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Abstract

Picasso is a tool developed in Database Systems Lab, which produces various diagrams,

showing the behavior of a database query optimizer. The beta version of the tool was

already available. We have improved the tool in may aspects and released the new ver-

sion Picasso1.0.

In the new version, enhancements have been made on five fronts namely, functionality,

presentation, performance, algorithmic and experimental. All these enhancements have

resulted in a much more efficient and useful Picasso 1.0. Many new features like foreign

plan comparison to compare plans of two different optimizers, command line interface

which can be used for producing the batch of diagrams, have been added in the new

version, enhancing the functionalities provided by Picasso. The layout of the plan trees

have also been changed improving their presentation. To improve the performance of the

tool some changes have been made like, the operator level diagrams are now generated

on client side without actually going through the process of compiling millions of queries

again for producing the diagrams. The plan reduction algorithm have been improved.

Now instead of area based comparison, perimeter or border based comparison is used,

reducing the complexity of the algorithm.

Many new experiments have been performed using Picasso1.0 which have shown very

interesting results about different aspects of the query optimizers. It has been observed

that the complexity of the diagrams is not affected even if the plan differentiation is

based on operators only. The other observation made is that most of the complexity is
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near the origin and axes. If we increase the number of sample points in these areas, the

plan cardinality increases by more than 100% leading to even more complex diagrams.

It has also been shown that the output cardinality estimates made by the optimizers can

be off by large amounts. Experiments have also been performed on the newly released

TPC-DS benchmark, which is much more complex and bigger in size than TPC-H bench-

mark. The initial results of the experiments with TPC-DS benchmark indicate that the

current query optimizers are unnecessarily too complex.
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Chapter 1

Introduction

SQL, the standard database query language is declarative in nature. It tells the database

system what to do but does not specify how to do. For example, consider the query shown

in Figure 1.1 which fetches the name of those employees who earn less than 8000, along

with their respective department names. It does not specify how to join the tables emp

and dept i.e. whether to use Nested-Loops join, Sort-Merge join or Hash join.

In a database system it is the responsibility of the module called query optimizer to

come up with the strategies known as execution plans, for executing the given SQL

query. Query optimizer is a vital component of modern database systems because the

difference between the cost of the best execution plan and a randomly chosen plan could

be in orders of magnitude. Hence, query optimization is a necessary step before the

select empName, deptName

from emp, dept

where emp.deptNo = dept.deptNo and

emp.salary < 8000

Figure 1.1: A Example Query
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Chapter 1. Introduction 2

actual execution of the query. The performance of the system is highly dependent on

the quality and functionality of the optimizer.

Most of the current query optimizers are cost based, with few rules included. The

optimizer takes the given query and with the help of system catalogs and cost model, it

comes up with a minimum cost plan. The efficiency of the plan is usually measured in

terms of the query response time. An efficient optimizer should come up with a good

execution plan without consuming too much time. The need for an efficient optimizer is

indubitably evident from the complex queries of TPC-DS[6] decision support benchmark

because as the complexity of the query increases the time required to optimize it also

increases.

1.1 Picasso Tool

For a given database and system configuration the optimal plan choice given by a cost

based query optimizer is mainly the function of the selectivities of the relations partici-

pating in the query. The selectivity is defined as the estimated number of tuples or rows

of a relation that are relevant for producing the result of the query.

Picasso[7] is a tool developed in Database Systems Lab, that is used to analyze the

behavior of a query optimizer through the help of various graphs generated by Picasso

which illustrate the functioning of various aspects of query optimizers as the selectivities

are changed slowly over a range. These graphs reveal various properties of optimizers

which otherwise would have been difficult to predict. On the other hand they are also

helpful in validating the expected behavior of optimizers by looking at easy to interpret

graphs of the optimizer output. There are four basic classes of diagrams that Picasso pro-

duces to characterize the behavior of an optimizer for a certain query template. They are:
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1. Plan Diagrams: A plan diagram is a color-coded pictorial enumeration of the

execution plan choices of a database query optimizer over the relational selectivity

space. Plan diagrams are generally 1D or 2D diagrams where the dimensions

represent the relations whose selectivities vary along the corresponding dimensions.

These diagrams show the optimal plan chosen by the optimizer as the selectivity

along various dimensions changes.

2. Cost Diagrams: These are similar to Plan diagrams except that the points on

the graph shows the magnitude of the cost. These are 2D or 3D diagrams, the

extra dimension is for cost. The nature of the cost depends on the diagram being

shown i.e., compilation cost diagram will show the cost of executing the query,

as estimated by the optimizer and execution cost diagram shows the actual

cost of executing the query.

3. Cardinality Diagrams: These are like the cost diagrams but here the points,

instead of referring to the cost, refer to the cardinality of the result for varying

selectivities of the relations along the dimensions, based on whether it is a com-

pilation cardinality diagram or an execution cardinality diagram .

4. Reduced Plan Diagrams: Picasso also produces plan reduction diagram

which shows how less complicated the plan space can get while not incurring sub-

stantial additional cost, thus providing a metric for quantifying decision granularity

of the optimizer and its relative effectiveness. Plan Reduction is actually a process

of replacing some of the plans in the plan diagram by some other plan so that the

total number of different plans in the plan diagram can be minimized.

Apart from these diagrams, Picasso also shows the plan trees. Plan Trees are

graphical representations of final plans that are produced by the optimizer for a given

combination of selectivities of the relations. It also includes the feature that compares

different plans and indicate the points of differences amongst them.
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Figure 1.2: Picasso Architecture

Picasso consists of two components namely Picasso Server and Picasso Client(see

Figure 1.2). Picasso Server handles the function of producing and serving the diagrams

and Picasso Client is used for the visualization of the diagrams. Each time when user

requests for some diagram, client sends the request to the server and then server sends

the diagram to the client. Picasso uses the interfaces provided by the database engines

and it does not the affect the behavior of database engine in any way i.e it works com-

pletely outside of database engines.

Picasso currently supports DB2, SQL Server, Oracle, Sybase, and Postgres.



Chapter 2

Performance Enhancements

2.1 Client-side Implementation of Operator-level Plan

Diagrams

The plans given by the optimizers are tree like structures also known as plan trees. One

such plan tree from OPT-A optimizer is shown in Figure 2.1. Each leaf node represents

a relations used in the query. The internal nodes in the tree define an operator which

indicates what is to be done at that particular node. For example, TBSCAN indicates

that engine should do a sequential scan on the relation present as its child node, or

HSJOIN indicates that engine should join the two inputs using the Hash Join technique.

Each operator can also have some parameters associated with it. The parameters

indicate what resources can be used or how to perform the operation. For example in

HSJOIN, the parameter HASHCODE defines the length of Hash (in bits) to be used. In

case of TBSCAN, the parameter SCANDIR indicates in which direction (FORWARD or

BACKWARD) the scan of the table should be performed

While differentiating two plans, one can make use of operators alone, or can also take

the parameters into account. Using these two criteria for differentiation two kinds of

5



Chapter 2. Performance Enhancements 6

Figure 2.1: Plan Tree for Q8 of TPC-H benchmark

diagrams are obtained: a) Diagrams based on operator level differentiation, b) Diagrams

based on parameter level differentiation.

Sometimes the parameters are merely the hints to the database engine and can be

ignored by the database engine at runtime based on the availability of resources. So

the number of plans in a parameter level diagram gives the upper bound on the plan

cardinality of plan diagrams. Whereas if the operator level differentiation is used then

the number of plans in an operator level diagram gives the lower bound on the number

of different plans that are present in the plan diagram. User may want to know this

lower bound on the number of different plans present in the plan diagram ignoring the

information regarding the parameters.

It is obvious that the parameter level diagrams contain enough information for gen-

erating the operator level diagrams. The beta version of Picasso treated these two dia-

grams as completely different entities. Hence, for producing either of the two diagrams
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Figure 2.2: Interface for switching between parameter to operator level diagrams

the whole process of diagram generation was performed from beginning. The diagram

production is a time consuming process and this production time can be saved for oper-

ator level diagrams.

The new version of Picasso, utilizes the fact that the operator level diagrams can be

generated from the information contained in the parameter level diagrams. Here, the

production of operator level diagrams have been shifted from server side to client side.

Picasso server now produces only the parameter level diagrams. If a user wants an opera-

tor level diagram then by using the interface provided at Picasso Client(see Figure 2.2a)

he can easily switch between the two diagrams. Figure 2.2b shows the operator level

diagram that has only 7 plans whereas the corresponding parameter level diagram on

left has 12 plans.

The process of switching is simple. Once a parameter level diagram has been obtained

at the client side, pairwise comparison of all the plans is performed, after discarding the

parameter information. Then a check is performed as which plans are same at the oper-

ator level. Once all different operator level plans are known one can recolor the diagram
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based on new differentiation scheme. This way, compilation time for lots of queries is

saved, which is a substantial part of the diagram production time.

2.1.1 Comparison of plan cardinalities between parameter level

vs operator level diagrams

An earlier study done with Picasso[7] has revealed that plan cardinalities of plan dia-

grams can be very high. This study was based on parameter level diagrams. This implies

that optimizers are producing large number of different optimal plans. Here one may

expect that most plans would differ only at the parameter level and most of the plans

from the plan diagram would disappear in an operator level diagram.

A study was performed to compare the plan cardinalities of operator level diagrams

and parameter level diagrams. All the experiments were performed using the TPC-H

benchmark. Both uniformly distributed dataset and exponentially distributed dataset

were used for the experiments. The numbers shown here are sum of the plan cardinalities

for each individual query over both the datasets.

It has been found that even for the operator level diagrams the complexity and car-

dinality of the plans have not been reduced by much. Figure 2.4 and Figure 2.3, shows

the plan cardinalities comparison for OPT-A and OPT-B optimizers between the two

type of diagrams over the set of TPC-H query templates. As can be seen, there is not

much difference in the cardinalities. Which means that the difference between the plan

cardinalities of parameter level diagram and operator level diagram is very less. On an

average, only 23% and 13% of plans disappear from parameter to operator level diagrams

for OPT-A and OPT-B optimizers respectively.

Same kind of study was performed on OPT-C and OPT-D optimizers. For OPT-C

the difference is only of 1% whereas for OPT-D it was found that number of plans at



Chapter 2. Performance Enhancements 9

Figure 2.3: Plan Cardinalities comparison (OPT-A)

Figure 2.4: Plan Cardinalities comparison (OPT-B)
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parameter level diagrams is exactly the same as the number of plans in operator level

diagrams i.e 0% increase. These results suggest that even if the lower bound on number

of plans is used, the generated plan diagrams still show complex behavior.

2.2 Improvement in Generation Time Estimator for

Execution Diagrams

Before producing the actual diagrams Picasso estimates their generation times and in-

dicates them to user. So that, user can decide whether to produce the diagrams or not.

In case of execution diagrams the estimate was done as follows:

Execute a sample query belonging to center of the selectivity space i.e. the query be-

longing to the points where the selectivity is 0.5 for each of the dimensions. Record the

execution time for the query. Now interpolate the total generation time by multiplying

the execution time for a single query with the total number of points on the grid.

The assumption here is that the average time to execute each of the query is same.

As the selectivity increases, number of rows to be processed also increase and since join

nodes have non-linear cost functions, the query at higher selectivities take much longer

time to execute than the queries at lower selectivities. Due to this non-linear behavior

the above mentioned assumption may or may not hold.

For improving the generation time estimator of the execution diagrams the following

two enhancements have been made. First, instead of using the middle point of the space,

a point nearest to the origin is chosen. This reduces the estimation time because a query

with low selectivity is used, implying that less number of rows have to be processed now

and hence, the query can execute faster than the query at the middle point.

Compilation diagrams generated by the optimizer contains the estimated cost of
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Figure 2.5: Comparison of Old and New Estimator with Actual generation time

executing the query. In the new version of Picasso this estimated cost is used for inter-

polating the execution time of the sample query over the complete space rather than the

linear method used in the beta version. The method is described below.

Let the point nearest to origin be p.

Execute the query corresponding to point p. Let the actual execution time be Ap.

Let the estimated execution time for point p be Ep and the estimated execution times

for all the points on the grid be E1, E2........, En where n is the total number of

points on the grid and E1 = Ep

Then the total execution time TE will be given by the formula:

TE =
Ap

Ep

×
n∑

i=1

Ei (2.1)

Further as the diagram is being produced by running all the sample queries one by

one, the estimates are progressively improved as now the actual running times for more
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queries are known. Suppose m out of n queries are executed then the remaining esti-

mated time RE is calculated as:

RE =




∑m
i=1 Ai∑m
i=1 Ei

×
n∑

i=m+1

Ei


 (2.2)

Figure 2.5 shows the comparison of old estimator and new estimator on three TPC-H

queries. The X-axis shows the % of diagram generation remaining. The Y-axis shows

the time remaining in seconds for the diagram to be generated. The blue line shows

the estimated time of new algorithm for completion of the diagram, red line shows the

estimated time of old algorithm and green line shows the actual time to generate the

diagram. It can be seen that as more information is available the estimates for new

estimator are constantly improving. whereas old algorithm does not adapt and gives out

the linear behavior and hence makes wrong estimates.

The results above shows that the new estimator is performing much better than the

old estimator.

2.3 Caching of Diagrams at Client Side

To show any of the diagrams supported by Picasso for a single query template, the data

needed is fetched from the server. Once this diagram data is available on the client side,

all the Picasso diagrams can be produced using it. The beta version of Picasso retrieves

the data from the server whenever a new diagram is requested by the user. The fetching

of data can be time consuming because Picasso client and server could potentially be

running on different systems.

In Picasso 1.0, once the diagram data is retrieved,it is cached at the client side for

future use. Now if a request for some other diagram corresponding to the same query

template is made, the cached data is used for producing the diagram, instead of fetching
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it again from the server. The process of caching saves lot of data transfer time.



Chapter 3

Functionality Enhancements

This chapter deals with the new functionalities added to Picasso 1.0.

3.1 Plan comparison between different optimizers

While executing a query, the plans decide how to execute the query. For the same query

different optimizers can give different optimal plans with different costs. User may be

interested in comparing the plans given by two different optimizers.

Picasso 1.0, provides the facility for making the comparisons amongst the plans gen-

erated by different optimizers or the same optimizer with different optimization levels.

The process is simple, one just needs to CTRL+SHIFT+RIGHT CLICK on some point

in the plan diagram and a foreign plan request dialog box appears as shown in Figure 3.1.

In the window one can choose the foreign optimizer and the optimization level with which

one wants to compare the plan. Once the request is submitted the server will generate

the plans from both the local and foreign optimizers and then client displays them side

by side for easy comparison.

Since different engines use different SQL dialects[10], while comparing the plans be-

tween two different optimizers, a problem may arise i.e., the query which is written for

14
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Figure 3.1: Foreign Plan request Dialog window

a particular optimizer say, OPT-A may be incompatible with the foreign optimizer say,

OPT-B. To overcome this problem Picasso provides the facility to edit the query before

it is given to the server. One can either manually edit the query when one requests for

a foreign plan or one can use the auto convert feature provided with Picasso 1.0. It uses

commercially available SwisSQL[18] library which does the automatic conversion of SQL

Dialects. If the SwisSQL library is present one can simply click on the autoconvert but-

ton in the dialog box and the query will be automatically converted for the destination

engine.

3.2 Command Line Interface to Picasso

In the beta version of Picasso the only client interface available was graphical interface

which did not allow the batch production of the diagrams. For producing a batch of

diagrams, user was required to sit at the terminal and generate each of the diagrams

individually.

To allow users to separate diagram production from diagram visualization, a com-

mand line interface has been added in Picasso1.0. This command can be used to submit
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diagram generation request to the Picasso server. The command is known as Picas-

soCmd. User can use the command as follows:

PicassoCmd <ServerName> <Port> <DBConnection> <OptLevel> <QTID> <QDist> <Resolution>

<DiagType> <QTFile>

where,

• ServerName : IP of Picasso server

• Port : Port no. of Picasso Server

• DBConnection : Database Descriptor

• OptLevel : Optimization Level

• QTID : Query Template Descriptor

• QDist : Query Distribution

• Resolution : Resolution of Diagram

• DiagType : Diagram Type (Compilation or Execution)

• QTFile : Query Template File



Chapter 4

Presentation Enhancements

4.1 Tree Layout

Various enhancements have been made to plan tree layout. In the beta version of Picasso,

all the leaves in a plan tree were placed at the same level. In this layout the width of the

tree was quite large, making it quite hard to view the complete tree at once. Another

problem with this layout was that it didn’t make the structure of the tree clear i.e., it

was hard to make out whether the tree is left deep, right deep or bushy tree. Picasso1.0

uses the generic tree layout as shown in figure 2.1.

Sometimes a node can have more children than its default number, which are the sub-

queries to be executed and not the actual input. In the beta version of Picasso these extra

child nodes were shown as normal children which may lead to wrong interpretations. Now

the information about arity of operator has been added to Picasso 1.0 so as to distinguish

these extra children. In Picasso1.0 these extra child nodes are distinguished by making

the dashed link from their parents to them. This makes the plan tree easy to understand.

The other enhancement made is that in the case of OPT-A and OPT-C engines,

the index scan node in the plan tree has two children i.e name of the index and name

of the relation, and both the nodes are leaf nodes. This is shown in figure 4.1a. The

17
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Figure 4.1: Change made in the tree layout for OPT-A and OPT-C

plan difference algorithm used in Picasso to find differences in two plan trees, needs that

all the leaf nodes in plan tree should be relations. The older version of plan difference

algorithm used the workaround by explicitly checking for these kind of index scan nodes

while matching the relations in two different plans. In the new version of Picasso, the

layout of the plan tree has been changed by making it compulsory for all the leaf nodes

to be relations. For OPT-A and OPT-C engines this is done by making the relation node

as the child of the corresponding index as shown in figure 4.1b. This does not change

the semantics of the plan tree. This makes the plan tree layout for OPT-A and OPT-C

to be consistent with other supported engines. After incorporating this new layout in

Picasso1.0 these special checks for index nodes have been removed from plan difference

algorithm, thus making it simpler.

4.2 Other Enhancements

OPT-B gives the parameter information in the form of a long string, which can also

contain some Picasso specific information. This information should be ignored for gener-

ating the correct diagrams. While discarding this information the beta version also dis-

carded some other important parameters. In Picasso1.0 this parameter string is carefully

checked and only the Picasso related information is discarded and all other parameter
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information is retained.

Secondly as OPT-E gives the plan output as ASCII text, Picasso incorporates a parser

for displaying the plan diagrams using the ASCII text. The older version of parser some-

times ignored the sub-queries part associated with a node. To correct this error, the

parser has been completely rewritten. Now it carefully builds the complete tree taking

all the sub-queries in account unlike the beta version.



Chapter 5

Algorithmic Enhancement

5.1 Plan Reduction

Plan Reduction is a way to simplify the plan diagram so as to minimize the total number

of different plans in the plan diagram such that the quality of subsequent query process-

ing is not adversely affected.

Plan Reduction Problem is stated as follows:

Given a 2D grid having N*M points where each point has an associated color(plan)

and cost. Let total number of different plans over the complete 2D grid be p. Given

a threshold value λ, the aim is to reduce the number of colors(plans) by recoloring the

points on the grid without increasing the cost of any recolored point by more than λ%.

For Q8 of TPC-H benchmark an instance of plan reduction is shown in Figure 5.1.

It shows that plan diagram initially has 225 plans but after reduction with threshold of

10%, the number of remaining plans in reduced diagram is only 19.

As is evident from the results that with the help of plan reduction, the plan diagrams

can be simplified to a great extent. This shows that the current optimizers are doing

20
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Figure 5.1: TPC-H Q8 Reduction from 225 plans to 19 plans with λ = 10%

too good a job of choosing a plan, but instead they may have settled for some subop-

timal plan, when it is given that these choices are made using the estimated values for

selectivities. Our results shows that these estimates can be off by large amounts. Plan

Reduction shows that the optimizers can be simplified to directly produce the reduced

plan diagrams, potentially reducing the computational overheads associated with query

optimization.

The problem of Plan Reduction is shown to be a NP-Hard problem[3]. The next

subsection discusses a greedy approach for reducing the plan diagram. The strategy here

is to try removing the color which is used for coloring the smallest number of points.

This is helpful as now the replacement for less number of points have to be found.

5.1.1 Area based Approach

The old area based approach for solving the plan reduction problem is described as fol-

lows:

1. Create bucket Bi for each different plan i in the selectivity space and put all points
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having the same plan in the corresponding bucket.

2. Sort the Bi buckets in ascending order of the size of the buckets. Let this list of

buckets be B1, B2, ....., Bn.

3. for i=1 to n begin

(a) for j=i+1 to n begin

i. for each point p in Bi find a point q in Bj such that q is in first quadrant

w.r.t p and cost(q) is within (100+x)% of cost(p).

end

(b) if all the points in Bi can be replaced then reassign the point in Bi to corre-

sponding Bj’s.

(c) Empty the bucket Bi

end

4. Output the points with new plans assignments.

Some inefficiencies found with this algorithm are:

• All point comparison: The second problem with, this approach is that it con-

siders all the points within a bucket Bj as a possible replacement for the points in

Bi. We will show that, under the cost domination principle, these comparisons can

be reduced by a large extent, by considering only the borders of the plan regions

as the possible swallowers.

• One Sided Reduction: This approach also assumes that a plan can be replaced

only by a bigger plan i.e., it checks only bigger buckets as a possible swallower.

The results can be improved by allowing smaller buckets to swallow bigger buckets

which gives more options for the possible swallowers of bigger buckets, leading to
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even more reduction.

5.1.2 Border Based Approach

Before describing the border based algorithm some preliminaries are described.

Cost Domination Principle

Given a pair of distinct query points q1(x1, y1) and q2(x2, y2) in the two-dimensional se-

lectivity space, we say that point q2 dominates q1, if and only if x2 >= x1 and y2 >= y1

and result cardinality R2 >= R1. Then if points q1 and q2 are associated with distinct

plans P1 and P2 respectively, in the original space C1, the cost of executing query q1 with

plan P2 is upper-bounded by cost C2 the cost of executing q2 with P2, if and only if q2

dominates q1.

Intuitively, with cost domination principle we expect optimizers cost functions to

be monotonically non-decreasing with the increase in selectivities of the base relation.

Equivalently a plan processing a superset of the input and producing a superset of the

output, as compared to some other plan, is estimated as more costly to execute.

Assuming that the cost domination principle holds, if a point p within a region X

can replace some point q on the grid then there is a point on the border of the region X

with cost less than or equal to the cost of p which can replace the point q. Using this

fact one can improve the algorithm by considering only the points on the border as the

possible swallowers.
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Finding Borders in Plan Diagram

Given an image, finding the borders in it is a well known problem in image processing.

An existing technique is used to solve this problem. Plan diagrams have an advantage

as they have sharp edges between two plans areas unlike the real images where due to

shades of the same color it is difficult to find the boundary. Due to this advantage a very

simple technique called Robert’s Cross edge detection[11] works very fine here. The basic

idea behind this algorithm is performing a convolution over the image using two prede-

fined 2X2 convolution kernels. This will compute a 2-D spatial gradient measurement

on an image. It thus highlights regions of high spatial frequency which often correspond

to edges.

5.1.3 Border Based Algorithm

Another improvement to the older algorithm is that now small plans i.e., plans covering

lesser number of points are allowed to swallow bigger plans i.e., plans covering larger

number of points.

The algorithm is as follows:

1. Create buckets Bi for each different plan i in the selectivity space and put all points

having the same plan in the corresponding bucket.

2. Create Border buckets BBi for each different plan i in the selectivity space.Using

the Edge Detector algorithm, identify the border points of each contiguous plan

region and only insert those points into the corresponding bucket.

3. Sort the buckets Bi in the ascending order of the size of the buckets. Let this sorted

list be B1, B2, ....., Bn.

4. for i=1 to n begin

(a) Swallow(Bi=true)
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(b) for each point in Bi

i. for j=1 to n and (j not equal to i) begin

A. find, if available, a point q in BBj such that q is in first quadrant

w.r.t p, cost(q) is within [100%, (100+ x)%] of cost(p), and cost(q) is

the minimum across all such qualifying points in BBj.

ii. if one or more q points are identified from the above step, choose the q

point with the lowest cost(q), and mark that point p can be assigned to

qs bucket

otherwise Swallow(Bi) = false; break;

iii. if Swallow(Bi)= true, move all the points in Bi to their assigned replace-

ment buckets, then delete Bi and BBi . end

end

5. Output the points with new plans based on the buckets they are shifted to.

The border based algorithm uses the points on the perimeter of the plan regions

as the possible swallowers reducing the number of comparisons leading to reduction in

running time of the algorithm.

5.1.4 Border Based Algorithm Results

Testbed Environment

For testing, a Pentium-IV 2.4 GHz PC with 1 GB of RAM and 120 GB of Hard disk

running Window XP is used. The database used was generated using TPC-H[17] syn-

thetic generator producing the database with over 1 GB of data. Also all the query

templates were based on TPC-H benchmark which features a set of 22 queries. Each of

the query had different plan cardinalities ranging from single plan to over 200 plans. All

the diagrams are produced using OPT-C.
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Figure 5.2: Reduction Times for Old And New Algorithms

Query Dim Old New %

No Algo Algo gain

8 300x300 9 min 50 sec 90.7 %

9 300x300 11 min 50 sec 92 %

8 1000x1000 15 hrs 20.5 min 97.7 %

11 1000x1000 52 min 17 sec 99.4 %

Figure 5.3: Reduction times for Old and New Algo for resolution 300 and 1000
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Results

The experiments were performed with the queries in the TPC-H benchmark. Fig-

ure 5.2, shows the reduction times for both of the algorithms for diagrams with resolution

100x100. The results show the improvements in running time of up to 95% with average

improvement of 90% in running time.

The results for 300X300 and 1000X1000 plan diagrams are shown in Figure 5.3. Here

also the improvement in running time is more than 90%. The reason for this is that in the

area based approach, as the resolution increases the number of possible swallowers are

increased quadratically. This is because here the points in the whole area are considered

as possible swallowers. But in case of the Border based approach the possible number

of swallowers increases linearly with the resolution as only the points on perimeter are

taken into account. This linear increase is what makes the Border algorithm much much

faster. It can be concluded from the results that new algorithm scales well even for bigger

inputs unlike the older one, whose performance degrades with the increase in resolution.
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Experimentation

6.1 Analysis of Cardinality Estimators in Optimiz-

ers

In this section, a study is performed to measure the quality of the cardinality estimators

present in the current optimizers. Current optimizers use these cardinality estimators

for choosing the appropriate plan for the given query. The correctness of these estimates

severely affect the quality of the plan chosen which has direct impact on the quality of

the optimizer itself.

In our experiments, both compilation diagrams and execution diagrams were pro-

duced, for a subset of the TPC-H queries. These queries are chosen such that the output

cardinality of the queries is high. Most of the queries selected had output cardinality

greater than 1000.

Compilation diagrams give the estimated cardinalities while Execution diagrams pro-

vide the actual cardinalities. The graph in Figure 6.1 shows the %error in the cardinality

estimation for the selected queries. The graph is drawn with log scale with log factor

as 2. Positive values indicates the overestimation whereas negative values shows the

28
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Figure 6.1: Comparison of cardinality estimates

underestimation in the output cardinality values.

The graph shows that estimates of output cardinality can deviate from actual car-

dinalities by large amount. In case of OPT-B the maximum error is of 885% while in

case of OPT-A and OPT-C the maximum error is around 400%. But on average OPT-E

performs best with average error of 24% only, while OPT-A makes the average error of

56%. OPT-B and OPT-C makes the average error of 164% and 102% respectively. These

results show that sometimes the estimates done by the database engines can be off by

large amounts which may lead to inefficient plans.

6.2 Performance of optimizers over uniform and ex-

ponential distribution of query points

For producing plan diagrams Picasso generates query points uniformly distributed over

the whole selectivity space. Then Picasso executes each of the query to get the plans for

each of the points and color them based on their plans. It uses the same color for the
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Figure 6.2: Distribution of Query Points. a)Uniform Distribution b)Exponential Distri-

bution

points having the same plan and different colors for the points having different plans.

For illustration figure 6.2a shows the uniform distribution of the query points.

A feature noticed in most of the plan diagrams is that the plan density is often high

around the origin and along the axes. Hence, these areas are considered interesting.

Picasso1.0 provides two different distributions for the sample points. One can choose

between uniform distribution or the exponential distribution of the sample query points.

In exponential distribution the query points used are selected in such a way that they

follow a 80-20 rule along each axes. In other words along each axes 80% of the points are

in initial 20% of the corresponding axes. This will keep more number of sample query

points near the origin where the plan density is high. This scheme is shown in figure 6.2b.

With this new scheme of distribution of query points one can focus the query workload

in these interesting areas.

Experiments have been performed to see the effect of distribution of query points

on the plan cardinality. Here, diagrams for all the TPC-H queries for all the 5 engines
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Figure 6.3: Comparison of plan cardinality between uniform and exponential distribution

of query points

Figure 6.4: Comparison of plan cardinality between uniform and exponential distribution

of query points
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supported by Picasso are produced, for both TPC-H Uniform and TPC-H Exponential

benchmarks and for both uniform and exponential distributions of query points. The

numbers here are cumulative sum over all the TPC-H queries for both of the benchmarks.

Figure 6.3 shows the results when experiments are done at parameter level difference

between the plans. As seen from the figure, for OPT-A, OPT-B, and OPT-D the plan

cardinality for exponential distribution is more than the double of the cardinality for the

uniform distribution of query points. For others i.e., OPT-C and OPT-E the increase in

the plan cardinality is 66% and 55% respectively which is quite high.

The above results show that the plan cardinalities have been increased by substantial

amount. But it may be possible that all the new plans which have appeared for the ex-

ponential diagrams are, structurally same as the old plans but have different parameters.

To confirm that the above results are correct even for the operator level differences in

the plan same experiment was performed. Figure 6.4, shows the results obtained. Here

also the results are same i.e., OPT-A, OPT-B and OPT-D still show more than 100%

increase in plan cardinalities.

6.3 TPC-DS Benchmark

The TPC Benchmark TPC-DS is a decision support benchmark that provides a rep-

resentative evaluation of the SUT’s performance as a general purpose decision support

system. TPC-DS benchmark has been mapped to a typical business environment.

TPC-DS models the decision support functions of a retail product supplier. The sup-

porting schema contains vital business information, such as customer, order, and product

data. The benchmark models the two most important components of any mature deci-

sion support system:
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• User queries, which convert operational facts into business intelligence.

• Data maintenance, which synchronizes the process of management analysis with

the operational external data source on which it relies.

All of the results in [7] were based on TPC-H bechmark. Same experiments have

been performed on the TPC-DS to see that the observation made in [7] still holds.

The dataset for TPC-DS benchmark has 24 different tables in its schema and the size

of dataset is 100GB. The size is 100 times bigger than the size of TPC-H benchmark

which was 1GB only. All the experiments were done using OPT-B. The resolution of all

the diagrams is 100x100.The queries used are the subset of 99 standard TPC-DS queries.

Figure 6.7 shows the plan cardinalities of the selected TPC-DS queries. The EQP

means the queries are ran with exponential distribution of query points. Here, we can

observe that the plan cardinalities are very high. Most of the diagrams are found to be

very complex in the TPC-DS results. Two of example diagram from TPCDS Benchmark

are shown in Figure 6.5 and Figure 6.6.

To see that the other claim made in [7] i.e., in plan reduction process most of the

plans disappear from plan diagram still holds, we also ran the reduction algorithm for

each of the queries. The threshold used was 10% i.e., the cost of any point can be in-

creased by not more than 10%. The results are shown in Figure 6.7. As seen from the

table that all queries show large amounts of drop in plan cardinality. After reduction

the absolute number of plans comes down to be less than 20 for all the queries.

All of the above observations made using TPC-DS benchmark support the claims

made in [7] which used much smaller TPC-H dataset.
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Figure 6.5: Plan Diagram for TPCDS Q19

Figure 6.6: Plan Diagram for TPCDS Q25
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# of Plans

Query Original Reduced (λ=10%)

2 3 1

12 13 5

12-EQP 26 9

17 39 6

18 47 11

18-EQP 147 20

19 36 10

19-EQP 76 16

25a 33 12

25a-EQP 136 19

25b 51 13

25c 96 12

25c-EQP 43 5

Figure 6.7: Results for TPC-DS Benchmark
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Conclusion

All the new features and enhancements made to the beta version of Picasso have made

it more useful. For example, all the studies performed in this project have been done

through command line interface, which has saved a lot of time. Similarly shifting of the

generation of operator level diagrams to client side have saved lot of time. The other

enhancements like improvement in the estimator, changes made to the plan reduction

algorithm have made the tool faster and efficient.

Various studies performed here shows the unnecessary complexities prevailing in the

current commercial query optimizers. The comparison of plan cardinalities at parameter

level vs operator level supports the claim about complex behavior of optimizers. The

analysis of output cardinality estimation errors shows that current optimizer do a very

bad job of estimation and these estimates can be off by large amounts.

The study with exponential distribution of query points shows that as the resolution

of the diagram is increased the plan cardinality also increases by large numbers. It is

also shown that claims made in [7] hold true for TPC-DS also.
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