of the pointvgthin the optimality region€ndo-optimal of the plan

that covers the estimated location in the reduced plan ailagr

2. The actual location of the point autsidethe optimality region€xo-optima) of the plan

that covers the estimated location in the reduced plan ailagr

Plan diagram reduction increases the likelihood that acteity error will result in the
endo-optimal situation. This is due to the fact that each i@t remains in the reduced plan
diagram covers an area larger than or equal to the area itesbuethe original plan diagram.
Reduced plan diagrams are inherently robust to errors ®tybie as the cost of the replacement
plan is guaranteed to be withim\g@hreshold of the cost of the optimal plan at the actual lacati

For example, in Figure 7.1(a) (same as Figure 1.4(a)), astidnselectivities of (14%,1%)
leads to a choice of plan P70. However, if the actual seldietivat runtime turn out to be
significantly different, say (50%,40%), using plan P70, ed@ost increases steeply with se-
lectivity, would be disastrous. In contrast, this error Webhave had no impact with the re-
duced plan diagram of Figure 7.1(b) (same as Figure 1.4%t)¢e P1, the replacement plan
choice at (14%,1%), remains as the preferred plan for a lamyge of higher values, including
(50%,40%). Quantitatively, at (50%, 40%), plan P1 has a @b%85, while P70 is much more
expensive, abouhree timeghis value.

For selectivity errors that result in the exo-optimal casaéver, the upper bound on the

costcannotbe guaranteed. Experimental observation indicates thail#ns retained after plan
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diagram reduction tend to be more robust than the ones etednby the reduction process.
In order to measure this robustness, we define what we cafl3bkectivity-error Resistance
Power’ (SeRP) of a replacement plan w.r.t. the original plan atec# query point.

Consider a query point with selectivities(x, y), having optimal plan?; in the original 2-
dimensional plan diagraf and assigned plaf; in the reduced plan diagraR(the extension
to n-dimensions is straightforward). Suppose the erroeli@ectivity estimation causes the query
point to shift tog’ with selectivities(z’,y’) which was assigned plaR; in the original plan

diagram. Then, SeRP is defined as:

\_ald)  ald) - o)
SeRP(q,q) = @) ) —enld) (7.1)

wherec;(q) is the cost of executing quegywith plan P;.

The first term of the SeRP represents the window of benefitishavailable due to the
difference in costs betweelRh and P, at¢’. The second term measures the fraction of benefit
actually garnered by the replacement plan w.r.t. the caigaglan. The magnitude of the SeRP
value denotes the extent of variation between the robustoiethe original and replacement
plans.

The SeRP is measured across different distances in theig#yespace with the distance
representing the error in selectivity estimates. In pplegiany distance metric can be used to
represent selectivity errors, here we use Euclidean distaRor every distinct pair of points,
Figure 7.2 shows the variation of the SeRP for differentagises in QT4 on OptC. As we can
see here, the reduced plan diagram provides substanteibribesistance to errors in selectivity

estimates than the original plan diagram, with the SeRPavadhigh as +23.

7.2 Producing Robust Reduced Plan Diagrams

It should be noted that, in principle, the SeRP can take galimm —co to +00. An SeRP
value greater than zero indicates that the replacementiplarore robust than the original
plan, whereas an SeRP value lesser than zero indicateshéhatiginal plan is preferable as

compared to the replacement plan. In a plan diagram, theafastplan is unknown in its
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exo-optimal region. Thus, there is no guarantee that thé*SelRie for a selectivity error that
causes a query point to fall in the exo-optimal region of @glacement plan in the reduced
plan diagram will be non-negative. However, if the replaeabplan were chosen such that it
complies with the\ threshold w.r.t. the original plan not just at the query pahestimated

selectivity, but throughout the selectivity space, the BeRlue for this replacement would be

bounded. Thus the problem can be stated as follows:

Definition 7 ErrorResistantPlanRed
Given an input plan diagran®, and a cost increase thresholM(A\ > 0), find a reduced

plan diagramR that has minimum plan cardinality, and for every pl&nin P,

1. P,eR,or

2. YV query points; € P, 3P; € R, such thatv query points;’ € P,

ci(q')
algy =T

That is, find the minimum-sized error-resistant “cover” tdns that is sufficient to recolor

P (using only the colors in.p) without increasing the cost of any re-colored query point b
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RobustCostGreedy (Plan DiagramP, Threshold X)

1.

o~ w N

. Let L, be the color of thd opRight point. Remove sef,, and all its elements fron.

. Apply Algorithm Greedy Setcover th Let C be the solution found.

© © N O

. C=CU{Sa)
10.

For each poing from TopRight to Bottom Le ft do

(@) setcur(q) = color(q)

(b) updatebelong(q) with plans that are im’s first quadrant with cost within the given threshp

at g and at all the corners
Letm = mq X ma.
Createn setsS = {51, So, ... S, } corresponding to the plans.
LetU = {1,2,...m} correspond to the: query points.

DefineVi = 1...n,S; = {j : i € belong(r) ori = cur(r) for query pointr corresponding tg,
Vi=1...m}

Let] = (U, S), I be an instance of the Set Cover problem.

Recolor the grid with colors corresponding to the set€'iand update new costs appropriatg
If a point belongs to more than one subset, then color it withdolor that requires the least c
increase.

. End Algorithm RobustCostGreedy

d

oly.
OSt

Figure 7.3: Algorithm RobustCostGreedy
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Figure 7.4: Plan Diagram (QT5)

more than the cost increase threshalaispective of the actual location of the query point at
run-time

In order to find this error-resistant cover of the plan diagrave need to compare the be-
havior of each replacement plan with the original plan itaplacing atall pointsin the plan
diagram. This requires us to find the cost of this originahpad all potential replacement
plans at every point in the diagram. This can be done by usiagdbstract-Plan feature ex-
plained in Chapter 6. But, as we have already seen therefetitisre is extremely expensive.
In order to provide a computationally feasible solution, eamsider the costs of the original
and potential replacement plans at the extreme corner quaénys of the plan diagram to be
representative of the interior points and compare the @istsese points. An extended version
of the CostGreedy algorithm called RobustCostGreedy ttatrporates this corner-heuristic is
shown in Figure 7.3.

For most query templates, our experience has been that Rié S, indicating that the
replacement was beneficial. But, there do exist templatesentine replacement proves to be
harmful — an extreme case where the SeR&:i8 arises with QT5 on OptC. For this combina-

tion, the plan diagram (Figure 7.4) contains 51 plans. Theced plan diagram produced by
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CostGreedy fon = 10% is shown in Figure 7.5(a), which has 15 plans. The SeRgaiin for
this reduction, showing the minimum and maximum SeRP foryepair of points at a given
distance is shown in Figure 7.5(b). As is clear from this feguinere are cases where the cost of
the replacement plan is orders-of-magnitude greater thetnoff the original plan at the actual
location. In fact, in this case the SeRP takes a value as 6258

The average SeRP is computed by summing up all the SeRP vJalud® corresponding
distance and dividing this value by the number of distinahfsothat occur at this distance.
Thus, the average SeRP for a particular distance weighsetiefibto the losses incurred by the
replacement across all points that have this selectivityrdretween them. The average SeRP
diagram for this reduction is shown in Figure 7.5(c).

When the reduction is carried out with RobustCostGreeayreéduced plan diagram shown
in Figure 7.6 results. The reduced number of plans in thie aalso 15, although some of the
plans chosen are different from those chosen by the Costi¢gedgorithm. The SeRP diagram
for this reduction, showing the minimum and maximum SeRPefagry pair of points at a
given distance is shown in Figure 7.6(b). The magnitudef®finimum SeRP values here
are significantly greater than those in Figure 7.5(b), whigdans that the replacement plan
does not have a cost much greater than the originaliplespective of the error in selectivity
estimatesThe average SeRP diagram for this reduction is shown inr€igu(c). The negative
SeRP values we saw earlier have almost disappeared here!

Thus, we see that robust plan diagram reduction is feasizesahances the resistance to
selectivity estimate errors in the reduced plan diagram dgynorders-of-magnitude. However,
this kind of reduction is available only in systems that pdevhe Abstract-Plan costing feature.
Even in these systems, the computational cost of perforithiisgoperation prevents us from
comparing the cost of the original and replacement plani pomts in the plan diagram.

Having demonstrated the benefits provided by abstractpdaed plan diagram reduction
and the enhanced resistance to selectivity estimate arsang abstract-plan costing, we hope
that commercial optimizer designers will provide this teatin all optimizers and, further,

make it computationally viable to perform many such costiimgan efficient manner.
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Chapter 8

Implementation in Picasso

The CostGreedy, ThresholdGreedy, RobustCostGreedy andEsnalgorithms proposed in
this thesis have been implemented in the publicly availghkery optimizer visualization tool
— Picasso v1.0 [30]. Picasso has been developed in the Bat&@ystems Lab [48] at the
Indian Institute of Science, for visually analyzing the aelor of industrial-strength relational
qguery optimizers. It generates a host of diagrams that thigiw on the functioning of the
optimizer for a parameterized query template over theioglat selectivity space. Given a query
template, the grid resolution, the distribution at which thstances of this template should be
spread across the selectivity space, the parameterizatibred (axes) and their attributes on
which the diagrams should be constructed, and the choicaexlygptimizer, the Picasso tool
automatically generates the associated SQL queries, suitivam to the optimizer to generate
the plans, and finally produces the color-coded plan, castardinality diagrams.

A block diagram of the Picasso architecture is shown in Fed@ul. Every request from the
user is passed on from the Picasso client to the Picassar,sehieh handles communication
with the database engine and the production of diagramsPidasso client is responsible for
the visualization of these diagrams. The Picasso servenontates with the database en-
gines through their JDBC interfaces, treating the optimsizs “black boxes”. Picasso currently

supports DB2, SQL Server, Oracle, Sybase and PostgreSQL.

78
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User 1 —» Picasso
Client
Picasso
Server
Picasso
User 2 —w
st Client

Figure 8.1: Picasso Architecture
8.1 Algorithm Implementation

The CostGreedy algorithm, described in Chapter 4, is implged in the client module of
the Picasso tool. It executes much faster than the Area@rmgdrithm (Figure 4.1), which
was originally used in Picasso v0.5b, as seen in the expetahevaluation of Chapter 6. The
CostGreedy algorithm (Figure 4.2) uses thencostdata structure explained in Figure 4.4,
which is implemented as a 2-dimensional array. The minimaverage and maximum cost
increases that result from the plan diagram reduction ggaee also computed.

The AmmEst algorithm is used to auto-suggest the estimatee &f the plan cardinality vs.
cost increase threshold graph and the cost-increasditiidagquired to obtain a user-specified
number of plans as shown in Figure 8.2. In this example, tee-gigecified number of plans is
10, which can be changed by the user by setting a parametee iRitassoConstants file. For
each plan, we find the minimum, average and maximum costsegbdints associated with it
and use these costs as representative of the plan. Aiplean be swallowed by a plaR; if
and only if all three cost values @¥; are within threshold of the corresponding cost values of
P,

The RobustCostGreedy algorithm introduced in Chapter miglemented in the same
way as the CostGreedy algorithm. The additional check hengerformed by finding the
estimated cost of all plans at the four extreme corners ofpla@ diagram, that is the
TopRight, TopLeft, BottomRight and BottomLe ft points, and comparing the estimated

costs of the original and replacement plans at these pairasidition to the point where the
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replacement is being considered. These costs are compsitegl the Abstract Plan Costing

feature described later.

8.2 System Memory Restrictions

We were able to restrict the number of buffer pages and ttidneap size that the optimizer can
allocate to the plan in OptA [49]. The command used to do thidb2fopt<dbname- update
opt buffpage<value>".

In OptB, we found theD B_.CACH E_SIZE parameter that specifies the minimum buffer
size, but could not find one that supports setting the maxirsiam

Finally, in OptC, we tried to restrict the memory by alteritige parametersmin server
memory and “max server memofyin the sys.configurationtable personal communication
Nicolas Brungd. As mentioned earlier, we found that this did not apprelgi@hange the cost of
the query points. We intend to investigate this issue furtheollaboration with the developers

of the OptC database engine.

8.3 Abstract Plan Costing

The Abstract Plan costing based reduction feature exmglam€hapter 7 is implemented only

on OptC as this feature is not available in the other optirgiz@ptC allows the user to specify,
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as a hint, the plan to be used to execute a given query. It thefieg the validity of the plan
for the query and computes the estimated cost of executiananteter-level changes might
be made to the plan if the optimizer considers this necesbatygenerally, the plan is not
materially changed.

We use this feature of OptC to find the estimated cost of a glargaery point where it is
sub-optimal. In order to do this, we set the paramestotvplanxmi’ to on and retrieve the
plan from the database engine in the form of an XML string.sTian is then appended to the
guery template as a hint, as shown in Figure 8.3, and queasissdbon this modified template
are now sent to the optimizer to be evaluated. Thus, we olitaircost of running the query
with this plan throughout the selectivity space. The plaagdam is then reduced using these

localized costs instead of using the Cost Bounding Rule.
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select ayear, sum(case when nation = 'BRAZIL’ then volume else 0 drsd)m(volume)

from (select YEAR(aorderdate) as gear, Lextendedprice * (1 -_Hiscount) as volume
n2.n.name as nation

from part, supplier, lineitem, orders, customer, nationnation n2, region

where ppartkey = lpartkey and suppkey = Isuppkey and _brderkey = aorderkey anc
o_custkey = ccustkey and mationkey = nl.mationkey and nl.megionkey = rregionkey
and snationkey = n2.mationkey and mame = 'AMERICA and ptype = 'ECONOMY
ANODIZED STEEL
ands_acctbal :variesandl_extendedprice :varies

) as allnations

group by ayear

order by ayear

—PicassoAbstractPlan

option (use plan N
<ShowPlanXML  xmlns="http://schemas.microsoft.com/snier/2004/07/showplar

Version="1.0" Build="9.00.1399.06">

<BatchSequence
<Batch>
<Statements

<OutputList>

<ColumnReference  Database="[tpch]” Schema="[dbo]” Ta-
ble="[LINEITEM]” Column="L _ EXTENDEDPRICE"t

<ColumnReference  Database="[tpch]” Schema="[dbo]" Ta-
ble="[LINEITEM]” Column="L _DISCOUNT"/>

<ColumnReference  Database="[tpch]” Schema="[dbo]” Ta-
ble="[NATION]” Alias="[n1]” Column="N _REGIONKEY"

<ColumnReference  Database="[tpch]” Schema="[dbo]" Ta-
ble="[NATION]” Alias="[n2]” Column="N _NAME"/>

<ColumnReference Column="Expr1022%/
<ColumnReference Column="Exprl10272/
</OutputList>

</Statements
</Batch>
</BatchSequence

</ShowPlanXMb>

Figure 8.3: Abstract Plan Costing: QT8



Chapter 9

Conclusions

The plan diagrams of industrial-strength database quetiyn@ers are often remarkably com-
plex and dense, with a large number of plans covering theespachis thesis, we investigated
from a variety of perspectives, the problem of reducing @r@inality of dense plan diagrams
produced by modern query optimizers, without adverselgcaifig the query processing qual-
ity specified by the user through a cost increase threshdéh ddagram reduction has useful
implications for the design and usage of query optimizexduiding quantifying redundancy in
the plan search space, enhancing useability of parameigiy @ptimization, identifying error-
resistant and least-expected-cost plans, and minimibmgyterheads of multi-plan approaches.
Our analysis showed that while finding the optimal reductias NP-hard, the CostGreedy
algorithm proposed here was able to efficiently provide httapd optimal performance guar-
antee. Further, the experimental assessment using thamtatguery templates generated from
the TPC-H benchmark on commercial optimizers indicatet] thagractice, CostGreedy was
always within a plan or two of the optimal, frequently givitige optimal itself. The AvgEst and
AmmEst estimators were able to rapidly provide a fairly aateiassessment of the tradeoff be-
tween reduced plan cardinality and the cost thresholdjtgelpsers to focus on the interesting
threshold ranges. Also, the experimental study indicatedl the graph of cardinality versus
threshold was typically steep and that the number of plarteerreduced plan diagram was
likely to be brought down t@norexiclevels (within/around ten) with cost increase thresholds

of justtwenty perceneven for high-dimensional query templates. We also vadidi#these re-
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sults on the recently released benchmark TPC-DS, which ethdaat plan diagram reduction
is largely independent of the characteristics of the uyitegldatabase.

These results are even more striking when we consider thgtateconservativesince a
cost bounding rule was used, rather than the optimizemastid costs of replacement plans at
guery points. When the optimizer-estimated costs were tlsedgh Abstract-Plan costing, the
reduction obtained was much greater — often retaining ordguple of plans over the entire
selectivity space.

We also considered a storage-budgeted variant of the pdanain reduction where the goal
was to identify the best set éfplans that would minimize the cost increase in the reducad pl
diagram. To solve this problem, we presented Thresholdfyreegreedy algorithm that selects
plans based on maximizing the benefits obtained by choobimm tand saw that Threshold-
Greedy is always guaranteed to provide closevm-thirds of the optimal benefit

In some cases, the reduced plan diagram produced by the esiyzalgorithm could have
very poor performance in the presence of errors in selégtdgtimates by the optimizer. In
order to offset this poor performance, we proposed the RGlms$Greedy algorithm that retains
the plans that are resistant to errors in selectivity esgsmade by the optimizer, by checking
the robustness of the plans at some representative poitite plan diagram. We saw that the
reduced plan diagrams produced by this algorithm were artigrmore robust than the original
plan diagram.

In closing, our study has shown that plan diagram reductaonbe carried out efficiently
and can bring down the plan cardinality to a manageable nuofij@lans while maintaining
acceptable query processing quality. It has also shownvthég¢ the optimization process is
sensitive to many parameters including query construgtiata distribution, memory resources,
etc., the reduction process, on the other hand, is relgtindlfferent to these factors. We have
also demonstrated a sample application of plan diagranctiesuthat results in improved plan
choices by the optimizer.

In summary, this thesis demonstrates that complex plarrahag can be efficiently con-
verted to anorexic reduced plan diagrams, a result thatdoave useful implications for the

design and use of next-generation database query optsnizer
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9.1 Future Work
The work that we have presented in this thesis can be extandied following ways:

1. In PlanRed, it is required to guarantee that the cosvefy individualwallowed query
point in the original diagram is not increased by more tharAn alternative problem
formulation could be one where it is only required to guaganthat theaveragecost
increase in the reduced diagram is not more thamhe goal here is to come up with

heuristic algorithms to efficiently achieve maximum reductor this alternative metric.

2. A limitation of the RobustCostGreedy algorithm that wedharoposed is that, since it
only checks the robustness of the replacement plans at thergaoints, it is still possi-
ble to get a negative SeRP value for some selectivity erinsalternative approach to
provide error-resistance could be to first analyze and cheniae the kinds of plan cost
functions that arise in industrial-strength optimizersy ¢hen, to investigate the kinds of
mathematical cost functions under which it would be possiblprovide global guaran-

tees on the cost of a plan in the face of selectivity errors.

3. The PlanRed problem is NP-Hard, as was shown in this th&sigteresting extension to
this problem is to assess whether a fixed-parameter tractahition [10] can be designed
for PlanRed. That is, can a parametefwhich can possibly be the solution size) be
identified, leading to an algorithm for optimally solvinggRRed whose running time is
polynomial in the input size (number of points and plans aitiput plan diagram), while

it may be exponential if.

4. As we have seen in Table 6.10, the Abstract Plan costingdgalan diagram reduction,
while highly effective, is prohibitively expensive. One thie reasons for this could be
that when an abstract plan is sent to the optimizer to be atediithe optimizer may also
be checking the validity of the plan for the given query. VEHihis might be essential
for a plan formulated by the user, if @an generated by the optimizés returned to
it for a different selectivity value, the validity check widuoe redundant. Therefore, a

useful alternative would be to provide the abstract platicg$eature without the validity
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check, which could make this method of plan diagram redadiasible. We hope the
results shown here will encourage commercial optimizessifport abstract-plan costing

without validity checking.

5. We intend to conduct a more formal investigation of thenameenon of plan diagram

reduction.

6. Finally, and most importantly, to use these results arehggneer current optimizers to
directly produce reduced plan diagrams in the first instanbech could potentially speed
up the complex process of query optimization, in additioprimviding the other benefits

mentioned in this thesis.
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sel ect
s_acct bal
S_nane,
n_nane,
p_partkey,
p_nfgr,
s_addr ess,
s_phone,
s_conment
from
part,
supplier,
part supp,
nati on,
regi on
wher e
p_partkey = ps_partkey
and s_suppkey = ps_suppkey
and p_retailprice :varies
and s_nationkey = n_nati onkey
and n_regi onkey = r_regi onkey
and r_name = ' EURCPE
and ps_supplycost <= (

sel ect

m n( ps_suppl ycost)
from

partsupp, supplier, nation, region
wher e

p_partkey = ps_partkey
and s_suppkey = ps_suppkey
and s_nationkey = n_nati onkey
and n_regi onkey = r_regi onkey
and r_name = ' EURCPE
and ps_suppl ycost :varies

)

order by
s_acct bal desc,
n_nanme, s_nane, p_partkey

Figure A.1: QT2
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sel ect
o_orderpriority,
count (*) as order_count
from
orders
wher e
o_total price :varies
and exists (
sel ect
*
from
l'ineitem
wher e
| _orderkey = o_orderkey
and | _extendedprice :varies

)
group by
o_orderpriority
order by
o_orderpriority

Figure A.2: QT4
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sel ect

sun(
from
cust

nat i
regi
wher e

n_nane,
| _extendedprice = (1 - | _discount)) as revenue

oner,

orders,
i neitem
supplier,

on,
on

c_custkey = o_custkey

and | _orderkey = o_orderkey
and | _suppkey = s_suppkey
and c_nationkey = s_nati onkey
and s_nationkey = n_nati onkey
and n_regi onkey = r_regi onkey
and r_name = 'ASI A
and o_orderdate >= ’'1994-01-0Y
and o_orderdate < ’1995-01-01’
and c_acctbal :varies
and s _acctbal :varies

group by
n_namnme

order by

revenue desc

Figure A.3: QT5
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sel ect
supp_hati on,
cust _nati on,
| _year,
sum( vol une)
from
(
sel ect
nl.n_nane as supp_nation
n2.n_nane as cust_nation,
YEAR (| _shi pdate) as | _year
| _extendedprice = (1 - | _discount) as vol une
from
supplier,
l'ineitem
or ders,
cust omer,
nation nl,
nation n2
wher e
s_suppkey = | _suppkey
and o_orderkey = | _orderkey
and c_custkey = o_custkey
and s_nationkey = nl.n_nationkey
and c_nationkey = n2.n_nati onkey
and (
(nl.n_nanme = ' FRANCE
and n2.n_nanme = ' GERVANY )
or (nl.n_name = ' GERVANY’
and n2.n_name = ' FRANCE )
)
and | _shi pdate between ' 1995-01-01
and ’ 1996-12- 31’
and o_total price :varies
and c_acctbal :varies
)as shi ppi ng
group by
supp_hati on,
cust _nati on,
| _year
order by
supp_nati on,
cust _nati on,
| _year

Figure A.4: QT7
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sel ect
0_year,
sun{ case
when nation = 'BRAZIL then vol une
else 0
end) / sun{vol une)
from
(
sel ect
YEAR(o_orderdate) as o_year,
| _extendedprice » (1 - | _discount) as vol une,
n2.n_nane as nation
from
part,
supplier,
l'ineitem
or ders,
cust omer,
nation nl,
nation n2,
regi on
wher e
p_partkey = | _ partkey
and s_suppkey = | _suppkey
and | _orderkey = o_orderkey
and o_custkey = c_custkey
and c_nationkey = nl.n_nationkey
and nl.n_regi onkey = r_regi onkey
and r_nanme = ' AVERI CA
and s_nationkey = n2.n_nationkey
and p_type = ' ECONOW ANODI ZED STEEL’
and s _acctbal :varies
and | _extendedprice :varies
) as all_nations
group by
0_year
order by
0_year

Figure A.5: QT8
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sel ect
n_nane,
0_year,
sum( anount)
from
(
sel ect
n_nane,
YEAR(o_orderdate) as o_year
| _extendedprice = (1 - | _discount) -
ps_suppl ycost * | _quantity as anount
from

part,

supplier,

l'ineitem

partsupp,

orders,

nation

wher e
s_suppkey = | _suppkey
and ps_suppkey = | _suppkey
and ps_partkey = | _partkey
and p_partkey = | _partkey
and o_orderkey = | _orderkey

and s_nationkey = n_nati onkey
and p_nane like ' %green%
and s_acctbal :varies
and ps_suppl ycost :varies
) as profit
group by

n_nane,

0_year
order by

n_nane,

0_year desc

Figure A.6: QT9
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sel ect
c_cust key,
c_nane,
sun(l _extendedprice = (1 - | _discount)) as revenue,
c_acct bal,
n_nane,
c_address,
c_phone,
c_conment
from
cust omer,
or ders,
l'ineitem
nati on
wher e
c_custkey = o_custkey
and | _orderkey = o_orderkey
and o_orderdate >= ' 1993-10-01
and o_orderdate < '1994-01-01
and c_nationkey = n_nati onkey
and c_acctbal :varies
and | _extendedprice :varies
group by
c_cust key,
C_nane,
c_acct bal,
c_phone,
n_nane,
c_address,
c_conment
order by
revenue desc

Figure A.7: QT10
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sel ect

sun(| _extendedprice) / 7.0 as avg_yearly
from

i neitem

part
wher e

p_partkey = | _partkey

and p_retailprice :varies

and | _quantity < (

sel ect

0.2 » avg(l _quantity)
from

[ineitem
wher e

| _partkey = p_partkey
and | _extendedprice :varies

Figure A.8: QT17
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sel ect
c_nhane,
c_cust key,
o_orderkey,
o_or der dat e,
o_total price,
sunm( | _quantity)

from
cust oner,
orders,
lineitem
wher e
o_orderkey in (
sel ect
| _orderkey
from
lineitem
where | _extendedprice :varies
group by
| _orderkey having
sum(l _quantity) > 300
)
and c_custkey = o_custkey
and o_orderkey = | _orderkey
and c_acctbal :varies
group by
c_nane,
c_cust key,

o_or derkey,

o_or derdat e,

o_total price
order by

o_total price desc,

o_orderdate

Figure A.9: QT18
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sel ect
S_hane,
count (*) as numiai t
from
supplier,
lineiteml| 1,
orders,
nation
wher e
s_suppkey = | 1.1 _suppkey
and o_orderkey = I1.1 _orderkey
and o _orderstatus = 'F
and exists (
sel ect
*
from
lineiteml| 2
wher e
| 2.1 _orderkey = 11.1_orderkey
and | 2.1 _suppkey <> | 1.1 _suppkey
)
and not exists (
sel ect
*
from
lineitem| 3
wher e
| 3.1 _orderkey = 11.1 orderkey
and | 3.1 _suppkey <> 11.1 suppkey
and | 3.1 _receiptdate > 13.1 _conm tdate
)
and s_nationkey = n_nati onkey
and s _acctbal :varies
and | 1.1 extendedprice :varies
and n_nanme = ' SAUDI ARABI A
group by
S_nane
order by
numvai t desc,
S_name

Figure A.10: QT21
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sel ect
i _item desc,
i _category,
i _cl ass,
i _current _price,
sum(ws_ext _sales_price) as itenrevenue,
sum(ws_ext _sal es_price)*100/ sum sum ws_ext _sal es_price))
over (partition by i_class) as revenueratio
from
web sal es,
i tem
date dim
wher e
ws_itemsk =i _itemsk
and ws_sold date sk = d_date_sk
and d_date between ' 1998-05-16" and ' 998-06- 16’
and i _current_price :varies
and ws_|ist _price :varies
group by
I _itemid,
i _item desc,
i _category,
i _class,
I _current _price
order by
i _category,
i _class,
i item.id,
i _item.desc,
revenueratio

Figure A.11: DSQT12
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sel ect
i item.id,
i _item desc,
s_state,
count (ss_quantity) as store_sal es_quantitycount,
avg(ss_quantity) as store_sales gquantityave,
stdev(ss_quantity) as store_sal es_quantitystdev,
stdev(ss_quantity)/avg(ss_quantity)
as store_sal es_quantitycov,
count (sr_return_quantity)
as_store_returns_quantitycount,
avg(sr_return_quantity)
as_store_returns_quantityave,
stdev(sr_return_quantity)
as_store_returns_quantitystdev,
stdev(sr_return_quantity)/avg(sr_return_quantity)
as store_returns_quantitycov,
count (cs_quantity) as catal og _sal es_quantitycount,
avg(cs_quantity) as catal og_sal es_quantityave,
stdev(cs_quantity)/avg(cs_quantity)
as catal og_sal es_quantitystdev,
stdev(cs_quantity)/avg(cs_quantity)
as catal og_sal es_quantitycov
from
store_sal es, store_returns, catal og_sal es,
date _dimdl, date dimd2, date dimd3, store, item
wher e
dl.d _quarter_name = ' 2002Ql
and dl1.d date sk = ss _sold date sk
and i _itemsk = ss_item sk
and s_store_sk = ss_store_sk
and ss_custoner_sk = sr_custoner_sk
and ss itemsk = sr_itemsk
and ss_ticket nunber = sr_ticket nunber
and sr_returned date sk = d2.d date_ sk
and d2.d _quarter_nane in (’2002QLl ,’ 2002Q’,’ 2002’ )
and sr_custonmer _sk = cs_bill _custoner_ sk
and sr_itemsk = cs_item sk
and cs_sold date sk = d3.d _date_ sk
and d3.d _quarter_nanme in (’2002QLl" ,’ 20022’ ,’ 2002’ )
and ss_|list_price :varies
and cs_list_price :varies

group by

i itemid, i_itemdesc, s state
order by

I _itemid, i_itemdesc, s_state

Figure A.12: DSQT17
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sel ect
I _itemid,
ca_country,
ca_state,
ca_county,
avg(cs_quantity) aggl,
avg(cs_list_price) aggz2,
avg(cs_coupon_ant) agg3,
avg(cs_sal es_price) agg4,
avg(cs_net _profit) agg5,
avg(c_birth_year) agg6,
avg(cdl. cd_dep_count) agg7
from
cat al og_sal es,
cust oner _denogr aphi cs cdl,
cust onmer _denogr aphi cs cd2,

cust omer,
cust oner _addr ess,
date _di m
item
wher e
cs_sold date sk = d _date_sk
and cs_itemsk =i _itemsk
and cs_bill _cdenpb_sk = cdl.cd _denp_sk
and cs _bill _customer sk = c_custoner_ sk
and cdl.cd _gender ="'F
and cdl.cd_education_status = ' Unknown’

and c_current_cdeno_sk = cd2.cd_deno_sk
and c_current _addr_sk = ca_address_sk
and c_birth_nmonth in (3,11,9,5,8,10)
and d_year = 2000
and ca_state in ("NC," AK ,"PA |"AK ,"CA"," VA", W)
and cs_list_price :varies
and i _current_price :varies
group by
i item.id,
ca_country,
ca_state,
ca_county
order by
ca_country,
ca_state,
ca_county

Figure A.13: DSQT18
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sel ect
i _brand_id brand_id,
i _brand brand,
i _manufact i d,
i _manuf act,
sun(ss_ext_sales_price) ext_price
from
date _di m
store_sal es,
item
cust omer,
cust oner _addr ess,
store
wher e
d date sk = ss_sold date_ sk
and ss_itemsk =i _itemsk

and d_noy=12
and d_year=1999
and ss_custoner _sk = c_customer_sk
and c¢c_current _addr_sk = ca_address_sk
and substring(ca_zip,1,5) <> substring(s_zip,1,5)
and ss_store_sk = s_store_sk
and ss_|list_price :varies
and i _current_price :varies
group by
i _brand,
I _brand_id,
I _manufact _id,
i _manuf act
order by
ext _price desc,
I _brand,
I _brand_id,
i _manufact id,
i _manuf act

Figure A.14: DSQT19
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sel ect
I _itemid,
i _item desc,
s store_ id,
s_store_nane,
sun(ss_net _profit) as store_sales profit,
sun(sr_net | oss) as store_returns_| oss,
sunm(cs_net _profit) as catal og _sales profit
from
store_sal es,
store_returns,
cat al og_sal es,
date _di mdl
date_di md2,
date_di m d3,
store,
item
wher e
dli.d noy = 4
and dl1.d year = 1999
and dl1.d date sk = ss _sold date sk
and i _itemsk = ss_item sk
and s_store_sk = ss_store_sk
and ss_custoner _sk = sr_custoner_sk
and ss itemsk = sr_itemsk
and ss_ticket nunber = sr_ticket nunber
and sr_returned _date sk = d2.d date_sk
and d2.d _noy between 4 and 4+6
and d2.d_year = 1999
and sr_custoner _sk = cs_bill _customer sk
and sr_itemsk = cs_item sk
and cs_sold date sk = d3.d _date_sk
and d3.d _noy between 4 and 4+6
and d3.d_year = 1999
and ss_|ist_price :varies
and cs_|list_price :varies
group by
I _itemid,
i _item desc,
s store_id,
s_store_nane
order by
I _itemid,
i _item.desc,
s store_ id,
Ss_store_naneg;

Figure A.15: DSQT25
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