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Abstract

Given a parameterized n-dimensional SQL query template and a choice of query optimizer, a plan

diagram is a color-coded pictorial enumeration of the execution plan choices of the optimizer over

the query parameter space. Similarly, we can define cost diagram and cardinality diagram as the

pictorial enumerations of cost and cardinality estimations of the optimizer over the same space.

These three diagrams are collectively called “optimizer diagrams”. These diagrams have proved

to be very useful for the analysis and redesign of modern optimizers but their utility is adversely

impacted by the impractically large computational overheads incurred when standard brute-

force exhaustive approaches are used for producing fine-grained diagrams on high-dimensional

query templates.

In this report, we investigate a variety of intrusive and non-intrusive strategies for effi-

ciently generating computationally expensive optimizer diagrams. The non-intrusive techniques

use the query optimizer as a black-box and collectively feature random and grid sampling, as

well as classification techniques based on nearest-neighbor and parametric query optimization.

The intrusive techniques need changes in the optimizer kernel and leverage the principles of

Subplan-Caching, Pilot-Passing and Plan Cost Monotonicity. We evaluate our techniques with

a representative set of TPC-H-based query templates on industrial-strength optimizers. The re-

sults indicate that our non-intrusive techniques are capable of delivering 90% accurate diagrams

while incurring less than 15% of the computational overheads and our intrusive techniques are

able to achieve perfect diagrams with around 10% – 70% of the computational overheads when

compared to the brute-force exhaustive approach. We have used the Picasso database query

optimizer visualizer tool to implement our diagram production strategies and the PostgreSQL

query optimizer kernel as the base of our intrusive techniques.
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Chapter 1

Introduction

Assuming that the database engine and system configurations are not changing, a query

optimizer’s execution plan choices are primarily a function of the selectivities of the base

relations in the query. The concept of a “plan diagram” was introduced in [11] as a

color-coded pictorial enumeration of the plan choices of the optimizer for a parameterized

query template over the relational selectivity space. For example, consider QT8, the

parameterized 2D query template shown in Figure 1, based on Query 8 of the TPC-H

benchmark. Here, selectivity variations on the supplier and lineitem relations are

specified through the s acctbal :varies and l extendedprice :varies predicates, respectively.

The associated plan diagram for QT8 is shown in Figure 1.2(a), produced with the Picasso

optimizer visualization tool [17] on a popular commercial database engine.

In this picture1, each colored region represents a specific plan, and a set of 89 different

optimal plans, P1 through P89, cover the selectivity space. The value associated with

each plan in the legend indicates the percentage area covered by that plan in the diagram

– the biggest, P1, for example, covers about 22% of the space, whereas the smallest, P89,

is chosen in only 0.001% of the space. A similar representation of costs and cardinalities

over the selectivity space is available at [17], for TPC-H benchmark queries on popular

commercial optimizers.

1The figures in this thesis should ideally be viewed from a color copy, as the gray-scale version may
not clearly register the features.
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select o year, sum(case when nation = ’BRAZIL’ then volume else 0 end) / sum(volume)

from (select YEAR(o orderdate) as o year, l extendedprice * (1 - l discount) as volume, n2.n name as nation

from part, supplier, lineitem, orders, customer,
nation n1, nation n2, region

where p partkey = l partkey and s suppkey = l suppkey and l orderkey = o orderkey and o custkey =
c custkey and c nationkey = n1.n nationkey and n1.n regionkey = r regionkey and s nationkey =
n2.n nationkey and r name = ’AMERICA’ and p type = ’ECONOMY ANODIZED STEEL’ and
s acctbal :varies and l extendedprice :varies

) as all nations

group by o year

order by o year

Figure 1.1: Example Query Template QT8

(a) Plan Diagram (b) Approximate Diagram (10% Error
Bound)

Figure 1.2: Example Plan Diagram and Approximate Plan Diagram (QT8)

Applications of Optimizer Diagrams

Optimizer diagrams have proved to be very useful for the analysis and design of industrial-

strength database query optimizers. As evident from Figure 1.2(a), they can be sur-

prisingly complex and dense, with a large number of plans covering the space which is

contrary to the conventional assumptions about query optimizers. The reason is that

while optimizer behavior on individual queries has certainly been analyzed extensively

by developers, optimizer diagrams provide a completely different perspective of behav-
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ior over an entire space, by presenting plan transition boundaries, optimality geometries

and cost/cardinality behavior which are in a literal sense, the “big picture” of a query

optimizer.

Optimizer diagrams are currently in use at various industrial and academic sites for

a diverse set of applications including analysis of existing optimizer behavior; providing

visual aid to optimizer regression testing; debugging new query processing features; com-

paring the behavior between successive optimizer versions; investigating the structural

differences between neighboring plans; evaluating the variations in the plan choices made

by competing optimizers; etc. Apart from optimizer design support, since plan diagrams

identify the optimal set of plans for the entire relational selectivity space at compile-time,

they can be used at run-time to immediately identify the best plan for the current query

without going through the time-consuming optimization exercise.

Another particularly compelling utility of optimizer diagrams is that they provide the

input to “plan diagram reduction” algorithms. Several significant practical benefits of

plan reduction are highlighted in [7]. A detailed study of its application to identify robust

plans that are resistant to errors in relational selectivity estimates is available in [8].

Generation of Optimizer Diagrams

The generation and analysis of optimizer diagrams has been facilitated by the Picasso

optimizer visualization tool [17]. Given a multi-dimensional SQL query template like

QT8 shown in Figure 1 and a choice of database engine, the Picasso tool produces the

associated query optimizer diagrams in the following way: For a d-dimensional query

template and a plot resolution of r, total rd queries are generated, with appropriate

constants based on their associated selectivities. Then each of these queries are submitted

to the query optimizer to be “explained” to obtain their optimal plans. Then a different

color is associated with each unique plan and all query points are colored with their

associated plan colors. Finally, the rest of the diagram is colored by painting the region

around each point with the color corresponding to its plan to produce the complete plan

diagram. Note that, as the optimizer also returns the estimated execution cost and result

3



cardinality along with the optimal plan, the “cost diagram” and “cardinality diagram”

[11] are automatically generated while generating the plan diagram.

The above exhaustive approach is acceptable for smaller diagrams which have either

low-dimension (1D and 2D) query templates or coarse resolutions (upto 100 points per

dimension) or both. However, it becomes impractically expensive for higher dimensions

and fine-grained resolutions due to the multiplicative growth in overheads. For example,

a 2D plan diagram with a resolution of 1000 on each selectivity dimension, or a 3D

plan diagram with a resolution of 100 on each dimension, both require invoking the

optimizer a million times. Even with a conservative estimate of about half-second per

optimization, the total time required to produce the picture is close to a week! Therefore,

although optimizer diagrams have proved to be very useful, their high-dimension and/or

fine-resolution versions pose serious computational challenges. Two obvious mechanisms

to lower the computational time overheads are – (a) Customize the resolution on each

dimension to be domain-specific – for example, coarse resolutions may prove sufficient for

categorical data, and (b) Use computational units in parallel to leverage the independence

between the optimizations of the individual query points, resulting in concurrent issue of

multiple optimization requests.

In this thesis we consider how we can supplement the above remedies, which may

not always be applicable or feasible, through the use of generic algorithmic techniques.

Though, perfect diagrams (exactly identical to that obtained with exhaustive approach)

are highly desirable, we have observed that it may not be possible to achieve in a generic

situation. Specifically, our non-intrusive approaches, which treat the optimizer as a black-

box, are unable to deliver perfect diagrams without incurring a overhead almost similar to

the exhaustive approach. Therefore, we have to take recourse to generating approximate

diagrams instead - the silver lining is that, extensive experimentation with benchmark

queries has shown that our non-intrusive techniques can deliver highly accurate optimizer

diagrams while incurring overheads almost an order of magnitude lower than the exhaus-

tive approach. Our intrusive techniques on the other hand are able to deliver perfect
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optimizer diagrams with significantly lower overheads.

Approximate Plan Diagrams

To evaluate the efficiency of our approximation techniques we define the following metrics.

We denote the exact plan diagram as P and the approximation as A. There are two

categories of errors that can arise in the plan diagram approximation process:

Plan Identity Error (εI): This metric considers the possibility of the approximation

missing out a subset of the plans present in the exact plan diagram. It is computed

as the percentage of plans lost in A relative to P. This error is challenging to control

since a majority of the plans appearing in plan diagrams, as seen in Figure 1.2(a),

are very small in area and therefore hard to find.

Plan Location Error (εL): This metric considers the possibility of incorrectly assign-

ing plans to query points in the approximate plan diagram. It is computed as the

percentage of incorrectly assigned points in A relative to P. This error is also chal-

lenging to control since the plan boundaries, as seen in Figure 1.2(a), can be highly

non-linear and are sometimes even irregular in shape.

Approximate Cost and Cardinality Diagrams

The approximation techniques also cause errors in the cost and cardinality diagrams in

two ways:

Wrong plan choice: The wrong plan choices induced by the plan diagram approxima-

tion process can cause a wrong estimated cost value, if we generate the approximate

cost diagram by explicitly costing plans (assigned by the plan diagram approxima-

tion process) at each point. Note that, cardinality diagrams are not affected by this

type of error as cardinality is not a function of plan.
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Figure 1.3: Algorithm Hierarchy

Wrong interpolation: Even if the plan diagram is perfect, the associated cost and

cardinality diagrams can contain errors, if they are generated through interpolation

techniques based on the mathematical models of plan behavior over the parameter

space. This interpolation technique is used where we do not have the facility to cost

a plan explicitly at any point.

We measure the errors that arise out of the above causes, through a set of metrics including

maximum error and root mean square error. We will not discuss the approximation

strategies used for cost and cardinality diagrams, in this thesis. A detailed study of these

strategies and their efficiencies is presented in [2].

Diagram Generation Techniques

To show that the ability to reduce overheads directly depends on the plan-related func-

tionalities offered by the optimizer’s API, we classify the universe of query optimizers into

the following three categories and propose customized diagram generation techniques for

each class.

Class I: OP Optimizers. This class refers to the generic cost-based optimizers, where

the API only provides the optimal plan (OP), as determined by the optimizer, for

a user query. The diagram generation strategies for this class are approximation
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algorithms, which are based on a combination of sampling and inference. The

sampling techniques include both classical random sampling and grid sampling,

while the inference approaches rely on nearest-neighbor (NN) classifiers [14] and

parametric query optimization (PQO) [9, 10]. To produce cost (and cardinality)

diagrams for this class of optimizers, we rely on linear least square regression method

based on mathematical models of plan behavior (and cardinality behavior) over the

parameter space.

Class II: OP + FPC Optimizers. This class of optimizers additionally provide a

“foreign plan costing” (FPC) feature in their API, that is, of costing plans at any

point in the selectivity space. Specifically, the feature supports the following sce-

nario: “What is the estimated cost of plan p if utilized at query location q?”. FPC

has become available in the current versions of some industrial-strength optimiz-

ers, including DB2 (Optimization Profile), SQL Server (XML Plan), and Sybase

(Abstract Plan). The algorithms designed for class I optimizers take advantage

of the FPC feature in some situations which are ambiguous to them and thereby

provide approximation abilities with lower computational overheads as compared

to the class I. The cost and cardinality diagrams for this class can be produced

by explicitly costing the plans at the points, where they are assigned by the plan

diagram approximation algorithms.

Class III Optimizers: This class of optimizers, provides three additional features apart

from the optimal plan and FPC – (a) “subplan-caching” strategy, where, the sub-

plans which are predicted to be constant through-out a significant portion of the

selectivity space, are cached and reused across multiple optimizations. (b) “pilot-

passing”, which accepts a cost value with the query, and during optimization pro-

cess, prunes every path which exceeds that cost value. And (c) “plan-rank-list”

(PRL), which along with the optimizer’s default choice of best plan, also provides

the top k plans for the query. For example, with k = 2, both the best plan and the

second-best plan are obtained when the optimizer is invoked on a query. The above

three strategies collectively represent our intrusive set of algorithms and they are
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capable of delivering perfect plan diagrams. The cost and cardinality diagrams are

automatically generated for class III algorithms during the plan diagram generation

process, as will be explained later.

All the algorithms presented in this thesis are shown in 1.3 in a hierarchical form. To

the best of our knowledge, the above mentioned three features are not yet available in any

of the industrial-strength optimizers. Therefore, we investigate their utilities through our

own implementation in PostgreSQL [16] optimizer kernel. Note that, we also implement

FPC in PostgreSQL, as this facility is not supported by the optimizer’s API.

Evaluation of Diagram Generation Techniques

We have adopted different approaches to evaluate our approximation and perfect diagram

generation strategies. We have quantitatively assessed the efficacy of the various approxi-

mation strategies, with regard to plan identity and location errors, using a representative

suite of multi-dimensional TPC-H-based query templates on leading commercial optimiz-

ers. Our experiments consider the scenario where the user expected error is no more than

10 percent on both plan identities and plan locations. We can achieve this target for Class

I (OP) optimizers with only around 15% overheads of the brute-force exhaustive method.

To put this in perspective, the earlier-mentioned one-week plan diagram can be produced

in less than a day. An example of an approximate diagram (having 10% identity and 10%

location error) is shown in Figure 1.2(b), with all the erroneous locations marked in black

– as can be seen, the effect of identity error is visually negligible and the location error

due to approximation is thinly spread across the diagram and largely confined to the plan

transition boundaries. For Class II (OP+FPC) optimizers, a similar error performance is

achieved with only around 10% overhead. The quality evaluation of cost and cardinality

diagrams for class I and class II optimizers, are not presented in this thesis. We request

the reader to refer to [2] for a detailed study of the same.

On the other hand, as the diagrams produced by our intrusive techniques contain

no error, we evaluate the efficiency of the various strategies through their capability of

bringing down computational overheads. The three intrusive techniques mentioned earlier,
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are able to achieve the perfect diagrams with around 10% – 70% overheads.

We summarize our evaluation in Table 1.1. As can be seen, our results indicate

that – (a) accurate approximations of plan diagrams can indeed be obtained cheaply and

consistently and (b) perfect diagrams can be obtained with significantly lower overheads

than compared to the exhaustive approach. Note that, our algorithms for class I and

class II are unable to produce perfect diagrams without optimizing all the query points

in selectivity space.

Optimizer Overheads
Class Approximation Perfect

(Bound = 10%) Diagram
Class I 1% – 15% 100%
Class II 1% – 10% 100%
Class III – 10% – 70%

Table 1.1: Evaluation Summary

Organization

The remainder of this thesis is organized as follows: The non-intrusive approximation

algorithms for class I and class II are presented in Section 2. The intrusive techniques

for class III are presented in Section 3. Section 4 outlines the design issues and the

implementation challenges. Our experimental framework and performance results are

highlighted in Section 5. Finally in Section 6, we outline the future research avenues and

conclude this thesis.
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Chapter 2

Non-Intrusive Algorithms

As explained earlier, our non-intrusive techniques are basically approximation algorithms.

For ease of presentation, we will assume in the following discussion that the query template

is 2D – the extension to n-dimensions is straightforward and given in [4]. The exact plan

diagram is denoted by P and the approximation as A, with the total number of query points

in the diagrams denoted by m. Each query point is denoted by q(x, y), corresponding

to a unique query with selectivities x, y in the X and Y dimensions, respectively. The

terms pP (q) and pA(q) are used to refer to the plans assigned to query point q in the

P and A plan diagrams, respectively (when the context is clear, we drop the diagram

subscript). Finally, the plan identity and plan location errors of an approximate diagram

are defined as εI =
|P | − |A|
|P | ∗ 100 and εL =

|pA(q) 6= pP (q)|
m

∗ 100, respectively. The

approximation techniques should ideally ensure that εI ≤ θI and εL ≤ θL, where θI and

θL are the user-specified bounds on these metrics. In practice, the actual errors should be

in the close proximities of user given bounds.

2.1 Class I Optimizers

The approximation procedures for this class of optimizers proceed through interleaved

phases of Optimization and Inference. The random sampling based technique uses sta-

tistical estimators, as well as a heuristic to stop the optimization phase whereas the grid

10



sampling based algorithm relies only on heuristics based on experimental results for the

same.

2.1.1 Random Sampling with NN Inference (RS NN)

In the RS NN algorithm, we first use the classical random sampling technique to sample

query points from the plan diagram that are to be optimized during the optimization

phase and then assign plans to all non-optimized points in the inference phase. The

optimization phase has two separate passes, each of which is terminated based on our two

different error metrics. The stopping criterion for the first pass is based on the identity

error metric. To estimate the plan cardinality in the plan diagram we use the classical

statistical problem of finding distinct classes in a population [1], from which we obtain

the following: Let s samples be taken from the plan diagram, let ds be the number of

distinct plans in these samples, and let f1 denote the number of plans occurring only once

in the samples. Then, it is highly likely that the number of distinct plans, d, in the entire

plan diagram is in the cardinality range [ds, dmax], where

dmax = (
m

s
− 1)f1 + ds (2.1)

If sampling is iteratively continued until ds is within θI of dmax, then it is highly

likely that the number of plans found thus far in the sample is within θI of d. But

our experience, as borne out by the experimental results given in [4], has been that the

above stopping condition may be too conservative in that it takes many more samples

than is strictly necessary. Therefore to refine the stopping condition, we use d̂GEE, the

guaranteed-error-estimator (GEE) for d, defined in [1] as

d̂GEE = (

√
m

s
− 1)f1 + ds (2.2)

which has an expected ratio error bound of O(

√
m

s
).

So the first pass of the RS NN algorithm optimization phase terminates in two steps

as follows: After ds increases to a value within a (1 − δ) factor of dmax, we continue the

11



sampling until ds reaches to within a (1− θI) factor of d̂GEE. The value of δ conducive to

good performance results has been empirically determined to be 0.3. The intuition behind

this method is that once the gap between ds and dmax has narrowed to a sufficiently small

range, then the guaranteed-error-estimator can be used as a reliable indicator of the plan

cardinality in the diagram.

The second pass of the optimization phase is terminated based on the location error

metric. To estimate the location error, we take recourse to heuristic, which, based on the

plans present in the neighborhood of a point, estimates the expected contribution of that

point towards the overall location error. The intuition behind this heuristic is presented

in [2]. We will not present the details of this heuristic in this thesis.

Inference. After the completion of the sampling phase, the plan choices at the un-

optimized points of the plan diagram need to be inferred from the plan choices made

at the sampled points. This is done using a Nearest Neighbor (NN) style classification

scheme [14]. Specifically, for each unoptimized point qu, we search for the nearest opti-

mized point qo, and assign the plan of qo to qu. If there are multiple nearest optimized

points, then the plan that occurs most often in this set is chosen, and in case of a tie on

this metric, a random selection is made from the contenders. The distance between two

query points is calculated using Chessboard Distance Metric which is most suitable, since

the transition boundaries between plans often tend to be aligned along the axes of the

selectivity space.

Low Pass Filter (LPF). Inference using the NN scheme is well-known to result in

boundary errors [14] – in our case, along the plan optimality boundaries. To reduce

the impact of this problem, we apply a low-pass filter [5] after the initial inference has

assigned plans to all the points in the diagram. The filter operates as follows: For each

unoptimized point qu, all its neighbors (both optimized and unoptimized) at a distance

of one, are examined to find the plan that is assigned to more than half of the neighbors.

If such a plan exists, it is assigned to qu, otherwise the original assignment is retained.

The functioning of the RS NN algorithm is illustrated in Figure 2.1 – in this set

of pictures, each large dot indicates an optimized query point, whereas each small dot

12



(a) Optimize (b) Infer (c) Filter

Figure 2.1: Execution Stages of the RS NN Algorithm

indicates an inferred query point. The initial set of optimized sample query points is

shown in Figure 2.1(a), and the NN-based inference for the remaining points is shown

in Figure 2.1(b). Applying the LPF filter results in Figure 2.1(c) – note that the center

query point, which has an (inferred) red plan in Figure 2.1(b), is re-assigned to the blue

plan in Figure 2.1(c).

2.1.2 Grid Sampling with PQO Inference (GS PQO)

We now turn our attention to an alternative approach based on grid sampling. Here, a

low resolution grid of the plan diagram is first formed, which partitions the selectivity

space into a set of smaller rectangles. The query points corresponding to the corners of

all these rectangles are optimized first. Subsequently, these points are used as the seeds

to determine which of the other points in the diagram are to be optimized.

Specifically, if the plans assigned to the two corners of an edge of a rectangle are

the same, then the mid-point along that edge is also assigned the same plan. This is

essentially a specific inference based on the guiding principle of the Parametric Query

Optimization (PQO) literature (e.g. [9]): “If a pair of points in the selectivity space have

the same optimal plan pi, then all locations along the straight line joining these two points

will also have pi as their optimal plan.” Though the observations in [11] indicate that for

industrial-strength optimizers, this principle is frequently violated, we are applying PQO

only at a “micro-level”, that is, within the confines of a small rectangle in the selectivity
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space where PQO generally holds.

When the plans assigned to the end points of an edge are different, then the midpoint

of this edge is optimized. After all sides of a given rectangle are processed, its center-point

is then processed by considering the plans lying along the “cross-hair” lines connecting

the center-point to the mid-points of the four sides of the rectangle. If the two end-

points on one of the cross-hairs match, then the center-point is assigned the same plan

(if both cross-hairs have matching end-points, then one of the plans is chosen randomly).

If none of the cross-hairs has matching endpoints, the center-point is optimized. Now,

using the cross-hairs, the rectangle is divided into four smaller rectangles, and the process

recursively continues, until all points in the plan diagram have been assigned plans.

(a) Initial Grid (b) Mid Points (c) Cross Hairs

Figure 2.2: Execution of GS PQO Algorithm

The progress of the GS PQO algorithm is illustrated in Figure 2.2 with the same

convention. Figure 2.2(a) shows the state after the initial grid sampling is completed.

Then, the ‘?’ symbols in Figure 2.2(b) denote the set of points that are to be optimized

in the following iteration as we process the sides of the rectangles. Finally, Figure 2.2(c)

enumerates the set of points that are to be optimized while processing the cross-hairs.

A limitation of the GS PQO algorithm is that it may perform a substantial num-

ber of unnecessary optimizations, especially when a rectangle with different plans at its

endpoints features only a small number of new plans within its enclosed region. This is

because GS PQO does not distinguish between sparse and dense low-resolution rectan-

gles. We attempt to address this issue by refining the algorithm in the following manner:
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Assign each rectangle R with a “plan-richness” indicator ρ(R) that serves to character-

ize the expected plan density in R, and then preferentially assign optimizations to the

rectangles with higher ρ.

Our strategy to assign ρ values is as follows: Instead of merely making a boolean

comparison at the corners of the rectangle as to whether the plans at these points are

identical or not, we now compare the plan operator trees associated with these plans in

order to estimate interior plan density. The detailed study of Plan Tree Differencing

techniques is given in [3]. We use it as a black-box in this thesis.

Plan Richness Metric. We now describe the procedure to quantify plan richness in

terms of plan-tree differences. Our formulation uses |Ti| and |Tj| to represent the number

of nodes in plan-trees Ti and Tj, respectively, and |Ti∩Tj| to denote the number of match-

ing nodes between the trees. Now, ρ is measured as the classical Jaccard Distance [14]

between the trees of the two plans, and is computed as

ρ(Ti, Tj) = 1− |Ti ∩ Tj|
|Ti ∪ Tj| (2.3)

While Equation 2.3 works for a pair of plans, we need to be able to extend the metric to

handle an arbitrary set of plans, corresponding to the corners of the hyper-rectangle in

the selectivity space. Given a set of n trees {T1, T2, . . . , Tn}, this is achieved through the

following computation:

ρ(T1, . . . , Tn) =

∑n
i=1

∑n
j=i+1 ρ(Ti, Tj)(

n
2

) (2.4)

Note that the ρ values are normalized between 0 and 1, with values close to 0 indicating

that all the plans are structurally very similar to each other, and values close to 1 indi-

cating that the plans are extremely dissimilar. Our experiments have confirmed that ρ is

indeed a good indicator of plan density. As an example, Figure 2.3 shows a plan diagram

with a grid and the calculated ρ values for each of the grid rectangles. As can be seen,

the ρ values are clearly indicating, which portion of the plan diagram is dense with plans

(0.33 value at lower-left rectangle) and which portion is sparse (0.09 value at lower-right

rectangle).
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Figure 2.3: ρ as Plan Richness Indicator

We now describe how GS PQO utilizes the above characterization of plan-tree-

differences. First, the grid sampling procedure is executed as mentioned earlier. Then,

for each resulting rectangle, the ρ value is computed based on the plan-trees at the four

corners, using Equation 2.4. The rectangles are organized in a max-Heap structure based

on the ρ values, and the optimizations are directed towards the rectangle Rtop at the top

of the heap, i.e. with the current highest value of ρ. Specifically, the PQO principle is

applied to the mid-points of all qualifying edges (those with common plans at both ends

of the edge) in Rtop, and all the remaining edge mid-points are explicitly optimized. The

rectangle is then split into four smaller rectangles, for whom the ρ values are recomputed,

and these new rectangles are then inserted into the heap.This process continues until all

the rectangles in the heap have a ρ value that is below a threshold ρt. The threshold is a

function of the θI and θL bounds given by the user, with lower thresholds corresponding

to tighter bounds.

As per the study presented in [4], setting the threshold equal to the identity error

bound, i.e. ρt = θI (e.g. for θI = 10%, ρt = 0.1), is a conservative heuristic that is

sufficient to meet user expectations on identity error metric. To tame the location error,

we devise another heuristic which estimates the expected location error (ε̂L) based on the

inferred points so far. For detailed study of this heuristic, refer to [2]. Therefore, the
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initial phase of GS PQO terminates in two steps. First, on meeting the condition that

ρ(Rtop) ≤ θI and then, on ensuring that ε̂L ≤ θL.

Final Inference. After both the conditions are met, all the remaining rectangles in

the heap are processed in the following way: The same PQO-based inference scheme is

used with the only difference being that whenever an edge has different end-points, then

the plan assignment of the mid-point is done by randomly choosing one of the end-point

plans, rather than resorting to explicit optimization.

2.2 Class II Optimizers

In the algorithms described above for the Class I optimizers, we run into situations wherein

we are forced to pick from a set of equivalent candidate plans in order to make an as-

signment for an unoptimized query point. For example, in the RS NN approach, if there

are multiple nearest neighbors with different plans at the same distance. Similarly, in the

final inference phase of GS PQO approach, where there are unassigned internal points in

any rectangle. The strategy followed as far is to make a random choice from the closest

neighboring plans. As the success probability in random selection technique decreases

with the increasing number of candidates, class I algorithms suffer from large amount of

location errors near the plan boundaries and dense regions. The only way to avoid this

error is to allow more samples which in turn increases the computational overhead.

For Class II optimizers, however, which offer a “foreign plan costing” (FPC) feature,

we can make a more informed selection: Specifically, cost all the candidate plans at the

query point in question, and assign it the lowest cost plan. In cost-based optimizers, this

strategy makes perfect sense and significantly helps in reducing the plan-location error,

since it enables precise demarcation of the boundaries between plan optimality regions.

This means that we can make the thresholds stronger than that of Class I algorithms

which will in turn reduce the overhead as the costing of plans is much cheaper than

optimizing a query [10].
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Chapter 3

Intrusive Algorithms

We now move on to presenting our intrusive techniques for the Class III optimizers. We

present in this section, the customized features we incorporated into the optimizer kernel

and the algorithms which leverage them to produce perfect optimizer diagrams.

Specifically, we discuss (a) Subplan-Caching technique, which is minimally intru-

sive in nature and speeds up an individual optimization process to collectively reduce

the diagram generation overhead even if all points are optimized, (b) Pilot-Passing

technique, which requires further more modifications to dynamic programming based op-

timization process (than the Subplan-Caching technique) and again speeds up the an

individual optimization to bring down the overall diagram generation overhead, and (c)

PlanFill algorithm, which needs significant amount of changes in optimizer and uses

the plan-rank-list (PRL) and foreign plan costing (FPC) features to generate perfect di-

agrams while optimizing only a small subset of points in the selectivity space. Also, the

first technique is most generic in the sense that, it does not depend on any assumption

about optimizers. The other techniques are however based on a certain assumption about

optimizer’s cost behavior over the selectivity space.
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select C.c custkey, C.c name, C.c acctbal, N.n name,
C.c address, C.c phone

from customer C, orders O, lineitem L, nation N
where C.c custkey = O.o custkey
and L.l orderkey = O.o orderkey
and C.c nationkey = N.n nationkey
and O.o totalprice :varies
and L.l extendedprice :varies

(a) Query Template

(b) DP Lattice

Figure 3.1: Example Query Template and DP Lattice

3.1 The Subplan-Caching based Optimization

Our first intrusive strategy, the Subplan-Caching technique is minimally intrusive in na-

ture and does not depend on any assumption about the behavior of optimizers. Consider

the query shown in Figure 3.1(a), which is the SPJ version of the query 10 of TPC-H

benchmark. Here, selectivity variations on the orders and lineitem relations are specified

through the O.o totalprice :varies and L.l extendedprice :varies predicates, respectively. The

DP lattice for this query is shown in Figure 3.1(b), with the nodes (representing different

sub-plans) shown as rectangles. The set of relations associated with any node is also shown

(e.g. the label CO indicates that, the node is considering join between customer and or-

ders). If orders and/or lineitem is present in any node, it is shown as double-bordered

rectangles. Now, during optimizer diagram generation, we will vary the selectivities of

orders and lineitem, which in turn affect the cardinality estimation (and therefore cost)
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of all those double-bordered rectangles. Hence, the choice of optimal sub-plan (or plan

at root node) at those nodes may vary across selectivity space. We refer to these type

of nodes as the “dependent” nodes. The remaining nodes (e.g. nodes NC, N and C in

Figure 3.1(b)) are not affected by the changing selectivity, and we refer to these nodes as

the “independent” nodes. The following theorem lays the basis of our Subplan-Caching

based diagram generation technique.

Theorem 1 The choice of optimal sub-plan of an independent node, in DP lattice is

constant throughout the selectivity space.

Proof: Suppose, we are generating plan diagram for a query template. Let X be an

independent node in DP lattice. Then by definition, the set of relations associated with

X do not have any selectivity predicate (:varies). Now, suppose at some point q1 in the

selectivity space, the choice of optimal sub-plan from node X is pX and the optimal plan

at that point is Pq1 .

Now, let us assume that, at a different point q2 in the selectivity space (q1 6= q2), the

optimal plan is Pq2 and the choice of optimal sub-plan from node X is changed to pX
′.

As, pX and pX
′ are different sub-plans, their costs will be different. Suppose pX is cheaper

than pX
′. Now, if we replace the sub-plan pX

′ with pX in the plan Pq2 , we will obtain

another plan for point q2 which is cheaper than Pq2 , due to the additive nature of cost in

a plan structure. This new plan is completely valid for q2 because, the sub-plan pX does

not contain any of the base relations, which determines the position of q2 in the selectivity

space. So, we have constructed a plan for q2, which is cheaper than the optimal plan, a

contradiction.

We can leverage this property to generate plan diagrams efficiently, in the following

simple way:

Subplan-Caching: During the first optimization, identify all the independent nodes and

cache their choice of optimal sub-plans in a global structure, inside optimizer kernel.

Subplan-Reuse: In all successive optimizations, do not compute the sub-plans for any

independent node, rather reuse the cached sub-plans.
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Unfortunately, the above technique fails to fetch any significant speedup in the op-

timization process, due to the scarcity of the independent nodes in DP lattice. As we

move up in the lattice, almost all of the nodes become dependent, as is clearly illustrated

by Figure 3.1(b) (only 3 out 10 nodes are independent). The following observation in-

dicates that, more speedup can be extracted from the Subplan-Caching technique, if we

also consider the “partially dependent” nodes.

(a) Selectivity Space (b) DP Lattice

Figure 3.2: Partially Dependent Nodes

Partially Dependent Nodes. Consider the DP lattice shown in Figure 3.1(b). Among

the dependent nodes, there are some members that do not contain both the orders and

lineitem relations. We refer to these nodes as the “partially dependent” nodes. As an

example, take the NCO node. The selectivity variation of relation lineitem will not affect

this node, or in other words, the choice of optimal sub-plan of NCO node will remain

constant, if the selectivity of relation orders is not changed. To put the whole thing

in perspective, consider the selectivity space shown in Figure 3.2(a) for the query in

Figure 3.1(a). When we are optimizing the query q at location (x, y) (x corresponding

to orders and y to lineitem), if we save the sub-plan corresponding to the node NCO, we

can reuse that for query qO at location (x, y′). This is because, the selectivity of relation

orders is same for these two queries. Similarly, if we save the sub-plan for the node L,

we can reuse it while optimizing the query qL at location (x′, y). In Figure 3.2(b), only
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the fully dependent nodes (for the query in Figure 3.1(a))are shown in double-bordered

rectangles. Notice that the total number of independent and partially dependent nodes

are now 7 out of 10.

3.1.1 Subplan-Caching Based Diagram Generation

Depending on the above observation, we augment our plan diagram generation process in

the following way:

Cache Structure: Keep single placeholders for the independent sub-plans and arrays for

partially dependent sub-plans. The size of each array is equal to the resolution (e.g.

100) of the dependent selectivity, for which the plan diagram is being generated.

Initial Caching: First optimize all the diagonal query locations. During the optimiza-

tion of query at location (x, x), copy independent sub-plans at the corresponding

placeholders (if they are not saved already) and copy partially dependent sub-plans

at location x of the corresponding arrays.

Diagram Generation: Now optimize rest of the queries in any order and during each

optimization reuse the appropriate cached sub-plans. More specifically, during the

optimization of query at location (x′, y′), get the independent sub-plans from their

placeholders and get the partially dependent sub-plans from either x′ or y′ location

of the corresponding arrays.

Consider the example shown in Figure 3.3, which illustrates the state of global cache

for the query template of Figure 3.1(a). Figure 3.3(a) highlights the locations (green

boxes), where sub-plans are stored when we are optimizing a query at location (2, 2),

during initial caching phase. Note that the subplans for NC, N and C will be saved

during the optimization of first diagonal point and will never be saved thereafter. Here

we show green rectangle for them to clarify our example only. Figure 3.3(b) points out

the locations (blue boxes), which are accessed during the optimization of a query at

location (4, 1). Note that, the shape of the selectivity space is assumed to be square
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(a) Caching (b) Reuse

Figure 3.3: Caching and Reuse of Sub-Plans

(same resolution on every axis) in the above discussion for the ease of presentation. The

extension to the more general rectangular space is straight-forward.

Limitation of Subplan-Caching technique. Though, the above technique is indepen-

dent from any prior assumption about optimizer’s behavior, it has one weakness. Notice

that, the performance of Subplan-Caching worsens with the increasing dimensionality of

the selectivity space. This is an artifact of decreased number of independent and partially

dependent sub-plans in DP, as a large number of dependent nodes at leaf level (relations

with selectivity predicate) causes majority of the intermediate nodes to become depen-

dent. Therefore, we suggest to use Subplan-Caching technique for selectivity space with

low dimensionality (typically 2D).

3.2 The Pilot-Based Optimization Technique

We now move on to describing the second intrusive algorithm for class III optimizers.

This technique needs a few more modifications to the DP based optimization process

and relies on the Plan Cost Monotonicity assumption about the optimizer. However, like

Subplan-Caching, here also we try to lower the overhead by speeding up an individual

optimization process and thereby collectively reduce the diagram generation overhead.
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This strategy primarily depends on the Pilot-Passing technique which was first suggested

in [12].

3.2.1 The Pilot-Passing Technique

The original idea of speeding up the query optimization process through Pilot-Passing is

described below:

1. Given a query, quickly devise a plan by depth-first-search technique (query optimizer

follows breadth-first-search to construct the optimal plan).

2. Take the cost of this plan as the pilot-cost (cost of the optimal plan can never be

greater than this).

3. Carry out the normal dynamic programming based breadth-first-search with the

exception that, any candidate sub-plan with cost higher than the pilot-cost is pruned

and never considered again in the optimization process.

The above technique is predicated on the fact that, as we move up the DP lattice,

only additive constants are applied to the sub-plans and therefore cost of a particular

sub-plan is always increasing in the optimization process. As the pilot-cost provides an

upper-bound on the cost of the final plan at the root of DP lattice, we can safely prune all

the candidate sub-plans that have costs higher than the pilot-cost. This should speedup

the optimization process, as we will have early pruning of some of the candidates.

Unfortunately, the above technique performs poorly in practice, when implemented

on commercial strength optimizers and tested with benchmark queries. The reason is

the following: The plan search space is exponentially large and therefore contains many

inferior plans, whose cost can be several orders of magnitude away from that of the optimal

plan. If our initial choice of plan (obtained through depth-first-search) turns out to be too

inferior compared to the optimal plan, we will virtually not get any significant speedup

as the costs of almost all candidate sub-plans will be well within the pilot-cost. As a

matter of fact, the efficiency of Pilot-Passing technique relies heavily on obtaining an
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(a) Pilot Region (b) Pilot Selection

Figure 3.4: Pilot-Based Diagram Generation

initial plan which is very close to the optimal plan. While, for an isolated optimization,

this is very hard to achieve (almost as hard as the actual optimization), we can obtain

it very cheaply during optimizer diagram generation. This gives rise to our next perfect

diagram generation strategy which uses Pilot-Passing technique as an API.

3.2.2 Pilot-Based Diagram Generation

Consider the relational selectivity space shown in Figure 3.4(a) involving two relations,

Relation A and Relation B, where we are optimizing the point qe (shown as a blue dot).

Now, according to the PCM principle, any query in the first quadrant of qe (shown as the

grey region) cannot have lower costs than the cost of qe. Also our experience, as borne out

by extensive experimentation on commercial strength optimizers with benchmark queries

suggests, that small changes in selectivity do not cause drastic changes in cost, across

selectivity space. Therefore, the optimal plan cost of a query point qp which is in the first

quadrant of qe, and not very far away from qe (shown as a green dot) can act as a very

efficient pilot-cost, while searching the optimal plan for qe. Depending on this fact, our

Pilot-Passing based diagram generation works in the following way:

We start generating the plan diagram from top-right corner in reverse row-major order.

During the optimization of any point, we check if there is any previously optimized point
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present in the first quadrant. If such a point is found, its cost is sent to the optimizer as

the pilot-cost. We stop when all the points are optimized.

Pilot Selection. Specifically, from the first quadrant of qe, we choose the point which

is at distance of 1 from qe along each dimension (At border cases we consider only the

valid dimensions). Figure 3.4(b) shows several examples of query points (blue dots) and

their corresponding pilots (green dots) in a 2D selectivity space with resolution of 5 along

each dimension. Note that the top-right point (red dot) does not have a pilot and its

optimization has to be carried out normally.

3.3 The PlanFill Algorithm

The PlanFill algorithm, our third and final intrusive technique is an inference based

algorithm which uses the PRL and FPC features incorporated in class III optimizers.

Specifically, it assumes that on each invocation, the optimizer returns both best and

second-best plans (i.e. PRL with k = 2). Unlike the first two techniques, PlanFill

achieves speedup by reducing total number of optimizations, carried out to produce the

plan diagram. Also, this technique is the most instrusive in nature and significantly modify

the normal course of DP. We now take a detour to present the strategies incorporated for

(a) generating second-best plan (PRL) and (b) costing any plan at any point (FPC), in

the optimizer kernel.

3.3.1 Generating Second-Best Plans

Modern query optimizers are based on the dynamic programming (DP) based search

described in [13], to obtain the cost-optimal plan for a query. Given a query associated

with multiple relations, the query optimizer searches for the best query execution plan

by finding the best join strategy for successively larger subsets of relations [13]. Further,

the join-graph is evaluated to reduce the search space to only meaningful join orders. At

each step, sub-plans having neither least cost nor some cheapest interesting order [13]

are pruned. After termination of the search process, the least cost plan from the root of
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(a) Top 2 plans at root of
DP Lattice

(b) Pruned sub-plan (c) Additive Second Best
Plan Search

Figure 3.5: Example of DP Lattice

this search tree is chosen. Generating the second-best plan at first glance from this search

tree seems to be obvious and trivial - sort all the plans available at the root according

to their cost and choose the second-best from this list. Unfortunately, this will not work

as some plans may get pruned early in the search process while being compared to the

best plan and may not appear in the final root node of the search tree. As an example,

consider Figure 3.5(a) which shows a sample DP-Lattice. The path structure of best plan

(solid-red) and its 2nd sibling (dotted-blue), which reached the root (i.e. ABCDE of the

DP lattice) are shown here. A possible candidate of second-best plan e.g. the sub-plan

shown in Figure 3.5(b) got pruned earlier. As can be seen from this figure, the node ADE

pruned the join order A ./ DE as compared to AD ./ E (best plan) for being costlier at

this sub-plan level.

We now propose the strategy of generating second-best plan by augmenting the stan-

dard DP procedure.

Additive Second Best Plan Search. In this strategy, we expand the candidate set

of sub-plans at each node of the DP lattice. The expanded set contains the second-

best strategy for generating the sub-plan represented by that node in addition to the

optimizer’s default choice. Both these sub-plans are propagated to the higher level of the

DP lattice. As shown in Figure 3.5(c), the dotted lines depict the path of the second-best

sub-plans at the respective node e.g. now both the paths for generating the node ADE

i.e. AD ./ E and A ./ DE are retained. In this expansion process, the true second-best
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plan will be explicitly found at the root node. One issue with this approach is that it

would now require four times the optimization overhead at each node for enumerating all

possible combinations among the pairs of sub-plans arriving from lower level nodes. For

example, at node ABCDE, it would require to individually compute the best combination

strategy for (AD ./ E) ./ BC, for (AD ./ E) ./ CB, for (A ./ DE) ./ BC, and for

(A ./ DE) ./ CB, considering CB is the 2nd best way of generating (B ./ C).

However, we can optimize on the above by realizing that the best combination strategy

will be the same for all four options i.e. the best join strategy identified for (AD ./

E) ./ BC and (A ./ DE) ./ BC will be same. This is because the strategies are

evaluated in terms of cardinalities and number of distinct values present in BC and

ADE, which is independent of the underlying sub-plans generating them. Therefore,

only one optimization, say (AD ./ E) ./ BC, needs to be carried out, and the results can

be reused for the other three pairs. But a caution: This method of inheriting cost of best-

pair cannot be applied directly to sub-plans with different interesting orders. In case, we

encounter sub-plans having different interesting orders, at least one from each different

interesting orders have to be costed explicitly. But practically for TPC-H templates,

we have observed that during DP procedure the number of sub-plans having interesting

orders is much lesser compared to the number of sub-plans without any interesting orders.

3.3.2 Foreign Plan Costing

A plan tree is costed by optimizer in a bottom-up procedure. A leaf node, which corre-

sponds to a base relation is costed according to the estimated number of rows (cardinality),

that can participate in the query from that relation. Any intermediate node is costed de-

pending on the estimated number of rows of its children (or child in case of a unary node).

Therefore, the cost of a plan tree is primarily governed by the cardinality estimates of the

base relations.

Now, as per the discussion in Section 1, each query in the selectivity space is uniquely

identified by the associated base relation selectivities. Therefore, given a plan tree for a

particular query location q1, if we simply change the cardinality estimates of base relations

28



PlanFill (QueryTemplate QT )

1. Let A be an empty plan diagram.

2. Set q = (xmin, ymin)

3. while (q 6= null)

(a) Optimize query template QT at point q.
(b) Let p1 and p2 be the optimal and second-best plan at q, respectively.
(c) for all points q′ in the first quadrant of q

if (c1(q
′) ≤ c2(q)), assign plan p1 to q′

(d) Set q = next unassigned query point in A

4. Return A

Figure 3.6: The PlanFill Algorithm

(leaf nodes), we will obtain a plan for a different query q2 in the same selectivity space.

Note that, this plan may not be optimal at the new query location but if we carry out

the costing procedure on this modified plan, we will eventually get the cost of that plan

at this new location. This is supported by the fact that, primary inputs of plan-costing

are the base relation cardinality estimates.

Therefore our strategy for costing a plan P at a foreign query location qf is as follows:

1. Get the base relation selectivities associated with the query qf .

2. In the plan tree of P , visit the appropriate leaf nodes and inject the constants

corresponding to the new selectivities into those nodes, by modifying the associated

restriction clauses.

3. Cost this modified plan tree through the usual costing process of optimizer.

We now present the PlanFill algorithm which uses the second-best plan and the foreign

plan costing as APIs present in the optimizer and produces the plan diagram in a manner

similar to the well-known “flood-fill” [15] algorithm.
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3.3.3 The PlanFill Algorithm

The PlanFill algorithm for a 2D query template is shown in Figure 3.6. The algorithm

starts with optimizing the query point q(xmin, ymin) corresponding to the bottom-left

query point in the plan diagram. Let p1 be the optimizer-estimated best plan at q, with

cost c1(q), and let p2 be the second best plan, with cost c2(q). We then assign the plan p1

to all points q′ in the first quadrant relative to q as the origin, which obey the constraint

that c1(q
′) ≤ c2(q). After this step is complete, we then move to the next unassigned

point in row-major order relative to q, and repeat the process, which continues until no

unassigned points remain.

This algorithm is predicated on the Plan Cost Monotonicity (PCM) assumption,

that the cost of a plan is monotonically non-decreasing with the increasing selectivity,

throughout the selectivity space, which is true in practice for most query templates on all

industrial-strength query optimizers [7].

The following theorem proves that the PlanFill algorithm will exactly produce the

true plan diagram P without any approximation whatsoever. That is, by definition, there

are no plan-identity and plan-location errors.

Theorem 2 The plan assigned by PlanFill to any point in the approximate plan diagram

A is exactly the same as that assigned in P.

Proof: Let Po ⊆ P be the set of points which were optimized. Consider a point q′ ∈ P\Po

with a plan p1. Let q ∈ Po be the point that was optimized when q′ was assigned the plan

p1. Let p2 be the second best plan at q.

For the sake of contradiction, let pk (k 6= 1), be the optimal plan at q′. We know that

for a cost-based optimizer, ck(q
′) < c1(q

′). This implies that ck(q
′) < c2(q) (due to the

algorithm). Using the PCM property, we have ck(q) ≤ ck(q
′) ⇒ c1(q) ≤ ck(q) < c2(q).

This means that p2 is not the second best plan at q, a contradiction.
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Limitation of PCM Assumption

The PlanFill and Pilot-Passing techniques of generating optimizer diagrams, rely on the

assumption of PCM and this assumption holds true for majority of the benchmark queries

on commercial strength optimizers. But, in few cases we have also observed optimizer

diagrams, violating the PCM principle [7]. In such a situation, the PlanFill algorithm will

produce erroneous optimizer diagrams, as the Theorem 2 does not hold true any more.

Even worse, the Pilot-Passing technique will fail to produce a complete plan for some of

the queries. Specifically, where pilot-cost is lesser than the optimal plan cost, the entire

search space will be pruned and an empty candidate set will be produced at the final level

of DP (we need to resort to a fresh optimization from scratch, if such a situation arises).

The Subplan-Caching technique however is independent of any prior assumption about

the optimizer’s behavior.

Cost and Cardinality Diagrams

The cost and cardinality diagrams for class III algorithms are automatically generated

during plan diagram generation process. The PlanFill algorithm generates perfect cost

and cardinality diagram, as every point in the selectivity space is either optimized or costed

using FPC. The Pilot-Passing and Subplan-Caching techniques optimize every point in

the selectivity space and therefore, produce perfect cost and cardinality diagrams.
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Chapter 4

Implementation Details

All of the algorithms described in Section 2 and 3 are implemented in the Picasso database

query optimizer visualizer tool [17] and PostgreSQL [16]. We present a rough summary

of implementation details in this chapter.

4.1 Picasso

Picasso query optimizer visualizer facilitates the generation of optimizer diagrams. The

non-intrusive approximation techniques are implemented in Picasso by modifying the

diagram generation process according to our proposed strategies. The intrusive techniques

also need modification of the diagram generation process. As an example, to utilize Pilot-

Passing, the diagrams need to be generated in reverse-row-major order, and to utilize

Subplan-Caching, all diagonal points need to be optimized prior to any other point etc.

4.2 PostgreSQL

We have used PostgreSQL 8.3.7 [16] optimizer kernel to implement our intrusive strategies.

The four major components of our implementation are described below:

Subplan-Caching. Subplan-Caching can be implemented in the optimizer kernel, with

a few changes, as described below:
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1. The data structure of a DP node needs to be augmented with a flag to indicate

whether the node is dependent, independent or partially dependent.

2. A global array structure is needed to hold the cached sub-plans.

3. The location of the query in the selectivity space needs to be provided to the opti-

mizer.

In our implementation, all these took around 200 additional lines of code in the Post-

greSQL optimizer kernel and the global array to save sub-plans, incurs an additional

memory overhead of a few kilobytes.

Pilot-Passing. Implementing the Pilot-Passing technique (as described in section 3.2.1)

requires modest changes in a optimizer kernel. Though our implementation in PostgreSQL

took only around 100 lines of code, Pilot-Passing alters the course of DP more than the

Subplan-Caching in a logical sense. The pruning is carried out in the following way:

Suppose two nodes are being considered for join, in DP. If any of them has a cost higher

than the pilot-cost, we can reject that particular join immediately. This saves the time of

enumerating and costing all possible join methods for those two nodes.

Second Best Plan. We have implemented the additive strategy of generating the second

best plan (as described in Section 3.3.1) in PostgreSQL. The implementation includes:

1. Augmenting the data structure of a node in DP to store the second best sub-plan.

2. Enumerating all combinations between two pairs of sub-plans, through cost inheri-

tance, at every non-leaf node of DP.

We have observed that the increased space required for expanding the candidate sub-

plans went up to maximum 10MB (the original DP takes roughly 6MB), which is quite

reasonable with the current resource-rich systems. The additional time overhead for

retrieving second-best plan is observed to be roughly few milliseconds more than the

standard optimization. The coding effort required was adding or modifying around 200

lines of code.
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Foreign Plan Costing. Implementing FPC in PostgreSQL was not straight-forward,

because of the following behavior of the optimizer:

1. PostgreSQL maintains Path structure for all of the nodes in DP to hold candidate

sub-plan information. But from the join root of DP to the plan root (i.e. in the

plan stem), a less complex structure Plan is used to hold the final plan. During this

conversion, a lot of useful DP related information is discarded, which is required to

cost the plan later.

2. PostgreSQL caches certain temporary results during optimization and reuses them.

These cached values are discarded on completion of an optimization but they are

required if we want to cost a plan later.

Because of these issues, the entire costing module (roughly 5K lines of code) needed to

be replicated and certain additional data structures were added to store information from

Path structure and to carry around the cached values during a run of FPC.

Apart from these four major components, we also modified the parser module of Post-

greSQL, for passing additional information like pilot-cost, query location etc. to the

optimizer. For example, instead of using normal explain < query >, we use explain

pilot(< pilot− cost >) < query > and explain subplan(< cache/reuse >,< relation >,<

position >,...) < query > for invoking the Pilot-Passing and Subplan-Caching respec-

tively.
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Chapter 5

Experimental Results

The testbed used in our experiments is the Picasso optimizer visualization tool [17].

The experiments were conducted over optimizer diagrams produced from a variety of

two, three, and four-dimensional TPC-H based query templates. QTx refers to a query

template based on Query x of the TPC-H benchmark. The optimizer diagrams were

generated for a commercial optimizer anonymously referred to as OptCom, and the public-

domain optimizer PostgreSQL. We present only a representative set of results in this

thesis.

Table 5.1 shows the algorithmic efficiency of the RS NN and GS PQO algorithms

relative to the brute-force exhaustive approach for a variety of multi-dimensional query

templates, under a θI , θL = 10% constraint. The efficiency is presented both in terms

of actual time, as well as in terms of the number of optimizations that were carried

out. We see in Table 5.1 that the RS NN algorithm requires a substantial amount of

time, or equivalently, number of optimizations, to generate the approximate plan diagram

(e.g. 27% optimizations required for 3D version of query template QT9 ). On the other

hand, GS PQO exhibits a much better performance (10% for the same template) – in

fact, our experience has been that it needs less than 15% of the exhaustive time across all

templates. The actual values of identity and location errors are also presented in the table,

which are never materially larger than the user given error bounds, clearly highlighting

the approximation ability of our algorithms.
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Query No. Approximation Optimizations RS NN GS PQO
Dimension / Temp- of Gen Time Taken Required (%) Error(%) Error(%)
Resolution -late Plans Time RS NN GS PQO RS NN GS PQO εI εL εI εL

2D: 1000
QT8 132 6 d 29 h (21%) 4.2 h (3%) 21 % 3 % 10 % 6 % 2 % 8 %
QT16 25 16 h 2 h (10%) 9 m (1%) 10 % 1 % 8 % 6 % 8 % 10 %
QT21 58 2.3 d 2.7 h (5%) 32 m (1%) 5 % 1 % 12 % 9 % 2 % 6 %

3D: 100
QT8 190 6.5 d 1.6 d (26%) 16 h (10%) 26 % 10 % 11 % 2 % 8 % 10 %
QT9 404 10 d 64 h (27%) 24 h (10%) 27 % 10 % 10 % 6 % 8 % 16 %
QT21 130 3 d 15 h (21%) 5.8 h (8%) 21 % 8 % 2 % 4 % 10 % 13 %

3D: 300 QT8 314 4 mons – 2 d (2%) – 2 % – – – –
4D: 30 QT8 243 5 d 23 h (19%) 15 h (12%) 19 % 12 % 12 % 9 % 4 % 9 %

Table 5.1: Approximation Efficiency for Class I optimizers with TPC-H (θ = 10%) [
OptCom ]

Dimension/ Query No. of Gen Approximation Optimiza- Error (%)
Resolution Template Plans Time Time Taken tions(%) εI εL

2D: 1000
QT8 132 6 d 3.8 h (3%) 3 % 6 % 4 %
QT16 25 16 h 9 m (1%) 1 % 8 % 5 %
QT21 58 2 d 6 h 32 m (1%) 1 % 9 % 10 %

3D: 100
QT8 190 6 d 10 h 6.1 h (4%) 4 % 11 % 8 %
QT9 404 10 d 21.6 h (9%) 9 % 6 % 4 %
QT21 130 3 d 3.5 h (5%) 5 % 4 % 4 %

3D: 300 QT8 314 4 mon 2 d (2%) 2% – –
4D: 30 QT8 243 5 d 15 h (12%) 12 % 4 % 4 %

Table 5.2: Approximation Efficiency of GS PQO algorithm for Class II optimizers with
TPC-H (θ = 10%) [ OptCom ]

We now move on to demonstrate how the FPC feature, provided by Class II optimizers,

can be used to improve the performance of GS PQO. Table 5.2 shows the effort required

by GS PQO for obtaining approximate plan diagrams with θI , θL = 10% on the TPC-H

benchmark. We see here that GS PQO often reduces the approximation overheads by a

significant fraction as compared to the corresponding numbers in Table 5.1, testifying to

the utility of FPC. As an example, consider the 3D version of the query template QT8,

whose overhead is brought down from 10% to 4%, when FPC is used.

For Class III optimizers the performance of Subplan-Caching technique is illustrated

in Table 5.3, on the TPC-H benchmark. The figures in this table suggest that Subplan-

Caching can produce perfect diagrams with less than 70% overhead for 2D query tem-

Dimension/ Query # of Exhaustive Subplan-Caching
Resolution Template Plans Gen Time Time Taken

2D:1000
QT5 22 5 h 20 m 3 h (55 %)
QT7 23 5 h 10 m 3 h 10 m (61 %)
QT8 20 6 h 10 m 3 h 22 m (55 %)
QT9 16 6 h 40 m 4 h 20 m (65 %)

Table 5.3: Class III (Non-PCM) : Perfect Diagram Efficiency[PostgreSQL]
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Dimension/ Query # of Exhaustive Pilot-Passing PlanFill
Resolution Template Plans Gen Time Time Taken Time Taken Opt %

2D:1000
QT5 22 5 h 20 m 3 h 15 m (61 %) 4 m (1%) 0.17 %
QT8 20 6 h 10 m 3 h 50 m (60 %) 2 h 47 m (45%) 44 %
QT9 16 6 h 40 m 3 h 40 m (58 %) 40 m (10%) 7.4 %

3D:100
QT5 23 5 h 48 m 3 h 15 m (58 %) 13m (3%) 2.4 %
QT8 49 5 h 58 m 3 h 16 m (55 %) 2 h 2 m (34%) 32 %
QT9 22 6 h 45 m 3 h 35 m (58 %) 5 m (2%) 0.24 %

4D:30
QT5 37 4 h 50 m 2 h 50 m (60 %) 25 m (8%) 5.8 %
QT8 62 4 h 30 m 2 h 30 m (56 %) 1 hr 18 m (29%) 26 %
QT9 28 6 h 10 m 3 h 39 m (59 %) 7 m (2%) 0.7 %

Table 5.4: Class III (PCM) : Perfect Diagram Efficiency[PostgreSQL]

Algorithm Diagram Impact on PCM
Quality Optimizer Codebase Assumption

RS NN Approximate NIL No
GS PQO Approximate NIL No

Subplan-Caching Perfect Low No
Pilot-Passing Perfect Low Yes

PlanFill Perfect High Yes

Table 5.5: Comparison of Algorithms

plates. The reason only 2D query templates are considered for this algorithm, is described

in Section 3.1.1.

Finally, Table 5.4 shows the performances of Pilot-Passing and PlanFill (techniques

which rely on PCM) on the TPC-H benchmark. We can see that Pilot-Passing technique

is capable of producing perfect diagrams consistently with around 60% overhead. On the

other hand, the PlanFill produces completely accurate diagrams with a typical overhead of

less than 10%. The large time required to produce plan diagrams for query template QT8

can be attributed to the fact, that the cost functions of optimal and second-best plan,

for this query template, are very close to each other, and therefore PlanFill algorithm is

unable to “fill” a large area from the first quadrant of any optimized point.

Note that it will be incorrect to assume that PlanFill is superior than Pilot-Passing,

because if we consider the complexity involved in implementation, Pilot-Passing is much

cheaper than PlanFill. Also, Pilot-Passing does not need FPC – an indispensable com-

ponent of PlanFill, which is not provided by all commercial optimizers. Again, we can

not conclude from the performance numbers, that Subplan-Caching is an inferior tech-

nique than PlanFill or Pilot-Passing, the reason being that, Subplan-Caching can be

used without PCM assumption, where PlanFill will fail to produce perfect diagrams and

Pilot-Passing will fail to achieve any speedup. A comparative study of all the proposed al-
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gorithms, is presented in Table 5.5, showing the relative merits of an individual algorithm

compared to others.
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Chapter 6

Conclusion and Future Works

We have investigated in this thesis the efficient generation of optimizer diagrams, a key

resource in the analysis and redesign of modern database query optimizers. In summary,

our work has shown that it is indeed possible to efficiently generate close approximations to

high-dimension and high-resolution optimizer diagrams, with typical overheads being an

order of magnitude lower than the brute-force approach. We have also shown that, with

some changes in the optimizer kernel, the diagram generation overhead can be brought

down significantly.

In our future work, we would like to study if it is possible to use two or more of

these techniques in conjunction, and to achieve further reduction in diagram generation

overhead e.g. we can use Pilot-Passing and Subplan-Caching in our GS PQO algorithm.

We would also like to investigate whether the perfect diagram generation methods can

be relaxed in any way to produce cheap and accurate approximate diagrams. A relaxed

version of PlanFill is already shown in [3], where we trade error, subject to the user given

bounds, to lower the diagram generation overhead.

We hope that our results will encourage the database industry to further investigate

techniques like Pilot-Passing and Subplan-Caching to see if they can be utilized to aid

query optimization, in any other way.
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