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Abstract. 

Linear hashing is a hashing in which the 
address space may grow or shrink dynamically. A 
file or a table may then support ally number of 
insertions or deletions without access or memory 
load performance deterioration. A record in the 
file is, in general, found in pale access, while 
the load may stay practically constant up to 90 %. 
A record in a table is found in a mean of 1.7 
accesses, while the load is constantly 80 %. No 
other algorithms attaining such a performance are 
known. 

1. B. 

The most fundamental data structures are files 
and tables of records identified by a primary key. 
Hashing and trees (B-tree, binary tree,.. ) are 
the basic addressing techniques for those files 
and tables, thousands of publications dealed with 
this subject. If a file or a table is almost 
static, hashing allows a record to be found in 
general in one acoess. A tree always requires 
several accesses. However, when the file or the 
table is, as usually, dynamic, then a tree still 
works reasonably well, while the performance Of 
hashing may become very bad. It may even become 
necessary to rehash all records into a new file. 

We have shown, however, in /LIT77/ that hashing 
may be a tool for dynamic files, if the hashing 
function is dynamically modified in the course of 
insertions or deletions, We have called this new 
type of hashing yj,&& hashitlp. (VH), in contrast 
to the well known hashing with a static function, 
which we will refer to as qJ.a&&& Through an 
algorithm called VHO /LIT77/, we have shown that a 
record in a dynamic file may typically be found in 
two accessses, while the load stays close to 70 % 

/LIT77a/. Another algorithm, called VHl /LIT78/, / 
LIT78a/, has shown that a record may even be found 
typically in one a&ass, while the load during 
insertions oscillates between 45 % and 90 % and is 
67.5 % on average. It showed also that the average 
load during insertions may be always greater than 
63 % and almost always greater than 85 5, if we 
accept that the average successful search requires 
1.6 accesses /LIT79a/. Finally, a gensralisation 
of VHl, called VH2, has shown that for a similar 
load, the average successful search requires very 
close to one access /LIT79a/. Two other algorithms 
similar to VHO have been proposed, Dynamic Hashing 
(DH) /LAR78/ and Extendible Hashing (EH) /FAG78/. 
Since trees typically lead to more than 3 or 4 
accesses per search and to a load close to 70 % 
/KND74/, /COW/g/, all these VH algorithms offer 
better access performance for similar or higher 
load factors. 

VHO, DH and EH require at least two accesses 
per search because the data structure which 
represents the dynamically oreated hashing 
functions must be on the disk. VHl and VH2 are 
faster, because the functions are represented by a 
bit table which, depending on file parameters, 
needs 1 kbyte of core (main storage), per file for 
7 000 to more than 1 500 000 records. In this 
paper, we present the algorithm which goes 
further, only a few bytes of core suffice now for 
a file of any size. For RD~ number of insertions 
or deletions, the load of a file may therefore be 
high and a reaord may be found, in general, in one 
access. No other algorithms attaining such a 
performance are known. 

The algorithm is called Linear Virtual Hashing 
or Linaar &&~g in short (LH). The choice of 
file parameters may lead to a mean number of 
accesses per successful search not greater than 
1.03, while the load stays close to 60 %. It may 
also lead to a load staying equal to 90 % while 
the successful search requires 1.35 accesses in 
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the average. Even if the buffer in core may 
contain only one record, a search in the file 
needs 1.7 accesses in the average while the load 
remains at 80 $. This property makes LH probably 
the best performing tool for dynamic tables as 
well. 

The next section describes the principles of 
LH. We first snow the basic schema for nashing. We 
then discuss the computing of the physical 
adaresses of buckets, when tne storage for tnem is 
allocated in a non-contiguous manner. Finally, we 
present some variants of the basic schema. 

Section 3 shows performance of the Linear 
Hashing. First, we show access and memory load 
performance of the basic schema. Next, the 
performance are analysed for a variant with a, 
so-called, load control. 

Section 4 concludes the paper. We sum up the 
advantages which Linear Hashing brings, we show 
some application areas and, finally, we indicate 
directions for further research. 

-I 2. -OF THE LINEAR . 

2.1. &sic schem& 

We recall that hashing is a technique which 
addresses records provided with an identifier 
called B&y or, simply, key. The key, let 
it be c, is usually a non-negative integer and, in 
a work on the addressing by primary key, we may 
disregard the rest of the record. A simple 
pseudo-random function, let it be h, called a 
m function, assigns to c the memory cell 
identified by the value h(c). The &&i,ng Pu 

. w c /--> c mod M ; M = 2,3,.. ; is an 
exemple of a hashing function. The cells are 
called buckets and may contain b records, 
b = 1,2,.. . The record is inserted into the 
bucket h(c), called m for c, unless the 
bucket is already full. The search for c always 
starts with the access to the bucket h(c). 

If the bucket is full when c should be stored, 
we speak about a w. An algorithm called 

. . sm w methoq (CRM) is then applied 
which, typically, stores c in a bucket m such that 
md h(c). c then becomes an overflow record and 
thl; bucket m is called overflow bucket for c. If 
(i) overflow buckets are not primary for any 
c,(U) each of them is devoted to only one h(c) 
and (iii) a new overflow bucket for an h(c) is 
chained to the existing ones, then we have a 
u chaininn CRM. If, in particular, the 
capacity b' of an overflow bucket is b' = 1, we 
call this CAM seoarate chaininn /KNU74/. 

A search for an overflow record requires at 
least two accesses. If all collisions are resolved 
only by overflow record creations, as it was 
assumed until recently /LIT77/, then access 
performance must rapidly deteriorate when primary 
buckets become full. If the insertion of c leads 
to a collision and no records already stored in 
the bucket h(c) should become overflow records, 
then c may be stored in its primary bucket only if 
a new hashing function is chosen. The new 
function, let it be h', should assign new 
addresses to some of the records hashed with h on 
h(c) and the file should be. reorganized in 
consequence. If h = h’ for all other records, the 
reorganizing needs to move only a few records and 
so may be performed dynamically. The new function 
is then called by us w created- 
function or, shortly, a s&&j.~g function. 
The modification to the hashing function and to 
the file is called au, h(c) is, under the 
circumstances, -address . The idea in VH in 
general and so, in particular, in LH is to use 
splits in order to avoid the accumulation of 
overflow records. Splits are typically performed 
during some insertions. All splits result from the 
application of -functions. For LH, as well as 
for VHO and for VHl, the basic Split functions are 
defined as follows /LIT79/, /LITBO/ : 

- Let C be the key space. Let 

hO : c --> (0, l,.., N-11 be the function that is 
used to load the file. The functions h ,s h2,.., 
hi,.. are called split functions for ho if they 
obey the following requirements : 

(1) 

hi : C --> (0, l,.., 2’N-11 

(2) 
For any c either : 

hi(c) = hi,,(c) 

or : 

hi(c) = h. (c) + 2 i-l l-l N 

(2.1) 

We assume that, typically, each hi ; 
i = O,l,.. ; hashes randomly. This means that the 
probability that c is mapped by h. to a given 
address is l/2iN. This also meansithat (2.1) and 
(2.2) are equiprobable events. 

Fig. 1 illustrates the use of split functions. 
The file is created with h0 : c --> c mod N, where 
N = 100. The bucket capacity is b = 5 records. For 
split functions we choose tne hashing by division, 
namely we put : 

hi : c /--> c mod 25.4. 
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This choice respects (2) since, obviously, for any 
non-negative integers k, L, either : 

k mod 2L = k mod L 

or : 

k mod 2L = k mod L + L. 

We assume that a collision occurs during the 
insertion of c = 4900. Instead of simply storing c 
as an overflow record, we change ho to the 
following h : 

h(c) = h,(c) 
h(c) = ho(c) 

if ho(c) = 0 
otherwise. 

We then reorganize the file. We thus have applied 
h, as the split function and we have performed the 
split for the address 0. The hashing function h 
results from the spLit and is a dynamic hashing 
function. 

h 
0 

ho 8 h 

4 900 

‘a) $J;-%J--#iJ 

0 1 53 99 

h 
1 

0 1 53 99 100 

Fig. 1. The use of a split for a collision reso- 
t;;ion. (a) - a collision occurs for the bucket 0. 

- the collision is resolved without creating 
an overflow record and the address space is 
extended. 

Fig. 1.b shows the new state of the file. Since 
h = ho for each address except 0, no records other 
than these hashed to 0 have been moved. Since 
hzh for the records which h0 hashed to the 
addre& 0, for approximatively half the number of 
these records the address has been changed. It 
followed from (2) that all these records had the 
same new address which, under the circumstances, 

had to be 100. A new bucket has therefore been 
appended to the last bucket of the file to which 
all the records have been moved &l pne m. 
Since for all these records the bucket 100 is 
henceforward the primary bucket, they are all 
accessible in m access. In particular, this is 
also the case of the new record, i. e,, 4 900. On 
the other hand, the records which remained in the 
bucket 0 continue to be accessible in one access. 
In contrast to what could be done if a classical 
hashing was used, the split has resolved the 
collision ulthout creatina a JELW.&X record and 
without--deterioration. 

Let us now assume that the file addressed with 
h0 undergoes a sequence of insertions which did 
not yet lead to overflow records. Furthermore, let 
us assume that a split is performed iff a 
collision occurs. The natural idea would be to 
split the bucket which undergoes the collision, 
this was implicit for all algorithms for VH. 
However, split addresses must then be random and 
this must lead to dynamic hashing functions using 
tables. Dynamic hashing functions which do not 
need tables may be obtained only if the split 
addresses are chosen in a predefined order. To 
perform splits in some predefined order, instead 
of split the bucket which undergoes the collision, 
is the main new idea in the linear hashing. 

Let m be the address of a collision. Let n be 
the address of a split to be performed in the 
course of the resolution of this collision. Since 
the values of m are random while these of n are 
predefined, usually n f m. If so, we assume that 
the new record is stored as an overflow record 
from the bucket m through a classical CRM, bucket 
chaining for instance. Next, we assume that n is 
given by a pointer which thus indicate the bucket 
to be split. For the first N collisions, the 
buckets are pointed in the linear order 
0,1,2,.., N-l and all splits use h, (2.2) implies 
then, that the file becomes progr&sively larger, 
including one after another the buckets N+l, 
N+2 ,...,2N-1. A record to be inserted undergoes a 
split usually not when it leads to the collision, 
but with some delay. The delay corresponds to the 
number of buckets which has to be pointed while 
the pointer travels up, from the address indicated 
in the moment of the collision, to the address of 
this collision. 

With this mechanics, no matter what is the 
address, let it be ml, of the first collision, LH 
performs the first split using h, and for the 
address 0. The records from the bucket 0 are then 
randomly distributed between the bucket 0 and a 
new bucket N, while, unless m,=O, an overflow 
record is created for the bucket m,. The second 
collision, no matter what is its address, let US 

say m2, leads to an analogous result, except that, 
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first, it splits for the address 1 and appends the 
bucket N+l. Next, it may constitute the delayed 
split for the first collision, suppressing 
therefore the corresponding overflow record. This 
process continues for each of the N first 
collisions, moving thus the pointer, step by step, 
up to the bucket N-l. Sooner or later, the pointer 
points to each m and the splits, despite of being 
delayed, move thus most of the overflow records to 
the primary buckets. We may therefore reasonably 
expect that, for any n < N, only a few overflow 
records exist. 

After N collisions, we have h = h,, (1) implies 
then that, instead of the hashing on N addresses, 
we now hash on 2N addresses. (2) implies that h2 
has on the hashing with h,, the action analogous 
to that of h, on the hashing with h = h0, except 
that it hashes on 4N addresses. We therefore 
assume that n = 0 again, that now we split with h 
and that the upper bound on n is now 2N-1. go! 
further insertions, we use h 
the pointer travels each tim$‘from 0 toj 

h4,.., h while 
‘;j’lN. 

It results from the above principles that, 
first, the address space increases linearly and is 
as large as needed. Next, for any number of 
insertions, most of overflow records is moved to 
the primary buckets by the delayed splits. On one 
hand, we may thus reasonably expect that the rate 
of overflow records remains always small. If 
b >> 1, the rate should even be neglectable small. 
Thus, we may expect the linear hashing to find a 
record usually in one access to the bucket, no 
matter how few buckets were provided when the file 
was created and how high the number of insertions 
finally is. 

The highest index of a split function currently 
used, let it be j ; j=O,l,.. ; is called u 
&y& If n=O, we always have h = hj for some j. 
Otherwise, first, h = h j-, for the buck@ not yet 
split with h , i. e., n, n+l,..,2 N. Next, 
h = hj for alljthe others. The algorithm computing 
the primary address of a c is therefore trivial : 

(Al) 
if n = 0 
else 

: m <-- hj(c) 

:f<m-<hd-!(z)<-- h (c) endif 
endif .I 

endA 

2.2. -dress comnu . 

The address given by hashing must be transfor- 
med into the physical address of the bucket in the 
memory. The memory for files is usually divided 
into quanta of let it be q buckets ; q = 1,2,.. 
Quanta may be all of the same size or different 

sizes may be available. It then may be particula- 
rly worthwhile to use sizes which are 2i of a 
Certain minimal q (buddy system /KNU74/). 

When the file is loaded some quanta are 
statically allocated. Then, if a file increases 
dynamically, quanta are sometimes added. If all 
quanta for a file are contiguous, then the the 
physical address of a bucket m is as follows : 

m’(m) = ml(O) + dm (3) 

where d is the number of memory elements, i. e., 
bytes, words or sectors,., per bucket. Thus the 
advantage of a contiguous allocation is that only 
the address of the first quantum is needed and 
that the computing of the physical address is 
trivial. 

However, if several dynamic files should share 
a memory, it may be better to allocate 
non-contiguous quanta. For each file, the 
addresses of these quanta must then be collected. 
The address of the i-th quantum may be the value 
T(i) of a table T. For the quanta of a fixed size, 
we then have the following formula : 

i(m) = INT(m/q) (4) 

m’(m) = T(i(m)) +d(m - i(m)q) 

where INT denotes the integer part. In particular, 
if q=l, i. e., if the allocation is totally 
distributed, then we have simply : 

m’(m) = T(m). (5) 

For the quanta of different sizes, we particu- 
larly recommend the following schema : 

- let K be a parameter; K = 1,2,.. . The, sizes 

90’ 9,‘“. of successive quanta of the file should 
be : 

40 =N 

q1 = q2 = . . . = qK = qO/K 

. . * 

(6) 

‘lk+l 
1 

= qlk+2 = -* = q(l+,)k = 2 9, 

where l=O,l,.. For instance, if N = 20 and K = 4, 
then the sizes of the quanta dynamically allocated 
are 5, 5, 5, 5, 10, 10, 10, 10, 20, 20,.. . 
Dynamic allocations take thus place when LH starts 
to use the addresses 20, 25, 30, 35, 40, 50, 60, 
70, 80, loo,... Higher is the value of K, smaller 
is the drop in memory load when a new quantum is 
allocated, but T is larger. The practical values 
of K are between 1 and 10. 
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Let mi be the smallest logical address in the 
i-th quantum. Next, let it be ; 

a’ ’ -m-m i(m)’ 

Therefore we have : 

m'(m) = T(i(m)) + dm”. (7) 

In the case of (61, i(m) and tat’ may then be 
computed by the following obvious algorithm : 

(A2) 
if m < N : i <-- 0 ; rnrI <-- m 
else 

i <-- j-l ; M <-- 2’N 
while M > m and i > 0 : 

M <-- M/2 ; i <-- i-l 
endwhile 
if <-- M/k ; mrt <-- m-M 
i <-- INT(m”/i’) +ik +l 
ml 1 <-- m’ 1 mod is 

endif 
endA 

2.3. Yariants of the. 

2.3.1. scoetrol. 

Splits that are performed iff a collision 
occurs are called s. Splits are called 
gontrolled if they also depend on other conditions 
or are performed even if there is no collision. A 
particularly useful control is called &f& 
control. Under this control, a split is performed 
when a collision occurs, but only if the load 
factor is superiour to some threshold. This may 
concern the load factor, let it be P, defined as 
usual /KNU74/ : 

I= x/ bM (8) 

where x is the number of records in the file, b is 
the bucket capacity and M is the number of primary 
buckets. The control may also take in to account 
the overflow buckets in which case the load 
factor, let it be s’, is defined as : 

C’ = x/(bM + b’M’) (9) 

where M’ is the number of overflow buckets and b’ 
is the overflow bucket capacity. 

In what follows the thresholds are denoted as g 
and g’, respectively. We will show that, when the 
file undergoes insertions, the load control 
usually keeps the load factor almost equal to the 
chosen threshold. A similar control may keep the 
load factor greater than or almost equal to a 

threshold, when the file undergoes deletions. Each 
time a deletion brings the load below this 
threshold, we may simply perform an operation 
called prouDinn which is inverse to splitting. A 
grouping moves thus the pointer one address 
backward and so decreases M. If the threshold for 
deletions is equal to the one for insertions, m 
LQdPf~Ltlfikusuallvstavs~constant. 

2.3.2. Pointeress '- . 

It may surprise, but primary address may be 
computed in fact without the knowledge of the 
value of n. The following algorithm, analogous to 
that of VHl /LIT78a/, proves it : 

(A31 
m <-- hj(c) 

endA 
if m >= M : m G- hj,,(c) endif 

If n=O, then it is obvious that (A3) works. 
If n i 0 then, if : 

h(c) = hj(c), 

then : 

h(c) < n < M 

or : 

2j" < n < M. 

Thus (A31 terminates correctly. Else, we have : 

h(c) = hj,,(c). 

Then, if : 

h j-1 (‘I = hj(c) 

then : 

h(c) < 2j”N < M. 

Thus (A31 also terminates correctly. Else : 

hj(c) >= M, 

since the bucket h(c) is not yet split. Therefore, 
in this last case, the algorithm terminates 
correctly as well. 

In particular, we may assume N = 1. The file 
level j is then a function of M. It follows, 
first, that the size of address space may be the 
only one parameter which LH needs for addresses 
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computing. It follows, next, that the parameters 
of a classical hashing may suffice in order to 
construct a linear one. For instance, the 
knowledge of the number of the addresses for the 
hashing function and of the fact that a hashing by 
division is used, suffice in both cases. 

2.3.3. m.sDlit functim . 

Let b,, b2,..., bi,... be a sequence of 
randomly generated bits, with equiprobability of 
bi=O and of bi=l. Such a sequence may be obtained 
using a random number generator. Let Bi be the 
integer with binary representation bi,bi-,,,..,b 1’ 
The functions hi defined as follows : 

hi : c I--> ho(c) + BiN (10) 

are, obviously, split functions for m ho. Thus, 
LH may be constructed not only for a hashing by 
division, but for any usual hashing function. 

Split functions with Bi given by a random 
number generator may be particularly interesting 
for N L 1. For this value each hi hashes on 2l 
addresses. If the hashing by division is applied, 
the address of c is, simply, the i least 
significant bits of c. The hashing by division may 
then be sometimes rather non-random, while a 
random number generator may still perform well. 
The choice of N = I is particularly useful since, 
first, there is no more problem to choose among 
several possible ho. Next, LH covers all possible 
address space sizes. Finally, since the file may 
then be constituted even from only one bucket, a 
good load factor may be provided even for very few 
records. 

Bi may also result from the multiDlicatlon 
function /KNU74/, let it be h’ . If w is the word 
size and A is an integer relati;ely prime to w, 
then the hashing with h’ on 2 addresses is 
defined as follows : 

hIi = INT(Zi((Ac/w) mod 1). (11) 

Bi is in this case constituted from the bits of 
h’ i(c), taken in the reverse order. In other 
terms, the most significant bit of hli becomes the 
least significant in Bi etc 

Knuth shows that a particularly good choice for 
A is A = 6 125 423 371. He also shows an algorithm 
computing (11) in only four instructions of the 
MIX assembler. Finally, he shows that his 
algorithm is usually faster than the hashing by 
division. To compute Bi through the multiplication 
function may thus be faster than through a random 

number generator. 

In particular, Knuth shows that h’ is a 
scramblina f&ction. This means, first, that its 
partial result, let it be f(c) ; 
f(c) = AC mod w ; is such that if c’ # c”, then 
f(C’) d f(c”). Next, this means that the 
transformation c --> f(c) tenders to randomize the 
keys. Therefore, the following split functions may 
be constructed : 

(12) 
hi(c) = f(c) mod 2iN 

which may perform better than the direct hashing 
by division. 

Finally, split functions may also be construc- 
ted for alphabetic or variable-length keys. In 
particular, the individual words of such a key may 
be simply combined into a single word, to wnich 
any of the previously discussed functions may then 
be applied. Any of the combinations suggested by 
Knuth may be used, the addition mod w for 
instance. 

2.3.4. General of snlit . 

LH may be seen as VHl in which split addresses 
have been predefined. VHl may be generalized into 
an algorithm called VH2. Furthermore, it may be 
assumed that split addresses are, in fact, 
predefined for VH2. The conditions (1) and (2) may 
then be generalized follows ; 

- let K be a parameter which value is fixed 
when the file is created ; K=l,2,.. . Let it be 

ki = K + i mod K. Let N be an integer, N > 1. The 
hashing functions hi ; i=l,2,.. ; are split 
functions for a hashing functions ho, if the 
following condition are respected : 

- for i = O,l,.. : (13) 

hi : c --> 10,l,..,Ni-lI 

NO = KN 

Ni+l = Ni + Ni/ki 

For any c, either 

hi(c) = hi-,(c) 

or : 

hi(c) = Ni,, + INT(hi-, (c) / ki). 

(14) 
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For example, if N-5 and K=4, then the successive 
NiS are : 20, 25, 30, 35, 40, 50, 60, 70, 80, 
loo,... (note the similarity to (6)). 

As Previously, we assume that each h should 
hash randomly, It follows that the probability 
that a key changes the address after a split, let 
it be p, is now pk = l/(kt;; ),n;f(,“,=a;i Fe: 0;; 
and (14) are, simply, 
For greater K, P decreases and the dist!ibution 
of records wit in LH file becomes more uniform. l-c 
First, higher load factor obviously results for 
uncontrolled splits. Next, when the threshold 
increases, load control with K > 1 should lead to 
a better search performance. However, it is easy 
to see that for such K, to perform a split, 
usually needs more accesses. Therefore, insertions 
and deletions will be more costly than for K = 1 
as well. 

K > 1 implies that the address space doubles 
not after one, but after K trips of the pointer. 
Each of K trips may then be called a DB&&& 
m of the address space. Partial expansions 
may result from formula others than the above, 
these introduced by /LAR80/ in particular. 
Performance resulting from (13) and (14) for K > 1 
being quite similar to these of the Larson’s 
schema, only the case of K = 1 is discussed in 
what follows. 

3. PERFORMANCE. 

3.1. Udress cornout&& 

If the allocation is contiguous, LH is 
obviously almost as simple and fast as the 
classical hashing. If the allocation is 
non-contiguous and (3) or (4) are used, then this 
is also the case, as long as T may be entirely in 
core. The use of (6) needs few more instructions, 
but the computing of (A21 also very fast ; it is 
quite clear that, for any j, the “while” loop is 
in the average executed at most twice. 

A four byte word allows the values of n and of 
j to go up to 232, i. e., allows the LH file to 
grow up to more than four billions buckets. For 

any number of insertions, (Al) enters thus even a 
very small core. If the allocation is contiguous, 
since (3) is used, the computing of the physical 
address also needs only a few bytes. If the 
allocation is non-contiguous, the core is mainly 
needed for T. If (A2) is used, the size of T is, 
obviously, not greater than jk+l. For k = 10 which 
is largely sufficient in practice, 301 words are 
then sufficient for a file which increases even a 
billion times. Thus, in practice, no matter if the 
allocation is contiguous or not, no matter how 
small is the core and how high is the number of 

insertions, the computing of a address resulting 
from LH, m reouiresauaccess. 

However, the disk storage is usually needed if 
the allocation is totally distributed. (5) shows 
then clearly that any address is computed in no 
more than one access. On the other hand, since the 
disk is required only for T and since T contains 
only the pointers to buckets, the disk storage 
required then by LH is the minimal one. It is 
usually much smaller than that of the index of a 
VSAM file, since the index contains keys and 
internal pointers and since its load foactor is 
lower. It is also several times smaller than the 
storage required by the tables of VHO, DH and EH, 
either because of their much lower load factor 
(VHO,. EH) or because of the internal pointers 
(DH). 

3.2. VsDlit. 

3.2.1. as oerforw. 

We now assume that overflow records are 
addressed through separate chaining and that the 
file is created by x insertions ; x=0,1,.. . We 
alSO assume that each hi hashes randomly. Finally, 
we assume (and we have now right to do it) that 
the computing of an address never requires a disk 
access. By s’, s*‘, strr we denote the mean number 
of accesses per successful search, per unsuccess- 
ful search and per insertion. By 5 we denote the 
mean number of accesses per split. These 
coefficients will be called u. 

Fig. 2 shows curves of s’(x) obtained through 
simulations for bucket capacities b = 1,5,10,50. 
For b n1,5 we have not shown the first splits, 
since they correspond to x < 10 and to s1 
practically equal to 1. For b = 5, we have also 
shown the evolution of the file level j. The 
curves describe the file which is created with 
only one bucket and which undergoes x > 213b 
insertions. At the end, the number of records in 
the file is thus more than 8 000 times greater 
than the number of records wnich could be found in 
one access in the initial one. It does not even 
make sence to compute what would be the deterio- 
ration of access performance, if the classical 
hashing would have been used. 

For each b, when x increases, the curve is 
first irregular and therefore displays the 
existence of a transient &&&. After a few 
insertions, the file reaches a &,&.I& &&g , 
where the curve is a periodic function of log2x. 
On one hand, it means that in the stable state s’ 
does not depend on x, but on the relative position 
of the pointer. On the other hand, it means that 
S’ does not increase for whatever the number of 
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recall that B-trees need in general ‘1,5 accesses 
while binary trees need typically more than 10, 
since s’(x) P log2x /KNU74/. 

The transient state may be disregarded, since 
the performance is good and .x is neglectable 
small. Since the curves in the stable state are 
periodical, they may be characterized by the 
values of s.’ 

min * s’max 
mean value of 9’ 

and of stave, which is the 
over one period. The values 

corresponding to the curves are displayed in the 
table 1.a. 

b I 5 10 20 50 

s' 
ave 1.73 1.16 1.07 1.02 I .oo 

s' 
max 1.77 1.20 I.11 1.06 1.03 

=*mi" 1.68 I. IO 1.02 I .oo I .oo 

s" ave 1.62 1.28 1.19 I.12 1.06 
5" 

max 1.63 1.32 1.26 1.24 1.23 
511 

min 1.6 1.20 1.08 1.02 I .oo 

s'I I 
ave 7.91 3.97 3.14 2.67 2.35 

sll 1 
max 8.92 4.07 3.45 3.09 2.71 

s111 
min 6.45 3.34 2.48 2.11 2.00 

ave 6.94 6.09 5.99 5.98 5.98 

'min 5.80 5.10 5.00 5.00 5.00 

fmax 8.62 7.45 8.10 8.85 10.85 

t 

Pave 1.30 0.66 0.61 0.59 0.59 

amax 1.30 0.67 0.63 0.65 0.70 

'rain 1.30 0.65 0.59 0.55 0.51 

i' ave 0.8 0.63 0.59 0.59 0.59 

Table 1 - 

Fig.2. Mean number of accesses per successful 
search for linear hashing with uncontrolled 
split. 

insertions could be. We therefore may conclude 
that for any bucket capacity and any number of 
insertions, the mean number of accesses per 
successful search stays close to 1. For large 
buckets, we may even consider that we have always 
s’=1 ! LH is thus a very important algorithm, 
since, first, 11~ a &gprithmg attalnlna 22ud 

an almost ideal performance are known. Next, it 
performs several times better than trees. We 

(a) 

(b) 

(cl 

Cd) 

:e) 

Performance of linear hashing with 
uncontrolled splits : 

(a) successful search, 
(b) unsuccessful search, 
(c) insertion, 
Cd) split, 
(e) load factor. 

The analysis of s” through simulations and 
through modelling /LIT79/ shows also a transient 
state and a stable state. Both states correspond 
of course with these of s’. The performance of 
unsuccessful search with LH in the stable state 
are displayed in the table 1.b. As in the case of 
classical hashing using the separate chaining (see 
/KNU74/), they are better than the performance of 
the successful search for b = 1 and poorer for 
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b > 1. However, as before, for any bucket capacity 
and any number of insertions s” stays close to 1. 
The limit value for s’ ‘max when b increases is 
1.24 /LIT79/. 

Table 1.d shows the characteristics of the 
split cost. Unless split is performed for the 
address of the collision, this cost is at least 
five accesses (two accesses in order to store the 
overflow record for the bucket m, three acaesses 
in order to split the bucket n). The split needs 
more accesses if the bucket n overflows. This case 
is obviously the most frequent for b = 1 ; that is 
why gave is maximal. The number of overflow 
records on n is obviously the shortest for n 
close to 0, 0 = smin corresponds to such values 
of n. Inversely, 
close to 2’, 8 

the longest chains exist for n 
= 9 corresponds thus to the end 

of a trip of the F%ter. 8 increases with b, 
since the chains become longezhile the use of 
the separate chaining implies one access per every 
record in the chain. However, gave reveals 
practically independent of b. 

Finally, table 1.c lists s”‘, i. e., the cost 
of an insertion. For b = 1 almost 8 accesses are 
needed, since split cost is the highest and since 
a split results from almost any insertion. For 
larger b, s”’ falls down quickly, since the 
proportion of insertions leading to a split 
decreases and the others need typically 2 to 3 
accesses. If b >> 20, which is a typical value for 
files, s”’ oscillates between 2 and 3. Thus, 
first, as it was the case of the other costs, 
insertion cost of LH may also stay always close to 
its theoretical minimum. Next, even in the worst 
case, i. e., for b = 1, the insertion cost is 
still typically much smaller than for trees, 

since, for instance, for X = 105, a binary tree 
leads to s”’ > 16 /Ktw74/. 

3.2.2. Loadfactor. 

The characteristics of load factors 8 and 8’ 
are shown in the table I.e. For b = 1 the load 
factor is constantly equal to 80 %. This 
conjunction of such a good load and of the 
previously shown access performance makes LH 
probably the best known tool for dynamic tables. 
For higher values of b, the load is going down to 
the average value of almost 60 % and so the load 
of LH with uncontrolled split may be almost 10 5 
worse than the load of a B-tree. However, better 
access performance is usually prefered to a 
sligtly better use of the increasingly cheaper 
disk space. 

3.3. wd SDU. 

If the load is controlled and the threshold g 
is greater than zmax, then the load is practically 
equal to g. It is obvious that the higher g is, 
the worse must be the access performance, since 
the ratio of overflow records increases. 
Simulation studies show, however, that substantial 
increases to the load factor may be achieved while 
the value of the acaess performance still stays 
excellent. 

For instance g = 0.75 and b = 5 leads to a load 
which is almost 10 % higher than the one for the 
uncontrolled load. The correspondig access 
performance is still very good, since 
9’ ave = 1.25, s”ave = 1.43 and slll = 3.84. 
For b = 50, the same g leads to a 16 rimprove- 
ment , while the access performance becomes : 
9’ ave = 1.28, sllave = 2.38 and slllav = 3.46, 
For many applications the above trade o f may be e 
significant. 

Higher thresholds increase the length of 
overflow record chains. On one hand, the storage 
occupied by overflow buckets is then no more 
negligible. On the other hand, larger overflow 
buckets must lead to better access performance. 
For higher thresholds, more stable load factor 
results thus from the control on 8’ and it is 
better to choose b’ > 1. 

The threshold corresponding to the load control 
on 8’ is denoted gl. For given values of b and of 
g’, access performance depend on b’. If g1 is 
higher than 8ax of uncontrolled split, then, 
obviously, neither b’ = 1 nor b’ >> 1 can provide 
the best access performance. Therefore, they are 
b’s which are the optimal ones. Fig. 3 shows 
curves of 9’ corresponding to the minimal s’ 
for bo 10,20,50 while g1 = 0.75,O.g. It aCX 
indicates the corresponding optimal b’s. Table 2 
displays the performance of the corresponding 
stable states and the performance for g’ = 0.85. 
All these results are obtained through simula- 
tions. 

It first become apparent from the figure, that 
if g’ = 0.75, then s1 is always almost 1. It is 
also apparent that s1 stays close to one even for 
l3’ = 0.9 ! In other words, LH does not only find a 
record in general in one access independently of 
the number of insertions, but may also use almost 
the minimal storage I In particular LE achieves 
not only a much better access performance than 
B-trees but also saves more than 20 % in storage ! 
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b;lo 
b’z3 g=o,9 

gz3 9=0,75 

x 
20 10 80 320 1780 5120 20 480 8,920 327680 

X 

,o ..: 73c 800 3200 12800 51200 2OL800 819203 

Fig.3. Mean number of accesses per successful 
search for linear hashing with the load kept 
equal to 75 % (- -> and to 90 % (-) 

Furthermore, with respect to table 1, table 2 
shows that it is rather worthwhile to choose a 
high threshold, even if one seriously cares about 
performance other than s’. For g’ = 0.9, load 
control improves the load factor up to 31 5 in 
mean and up to 40 '5 with respect to the worst 
value. The price to pay for such a significant 
improvement in load seems rather low, since, 
first, s” ave increases only by 1.3 accesses. 

Next, 
Only .G 

s”lave increases only by 1.5 accesses. 
deteriorates more substantially, since 

it incr$IEes by 3.4 accesses. However, for b = 50 
and g’ E 0.85, this deterioration stays small, 
since it not exceed 1.3 accesses. Finally, srnax 
may do not deteriorate at all, being, even, for 
g’ I 0.75, better for all each b. For b = 50 the 
gain is quite important, since it reaches 3.4 
accesses. These gains are obviously due to b’ > 1. 

5” 1.37 1.99 2.48 1.29 I.80 2.45 1.27 1.70 2.37 a"e 

s” max 1.48 2.15 2.75 1.43 2.11 2.87 1.49 2.19 2.95 

S” 1.21 1.52 2.06 1.10 1.38 1.85 1.02 I.10 1.66 

sll 1 ave 3.42 4.05 4.68 2.91 3.42 4.17 2.62 3.10 3.73 

sl’ 1 max 3.67 4.71 5.43 3.11 3.60 4.43 2.60 3.30 4.15 

s” ’ min 2.91 3.29 3.73 2.51 2.82 3.25 2.27 2.43 2.91 

‘min 5.05 5.60 6.15 5.05 5.75 5.9 5.00 5.45 6.20 

(a) 

(b) 

(cl 

Cd) 

Table 2 : Performance of linear hashing with 
controlled load : 

(a) successful search, 
(b) unsuccessful search, 
(c) insertion, 
(d) split cost. 

Fig. 4 displays s’ave in function of b’, with 
values of b and of g’ from table 2 as parameters. 
It appears that for a file loaded up to 75 fc, 
access performance are almost the same for a large 
number of values of b’. For these values, 
performance are, in addition, almost independent 
of b. For example, s’ave is smaller than 1.2 
accesses, for all b* between 2 and 8 when b = 10, 
for all b* between 2 and 16 when b = 20 and for 
all b’ between 2 and 50 when b = 50 ! Since 
practical constraints may frequently impose bucket 
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SW. 
2.4+ 

b= 20 
+ 

1 
+ t , .- 

‘a . . + .’ 

b= 50 

Fig.&. Mean number of accesses per success- 
ful search as a function of the size of the 
overflow bucket. 

capacities which are not the optimal ones, this 
stability of excellent access performance is one 
more important property of LH. 

The figure shows, however, that when the loaa 
becomes higher, b’ should be kept closer to the 
optimal one. The practical rule which appears is 
then : 

b/5 :< b’ =< b/j. 

For b > 20, even if the lower bound is b/7, we 
stay under a mean of 1.5 accesses. 

It also becomes apparent that the access 
performance deteriorates less when g’ increases 
from 75 ‘$ to 85 5, as it deteriorates when g’ 
increases from 85 % to 90 %. In other terms, the 
last 5 $ are the most expensive ones and it is not 
recommended to further increase g’. 

If a file or a table addressed with LH is 
static, then the performance is simply that of 
classical hashing, i. e., the best known. If they 
are dynamic, then the mean number of accesses per 
search stays close to 1 independently of the 
number of insertions and for load factors reaching 
90 5. If the bucket capacity is greater than 10 
records, then almost any record is found in one 
access. Finally, address computing is almost as 
simple and rapid as for classical hashing. The 
comparison of these performance with those of the 
classical hashing, of trees and even of other 
algorithms for virtual hashing, shows that for the 
search by the primary key, LinearBashinaj.g&hq 
&& DerfornQg technioue ~QQWQ. 

High and constant load factor means that LH 
store records always in an almost minimal storage. 
A sequential search scans thus an almost minimal 
number of buckets, i. e., is almost as fast as 
possible. If the classical hashing is used, the 
number of primary buckets is fixed when the file 
is created. If the number of records is then i 
times less than expected, a sequential search with 
LH is almost i times faster. This property of LH 
is also important, since sequential searches are 
quite frequent. 

With respect to trees, in addition to much 
faster search, LH provides much simpler algorith- 
mic. This is, first, the case of the algorithms 
for a search, for an insertion and, especially, 
for a deletion. This is also the case of the 
algorithms for concurrency control, since only the 
key and the pointer must be locked, instead of a 
path in the tree. Also, there is no a problem of 
an inconsistency which may occur in a tree because 
of keys duplicated between the file and its index. 
Thus trees stay more advantageous only when the 
file must be searched in one order. 

LH is, of course, primarly devoted to applica- 
tions where the file may heavily grow or shrink or 
where the number of records is unknown when the 
file is created. It may thus be very useful for 
compilers and text processing systems. It may 
avoid the painful estimations of the file sizes in 
a DBMS, from which files the deleted records are, 
usually, not physically removed. It may also avoid 
performance deterioration for such files, 
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rendering thus the very annoying reorganizations 
of the whole database /SCH73/ unnecessary or less 
frequent. It is a good tool for the management of 
working spaces for queries to a DBMS, since the 
number of records retrieved by a query to a 
working space is, usually, unknown in advance. It 
may also be used for a virtual memory management. 
On the other hand, since it works with very small 
cores, LH renders dynamic files usable on 
micro-computers. Clearly, the applications of the 
Linear Hashing are very numerous. 

Research on LH has just started and many 
possibilities are still open. Other criteria for 
control may be useful, /SH079/ for instance shows 
that the performance may be excellent if we simply 
split one time for any gb insertions. M. Girault 
(Institut de Programmation) has suggested to 
consider splits and groupings as operations which 
are, finally, completely out of the algorithmic 
for a record insertion or deletion. He suggests 
further to leave splits and groupings to the 
competence of a dedicated processor which task 
would thus be to take care of performance of all 
files. This idea obviously leads to a new and 
interesting type of an associative memory. 

Furthermore, methods other than bucket chaining 
should be explored for overflow record addressing. 
The first investigations of open addressing show 
that it may work pretty well /KAR79/. Also, the 
properties of split functions should be investi- 
gated. Finally, much work is needed in modelling, 
since classical methods do not apply to dynamical- 
ly created hashing functions. Especially, there is 
no models for the transient state and for a file 
with small buckets. 

This work was sponsored by project SIHIUS. 
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