
Design and Implementation of

Picasso 2.0 and A Glimpse of the

Future Version

A Project Report

Submitted in Partial Fulfilment of the

Requirements for the Degree of

Master of Engineering

in

Computer Science and Engineering

By

Ravi Shetye

Computer Science and Automation

INDIAN INSTITUTE OF SCIENCE

BANGALORE – 560 012, INDIA

July 2009

Acknowledgements

I would like to thank my advisor Prof. Jayant Haritsa for allowing me to pursue this

project under his guidance. I thank him, for his constant valuable guidance, support and

encouragement during my tenure in DSL.

I would like to thank all the members of DSL for providing a stimulating and fun

environment for work. I would like to thank rest of my friends at IISc who have made my

stay at IISc memorable.

I thank my parents for their continued support throughout my career.

i

Abstract

Picasso is a tool being developed in the Database Systems Lab for visually analyzing the behavior

of industrial-strength relational query optimizers. Database Systems Lab had decided to come

up with a new version of the tool, called “Picasso 2.0”. As an output of this project the

lab released the tool “Picasso 2.0” in February 2009. This report talks about the design and

implementation details of the new version.

The new major features implemented in Picasso 2.0 are “Approximate Diagram Genera-

tion” and “Dimension Specific Range and Granularity Diagram Generation”. Also many minor

features like “global coloring scheme”, “consistency in the slice displayed in different tabs”,

“validity checks over the parameters the user selects”, “new command line syntax” etc. have

been added. Efforts have been put in to make Picasso 2.0 bug free and more robust than its

predecessor.

This report talks mainly about the design and implementation of the new version of Picasso,

“Picasso 2.0” and the bugs and loose ends fixed during the transition from the previous version

to the new one.

“Picasso 1.0” and “Picasso 2.0” provide various features which enable the user to generate

diagrams that throw light on the functioning of a query optimizer. However the user has to

manually explore the diagram to find areas with unexpected, irregular fluctuation in estimated

cost or cardinality. Also analysis of various plan diagrams across the query-templates or across

different database engines is not supported by current versions of Picasso.

This report also talks about ‘Data Mining’ strategies proposed to be integrated in the future

version of Picasso. These strategies would facilitate automated exploratory analysis to the user,

thus enhancing the utility value of Picasso.

ii

Contents

Abstract ii

List of Figures v

List of Tables vii

1 Introduction 1

1.1 Motivation for Picasso 2.0 . 4

2 Design of Picasso Client 6

2.1 QueryPacket . 6

2.2 DiagramPacket . 8

2.3 Creating QueryPacket . 9

2.3.1 Settings Panel . 9

2.3.2 Approx Frame . 11

2.3.3 Parameter Validity Checks . 12

2.4 Picasso Server . 13

2.5 Back to Picasso Client . 13

2.5.1 Plan Panel . 13

2.5.2 Reduce Plan Panel . 18

2.5.3 Compilation Cost/Cardinality Panel 18

3 Command Line Interface 20

iii

4 Bugs Fixed and Other Design Changes 22

5 Programming Effort 24

6 Automated Exploratory Analysis 25

6.1 Picasso Schema . 26

6.2 Intra Query-Template Clustering . 28

6.3 Inter Query-Template Clustering . 30

6.4 Inter-Engine Intra Query-Template Clustering 31

7 Clustering Algorithms 33

7.1 K-Means Clustering Algorithm . 33

7.2 Expectation Maximization Clustering Algorithm 34

8 Results and Observations 36

9 Conclusions and Future Work 40

References 41

iv

List of Figures

1.1 3 Tier Architecture . 2

1.2 Motivation for Picasso 2.0 . 5

2.1 Query and Diagram Packet . 6

2.2 Example Query Template: QT8 . 7

2.3 Settings Panel, Resolution Box, Range Box 10

2.4 Frame for Selecting Dimension Specific Range and Resolution 11

2.5 Frame Displaying the Estimated time and providing option for an approx-

imate diagram . 12

2.6 Change in the Display of the Diagram . 14

2.7 Bottom Panel for Slicing and Pivoting . 14

2.8 Frame for choosing a slice . 15

2.9 Mouse-Key controls for Picasso Diagrams 16

2.10 Implementation of mouse interactivity . 16

2.11 Compiled Cardinality Diagram . 18

2.12 Legend Panel . 19

3.1 Command Line Syntax . 21

6.1 Picasso Schema . 26

6.2 Intra Query-Template Clustering Schema 29

6.3 Inter Query-Template Clustering Schema 31

7.1 K-Means Clustering Algorithm . 33

v

7.2 EM Clustering Algorithm . 35

8.1 Cost vs. Cardinality Plot (TPCH : QT9)(EM Algorithm) 37

8.2 QT9 Cost and Cardinality Diagrams . 38

vi

List of Tables

6.1 Clustering Framework . 31

8.1 QT9 : Clusters with Dimensional Attributes 39

vii

Chapter 1

Introduction

Picasso [10] is a tool developed in Database Systems Lab, which produces a variety of

diagrams, showing the behavior of a database query optimizer.

These diagrams include the (compilation) Plan Diagram, which is a color-coded pic-

torial enumeration of the execution plan choices; the Compilation Cost Diagram, a visu-

alization of the associated estimated plan execution costs; the Compilation Cardinality

Diagram which is a visualization of the associated estimated query result cardinalities;

and the Reduced Plan Diagram that shows the extent to which the original Plan Dia-

gram may be simplified (by replacing some of the plans with their siblings in the Plan

Diagram) without increasing the estimated cost of any individual query by more than a

user-specified threshold value [6].

Picasso generates these diagrams that throw light on the functioning of the optimizer

for a parameterized query template over the relational selectivity space. Given a query

template, the grid resolution, the distribution at which the instances of this template

should be spread across the selectivity space and the choice of query optimizer, the Picasso

tool automatically generates the associated SQL queries, submits them to the optimizer

to generate the plans, and finally produces Picasso diagrams [5].

Picasso is implemented completely in Java and should, in principle, operate in a

platform-independent manner. It has been successfully tested on Windows (XP, Vista)

and Linux/Unix. The client and server machines should support Java compilation and

1

execution while the client machine should additionally support 3D visualization. A few

other third party visualization and database connection libraries like Java Database Con-

nectivity (JDBC) drivers for the db engines, Java3D, VisAD, JGraph etc. are required

for Picasso to function.

Figure 1.1: 3 Tier Architecture

A block diagram of the Picasso architecture is shown in Figure 1.1. Every request

from the user is passed on from the Picasso client to the Picasso server, which handles

communication with the database engine and the production of diagrams. The Picasso

client is responsible for the visualization of these diagrams. The Picasso server communi-

cates with the database engines through their JDBC interfaces, treating the optimizer’s

internals as black boxes. Picasso currently supports DB2, SQLServer, Oracle, Sybase and

PostgreSQL.

A version of Picasso “Picasso 1.0” was released in May 2007 and has been made

available on the lab’s site since then as an open source software and a beta version was

also available within DSL. We implemented the new functionalities using these projects

as the base code.

We have improved the tool in a few aspects, mostly from the point of view of supporting

the generation and visualization of “Approximate diagrams” and “Dimension specific

Range and Resolution diagrams”. Also the new tool has some supporting features like

“Local and Global contribution indicators in the Legend Panel”, “Consistency across

the panels in the slice visualized ”, “New command line syntax with more customization

power to the user”, “New sanity checks over the parameters the user provides” etc. Efforts

have been put in making Picasso 2.0 bug free and more robust than the earlier versions.

2

Alongside the addition of new features, the bugs like memory leaks and the ToDos like

improving efficiency of some part of code, in the beta version of Picasso were fixed.

A new version of Picasso, “Picasso 2.0” was released in February 2009 as an output

of this project. Picasso 2.0 is available along with its predecessor on the DSL web site as

an open source software.

After the release of the new version of Picasso, focus has been shifted to incorporate

automated exploratory analysis within Picasso. Automated analysis would be such that

it would facilitate the user to answer questions like :

• Within the Picasso diagram produced,

– what are the areas which have unexpected behavior of some kind in their

cardinality or cost estimations?

– are there any operators which correspond to a certain behavior in the cardi-

nality or cost estimation?

– is there a particular tree layout which corresponds to a certain behavior in the

cardinality or cost estimation?

– is there a particular join ordering which correspond to a certain behavior in

the cardinality or cost estimation?

• For a given database instance,

– are there any tables or attributes which lead to high generation time for the

plan diagram?

– are there any tables or attributes which lead to greater number of plans, re-

sembling finer choices made by the optimizer?

• For a given query template, across different engines, is there a common join ordering

over a particular region?

Ideas have been proposed to incorporate ‘automated exploratory analysis’ within Pi-

casso in future versions. We tried to answer the above mentioned questions using clus-

tering strategies over the Picasso database at various levels and analyzing the clusters

3

produced by it. The experiments were conducted using the “Weka” data mining tool

[7][8] developed at the University of Waikato.

Section 1.1 talks about the motivation behind implementing the new features of Pi-

casso 2.0. Sections 2.1 and 2.2 describe the Picasso data structures and the changes

made to them in order to incorporate the new features. Section 2.3 describe the changes

made to Picasso interface to facilitate creation of the modified data structures. Section

2.5 describes the changes made to the display of various Picasso diagrams. Chapter 3

describes the changes made in the Picasso command to be executed from the command

line interface. Chapter 4 mentions the bugs fixed and other supplementary design changes

made to Picasso client’s design during the project. Chapter 5 mentions the programming

effort which went in to create the new version of Picasso.

Further chapters talk about the ideas explored for integrating automated exploratory

analysis with Picasso. Chapter 6 talks about the kind of analysis power we would like to

provide to the user and shows the requirement for such kind of automated analysis by the

user. Section 6.1 gives a short description of the current schema of the Picasso database

and the changes in form of denormalization in form of logical views, required for efficient

clustering. Chapter 7 describes the clustering algorithm used for providing the automated

analysis. Chapter 8 concludes the report showing some results of the proposed automated

analysis framework.

1.1 Motivation for Picasso 2.0

The main motivation behind adding the new features to Picasso is to address the high

computation time requirement for the generation of high-dimension and/or fine resolution

plan diagrams.

A typical plan diagram generated by Picasso 1.0 is shown in Figure 1.2(a). The

“Dimension Specific Range and Granularity” functionality shown in Figure 1.2(b) and

Figure 1.2(c) gives control to the user to generate diagrams only in the area of his interest

and also with a higher resolution in the dimension of his interest. This saves time by not

generating the diagram in the rest of the selectivity space and also generating the diagram

4

(a) 100 x 100 (b) 10 x 10 0-10 Exact copy over reduced area

(c) 30 x 100 Low Resolution on first dimension (d) Approximate Diagram

Figure 1.2: Motivation for Picasso 2.0

at lower resolution on the secondary dimension.

“Approximate Diagram Generation” functionality shown in Figure 1.2(d) allows the

user to generate an efficient approximation of the Picasso diagrams [4].

5

Chapter 2

Design of Picasso Client

Picasso client is used for getting the query template with the user desired settings for

generation of the Picasso diagrams. Also, when the Picasso client receives the generated

diagram from the Picasso server it displays them and allows the user to explore them

interactively.

Figure 2.1: Query and Diagram Packet

The two data-structures used for communication between Picasso client and Picasso

server are the ‘QueryPacket’ and the ‘DiagramPacket’. Their previous structures and the

changes made to them are discussed in the following sections.

2.1 QueryPacket

QueryPacket is the data structure, which the Picasso client generates based on the query

template and the user specified setting in the “Settings Panel” Figure 2.3(a). The query-

Packet is then sent to the Picasso server for further processing. The queryPacket of

Picasso1.0 had the following information,

6

• queryTemplate:- The ‘queryPacket’ contains the entire ‘Picasso query template’,

which is an SQL query that additionally features predicates of the form “rela-

tion.attribute :varies”. These attributes are termed as ‘Picasso Selectivity Pred-

icates’ (PSP). Each such query Template defines an n-dimensional relational se-

lectivity space, where n is the number of PSP’s.The response to the variation of

selectivity of each of the PSP relations over the range 0 to 100% characterizes the

optimizer behavior over this selectivity space.

select
o year,
sum(case when nation = ’BRAZIL’ then volume else 0 end) / sum(volume)

from

(select YEAR(o orderdate) as o year,
l extendedprice * (1 - l discount) as volume, n2.n name as nation

from part, supplier, lineitem, orders, customer,nation n1, nation n2, region

where p partkey = l partkey and s suppkey = l suppkey and
l orderkey = o orderkey and o custkey = c custkey and
c nationkey = n1.n nationkey and n1.n regionkey = r regionkey and
s nationkey = n2.n nationkey and r name = ’AMERICA’ and
p type = ’ECONOMY ANODIZED STEEL’ and
s acctbal ≤ C1 and l extendedprice ≤ C2

) as all nations

group by o year

order by o year

Figure 2.2: Example Query Template: QT8

For example, consider QT8, the 2-D query template shown in Figure 2.1, based on

query 8 of the TPC-H benchmark, with selectivity variations on the SUPPLIER

and LINEITEM relations through the s acctbal ≤ C1 and l extendedprice ≤ C2

predicates, respectively. By varying the constants C1 and C2, queries are generated

across the selectivity space.

• queryName:- The string by which the user can retrieve the query template and the

associated Picasso Diagrams at a later point in time.

• resolution :- A single scalar quantity, because Picasso 1.0 would only produce dia-

7

grams with the same resolution on all axes.

• dimension:- The number of PSPs in the query template.

• execType:- Whether the diagram requested is a compile time or execution time

diagram

• distribution:- Whether the query points are uniformly or exponentially distributed

over the selectivity space.

• planDiffLevel:- Whether the plan trees should be compared at the ‘operator’ level

or at the ‘sub-operator or parameter’ level.

In the newer version of Picasso the ‘queryPacket’ underwent the following changes

• The ‘queryPacket’ now has information of resolution for each dimension, instead of

a single resolution for all dimensions.

• The ‘queryPacket’ has “StartPoint” and “EndPoint” for each dimension, which

indicate the “Range” over the selectivity space for that dimension for which the

user wants to generate the diagram.

• The ‘queryPacket’ also has a flag “ApproxDiagram” which is set if an approximate

diagram is requested. Also it contains the error limits which are required by the

approximation algorithm.

2.2 DiagramPacket

The diagramPacket underwent changes similar to the queryPacket. In addition to it one

major change from Picasso 1.0 is that for higher dimensions (i.e. for dimensions greater

than 3), earlier a single slice which was requested was sent to Picasso client by the Pi-

casso server, but now the entire multi-dimensional packet is sent to the Picasso client and

slicing of the diagram is done at the client side. This removes the delay of transferring

each slice individually when it is requested for. In the new version, once a new slice of the

8

same diagram is requested, this request is fulfilled on the client side itself by choosing the

correct entries corresponding to the slice from the entire multidimensional diagramPacket

available at the Picasso client. To make the transfer of the entire multidimensional di-

agramPacket more efficient, we first compress the diagram and then create the diagram

packet. The ‘Picasso Server’ uses a compression technique which is a combination of

‘LZ77’ and ‘Huffman coding’. At the client side the diagramPacket is uncompressed, the

multidimensional diagram is extracted and then the appropriate slice is displayed.

2.3 Creating QueryPacket

To create the queryPacket according to the new structure, various changes were made to

the Picasso client’s user interface. The user has been given the facility to select the type

of diagram he wishes to generate, such as

1. Traditional Picasso 1.0 Diagram

2. Dimension-specific Resolution Diagram

3. Dimension-specific Range Diagram

4. Approximate Diagram

5. Any combination of 2, 3 and 4

For this implementation the Picasso client’s GUI underwent changes as described in

Sections 2.3.1, 2.3.1 and 2.3.2.

2.3.1 Settings Panel

The ‘Settings panel’ as shown in Figure 2.3(a), is the panel where the user can select

the database to connect to, the query template for which a diagram has to be generated,

the distribution of the query points over the selectivity space, the optimization level, the

resolution and the range for which the diagram has to be generated.

9

(a) Settings Panel

(b) Resolution Box (c) Range Box

Figure 2.3: Settings Panel, Resolution Box, Range Box

In the older version of Picasso the “Plot Resolution” ComboBox as shown in Figure

2.3(b) had the values 10, 30, 100, 300, 1000 which indicated the resolution for all the

dimensions of the diagram. We have inserted a new value “Custom Per Dimension” in

the ComboBox, which the user needs to select if he wants to generate a ‘Dimension Specific

Resolution Diagram’. A point to note here is that even when we say ‘Custom Resolution’

the user is still constrained to use a value from the fixed set, but on per dimension basis.

If the user chooses any of the numeric values from the ComboBox then that value is taken

as the resolution over all the dimensions for further processing.

To select ‘Dimension Specific Range Diagram’, we have inserted another ComboBox

“Plot Range” as shown in Figure 2.3(c), which has the values ‘0-100’ or ‘Custom’. ‘0-

100’ indicates that the Diagram will be generated over the entire selectivity space for all

dimensions, the ’Custom’ option indicates otherwise.

10

RangeRes Frame

If neither the ‘Plot Resolution ComboBox’, shown in Figure 2.3(b) nor the ‘Plot Range

ComboBox’, shown in Figure 2.3(c) have ‘Custom’ as the value selected, then the query-

Packet for the generation of the traditional Picasso diagram is created, and flow continues

as per Picasso 1.0 . However if either of the ComboBoxes have ’Custom’ selected then

the RangeRes Frame as shown in Figure 2.4 is displayed.

In this frame the user can select the desired Range and Resolution for each dimension,

and a queryPacket is created based on the values provided.

Figure 2.4: Frame for Selecting Dimension Specific Range and Resolution

2.3.2 Approx Frame

Once the queryPacket is generated it is passed to the server for estimating the time

required for generating the exact diagram. The server sends this estimated time in form

of a server packet back to the client.

On receiving the estimated time for exact diagram the client displays the time in

the Approximation frame as shown in Figure 2.5 and gives the option for generating the

approximate diagrams to the user.

If the user selects approximate diagram generation, then the frame expands allowing

the user to select an approximation algorithm [4] and set the required parameter. The

current version of Picasso has support for 2 approximation algorithms:

• RSNN Random Sampling Nearest Neighbor.

11

• GSPQO Grid Sampling Parametric Query Optimization.

Figure 2.5: Frame Displaying the Estimated time and providing option for an approximate
diagram

2.3.3 Parameter Validity Checks

Now that the new version gives a lot of customization power to the user, we have to

implement various checks on the parameters the user sets, so that queryPacket does not

contain any illegitimate values. A few of the checks which we make at the client side, so

that ‘queryPackets’ with the wrong values get blocked at the client-side itself are:

• The values provided for range in the ‘RangeRes Frame’ Figure 2.4 must be numbers

between 0 to 100.

• The endPoint value must exceed the startPoint value by at least ‘0.01’. This means

that the highest granularity that the user can achieve is 1000 in the range of 0.01,

which is equivalent to a virtual granularity of 100,000 over the entire selectivity

range.

• One limitation which exists in current version of Picasso is that, the product of

resolutions over all dimensions can not exceed the maximum size of ‘int’ as decided

by Java. In Picasso 1.0 if the product of resolutions exceeds, the server shows an

12

error and hangs. This is a shortcoming of the version 1.0 and work is being done to

remove this constraint. Till then instead of the server hanging, we do not allow the

user to put values that may lead to a hang.

If any of these checks is not satisfied by the query packet, then an error message

is displayed, no further process is done on this packet and the user is sent back to the

‘QueryBuilder panel’.

2.4 Picasso Server

Once the final ‘queryPacket’ is sent to the Picasso server, it generates the required dia-

gram over the selected range and at the selected resolution. Once the complete multi-

dimensional diagram is generated it is packed into a ‘diagramPacket’. This packet is then

compressed as mentioned earlier and sent to the ‘Picasso client’. This is in contrast to

the earlier version of Picasso, ‘Picasso 1.0’ where the complete multi-dimensional diagram

used to reside at the server-side only and the diagram packet used to carry information

only about the requested slice.

2.5 Back to Picasso Client

Once the diagramPacket reaches the Picasso client, the client displays the diagram in the

appropriate panel, with the help of Java3D and VisAD libraries. Changes were made

to the various display panels to support the ‘Dimension Specific Range and Resolution

Diagrams’.

2.5.1 Plan Panel

Plan panel displays the plan diagram which has the color coded information of the plans

selected by the optimizer for the particular values of the selectivity. In Picasso 2.0 we

have placed the range and resolution information for a particular dimension, in the axis

label for that dimension as shown in Figure 2.6.

13

Figure 2.6: Change in the Display of the Diagram

To utilize the availability of the complete multidimensional diagram packet we provide

the panel for slicing and pivoting the diagram as shown in Figure 2.7 at the bottom of the

planPanel. By selecting appropriate values in this panel the user can pivot or slice the

diagram. The pivoting and slicing functions had to be rewritten because these functions in

Picasso 1.0 assumed 0-100% selectivity and same resolution on all the axis. For choosing

the required slice for visualization the user has to click the “Set Dim Sel” Button as shown

in Figure 2.7, upon which a frame as shown in Figure 2.8 for choosing the slice pops up,

with only the valid selectivity values based on the range and resolution of the particular

dimension.

Figure 2.7: Bottom Panel for Slicing and Pivoting

For efficient user interaction mouse clicks are active only for the area, for which the

diagram has been generated, i.e. the white area in Figure 2.6 has been deactivated, hence

any mouse clicks in that area will not trigger any processing. However we have still

14

Figure 2.8: Frame for choosing a slice

maintained the previous functionality, i.e. the user can use any of the analysis power

provided by Picasso 1.0 which are displayed in Figure 2.9, by clicking on the selectivity

space for which the diagram has been generated. The functions which handled mouse

interactivity also had to be rewritten for the previous version assumed 0-100% selectivity

and same resolution on all the axis.

Now we will discuss about the implementation of the slicing and pivoting functionality

and the ’mouse interactivity’.

Slicing and Pivoting

The main issue with the slicing and pivoting code of ‘Picasso 1.0’ was that it only

considered same resolution on all axis and 0-100 range over the selectivity space for all

dimensions.

The code for slicing had to be rewritten. The member points of the slice are now

chosen giving consideration to the fact that the resolution might be different on each

dimension.

The code of pivoting was modified such that now as the diagram is rotated, not

only the data values but also the corresponding resolution and the ranges get rotated.

15

Figure 2.9: Mouse-Key controls for Picasso Diagrams

This ensures that after any number of rotations the data values when interpreted with

the current resolution and range corresponding to the dimension will resemble the same

multidimensional cube as before the rotation.

Mouse Interactivity

Figure 2.10: Implementation of mouse interactivity

16

The mouse interactivity of Picasso 1.0 also had the same drawback as the slicing

functionality. It assumed the same resolution over all dimensions and the selectivity to be

0-100 over each dimension. To support mouse interactivity for dimension specific range

and resolution diagrams we make modifications to the code which can be visualized as

shown in the Figure 2.10. To correctly get the selectivity of the point clicked, and to

exploit the reusability of the previous code we perform the following steps

1. We translate the point clicked, in each dimension by the StartPoint corresponding

to that dimension. In 2-D analogy we bring the lower-left point of the selected space

to the origin.

2. We scale the translated point, in each dimension by a factor of 100/(EndPoint

corresponding to that dimension). In 2-D analogy we have now brought the upper

right point of the selected space to the point resembling 100 percent selectivity over

both the dimensions. We have now transformed the selected space into the standard

0-100 selectivity space.

3. We then calculate the corresponding selectivity with due consideration to the dif-

ferent resolutions over each dimension. A point worth noting is that the cur-

rent resolutions are not the one the user provided, they also have been scaled.

Hence in the entire calculation we consider the resolution to be the(user provided

resolution)/(EndPoint-StartPoint corresponding to that dimension).

4. Once we calculate the selectivity, we now scale it down by the inverse of step 2.

5. We then translate it back to the original position.

At the end of this process we have the correct selectivity of the point where the mouse

was clicked. Further processing is done based on which functionality from the figure 2.9

is demanded.

Changes on similar lines have been implemented for the other panels.

17

2.5.2 Reduce Plan Panel

The Beta version of Picasso had support for the following reduction algorithms [2][3]:

Area Greedy, Cost Greedy, Cost Greedy with Foreign Plan Costing, SEER and Lite-

SEER. We had to modify the implementation of these algorithms to support Dimension

Specific Range and Resolution diagrams, however the basic structure of the algorithms

remain unchanged.

The current version of Picasso supports Cost Greedy, CC-SEER and Lite-SEER based

reductions.

2.5.3 Compilation Cost/Cardinality Panel

The Compilation Cost/Cardinality Diagrams have been modified on lines similar to the

plan diagram. In addition modifications had to be made to normalize the cost/cardinality

diagrams to the maximum cost amongst the query points lying in the selectivity space

and fall within the range selected. A sample Compilation Cardinality Diagram is shown

in Figure 2.11.

Figure 2.11: Compiled Cardinality Diagram

18

Legend Panel

To exploit further, the availability of the complete multi-dimensional diagram packet

at the client side, the legend panel as shown in Figure 2.12 now shows the percentage

participation by a particular plan globally in the entire multidimensional cube as well as

locally in the selected slice.

Figure 2.12: Legend Panel

19

Chapter 3

Command Line Interface

Apart from the Picasso Client interface described in the previous chapters, the Picasso

Server can also be accessed directly through the command line. Changes were made to

the syntax in order to support approximate diagram generation and dimension-specific

range and resolution diagram generation. While making these changes care was taken

that the previous syntax still works, to facilitate backward compatibility for the batch

files containing the old syntax. If the user wishes to use the new features, the parameter

list of the command must be started with ‘-R’, the ‘R’ in the argument list indicates that

the user is interested in generating a customized (R)ange or (R)esolution diagram.

The new syntax for running Picasso Client through command line is shown in Figure

3.

20

Basic format:

Without approximation:

PicassoCmd < ServerName >< Port ><

DBConnection >< OptLevel >< QTID >< QDist ><

DiagType >< QTFile >< Resolution >

Approximation:

PicassoCmd < ServerName >< Port ><

DBConnection >< OptLevel >< QTID >< QDist ><

DiagType >< QTFile >< Approx − algo ><

IdError >< LocError >< FPC >< Resolution >

Dimension specific Range and Resolution form

Without approximation:

PicassoCmd -R < ServerName >< Port ><

DBConnection >< OptLevel >< QTID ><

QDist >< DiagType >< QTFile > {< Resolution ><

startPoint >< endpoint >}

Approximation:

PicassoCmd -R < ServerName >< Port ><

DBConnection >< OptLevel >< QTID >< QDist ><

DiagType >< QTFile >< Approx − algo ><

IdError >< LocError >< FPC > {< Resolution ><

startPoint >< endpoint >}

{< Resolution >< startPoint >< endpoint >} means that
this triplet has to appear as many times as there are number
of :varies in the Query template.

Figure 3.1: Command Line Syntax

21

Chapter 4

Bugs Fixed and Other Design

Changes

During the process of developing Picasso 2.0, many bugs from the previous version were

fixed. Few of these bugs are discussed below

• After a long series of operations (generating diagrams for more than 5 query tem-

plates without restarting the client), the Picasso Client module used to hang. On

detailed analysis of the code of the previous versions, memory leaks were identified

as the cause of the bug. The problem was solved by requesting a Java garbage

collection.

• The dimension boxes in the bottompanel which are used for pivoting the diagram

when selected, used to go behind the canvas used for drawing the diagrams. To

correct this error the VisAD documentation was studied and the ‘z-value’ of the

canvas was adjusted accordingly.

• The design of previous version of Picasso was such that, for a higher dimensional

query template every time the user would toggle between the different types of

Picasso Diagrams, the first slice used to be displayed. This has been changed to

all the panels displaying the identical slice. So now, if the user chooses slice ‘x’ in

the plan panel and switches to Compilation Cost Panel, then this panel will show a

22

Compilation Cost diagram corresponding to slice ‘x’.

23

Chapter 5

Programming Effort

The Picasso 1.0 code base is approximately 25K lines of code of which around 15K form

the client and 8K form the server. The definitions of the common data structures and

constants etc. form the remaining 2K lines of code. Most of the code was needed to be

analyzed and about 15K lines of code were added additionally in Picasso 2.0 making it

a total of approximately 40K lines of code. About 6K lines of code were added to the

server of which 5K were for the approximation part and 1K were for the dimension specific

range and resolution part. The latter part involved a lot of changes to the existing code

whereas the former part was totally new. Approximately 10K lines of code were added

to the client part the majority of which were to support:

• The dimension specific ranges and resolutions

• The slicing at the client side

• Global plan coloring etc.

24

Chapter 6

Automated Exploratory Analysis

The remainder of the report talks about the proposed framework for automated ex-

ploratory analysis to be integrated with the future version of Picasso.

Picasso 1.0 and Picasso 2.0 provide various functionalities to the user, by which user

can generate variety of diagrams which reflect the behavior of the query optimizer in

response to the query template and other parameters as provided by the user. However

the user has to manually inspect these diagrams for any interesting or unexpected behavior

of the query optimizer. After the release of the new version of Picasso, focus has been

shifted to integrate automated exploratory analysis with Picasso. Such an automated

analysis would work on the Picasso diagram produced and come up with interesting or

unexpected area in the diagram.

As a part of the automated analysis we propose clustering strategies at various levels

in the Picasso database. Clustering is a useful technique from the field of data mining, for

grouping data points such that points within a single group/cluster have similar charac-

teristics or are close to each other, while points in different groups are dissimilar. Hence

such a clustering is helpful in identifying areas which have spikes or deviations from the

expected monotonically increasing nature of the estimations over the selectivity space.

Also clustering helps us to group together points of similar behavior which can be used to

obtain a summarized description of the data set. This summarized description can then

be used to answer many interesting questions about the Picasso diagram, the database

25

properties or the query optimizer.

Even though we allow clustering at different level of the Picasso database, still we

maintain a common strategic framework. First we distinguish the attributes as measure

attributes and the dimensional attributes. Measure attributes are the attributes which

measure some value and can be aggregated upon. Dimensional attributes are the other at-

tributes which define the dimensions on which the measure attributes are viewed. Further

we cluster the data instances based on the measure attribute and later use the dimensional

attribute to describe and analyze the clusters formed.

Before we discuss the exact clustering framework, let us briefly describe the design of

the schema of the relations in the Picasso database and the relationships between them.We

provide a short description about the Picasso database schema to get an idea about what

information is available as a feature set for clustering.

6.1 Picasso Schema

Figure 6.1: Picasso Schema

Figure 6.1 shows the relational schema of Picasso 2.0 and the next few paragraphs

explain them in greater detail.

26

• PicassoQTIDMap stores information about each Picasso diagram generated such as

the query template, query name, resolution, dimensions, optimization level, machine

name, execution type, scale type etc.. A record in PicassoQTIDMap corresponds

to a Picasso diagram. Each diagram is given a unique identifier called the query

template identifies (QTID) which is the primary key for the relation.

• PicassoPlanTree stores the representative plan trees for each of the distinct plans

in a Picasso diagram. Each record in this table represents a node in a plan. Every

node has an ID as well as a parentID. This structure allows storing the plan tree as

a relation. The QTID, plan number, the identifier of the node and the identifier of

its parent together form the primary key of the relation.

• PicassoPlanTreeArgs stores the sub-operator level arguments for each node in the

plan if any. Each tuple corresponds to one argument. A single node can have

multiple sub-operator level arguments in which case there will be multiple tuples

for a node. The set of all attributes forms the primary key for the relation because

any proper subset of these set of attributes cannot uniquely identify a row.

• PicassoPlanStore stores the bulk of the Picasso diagram data including plan number,

cost, cardinality for each of the points in the selectivity space. Each point in the

selectivity space has a unique query ID (QID). The queries are fired in row major

order and the queries are assigned in the same order. The QTID along with the

query ID forms the primary key.

• PicassoSelectivityLog stores the Picasso selectivity, optimizer selectivity and ac-

tual selectivity values for each distinct point on a dimension. So there will be
∑

resolutioni number of tuples in this relation for a diagram. QTID along with the

dimension and the point identifier forms the primary key of this relation.

• PicassoSelectivityMap maps each entry in PicassoPlanStore to entries in PicassoS-

electivityLog.

• PicassoRangeResTab is a new relation created in Picasso 2.0 to support dimension

27

specific range and resolution. There is an entry for a Picasso diagram only if the

resolution or the ranges on each dimension are different from default, the defaults

being 0-100 for range and equal resolution on all the dimensions. There are dimen-

sion number of tuples in this relation for one diagram. The QTID and dimension

together form the primary key for the table.

• PicassoApproxMap is also a new relation introduced in Picasso 2.0 to support

approximate diagrams. This relation is essentially an extension to the Picasso-

QTIDMap. Like exact diagrams, the approximate diagrams also have an entry in

the PicassoQTIDMap relation. But since we need to store additional information for

approximate diagrams like the size of the sample required to generate the approxi-

mate diagram, the area and identity errors in the diagram and whether the foreign

plan costing feature was turned on during the approximate diagram generation, we

have a tuple in PicassoApproxMap for every approximate diagram generated. The

attribute QTID forms the primary key of this relation.

Apart from the relations described above, we maintain separate relations to store

abstract plans. For instance, SQL Server represents the Plan in XML. Abstract plans

represented in XML are stored in the relation PicassoXMLPlan.

The QTID attributes in every relation (except PicassoQTIDMap) are foreign keys and

refer the PicassoQTIDMap relation.

For further analysis we divide the attributes as those that are helpful for intra query

template clustering and those that are helpful for inter query template clustering.

6.2 Intra Query-Template Clustering

As indicated in Figure6.2 we identify the following tables as the source tables for Intra

Engine Intra Query-Template clustering :

• PicassoPlanStore

• PicassoSelectivityMap

28

Figure 6.2: Intra Query-Template Clustering Schema

• PicassoSelectivityLog

• PicassoPlanTree

• PicassoPlanTreeArgs

Of these we use the PicassoPlanStore table to obtain the details about the measure at-

tributes (compile time or run time cost or cardinalities). We use the PicassoSelectivityMap

and PicassoSelectivityLog tables to obtain the selectivity information corresponding to

each point in the Picasso diagram produced. We use the PicassoPlanTree table to obtain

the plan tree structure corresponding to each point in the Picasso diagram produced.

Ideally we should capture the entire layout of the plan tree. However such a layout is

difficult to be provided as a feature to the clustering algorithm, so we just categorize the

plan trees as bushy, left deep or right deep and provide it as a feature to the clustering

algorithm. We use the PicassoPlanTreeArgs table to obtain the presence of a particular

operator in the given plan tree.

Intra query template clustering helps us to answer questions of the following type :

• Within the Picasso Diagram produced, what are the areas which have unexpected

behavior of some kind in their cardinality or cost estimations?

29

• Within the Picasso Diagram produced, are there any operators which correspond

to a certain behavior in the cardinality or cost estimation?

• Within the Picasso Diagram produced, is there a particular tree layout which cor-

responds to a certain behavior in the cardinality or cost estimation?

• Within the Picasso Diagram produced, is there a particular join ordering which

corresponds to a certain behavior in the cardinality or cost estimation?

6.3 Inter Query-Template Clustering

As indicated in Figure6.3 we identify the following tables as the source tables for Intra

Engine Inter Query-Template clustering :

• PicassoQTIDMap

• PicassoPlanStore

• PicassoRangeResMap

• PicassoApproxMap

We obtain the measure attribute “generation time” from PicassoQTIDMap and “num-

ber of plans” and “maximum cost” from PicassoPlanStore. We use the PicassoQTIDMap

table to obtain the other dimensional details of the Picasso diagrams produced. We use

the PicassoRangeResMap and PicassoApproxMap tables to obtain the Range, Resolution

and Approximation details of the Picasso diagrams produced.

Inter query template clustering helps us to answer questions of the following type :

• For a given database instance, are there any tables or attributes which lead to high

generation time for the plan diagram?

• For a given database instance, are there any tables or attributes which lead to

greater number of plans, resembling finer choices made by the optimizer?

30

Figure 6.3: Inter Query-Template Clustering Schema

6.4 Inter-Engine Intra Query-Template Clustering

For Inter Engine Intra Query Template Clustering we use the same relational tables as

used for Intra Engine Intra Query Template clustering. However we must note that the

cost metric and the operators are not comparable across different database engines so we

remove them from the measure and dimensional attribute lists.

Inter database engine clustering helps us to answer questions of the following type:

• For a given query template, across different engines, is there a common join ordering

over a particular region?

The framework of automated exploratory analysis is described in Table 6.1.

Table 6.1: Clustering Framework
Measure Attribute(s) Dimension Attributes

Intra-Engine Intra Query Template Cost, Cardinality Selectivity, Operators, Tree layout, Join
order

Intra-Engine Inter Query Template # plans, Generation time,
Maximum cost

Query template id, Resolution, Execution
time, Distribution, Optimization level,
Plan diff level

Inter-Engine Intra Query Template Cardinality Engine, Selectivity, Join order

31

For ease of clustering we need to de-normalize the above schema and store it. However

de-normalization of schema brings into picture the tradition problems of redundancy and

in some cases inconsistency. So we create logical views of the database which correspond

to the de-normalized form of the set which contains the required attributes for clustering.

32

Chapter 7

Clustering Algorithms

In order to implement the above discussed clustering framework we propose the use of

two clustering algorithms, each with their own pros and cons. The K-means clustering

algorithm is described in Section 7.1 and the Expectation Maximization is described in

Section 7.2

7.1 K-Means Clustering Algorithm

1. Begin

2. Initialize n, k, µ1, µ2, ..., µk

3. Do

a. Classify n samples according to nearest µi

1 ≤ i ≤ k

b. Recompute µi

Until no change in µi

4. Return µ1, µ2, ..., µk

5. End

Figure 7.1: K-Means Clustering Algorithm

The K-means clustering algorithm obtains K clusters which minimize the “Sum

Squared Error” metric. The pseudo code is as shown in Figure 7.1.

33

Initially we choose k cluster centers {µ1, µ2, ..., µk} to coincide k randomly defined

points inside the hypervolume containing the measure space. Then we assign each pattern

to the closest cluster center and then recompute the cluster centers using the current

cluster memberships. We repeat these steps for a fixed number of iterations or until the

there is no further (significant) change in the cluster centroid.

K-means is a simple clustering method that, shows optimal results, when the data set

have nearly globular natural clusters hidden in it [9]. K-means also has very low response

time even for a 3-D Picasso diagram of resolution 100 on each dimension.

The problem with the clustering algorithm is that it needs the parameter ‘k’ to be

provided by the user. Also when non globular cluster are naturally present in the data-set

K-means fails to identify them efficiently.

7.2 Expectation Maximization Clustering Algorithm

Expectation Maximization (EM) is a statistical model that makes use of the finite Gaus-

sian mixtures model. The algorithm is similar to the K-means procedure in that a set of

parameters are re-computed until a desired convergence value is achieved.

A mixture is a set of N probability distributions where each distribution represents a

cluster. An individual instance is assigned a probability that it would have a certain set

of attribute values, given it was a member of a specific cluster.

A pseudo-code of the EM algorithm for bi-variate case is shown in Figure 7.2 and the

generalization in it is mentioned in the subsequent paragraph.

For general case of multivariate normal density in d dimensions the function f(x) is

written as,

f(x) =
1

(2π)
d
2 |Σ|

1

2

e[− 1

2
(x−µ)tΣ−1(x−µ)],

where x is a d -component column vector, µ is a d-component mean vector, Σ is the

d -by-d covariance matrix, and |Σ|and Σ−1 are its determinant and inverse, respectively.

(x − µ)t denotes the transpose of (x − µ).

34

1. Guess initial values for the parameters : The mean µ,
standard deviation σ and the cluster probability
for each cluster.

2. Use the probability density function for a normal dis-
tribution to compute the cluster probability for
each instance. In the case of a single independent
variable with mean µ and standard deviation σ,
the formula is:

f(x) =
1

(
√

2πσ)
e

−(x−µ)2

2σ2

3. Use the probability scores to re-estimate the param-
eters.

4. Return to Step 2

Figure 7.2: EM Clustering Algorithm

The algorithm terminates when the log likelihood no longer shows significant

increases. The likelihood computation is simply the multiplication of the sum of the

probabilities for each of the instances. With two clusters A and B containing instances

x1, x2, . . . , xn where PA = PB = 0.5 the computation is:

[.5P (x1|A) + .5P (x1|B)] ∗ [.5P (x2|A) + .5P (x2|B)] ∗ . . . ∗ [.5P (xn|A) + .5P (xn|B)]

EM implements a statistical model that, shows optimal results, when the data set has

dominant spikes in the distribution. EM does not require the parameter K to be passed

to it, the algorithm determines the best number of clusters. The algorithm will converge

to an optimal clustering; however, the optimization may not be global.

As the number of attributes increase the fitting of the mixture model becomes more

complicated and increases the response time of the algorithm.

35

Chapter 8

Results and Observations

We experimented with the Picasso diagram database available in DSL. The clustering

algorithms available in the WEKA [8] clustering utility were used to check the efficiency

of the framework.

A sample template which had been clustered based on the framework as proposed in

Section 6.2, is analyzed in the figures shown below. Figure 8.1 shows the scatter plot of

the output of the EM clustering algorithm. The clustering information is color coded, i.e.

instances belonging to the same cluster are assigned the same color. The estimated output

cardinality of each point is plotted on the x-axis and the its corresponding estimated cost

on the y-axis. The denser the cluster the more it follows the normal behavior, the sparse

clusters represent the outliers or the irregularities. Based on this assumption we tag the

clusters 2, 4, 6, 8 and 11 as interesting. As shown in Table 8.1 these clusters do resemble

the irregularities in the cost and cardinality estimations as shown in Figure 8.2(a) and

Figure 8.2(b). Table 8.1 shows a summary of each cluster with the dimensional attributes

plugged in. It shows the clusters with the corresponding plans, the selectivity space it

covers, and the operators which are present in the plans contained in the cluster. The selx

and sely correspond to the selectivities of the bounding rectangle for the cluster. Detailed

information can be obtained from a scatter plot similar to Figure 8.1 with selx and sely as

the axis. For the columns corresponding to the operators ‘0’ indicates complete absence of

the operator in the entire cluster; ‘1’ indicates total presence of the operator in the entire

36

Figure 8.1: Cost vs. Cardinality Plot (TPCH : QT9)(EM Algorithm)

cluster; an entry of the form {x,y} indicates that in the ‘x%’ of the instances in the cluster

the particular operator is absent and is present in the remaining ‘y%’ of instances. Due

to space restriction, the operators which are common to all the cluster have been removed

from the table. From the entries for selx and sely we can observe that the clusters which

we tagged as interesting do correspond to the spikes in Figure 8.2(a) and Figure 8.2(b).

Also it is interesting to note that even though clustering was carried out based on the

dimensional attributes alone still we find dominance of the measure attributes over the

clusters. So we may conclude that the presence or absence of a particular operator may

be affecting the irregularities in the cardinality and cost estimation. An interested user

of Picasso may explore this further.

Similar experiments were carried for higher dimensional templates, where in the clus-

tering output was extremely useful in selecting the display dimensions and then selecting

the slice selectivity for the other dimensions so that the slicing being displayed has irreg-

ularities in cost or cardinality estimations.

37

(a) Cost Diagram

(b) Cardinality Diagram

Figure 8.2: QT9 Cost and Cardinality Diagrams

38

Clus-
ter

plans selx
range

sely
range

bitmap C.I.Seek hash
match
agree

hash
match
par-
tial
agree

merge
join

nested
loop

parallelism stream
agree

table
spool

0 30, 46 [57.5,
99.5]

[70.5,
88.5]

1 0 0 1 0 0 {93.36,
6.63}

1 0

1 35, [67.5,
99.5]

[33.5,
47.5]

1 0 0 1 0 0 1 1 0

2 6, 15, 16, 25, 30, 31, 36 [1.5,
99.5]

[3.5,
11.5]

1 {28.02,
71.98}

{69.43,
30.57}

0 {99.36,
0.64}

{28.02,
71.98}

1 1 0

3 9, 10, 35 [0.5,
99.5]

[6.5,
47.5]

1 0 0 1 0 {99.62,
0.38}

1 1 0

4 5, 6, 15, 16, 17, 18, 36 [0.5,
99.5]

[9.5,
19.5]

1 {0.74,
99.25}

{68.17,
31.84}

{99.63,
0.38}

0 {0.74,
99.25}

1 {0.38,
99.63}

0

5 35, 46 [30.5,
99.5]

[17.5,
27.5]

1 0 0 1 0 0 1 1 0

6 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
13, 15, 16, 17, 30, 31, 55

[1.5,
58.5]

[6.5,
9.5]

1 0 1 0 0 0 1 {1.9,
98.2}

0

7 5, 17, 18, 19, 30, 36, 39, 44 [1.5,
58.5]

[17.5,
27.5]

1 {80.75,
19.25}

1 {17.53,
82.47}

0 {80.75,
19.25}

1 {82.47,
17.52}

0

8 14, 30 [1.5,
96.5]

[6.5,
9.5]

1 0 1 0 0 0 1 {1.9,
98.2}

0

9 10, 11, 20, 35 [0.5,
42.5]

[6.5,
78.5]

{0.4,
99.6}

0 0 1 1 1 {0.4,
99.6}

1 0

10 31, 39 [52.5,
99.5]

[19.5,
29.5]

1 {86.25,
13.75}

{13.75,
86.25}

{13.75,
86.25}

0 {86.25,
13.75}

1 {86.25,
13.75}

0

11 16, 30, 31, 39, 45 [31.5,
99.5]

[17.5,
20.5]

1 {20.38,
79.62}

{77.25,
22.75}

{86.26,
13.74}

0 {20.38,
79.62}

1 {13.74,
86.26}

0

12 10, 19, 35, 39 [1.5,
99.5]

[6.5,
39.5]

1 0 {49.23,
50.77}

1 0 0 1 {50.77,
49.23}

0

13 35 [21.5,
99.5]

[44.5,
69.5]

1 0 0 1 0 0 1 1 0

14 0, 10, 11, 12, 15, 20, 21, 22,
23, 24, 26, 27, 28, 29, 32,
33, 34, 35, 37, 38, 40, 41,
42, 43, 46, 47, 48, 49

[0.5,
99.5]

[0.5,
99.5]

{2.96,
97.04}

{87.41,
12.59}

{97.04,
29.64}

{13.36,
86.64}

{99.42,
0.58}

{87.41,
12.59}

{39.32,
60.69}

1 {96.84,
3.16}

15 10, 35 [1.5,
71.5]

[6.5,
54.5]

1 0 0 1 0 0 1 1 0

Table 8.1: QT9 : Clusters with Dimensional Attributes

39

Chapter 9

Conclusions and Future Work

We conclude by saying that Picasso 2.0 has many more useful features than those that

Picasso 1.0 had and we believe that it has a utility value greater than Picasso 1.0. As

shown in this report, there is scope for providing automated analysis power to the Picasso

user. In future we would like to convert the proposed idea into a finished product and

make it available as a third party tool along side Picasso. We also would like to provide

Picasso user with incremental diagram generation power, so that the user need not wait

for entire diagram to be generated before it is displayed.

40

References

[1] N. Reddy and J. Haritsa, “Analyzing Plan Diagrams of Database Query Optimizers”, Proc.

of 31st Intl. Conf. on Very Large Data Bases (VLDB), August 2005.

[2] Harish D., P. Darera and J. Haritsa, “On the Production of Anorexic Plan Diagrams”,

Proc. of 33rd Intl. Conf. on Very Large Data Bases (VLDB), September 2007.

[3] Harish D., P. Darera and J. Haritsa, “Identifying Robust Plans through Plan Diagram

Reduction”, Proc. of 34th Intl. Conf. on Very Large Data Bases (VLDB), August 2008.

[4] A. Dey, S. Bhaumik, Harish D. and J. Haritsa, “Efficiently Approximating Query Optimizer

Plan Diagrams”, Proc. of 34th Intl. Conf. on Very Large Data Bases (VLDB), August 2008.

[5] Mohammad Aslam, ME Thesis, CSA, May 2006.

[6] Abhijit Pai, ME Thesis, CSA, May 2008.

[7] Ian H. Witten and Eibe Frank (2005) ”Data Mining: Practical machine learning tools and

techniques”, 2nd Edition, Morgan Kaufmann, San Francisco, 2005.

[8] Weka 3: Data Mining Software in Java, http://www.cs.waikato.ac.nz/ ml/weka/

[9] Jain, A. K., Murty, M. N., and Flynn, P. J., ”Data clustering: A review”, ACM Computing

Surveys 31, (1999).

[10] Picasso Database Query Optimizer Visualizer, http://dsl.serc.iisc.ernet.in/projects/PICASSO/picasso

[11] DSL Publications, http://dsl.serc.iisc.ernet.in/publications/publications.html

41

