PLASTIC: Reducing Query Optimization Overheads
through Plan Recyclying

A Project Report
Submitted in partial fulfilment of the
requirements for the Degree of
MNMaster of Engineeving
in

Faculty of Engineering

by

Vibhuti Singh Sengar

Department of Computer Science and Automation
Indian Institute of Science
Bangalore — 560 012

MARCH 2003

Contents

Abstract
Introduction

Overview of PLASTIC

3.1 Feature Vector e
3.1.1 Structural Features,
3.1.2 Statistical Features

3.2 Establishing Similarity o oo

8

3.2.1 The SIMCHECK Algorithm

Architecture and Design of PLASTIC

4.1 The Architecture
42 The Design 0.

Value-Addition Modules
Implementation

Improvements

7.1 Improvements to feature Vector
7.2 Improvements to distance function
7.3 New Distance Function

Future Work

Bibliography

A Screenshots of PLASTIC

13
13
14

17

19

23
23
27
33

35

35

38

List of Figures

2.1

3.1
3.2

4.1
6.1

7.1
7.2
7.3
7.4
7.5
7.6

Al
A2
A3

The Current Optimizer Architecture 2
Degree Graphs L 7
The SIMCHECK Algorithm 11
The PLASTIC Architecture 15
Class Diagram o e 22
Plan Diagram Nol 28
Plan Diagram No2 29
Plan Diagram For Fixed Sized Cluster 30
The THCALC Algorithm 31
Plan Diagram For Variable Sized Cluster 32
The Modified SIMCHECK Algorithm 34
Plan Interface L 38
Clusters Interface Lo 39
Plan Diagram Interface oo, 40

i

Chapter 1

Abstract

We present PLASTIC, a tool intended for use by the query optimizers to significantly
amortize the optimization cost. The tool groups similar queries into clusters and uses
the optimizer-generated plan for the cluster representative to execute all future queries
assigned to the cluster. In this report, we present architecture, improvements to feature
vector and distance function in PLASTIC, and implementation on commercial database
systems DB2 7.0 and Oracle 9i. The main features of our prototype design are the follow-
ing: First, it is non-intrusive, not requiring any modifications to the query optimizer itself.
Second, it is completely contained within the database system, without any dependency
on the underlying operating system. Third, it is modular, supporting localized upgrades
to the tool components. Fourth, the interface to the host database system is restricted
to a few modules, facilitating portability to other optimizers and platforms. Fifth, visual
interfaces for auto generating, viewing, and reorganizing query clusters are provided to
assist the database administrator in tuning the system. Finally, an automated mechanism

is provided for creating and visualizing “plan diagrams” and ”cost diagrams”.

Chapter 2

Introduction

SQL, the standard database query language is a declarative language, and it does not
specify how a SQL query will be executed [10]. There may be many different ways to
execute a query but some of them may be less inefficient than others. In RDBMS, the

Query Query Optimizer Plan

Cost Model

System Catalog

Figure 2.1: The Current Optimizer Architecture

query optimizer component decides the query plan, showing how query will be executed.
A query submitted to system is passed to the query optimizer. Typical architecture of

the query optimizer is given in Figure 2.1. The query optimizer consults system catalogs

CHAPTER 2. INTRODUCTION 3

! and based on cost model 2 decides the query plan, which is used to execute the query.

Query optimization is well-known to be a computationally intensive process since a com-
binatorially large set of alternative plans have to be considered and evaluated in order to
find an efficient access plan for query [9]. This is especially so for the complex queries
that are typical in current data warehousing and mining applications, as exemplified by
the TPC-H decision support benchmark [5]. The inherent cost of query optimization is
compounded by the fact that typically each new query that is submitted to the database
system is optimized afresh. PLASTIC (PLAn Selection Through Incremental Clustering),
is a value-addition tool for the query optimizers that amortizes the cost of query opti-
mization through the reuse of plans generated for earlier queries [2]. More specifically,
the tool stores a cache of plans® and tries to assign one of these pre-existing plans to
the new in-coming query with the expectation that the selected plan would be the same
as that generated by the query optimizer. If no suitable assignment can be made, then
optimization process actually carried out and the abstract operational representation of
newly-generated plan is added to the cache for future use.

PLASTIC groups similar queries into clusters and uses the optimizer-generated plan
for the cluster representative to execute all future queries assigned to the cluster. Query
similarity is evaluated based on a comparison of query structures and the associated
table schemas and statistics, and a classifier is employed for efficient cluster assignments.
Experiments with a variety of queries on commercial optimizers shows that PLASTIC
predicts the correct plan choice in most cases, thereby providing significantly improved
query optimization times. Further, even when errors were made, the additional execution
cost incurred due to the sub-optimal plan choices was marginal.

Apart from the obvious advantage of speeding up optimization time, PLASTIC also

improves query execution efficiency since it makes it possible for optimizers to always

1System catalog stores information about all the data in database ie. size of tables, histograms, and
indexes.

2Refers to functions needed to evaluate cost associated with different possible operations which can
be used to a query.

3Here we refer to plans as plan templates explained later.

CHAPTER 2. INTRODUCTION 4

run at their highest optimization level? as the cost of such optimization is amortized over
all future queries that reuse these plans. Yet another important advantage is that the
benefits of “plan hints”, a common technique for influencing optimizer plan choices for
specific queries, automatically percolate to the entire set of queries that are associated
with this plan. Lastly, since the feature vector includes components based on database
statistics the association of queries with clusters is dynamic, so the plan choice for a given
query is adaptive to the current state of the database.

The prototype design of the PLASTIC implementation is fully contained in the database
system, non-intrusive with respect to the optimizer, easily portable across platforms and
optimizers, extendible to incorporate changes to the tool modules, and with visual inter-

faces for easily understanding and analyzing the tool’s performance.

4Some optimizers like DB2 provide optimization level which gives measure of time spend in query
optimization.

Chapter 3

Overview of PLASTIC

The inherent cost of query optimization is compounded by the fact that typically each
new query that is submitted to the database system is optimized afresh. While current
commercial query optimizers do provide plan caching (for example, the Oracle 9i optimizer
provides “stored outlines” as a mechanism for preserving queries and execution plans [6]),
the query matching is extremely restrictive — only if the incoming query has essentially
an identical match with one of the stored queries is the associated plan used.

The goal of PLASTIC is to support plan reuse for similar queries, not just identical
queries, thereby realizing a much higher degree of plan reuse. In fact, PLASTIC can
identify potential plan similarities between queries in spite of differences in projection,
selection and join predicates, as also in the query tables themselves. Therefore, it promises
to significantly improve the utility of plan caching.

To achieve this functionality, the following approach is taken: First, a query feature
vector is defined comprised of information that can be determined from the query and
from the catalogs of the RDBMS. The feature vector is described in section 3.1.

Next, a similarity function which takes a pair of query feature vectors as input and
quantitatively computes their separation in feature space is defined. A threshold value
for this separation is used to decide whether or not the two queries are similar.

Then, using this similarity definition described in section 3.2, query clusters are dy-

namically formed in an incremental manner, with the distance threshold determining the

CHAPTER 3. OVERVIEW OF PLASTIC 6

maximum stretch of the cluster. Each cluster has a representative for whom the execution
plan, as determined by the optimizer, is persistently stored. This plan is used to execute
all future queries that are assigned to the cluster. Finally, when a sufficient number of
clusters have been formed, a classifier is constructed on the clusters to support efficient
identification of the cluster to which a new query may belong, thereby also determining
its execution plan.

An important detail that we have glossed over in the above discussion is that it is
the plan templates, and not the plans themselves, of the cluster representatives that are
stored persistently. A plan template is a query execution plan wherein all the database
operators (e.g. TABLE SCAN, SORT, MERGE-JOIN, RANGE SCAN) are retained but
the specific values of inputs to these operators such as table names, index names, attribute
names, etc. have been replaced by variables. When a plan template is assigned to a new

query, these variables are instantiated with the values appropriate to the query.

3.1 Feature Vector

Note that we are constrained to use only features that can be extracted directly from the
inputs to the query optimizer, namely the query and the metadata from the system cata-
logs, but not any intermediate computation since otherwise we might wind up repeating
the optimization exercise.

The specific features we choose are divided into two classes: Structural, which are
determined from the the query and associated schema-related meta-data, and Statistical,
which are determined from the table statistics available in the system catalogs. These
features, which are described in the remainder of this section, were arrived at after an
extensive study of the characteristics of the plans generated by the commercial optimizers

over a broad spectrum of queries.

CHAPTER 3. OVERVIEW OF PLASTIC 7

3.1.1 Structural Features

We will use Figure 3.1 to motivate and explain some of the structural features. This figure
shows two graphs which represent two different queries on six tables each. In these graphs,
the nodes A, B, ..., F and P, @, ..., U represent the tables and the lines between them
represent the join predicates relating them. (The distinction between the full and dashed

line types is explained later in this section.) The structural features are the following:

Degree of a Table (DT): This is a vector containing relation numbers to which partic-
ular relation is joining. For storage efficiency we store it as a number. This feature
is included since it plays a role in positioning the table within the join tree in the

access plan of the corresponding query.

$\

B A
N \
o R

@ (b)

Figure 3.1: Degree Graphs

Degree-Sequence of a Query (DS): This is a (derived) compound feature that is
based on the DT feature — specifically, it is a non-increasing vector composed of
the DT's of all the tables involved in the query. For example, the DS for both the

queries shown in Figure 3.1 is (3, 2, 1, 1, 1, 1).

Join Predicate Index Counts (JIC): A join predicate is said to have an index char-
acteristic of 0, 1 or 2, depending on whether there are 0, 1 or 2 indexed attributes,
respectively, in the join predicate. For each query, a count of the number of join
predicates, with respect to each characteristic value, is evaluated since these counts

help to determine whether an index can be used for the join.

Predicate Counts of a Table (PC): A predicate can be, as per the definition in the

CHAPTER 3. OVERVIEW OF PLASTIC 8

System R optimizer [11], either SARGable or Non-SARGable, the primary differ-
ence being that the former can be evaluated through indexes, whereas the latter is
incapable of using these access structures. For example, x = 10 is an SARGable

predicate while x <> 10 is not.

For each table involved in the query and for each predicate type, we maintain the
count of the number of such predicates operating on the table. The reason for in-
cluding this feature is that an index on a table can be used only if the associated
predicate is SARGable. In Figure 3.1, the dashed lines represent SARGable predi-
cates while the solid ones represent non-SARGADble predicates. Therefore, the type
counts for table E are (2, 1), implying that there are two SARGable predicate and
one Non-SARGable predicate that will be evaluated on this table.

Index Flag of a Table (IF): An Index Flag is associated with every table and is set if
all the selection predicates and projections on that table can be evaluated through
a single common index. In this situation the optimizer can construct a plan that

reads only the index and not the table itself.

3.1.2 Statistical Features

We now move on to the features that are based on the statistics available in the system

catalogs:

Table Size (TS): It is a measure of the total size of a table and is computed as the
product of the cardinality of the table and the average length of the tuples present
in the table.

Effective Table Size (ETS): This is size of table required for query processing.

Putting all of the above together, our complete query feature vector definition is as
shown in Table 3.1. For ease of understanding, we have separated the features into Global
Features, which are query-wide values, and Table Features, which are relevant to individual

tables.

CHAPTER 3. OVERVIEW OF PLASTIC

‘ Feature ‘ Description
Global Features
NT Number of tables participating in the query
DS Degree sequence of query
NJP Total number of join predicates
JIC[0..2] | Number of Join Predicates with index
characteristics of 0, 1 and 2, respectively
PCsarg Number of SARGable predicates
PCnsarg | Number of non-SARGable predicates
Table Features
DT; Degree of table T;
IF; Boolean indicating index-only access to T;
PCsarg; | Number of SARGable predicates on table T;
PCnsarg; | Number of non-SARGable predicates on T;
JIC;[0..2] | Number of Join Predicates of index
characteristic 0, 1 and 2 involving T;
TS, Size of T;
ETS; (estimated) Effective size of T;

Table 3.1: Query Feature Vector

3.2 Establishing Similarity

Given our goal of clustering queries in such a way that the access plan for all queries in
the cluster is the same, a straightforward answer to this query would be “T'wo queries are
similar if the optimizer generates the same plan template for both of them”. However, this
is not a practically useful definition because, as mentioned earlier, optimizers map several
different kinds of queries to the same plan template, resulting in extremely heterogeneous

clusters that cannot be easily characterized. For example, consider the following two

queries on the TPC-H table PART:

select * from part

and

select p_brand, p_name, p_mfgr

from

part

CHAPTER 3. OVERVIEW OF PLASTIC 10

where

p_size = 4

and p_brand = 'Brand15’

The DB2 optimizer generates the same plan template for both these queries although a
visual inspection shows them to be quite different in both syntax and semantics. The
reason for choosing the same plan is that the amount of data that is required to be
processed is estimated to be similar in the two cases.

To avoid the above problem, we take a different approach in PLASTIC. That is, we
try to establish a notion of similarity that facilitates both (a) efficient classification of new
queries, and (b) that the plan chosen by the optimizer for the queries within a cluster
is the same in the majority of the cases. = Our approach, hereafter referred to as the

SIMCHECK algorithm, is described in detail below.

3.2.1 The SIMCHECK Algorithm

The SIMCHECK algorithm, whose pseudocode is shown in Figure 7.6, takes as input
two query feature vectors and outputs a boolean value indicating whether or not they
are similar. The algorithm operates in two phases, “Feature Vector Comparisons” and
“Mapping Tables”. In the first phase, the feature vectors are compared for equality on
the number of tables, the sum of the table degrees, and the sum of the join index and
predicate counts. Only if there is equality on all these structural features is the second
phase invoked, otherwise the queries are deemed to be dis-similar. The equality check is
done first in order to identify dis-similar queries as early and as simply as possible. For
example, it is obvious that if the number of tables in the two queries do not match, then
their plans will also necessarily have to be different. Such structural feature checks are
used as an effective mechanism for stopping unproductive matching at an early stage.

In the Mapping Tables phase, we attempt to establish the closest possible one-to-
one correspondence between the tables of the two queries. The tables are mapped to
each other in order to check whether it is possible for the optimizer to use similar plans

for accessing the mapped tables. The first step in this process is to determine the sets

CHAPTER 3. OVERVIEW OF PLASTIC 11

SIMCHECK (Q1,Q2)
// Check that Queries have same number of Tables
1. IF NT(Q1) = NT(Q2) RETURN (Not Similar);
// Match Query Level Semantics
2. IF DS(Q1) = DS(Q2) AND
NJP(Q1) = NJP(Q2) AND
PCsarg(Q1)+PCnsarg(Q1) = PCsarg(Q2)+PCnsarg(Q2)
GO TO Line 4 ;
3. RETURN (Not Similar);

//— Find the Best Mapping between Tables —
4. FOR every group g of tables with the same degree
R =T}, T%..TF R CQ
Ry =T3,T%,..TF Ry C Qo
find the mapping of compatible tables
between R; and R> that has the minimum
aggregate distance, mindisty, with respect to
the pairwise table distance function _
. . i _ J i _ J
disty (17,) = TSIt
//— Compute Distance between Queries —
5. TotalDist =} e mindisty
6. IF TotalDist > Threshold RETURN (Not Similar);
7. RETURN (Similar);

Figure 3.2: The SIMCHECK Algorithm

of compatible tables. For every possible pair of compatible tables, SIMCHECK checks
whether their original and (estimated) effective sizes are comparable through the use of
a distance function. If the outcome of the distance computations is less than a threshold
value which is an algorithmic parameter, the queries are said to be similar. The notion

of compatibility and the distance function are elucidated below.

Table Compatibility

We define two tables to be compatible if the degrees, join index counts and predicate
counts are the same for both tables. The rationale for this notion of compatibility is
explained below.

Let us first consider predicate counts. The predicate count for table F in Figure 3.1(a)

is (2, 1) since there are two SARGable predicates and one non-SARGable predicate.

CHAPTER 3. OVERVIEW OF PLASTIC 12

Similarly, for table U in Figure 3.1(b), the predicate count is (1, 2), and by our definition
the tables are not compatible. This makes intuitive sense when viewed in light of the fact
that if a predicate on a table is not SARGable, an optimizer cannot use an index to access
that table. Thus, plans can change considerably even if the two queries differ on only a
single table with respect to this criteria.

A similar and stronger argument holds for join index counts. If indexes are available
for a join predicate in one query and not in the other, it is very likely that the plans for
the two queries will not match. This is because if both the attributes in a join predicate
are indexed and the selectivities of the tables are high then it is possible to choose a plan
involving an index join. Similarly, if one of the attributes is indexed then the optimizer
may choose to index on one table and fetch (table scan) on the other.

Note that even if the join index counts and predicate counts for two queries match, the
plans chosen by the optimizer may differ as there are other statistical factors such as the
table sizes that affect plan choices. These factors are captured in the distance function

discussed next.

The Query Distance Function

After compatible tables are identified, SIMCHECK tries to establish valid one-to-one
mappings between the sets of compatible tables. These mappings are then compared
using their original and estimated effective sizes, through a distance function dist;; (17, Ti),
where T? and TQj are the tables whose distance is to be computed, with 77 denoting the
i" table of the first query which is to be mapped with ng , the j** table of the second
query. The larger the distance, the lesser the similarity. In terms of the statistical features

described in Section 3.1.2, the distance function is given as:

. i iy _ wix|TSi-TS|+wex|ETS]—ETS)|
dlStU (T1 ’ T2) - maz(TSi,TS5)

Here, w; and wy are weighting factors (with w; + we = 1) that serve to calibrate the

importance of the associated terms in the above equation.

Chapter 4

Architecture and Design of

PLASTIC

In this chapter we are describing architecture and design goals of implementation of

PLASTIC system.

4.1 The Architecture

A block-level diagram of the PLASTIC architecture is shown in Figure 4.1. In this picture,
the solid lines show the sequence of operations in the situation where a matching cluster is
found, while the dashed lines represent the converse situation where no match is available.

The query submitted to the system is first passed to the Feature Vector Extractor
which also accesses the system catalogs and obtains the information required to produce
the feature vector. The SimilarityCheck module takes this feature vector and establishes
whether it has a sufficiently close match with any of the cluster representatives stored in
the Query Cluster Database. To hasten the process of cluster identification, the module
may construct a classifier, such as a decision tree or a Bayesian network, on the clusters
in the database.

If a match is found, the plan template for the matching cluster representative is ac-

cessed from the Plan Template Database. As mentioned earlier, a plan template has

13

CHAPTER 4. ARCHITECTURE AND DESIGN OF PLASTIC 14

database operators but does not have the specific values of the inputs to these operators.
These missing values are filled in by the Plan Generator module based on mapping string
given by SimilarityCheck module and the specifics of the input query.

On the other hand, if no matching cluster is found (dashed lines in Figure 4.1), then
the Query Optimizer is invoked in the traditional way and the plan it generates is used
for executing the query. This plan is also passed to the Plan Template Generator which
converts the plan into its abstract operational representation and stores it in the Plan
Template Database. For efficiency reasons, the plans may be stored in the form of sig-
natures. Concurrently, the feature vector of the query is stored in the Query Cluster
Database.

Periodically, the cluster database may be reorganized to suit constraints such as a
memory budget or a ceiling on the the number of clusters. For example, it may be
decided to purge the feature vectors and plan templates of “outlier” queries that rarely

result in matches with the current query workload.

4.2 The Design

Based on the above architecture, we have developed a prototype implementation of PLAS-

TIC. The highlights of our software organization are the following:

Non-intrusiveness: The query optimizer is treated as a black box and no internal mod-
ifications to the query optimizer code are required. Further, it does not require any

special inputs beyond those already available to the query optimizer.

Database-containment: All intermediate and supporting data are stored in the database
system itself without requiring any support from the operating system. For exam-
ple, the Query Cluster Database and the Plan Template Database are implemented
as tables in the host database system. This feature allows the tool to be directly

ported to any platform on which the database system is available.

Tool Modularity: The implementation follows the modular structure of the architecture

and, to the extent possible, permits localized upgrades to the modules without

CHAPTER 4. ARCHITECTURE AND DESIGN OF PLASTIC 15

ﬁ/NOMatch \ﬁ

Feature

o=l Query Optimizer ||
|

: Plan Template
1 Feature Vector Generator
SRS S A
i e R ! R
: Cluster i

i Reorganisation :

1 System Policy | Plan Template
| Catalogs Query Cluster 3 Database
Database

Query . i ,Plan
Feature Vector | vector Similarity Check Plan Generator ——\——
Extractor Match
Cluster Id A

Figure 4.1: The PLASTIC Architecture

having side-effects on the other components of the tool. For example, a change in
the query distance function which is part of the Similarity Checker module does not
affect any of the other components of the tool. Currently, the only module which
does incur major side-effects are the Feature Vector Extractor,and Query Generator.

Changes to feature vector will require modifications only to feature vector classes.

Optimizer Portability: The dependencies on the specific optimizer with which integra-
tion is being achieved is localized to a few modules. Specifically, the Plan Template
Generator, the Query Generator Generator, and the Feature Vector Extractor have
to be customized based on the manner in which the host database system outputs
plans and stores information in the system catalogs, but the remaining modules can
be used directly without alteration. All the database schemas used to store clusters

are independent of optimizer.

CHAPTER 4. ARCHITECTURE AND DESIGN OF PLASTIC 16

Platform Portability: The entire code has been implemented in Java, making it easily

portable across different operating systems and hardware installations.

Visual Operability: The tool can be operated completely in the visual domain by the
Database Administrator. For example, there are visual interfaces for both generat-

ing and viewing query cluster formations, as well as their reorganization.

Chapter 5

Value-Addition Modules

In this section we describe some additional modules that we have implemented in PLAS-
TIC. Though not fundamental to the system these modules enhance the functioning of
PLASTIC by providing interfaces to generate, reorganize, show clusters and generating

”plan diagrams”, and ”cost diagrams”.

Plan and Cost Diagram Generator: This module can be used to generate the“plan
diagrams” and ” cost diagrams” for a “query template”. A query template represents
a query in which some or all of the constants ! have been replaced by bind variables.
For example, each of the queries Q1 through Q22 of the TPC-H benchmark can be
considered as a query template [5]. The plan diagram for a query template is the
enumeration of the plans chosen by the optimizer over all points in the associated
query template space. The cost diagram for a query template is the enumeration of
optimizer estimated cost of the plans chosen by the optimizer over all points in the
associated query template The number of dimensions of the plan diagram and the
cost diagram is equal to the number of tables of a query template that have selection
predicates on them. Currently, we support two-dimensional plan diagrams and cost
diagrams. The DBA can specify accuracy levels depending on his requirement. At

high accuracy levels, the module fires more explain queries? and populates the plan

Here we refer to constants as values being compared in the conditions of the where clause.
2Explain query is used to generate optimized plan.

17

CHAPTER 5. VALUE-ADDITION MODULES 18

diagram and cost diagram more accurately. The DBA can also specify a portion of
the query template space, so that the module generates the plan diagram and the

cost diagram only for that portion more accurately.

This module generates the queries of different selectivities for a query template and
fires explain queries for them to the query optimizer. Then it takes the optimized
plans for the fired queries from the query optimizer and compares them using graph

matching algorithm, based on that draws the plan diagram.

The plan diagrams and the cost diagram help the database administrator to assess
the “volatility” of the plan space and thereby fine-tune the similarity function pa-
rameters. The plan diagrams and the cost diagrams can also be used by database
designers to study the behavior of the query optimizers and improve the query

optimizers.

Cluster Generator and Reorganizer: For a given query template, we have automated
the process of “seeding” the cluster database by generating an initial set of queries
through an Auto Cluster Generator. This module consults the data dictionary and
automatically generates queries of different selectivities so as to cover the space of
queries represented by the query template. To handle the case where the database
administrator decides to change the similarity function threshold, resulting in new
clusters, there is a Cluster Reorganizer that automatically creates the new clusters.
If the threshold is being increased then the Cluster Reorganizer eliminates redun-
dant clusters. If the threshold is being decreased then it creates new clusters so as

to cover whole query template space.

Chapter 6

Implementation

We have implemented PLASTIC for two commercial RDBMS namely DB2 (Ver7.0) and
Oracle (Ver 9i) in java (Ver 1.4). The code length is around 14k lines. Currently, only
SPJ! queries are handled, but we plan to add nested and aggregate queries in future.
Salient details of our current implementation are given below:

For each module there is a generic class which implements the query optimizer independent
functions and gives declaration of the query optimizer dependent functions. The query
optimizer specific classes for a module inherits from the generic class of that module and
implements the optimizer dependent functions declared in the generic class. Due to this
design, porting of PLASTIC to any other optimizer is very easy. It requires implementing
optimizer specific classes inheriting from the generic classes.

Class diagram of current implementation is shown in Figure 6.1, which shows impor-
tant classes in the implementation and the dependencies between them. To make the
class diagram easily understandable we have not given every detail about the classes.

For example we describe, classes which implement functions of the Feature Vector
Extractor. The statCollect is a generic class used to get the feature vector of a query.
First, we describe the members attributes of this class. The member attribute table-

2

Feature is used to store the per table feature vector © of each table in the query. The

Here SPJ refers to select project join queries.
2Refers to feature vector relevant to individual table.

19

CHAPTER 6. IMPLEMENTATION 20

member attribute globalFeature is used to store the global feature vector * of the query.
Second, we describe methods and processing of the statCollect class. Member functions
setXXX() are called to compute the feature vector of the query. The functions setXXX()
consult RDBMS catalogs and compute the corresponding feature of the feature vector.
For example, the function setIF() computes the Inder Flag of relations. The RDBMS
independent setXXX() functions are implemented in the generic class statCollect and
optimizer dependent functions are implemented in the optimizer dependent classes like
statCollectOracle.

We are only describing two functions setETS() and setTS(). The member function
setETS() computes ETS feature of the per table feature vector. The ETS is computed
as product of project ratio * and overall selectivity of the relation. Overall selectivity of a
relation is computed by getting the selectivities of individual select conditions. Selectiv-
ity of a select condition is computed by using information stored in the histogram of the
attribute involved in the select condition. We are giving details about the information re-
quired to calculate selectivity, and we are not giving more details about selectivity compu-
tation process. Oracle 91 RDBMS uses width based histograms and stores them in a view
DBA_ALL_TAB_HISTOGRAMS [6]. The view DBA_ALL_TAB HISTOGRAMS stores
frequency and normalized values of boundaries of the buckets. On the other hand DB2 7.0
RDBMS uses end-biased histograms and stores them in a table SYSIBM.COLDIST [12].
To keep track of selectivity of the range predicates it stores information about data distri-
bution also in form of quantiles in the same table SYSIBM.COLDIST. Instead of storing
normalized value of the attribute in histograms it stores actual values of the attribute.
Different RDBMS support different data types, and selectivity estimation depends on
data type of the attribute involved in the select condition. Because of these dependencies
on RDBMS the function setETS() is implemented in the optimizer specific class.

The member function setTS() computes TS feature of the per table feature vector.

The TS is the size of underlying the relation. It is computed as product of total size

3Refers to feature vector relevant to whole query.
4Refers to ratio of total size of a tuple of the relation to size of portion of the tuple required for the
query execution.

CHAPTER 6. IMPLEMENTATION 21

of tuple and cardinality of the relation. Oracle 9i stores this information in the views
SYS.DBA _TAB_COL_STATISTICS and SYS.DBA_TABLES [6]. DB2 7.0 stores this in-
formation in the tables SYSIBM.SYSTABLES and SYSIBM.SYSCOLUMNS [12]. To
make this function independent of the optimizer we define some views on previously men-
tioned tables, so as to create same interface. Because of same interface the function

setTS() is defined in the generic class statCollect.

Clustering Mechanism: The leader algorithm [4] is used to determine cluster repre-

sentatives. To reduce search time we store clusters in tree structured schema.

Visual Interfaces: Using Java Swing, we have provided graphical interfaces to submit
queries and observe the execution plans, to auto generate, re-organise and visualize

clusters.

A sample interface is shown in Figurel in appendix, which shows the plan generated

by PLASTIC for a query7 in TPC-H benchmark.

Another sample interface is shown in Figure2 in appendix, which shows various

clusters for a queryb of TPC-H benchmark, generated using Auto Cluster Generator.

Another sample interface is shown in Figure3 in appendix, which shows plan diagram
for a query2 of TPC-H benchmark for oracle database, generated using the Plan

and Cost Diagram Generator.

Another sample interface is shown in Figure4 in appendix, which shows cost diagram
for a query2 of TPC-H benchmark for oracle database, generated using the Plan

and Cost Diagram Generator.

CHAPTER 6. IMPLEMENTATION

statCollect
ClusterGen SptableFeature]]
SxtableFeature]] &sglobalFeature
%globar\]lFeature Augen %Ct(t)ngﬂt]
weight & attributes
queryGen .
&ythreashold &statCollect &yrelations(]
#simCheck() %gustderGen ®parser()
:tabIeMatch() - Ee]] . :semfmtAnalyzer()
ScroateNowLeader($getSchema(SoethCsarg)
$getCluster() :ggtn'?)e'aﬁono :setJIC()
®getLeader() Y setDT()
®augeninit() tempGen()

®setindex()

22

templatePlanGen

#addPlanTemp()
®getPlan()
#createTempPlan()

0

File: H:\er.mdlI

12:07:50 PM Tuesday, December 31, 2002 Class Diagram: Logical View / Main Page 1

#augenChangeFeature() ®setTS()
#removeDuplicate() t ®setETS()
#setGlobal()
/ / templatePlanGen templatePlanGen
/ / \‘ \‘ DB2 Oracle
/ / “ \ #getPlan() #getPlan()
|
/ / | \
statCollectDb2 ! statCollectOra
/ ‘ cle
queryGen PsetIF() |
&sCond][] #setJIC() | ®setlF()
& cardinality([] #setindex() ‘ ®setJIC() \
&EhistXXX[] $setETS() | #setindex()
&freq[] ‘ PsetETS() \
®#getQuery() & N
®getXXX() / m—
$getAttr() ~ planDiagram planen
#setRange() ~_ &squeryGen
#setHistogram() ~_ &resolution :getPIan()
~ SselectivityLimit createPlan()
| &planBuffer #showPlan()
,A " | @streeBuffer J |
/ ®initColor()
/ ®paint()
#fillPoint()
queryGenDB2 queryGenOracle *_reconr_lect() planGenOracle planGenDB2
:lsDuphcate()
®getAttr() ®getAttr() getPlanTree() ® ®
$setRange() #setRange() showPlan() showPlan()
®setHistogram() ®setHistogram() . '
Figure 6<1: Class Diagram
planDiagramDb2 planDiagramOracle
#getPlanTree() #getPlanTree()

Chapter 7

Improvements

In this chapter we are describing some improvements to feature vector and distance func-

tion of PLASTIC. And based on these improvements modified SIMCHECK algorithm.

7.1 Improvements to feature Vector

In this section we are describing some improvements to feature vector in PLASTIC to
make it more versatile. Initially PLASTIC feature vector was restrictive and it was not
taking into account things like system state, indexes and table organization mechanism.
To make it less restrictive and exhaustive we have have removed, modified and added new

features to feature vector.

Relation Access Path: One modification that we have done to the feature vector is to
take different types of relation access paths ! into account. There are different ways
to access a relation for query execution. If there is a highly selective condition on a
relation and there exists an index on a attribute involved in the condition, then in
most of the cases the index scan is used to access the relation. Similarly if there is
no highly selective condition on a relation then there are more chances of choosing
the table scan. If we do mistake of choosing the index scan instead of the table

scan or vice - versa then there may be big difference in the execution time between

IRefers to different ways of accessing underlying base table.

23

CHAPTER 7. IMPROVEMENTS 24

two plans. To distinguish between cases where the index scan is used and where
the table scan can be used we have added one more feature relSel to the per table
feature vector. It is selectivity of the most highly selective condition on a relation
which can be executed using an index. If there is no condition on a relation, or
condition can not be executed using indexes available on the relation, then it has

value of null indicating index not available.

Commercial RDBMS support different types of indexes. For example DB2 has
unique, cluster and reverse type of indexes [8]. To distinguish between different
types of indexes we add one more feature indexType to the per table feature vector

indicating index type.

Organization Mechanism: Relations can be stored using different types of organiza-
tion mechanism. For example oracle9i has nested tables, partitioned table, B+Tree
organized table etc. The organization mechanism also affects the query plan. To
distinguish between different type of organization mechanism we have added one

feature tType to the per table feature vector.

Feedback: Initially the feature vector used to be in the query space. It results in a
strategy that if there is a resource then it will be used, but this may not be true.
In some cases even if there is an index on a attribute involved in a condition on a
relation optimized plan does not use the index because a large portion of the relation
is being accessed. A cluster representative query is having an index on a relation
and the index is not being used in the optimized plan, but still a in-coming query
that is not having an index on the relation will not share plan with the cluster
representative. To increase plan sharing, based on feedback from query plan for
cluster representative, feature vector is made less restrictive. For example if the
index on a relation is not being used in the optimized plan then relSel and index
flag feature of the relation in the leader query are modified after getting the plan.
This feedback process is done only for the cluster representative so it will not result

in inefficient processing. For example consider a query on TPC-H benchmark where

CHAPTER 7. IMPROVEMENTS 25

index is present for attribute p_partkey
select *
from
part, partsupp
where
p_partkey = ps_partkey
and p_partkey > 3200
and ps_supplycost > 400
But the plan for this query does not use the index so based on feedback value ofrelSel
is changed to value of null. Now if a new query having relation part_m instead of
part (only difference between part and part_m is that it is not having index on

p_partkey) will reuse the plan of previous query.

System Parameter: System parameters like parallel processing factor and memory
buffer size have a great impact on the query execution. Level of parallel processing
that can be done in the query execution also affects the query plan. We have added

one feature pFactor to distinguish between different level of parallel processing.
Based on above mentioned improvements new feature vector is given in table 7.1

All above mentioned improvement to feature vector make feature vector more ex-
haustive and increase sharing. Depending upon RDBMS query processing tech-

niques some more feature can be added to feature vector.

Example Feature Vector: Consider simplified version of the queryl2 given in TPC-H
benchmark where indexes are present for the attributes 1_partkey and p_partkey of
the tables LINEITEM and PART, respectively.

select

p-type, l_extendedprice, 1_discount
from

lineitem, part

where

CHAPTER 7. IMPROVEMENTS

‘ Feature ‘

Description

Global Features

NT

DS
NJP
pFactor

Number of tables participating in the query
Degree sequence of the query

Total number of join predicates the query
Amount of parallelism in the query execution

Table Features

DT;
IF;
TS;
ETS;
relSel;

tType;

Degree of table T;

Boolean indicating index-only access to T;
Size of T;

(estimated) Effective size of T;

Selectivity of most highly selective
condition on 7;

Type of table T;

Table 7.1: Contents of a Query Feature Vector

l_partkey = p_partkey
and 1_shipdate >= date (’1995-07-01)

26

The feature vector for this query is shown in Table 7.2. Note that the Index Flag

is not set for both the tables since all the selection predicates and projections on

the tables can not be evaluated through single common index. If we change p_type

attribute in select predicate to p_partkey then Index Flag for table PART will be

set. pFactor has a value of 10 indicating that 10 percent parallelism is possible in

the query execution. relSel has null value for both the tables indicating that an

index is not available.

CHAPTER 7. IMPROVEMENTS 27

Global Feature | Value
NT 2
DS (1,1)
NJP 1
pFactor 10
Table Feature | Table PART | Table LINEITEM
DT, 1 1
IF; 0 0
TS; 1014000000 | 34200000
ETS; 113000000 800000
relSel; null null
tType; 1 1

Table 7.2: Example of a Query Feature Vector

7.2 Improvements to distance function

Original SIMCHECK algorithm? uses distance function dist;; (T}, T§), where T} and T§
are the tables whose distance is computed, with 7% denoting i** table of first query which
is to be mapped with TQj , the j% table of second query. The larger the distance lesser
the similarity. In terms of statistical features given in Table 7.1, The distance function is

given as:

: i i TSi—TS]|+wsx ETSi—ETS}|
(T3, 1) =2 ISi=T S| twoe BTS; - PTS,
dist;;(T7,19) man(TSi,TS])

Here, wl and w2 are weighting factors (with wl + w2 = 1). If wl is given more value
than w2 then it results in more emphasis on the base table size vice- versa. To increase
sharing and accuracy we are suggesting three improvements to above mentioned distance

function.

First Improvement: Originally, w1 is set higher than w2, which results in more empha-
sis on base table size. Queries across multiple schema will have different base table
sizes. So setting wl higher than w2 results in less sharing in queries across multiple

schema. Based on experiments on queries across multiple schema and analysis of

2This algorithm is used to check similarity between two query feature vectors

CHAPTER 7. IMPROVEMENTS 28

Figure 7.1: Plan Diagram Nol

cost functions® we found that base table size effects the relation access path but
it does not effect the join orders *. Vice - versa effective table size effects the join
orders but it does not effect relation access path. And if base table size of a relation
is increasing then plan does not change relation access path of the relation from
the index scan to the table scan and vice - versa if base table size of a relation is
decreasing then plan does not change relation access path of the relation from the

index scan to the table scan.

For example Figure 7.1 and Figure 7.2 show plan diagram for two queries having
same structure but different base tables. Base tables in the second query are ten

times larger than base tables in the first query. It can be easily seen from the figures

3Refers to functions used to evaluate cost associated with different types of possible operations used
to execute query.
4Refers to the order of joins between relations and join type.

CHAPTER 7. IMPROVEMENTS 29

Figure 7.2: Plan Diagram No2

that the base table size has very less impact on query plans.

Based on previous the discussion we can say that base table size TS has very little
impact on query plan. So we have remove TS component from the numerator of
distance function and a separate check has been added for TS. And also in any of
above mentioned conditions TS check is not done, otherwise it is done. Based on
above mentioned change new distance function is:

. . . ETSi—ETSj‘
(T3, T3) =IEEo 2t
dZStU (1542) maz(TS3,TS5)

Second Improvement: Originally, difference between table sizes is normalized by max-
imum of base table sizes. But as we mentioned previously base table size does not
have effect on join orders, so in the new distance function function the difference
between table sizes is normalized by maximum of effective table sizes. Based on

above mentioned change new distance function is:

CHAPTER 7. IMPROVEMENTS 30

b e 2) by = I P T 50

RELATION#0

Figure 7.3: Plan Diagram For Fixed Sized Cluster

. - TSi—-TSI)|
(T TJ — TS} alas 1N
dlSt”(172) maz(ETS: ,ETS,

Third Improvement: In SimCheck function distance got from the distance function is
compared against a threshold. So the size of a cluster dependents on the threshold.
The larger the threshold bigger the size of the cluster. Originally, the distance is
compared against a fixed threshold, which results in fixed sized clusters. The fixed
sized clusters result in redundant clusters in the regions where plans do not change,
and less clusters in the regions where plans change. Consider the plan diagram
shown in Figure 7.3 for a query template
select *
from scott.tsl, scott.ts2
where tsl.cl = ts2.cl

and tsl.c3 > :vl

CHAPTER 7. IMPROVEMENTS 31

and ts2.c3 > :v2

It can be easily seen that there are many clusters in the regions having less plans,
and there are less clusters in the region having more plans. Solution is to have big
clusters in the regions where plans do not change and small clusters in the regions
where plans change. Based on experiments and analysis of the cost functions we
found that there are more plans in the regions where effective table sizes of the
relations involved in a query are close to each other vice - versa. So there should be
small clusters in the regions where effective table sizes are close to each other. To
exploit this property of plan diagrams, threshold is computed as variance in effective
table sizes of tables involved in a query.

Now we are describing the process of threshold computation.

First, tables are grouped based on standard deviation of effective table sizes in

query. If standard deviation in a group is less than some fixed value® then threshold

deviation
(numberoftablesingroup)?’

is calculated as otherwise the group is broken into parts process
continues recursively. The pseudo code of algorithm THCALC is given in figure,

takes as input effective table size of tables involved in query.

So now clusters having effective table sizes close to each other will have less threshold
and vice versa. This results in small sized clusters in the regions having more number

of plans, and big sized clusters in the regions having less number of plans. Variable

5Value of 0.7 results in good groups

SIMCHECK (Effective table sizes)
1.

2
3.
4

Calculate standard deviation ETSSD of effective table size of tables
IF ETSSD>FValue
Break group in two parts gl,g2 and call algorithm for each group
ELSE IF Number of tablesg;qy, = 1
thresholdET'S gy oup=F XTHOLD

ELSE

. Variancegroup
threShOIdETSWO“p_ (Numberoftablesgroup)?

Figure 7.4: The THCALC Algorithm

CHAPTER 7. IMPROVEMENTS 32

Figure 7.5: Plan Diagram For Variable Sized Cluster

sized clustering results in following benefits.

First, it results in less number of clusters which increases efficiency. Second, it
results in more clusters in the regions having more plans which reduces chance of

errors ¢ and risk 7.

For example in Figure 7.5 shows plan diagram for a query template
select *

from scott.tsl, scott.ts2

where tsl.cl = ts2.cl

and tsl.c3 > vl

and ts2.c3 > :v2

6Tt is ability of the cluster boundaries to discriminate the plan boundaries sketched by an optimizer
"This is computed as the worst case extra cost incurred when PLASTIC does not choose the optimizer-
generated plan for a particular query

CHAPTER 7. IMPROVEMENTS 33

It can be seen that there are many clusters in the regions having more plans, and
less clusters in the regions having less plans. Above mentioned improvements result
in variable sized oval shaped clusters which are difficult to show, so we have shown

only the cluster representatives.

All three mentioned improvements result in increased sharing across multiple schema,
increased efficiency and more accurate plan assignments. Note that this threshold
computation process is done only for cluster representatives so it will not result in

more classification time.

7.3 New Distance Function

Based on improvements done in previous chapter pseudo code of modified SIMCHECK
algorithm is given in figure. This algorithm takes two query features and outputs a
boolean value indicating whether or not they are similar. The algorithm operates in two
phases, structural map which mainly consist of boolean checks and statistical map which
consist of mapping of the tables using distance function. In the first phase, the feature
vector are compared for equality on the number of tables, the sum of table degrees and
parallel processing factor. Only if feature vector match in first phase, the second phase is
invoked, otherwise the queries are deemed to be dis-similar. The structural map is done
first in order to identify dissimilar queries as early and as simply as possible. For example,
it is obvious that if the number of tables in the queries do not match, then their plan will
also necessary have to be different. Such structural map are done at early phase as an

effective mechanism for stopping unproductive match at early stage.

CHAPTER 7. IMPROVEMENTS

SIMCHECK (Q1,Q2)
// Check that Queries have same number of Tables
1. If Q1.NT '= Q2.NT RETURN (Not Similar);
// Match Query Level Semantics
2. If DS(Q1) = DS(Q2) AND
NJP(Q1) = NJP(Q2) AND
pFactor(Q1) = pFactor(Q2) AND
GO TO Step 4;
3. RETURN (Not Similar);
//— Find the Best Mapping between Tables —
4. For every group g of tables
// all the tables inside the group are in sorted order of effective tables sizes
Ry =T, T5,., T, R CQ:
Ry =T{,T5,.. T, Rz CQ
find the mappings of compatible tables between R; and R,
that has the minimum distance, with
respect to pairwise distance function
If IF(T})=IF (T3) AND
tType(T})=tType(T¥) AND
DT(T})=DT(TJ) AND

\TS{—TSQ T T 1]
maa(TSTTS]) < ThresholdTS
then)

. R ETSi—ETS?
dzstij(Tf,TQJ) — _|BTSi—ETSy|

max(ETSS ,ETS3)
else

dist;; (T, TS)=1.0
Compute the difference, seldist, of relSel

between compatible tables T;,T; using function
seldist; j(i T)=|relSeli — relSel))|

6. // compare the distance against group threshold
IF dist;;(T{,T]) > ThresholdETS, OR
seldist; j(T}, T§) > ThresholdETS,
RETURN (Not Similar);

7.RETURN (Similar);

?Threshold used for base table size comparision, value of 0.01 gives accurate results.

Figure 7.6: The Modified SIMCHECK Algorithm

34

Chapter 8

Future Work

The future avenues include extending the work to handle nested queries, groups and
aggregates. Our preliminary experience with ’group by’ suggests that it should be simple
to apply SIMCHECK Algorithm for group-bys Figure7.6. This is because in most of the

cases group-by works on the output given by the basic query.

35

Bibliography

[1] V. Sengar and J. Haritsa ”Plan Recycling through Incremental Clustering”, Proc. of
ACM SIGMOD Intl. Conf. on Management of Data, 2003.

[2] A. Ghosh, J. Parikh, V. Sengar and J. Haritsa, “Plan Selection based on Query
Clustering”, Proc. of 28th Intl. Conf. on Very Large Data Bases (VLDB), August
2002.

[3] http://www.cs.toronto.edu/ jglu/home/tools.htm

[4] J. Hartigan, Clustering Algorithms, John Wiley & Sons, Inc., 1975.
[5] http://www.tpc.org

[6] hitp://download-east.oracle.com/otndoc/oracle9i/toc.htm

[7] hitp://www.va.pubniz.com/man/xdb/sqlref/
SystemTableDescriptions_434.html

[8] http://www.craigsmullins.com/db2_type.htm

[9] K. Shim, T. Sellis and D. Nau, “Improvements on a heuristic algorithm for multiple-

query optimization”, Data and Knowledge Engineering, 12, 1994.
[10] http://www.sql.org.

[11] P. Selinger, M. Astrahan, D. Chamberlin, R. Lorie and T. Price, “Access Path Selec-
tion in a Relational Database Management System”, Proc. of ACM SIGMOD Intl.
Conf. on Management of Data, 1979.

36

BIBLIOGRAPHY 37

[12] P. Gassner, G. Lohman, K. Schiefer and Y. Wang, “Query Optimization in the IBM
DB2 Family”, Data Engineering Bulletin, 16 (4), (1993).

WED

Appendix A

Screenshots of PLASTIC

Main I

select p_partkey, p_narme,
ram

part,
partsupp
here

p_partkey = ps_partkey
and p_retailprice > 2200
and ps_supplycost > 400
and p_size > 15

ps_comment, ps_suppkey

Connect || EBrowse || Submit || Featureveaor || Bat |
Large x Large y|
—
NLIOIN
/\
TBSCAN FETCH
|
STT TXSCAN PARTSUPP
TBSCAN VIB_SUPP
|
PART

Figure A.1: Plan Interface

38

APPENDIX A. SCREENSHOTS OF PLASTIC

| Cluster Managment |

Cluster Number €1 v | [By Cluster Number

) AutoGen (® See Cluster (' Reorganise (0 Delete

select p_partkey, p_name, ps_comment, ps_supplkey
ram
part,
parsugp
here
p_partkey = ps_partkey
and p_retailprice > 2200
and ps_supphcast = 400
and p_size » 15

Cluster Diagram

i

T S
SOK

P

F

a3 & Oy by = T = [T 50
.

RELATION#0

Figure A.2: Clusters Interface

39

APPENDIX A. SCREENSHOTS OF PLASTIC 40

ACCuracy «

5_carmment
rarm
wibthuti.part,
wibhuti. supplier,
wibhuti. pantsupg,
vibhuti.nation,
wibthuti.region
here e =
p_partkey = ps_partkey Flan Diagram
and s_suppkey = ps_suppkey
and p_retailprice =901
and r_name > 'MIDDLE EAST'
and s_nationkey = n_nationkey
and n_regionkey = r_regionkey
and ps_supplyrost > 591

Browse || Submit

Figure A.3: Plan Diagram Interface

