ivff.‘; %
ol

CRASH RECOVERY

8

What steps are taken in the ARIES method to recover from a DBMS
crash?

How is the log maintained during normal operation?

How is the log used to recover ﬁoxl} a crash?

What information in addition to the log is used during recovery’
What is a checkpoint and why is it used?

What happens if repeated crashes occur during recovery’

How is media failure handled?

How does the recovery algorithm interact with concurrency control?

¥ §y 8 8 888

Key concepts: steps in recovery, analysis, redo, undo; ARIES,
repeating history; log, LSN, forcing pages, WAL; types of log
records, update, commit, abort, end, compensation; transaction ta-
ble, lastLSN; dirty page table, recLSN; checkpoint, fuzzy checkpoint-
ing, master log record; media recovery; interaction with concurrency
control; shadow paging

Humpty Dumpty sat on a wall.
Humpty Dumpty had a great fall.
All the King’s horses and all the King’s men
Could not put Humpty together again.

—Old nursery rhyme

579

j
H
8

|

J

'

!

.

580 CHAPTER 18

The recovery manager of a DBMS is responsible for ensuring two important
properties of transactions: Atomicity and durability. It ensures atomicity by
undoing the actions of transactions that do not commit and durability by mak-
ing sure that all actions of committed transactions survive system crashes
(e-g., a core dump caused by a bus error) and media failures (e.g., a disk is
corrupted).

The recovery manager is one of the hardest components of a DBMS to design
and implement. It must deal with a wide variety of database states because
it is called on during system failures. In this chapter, we present the ARIES
recovery algorithm, which is conceptually simple, works well with a wide range
of concurrency control mechanisms, and is being used in an increasing number
of database sytems.

We begin with an introduction to ARIES in Section 18.1. We discuss the
log, which a central data structure in recovery, in Section 18.2. and other
recovery-related data structures in Section 18.3. We complete our coverage
of recovery-related activity during normal processing by presenting the Write-
Ahead Logging protocol in Section 18.4, and checkpointing in Section 18.5.

We discuss recovery from a crash in Section 18.6. Aborting (or rolling back)
a single transaction is a special case of Undo, discussed in Section 18.6.3. We
discuss media failures in Section 18.7, and conclude in Section 18.8 with a
discussion of the interaction of concurrency control and recovery and other ap-
proaches to recovery. In this chapter, we consider recovery only in a centralized
DBMS; recovery in a distributed DBMS is discussed in Chapter 22.

18.1 INTRODUCTION TO ARIES

ARIES is a recovery algorithm designed to work with a steal, no-force ap-
proach. When the recovery manager is invoked after a crash, restart proceeds
in three phases:

1. Analysis: Identifies dirty pages in the buffer pool (i.e., changes that have
not been written to disk) and active transactions at the time of the crash.

b

Redo: Repeats all actions, starting from an appropriate point in the log,
and restores the database state to what it was at the time of the crash.

3. Undo: Undoes the actions of transactions that did not commit. so that
the database reflects only the actions of committed transactions.

Consider the simple execution history illustrated in F igure 18.1. When the
system is restarted, the Analysis phase identifies 71 and T3 as transactions

Crash Recovery ' 581

LSN LOG

10 """' update: T1 writes PS5
20 == update: T2 writes P3
30 == T2commit

40 —'— T2 end

50 """ update: T3 writes P1
60 — update: T3 writes P3

X CRASH, RESTART
Figure 18.1 Execution History with a Crash

active at the time of the crash and therefore to be undone; T2 as a committed
transaction, and all its actions therefore to be written to disk; and P1, P3, and
P35 as potentially dirty pages. All the updates (including those of T'1 and T'3)
are reapplied in the order shown during the Redo phase. Finally, the actions
of T1 and T3 are undone in reverse order during the Undo phase; that is, T'3’s
write of P3 is undone, T3's write of P1 is undone, and then T'1’s write of P5
is undone.

Three main principles lie behind the ARIES recovery algorithm:

= Write-Ahead Logging: Any change to a database object is first recorded
in the log; the record in the log must be written to stable storage before
the change to the database object is written to disk.

= Repeating History During Redo: On restart following a crash, ARIES
retraces all actions of the DBMS before the crash and brings the system
back to the exact state that it was in at the time of the crash. Then,
it undoes the actions of transactions still active at the time of the crash
(effectively aborting them).

s Logging Changes During Undo: Changes made to the database while
undoing a transaction are logged to ensure such an action is not repeated
in the event of repeated (failures causing) restarts.

The second point distinguishes ARIES from other recovery algorithms and is
the basis for much of its simplicity and flexibility. In particular, ARIES can
support concurrency control protocols that involve locks of finer granularity
than a page (e.g., record-level locks). The second and third points are also

582 CHAPTER 18

Crash Recovery: IBM DB2, Informix, Microsoft SQL Server, Oracle 8,
and Sybase ASE all use a WAL scheme for recovery. IBM DB2 uses ARIES,
and the others use schemes that are actually quite similar to ARIES (e.g.,
all changes are re-applied, not just the changes made by transactions that
are 'winners’) although there are several variations.

S |

important in dealing with operations where redoing and undoing the opera-
tion are not exact inverses of each other. We discuss the interaction between
concurrency control and crash recovery in Section 18.8, where we also discuss
other approaches to recovery briefly.

18.2 THE LOG

The log, sometimes called the trail or Jjournal, is a history of actions executed
by the DBMS. Physically, the log is a file of records stored in stable storage,
which is assumed to survive crashes; this durability can be achieved by main-
taining two or more copies of the log on different disks (perhaps in different
locations), so that the chance of all copies of the log being simultaneously lost
is negligibly small.

The most recent portion of the log, called the log tail, is kept in main memory
and is periodically forced to stable storage. This way, log records and data
records are written to disk at the same granularity (pages or sets of pages).

Every log record is given a unique id called the log sequence number
(LSN). :As with any record id, we can fetch a log record with one disk access
given the LSN. Further, LSNs should be assigned in monotonically increasing
order; this property is required for the ARIES recovery algorithm. If the log is
a sequential file, in principle growing indefinitely, the LSN can simply be the
address of the first byte of the log record.?

For recovery purposes, every page in the database contains the LSN of the most
recent, log record that describes a change to this page. This LSN is called the
pageLSIN.

A log record is written for each of the following actions:

'In practice, various techniques are used to identify portions of the log that are ‘too old’ to be
needed again to bound the amount of stable storage used for the log. Given such a bound, the log may
be implemented as a ‘circular’ file, in which case the LSN may be the log record id plus a wrap-count.

Crash Recovery 583

s Updating a Page: After modifying the page, an update type record (de-
scribed later in this section) is appended to the log tail. The pageLSN of
the page is then set to the LSN of the update log record. (The page must
be pinned in the buffer pool while these actious are carried out.)

s Commit: When a transaction decides to commit, it force-writes a com-
mit type log record containing the transaction id. That is, the log record
is appended to the log, and the log tail is written to stable storage, up to
and including the commit record.? The transaction is considered to have
committed at the instant that its commit log record is written to stable
storage. (Some additional steps must be taken, e.g., removing the transac-
tion’s entry in the transaction table; these follow the writing of the commit
log record.)

s Abort: When a transaction is aborted, an abort type log record containing
the transaction id is appended to the log, and Undo is initiated for this
transaction (Section 18.6.3).

s End: As noted above, when a transaction is aborted or committed, some
additional actions must be taken beyond writing the abort or commit log
record. After all these additional steps are completed, an end type log
record containing the transaction id is appended to the log.

s Undoing an update: When a transaction is rolled back (because the
transaction .is aborted, or during recovery from a crash), its updates are
undone. When the action described by an update log record is undone, a
compensation log record, or CLR, 1s written.

Every log record has certain fields: prevLSN, transID, and type. The set of
all log records for a given transaction is maintained as a linked list going back
in time, using the prevLSIN field; this list must be updated whenever a log
record is added. The transID field is the id of the transaction generating the
log record, and the type field obviously indicates the type of the log record.

Additional fields depend on the type of the log record. We already mentioned

the additional contents of the various log record types, with the exception of
the update and compensation log record types, which we describe next.

Update Log Records

The fields in an update log record are illustrated in Figure 18.2. The pagelD
field is the page id of the modified page; the length in bytes and the offset of the

2Note that this step requires the buffer manager to be able to selectively force pages to stable
storage.

o84 ; CHAPTER 15

[I
prevL.SN transID type pagelD [length l‘ offset ‘ before-image

' lter-image |
e T e L i N

i e W e —————__———_____q
Fields common to al] log records Additional fields for update log recordg :

Figure 18.2 Contents of an Update Log Record

change are also included. The before-image is the value of the changed bytes
before the change; the after-image is the value after the change. Ap update
log record that contains both before- and after-images can be used to redo
the change and undo it. In certain contexts, which we do not discuss further,
We can recognize that the change will never be undone (or, perhaps, redone),
A redo-only update log record contains just the after-image; similarly an
undo-only update record contains just the before-image.

Compensation Log Records

A compensation log record (CLR) is written Jjust before the change recorded
in an update log record U is undone. (Such an undo can happen during nor-
mal system execution when a transaction is aborted or during recovery from a
crash.) A compensation log record C' describes the action taken tc undo the
actions recorded in the corresponding update log record and is appended to
the log tail just like any other log record. The compensation log record ' also
contains a field called undoN extLSN, which is the LSN of the next log record
that is to be undone for the transaction that wrote update record /; this field
in C is set to the value of prevLSN in U/, :

As an example, consider the fourth update log record shown in Figure 18.3.
If this update is undone, a CLR would be written, and the information in it
would include the transID, pagelD, length, offset, and before-image fields from
the update record. Notice that the CLR records the (undo) action of changing
the affected bytes back to the before-image value; thus, this value and the
location of the affected bytes constitute the redo information for the action
described by the CLR. The undoNextLSN field is set to the LSN of the first
log record in Figure 18.3.

Unlike an update log record, a CLR describes an action that will never be
undone, that is, we never undo an undo action. The reason is simple: An update
log record describes a change made by a transaction during normal execution
and the transaction may subsequently be aborted. whereas a CLR describes
an action taken to rollback 2 transaction for which the decision to abort has
already been made. Therefore, the transaction must be rolled back, and the

Crash Recovery 585

undo action described by the CLR is definitely required. This observation is
very useful because it bounds the amount of space needed for the log during
restart from a crash: The number of CLRs that can be written during Undo is
no more than the number of update log records for active transactions at the
time of the crash.

A CLR may be written to stable storage (following WAL, of course) but the
undo action it describes may not yet been written to disk when the system
crashes again. In this case, the undo action described in the CLR is reapplied
during the Redo phase, just like the action described in update log records.

For these reasons, a CLR contains the information needed to reapply, or redo,
the change described but not to reverse it.

18.3 OTHER RECOVERY-RELATED STRUCTURES

In addition to the log, the following two tables contain important recovery-
related information:

s Transaction Table: This table contains one entry for each active trans-
action. The entry contains (among other things) the transaction id, the
status, and a field called lastLSN, which is the LSN of the most recent log
record for this transaction. The status of a transaction can be that it is in
progress, committed, or aborted. (In the latter two cases, the transaction
will be removed from the table once certain ‘clean up’ steps are completed.)

= Dirty page table: This table contains one entry for each dirty page in
the buffer pool, that is, each page with changes not yet reflected on disk.
The entry contains a field recLSN, which is the LSN of the first log record
that caused the page to become dirty. Note that this LSN identifies the
earliest log record that might have to be redone for this page during restart
from a crash.

During normal operation, these are maintained by the transaction manager and
the buffer manager, respectively, and during restart after a crash, these tables
are reconstructed in the Analysis phase of restart.

Consider the following simple example. Transaction 71000 changes the value of
bytes 21 to 23 on page P500 from ‘ABC’ to ‘DEF’, transaction 72000 changes
“HIJ’ to ‘KLM’ on page P600, transaction 72000 changes bytes 20 through 22
from ‘GDE’ to ‘QRS’ on page P500, then transaction T1000 changes ‘TUV’
to “WXY’ on page P505. The dirty page table, the transaction table,® and

S TSR e
3The status field is not shown in the figure for space reasons: all transactions are in progress.

536 CHAPTER 18

pagelD recLSN

i~ i previSN transiD type pagelD length offset before-image after-image
[l i isopo o B 1 A
= Es [T o T1000 l update P300 21| |

‘ 2 DI
I psosi | - ia ol = ABC EF

- — S \[

DIRTY PAGE TABLE | T2000 [update J’ Ps00 ‘ 3 41 J HIJ ! KLM
e
T2000 update | P500 3 [20 T GDE [QRS [

‘ =
21 _]‘_ TUV

TI000 | update P505 | 3
LOG

transID lastLSN

| Tiooo | —F
| T2000 | _;

TRANSACTION TABLE

—-

e

Figure 18.3 Instance of Log and Transaction Table

the log at this instant are shown in Figure 18.3. Observe that the log is shown
growing from top to bottom; older records are at the top. Although the records
for each transaction are linked using the prevLSN field. the log as a whole also
has a sequential order that is important—for example, T2000’s change to page
P500 follows T1000’s change to page P500, and in the event of a crash, these
changes must be redone in the same order.

184 THE WRITE-AHEAD LOG PROTOCOL

Before writing a page to disk, every update log record that describes a change
to this page must be forced to stable storage. This is accomplished by forcing
all log records up to and including the one with LSN equal to the pageLSN to
stable storage before writing the page to disk.

The importance of the WAL protocol cannot be overemphasized— WAL, is the
fundamental rule that ensures that a record of every change to the database
is available while attempting to recover from a crash. If a transaction made a
change and committed, the no-force approach means that some of these changes
may not have been written to disk at the time of a subsequent crash. Without a
record of these changes, there would be no way to ensure that the changes of a
committed transaction survive crashes. Note that the definition of a committed
transaction is effectively ’a transaction all of whose log records, including a
commit record, have been written to stable storage’.

When a transaction is committed, the log tail is forced to stable storage, even
if a no-force approach is being used. It is worth contrasting this operation with
the actions taken under a force approach: If a force approach is used, all the
pages modified by the transaction, rather than a portion of the log that includes
all its records, must be forced to disk when the transaction commits. The set of

Crash Recovery : 5T

all changed pages is typically much larger than the log tail because the size of
an update log record is close to (twice) the size of the changed bytes, which is
likely to be much smaller than the page size. Further, the log is maintained as a
sequential file, and all writes to the log are sequential writes. Consequently, the
cost of forcing the log tail is much smaller than the cost of writing all changed
pages to disk.

18.5 CHECKPOINTING

A checkpoint is like a snapshot of the DBMS state, and by taking checkpoints
periodically, as we will see, the DBMS can reduce the amount of work to be
done during restart in the event of a subsequent crash.

Checkpointing in ARIES has three steps. First, a begin_checkpoint record is
written to indicate when the checkpoint starts. Second, an end _checkpoint
record is constructed, including in it the current contents of the transaction
table and the dirty page table, and appended to the log. The third step is
carried out after the end_checkpoint record is written to stable storage: A
special master record containing the LSN of the begin_checkpoint log record is
written to a known place on stable storage. While the end_checkpoint record
is being constructed, the DBMS continues executing transactions and writing
‘other log records; the only guarantee we have is that the transaction table and
dirty page table are accurate as of the time of the begin_checkpoint record.

This kind of checkpoint, called a fuzzy checkpoint, is inexpensive because it
does not require quiescing the system or writing out pages in the buffer pool
{unlike some other forms of checkpointing). On the other hand, the effectiveness
of this checkpointing technique is limited by the earliest recLSN of pages in the
dirty pages table, because during restart we must redo changes starting from
the log record whose LSN is equal to this recLSN. Having a background process
that periodically writes dirty pages to disk helps to limit this problem.

When the system comes back up after a crash, the restart process begins by
locating the most recent checkpoint record. For uniformity, the system always
begins normal execution by taking a checkpoint, in which the transaction table
and dirty page table are both empty.

18.6 RECOVERING FROM A SYSTEM CRASH

When the system is restarted after a crash, the recovery manager proceeds in
three phases, as shown in Figure 18.4.

D88 CHAPTER 18

IND 0G
DG Log:, Otldest log record

A T A of transactions
i active at crash

=~ 8 indirty page table

1

‘]

3 i

! REDO Smallest recLSN
i

: at end of Analysis

ANALYSIS
—— ¢ Most recent checkpoint

..J_ CRASH (end of log)

Figure 18.4 Three Phases of Restart in ARIES

The Analysis phase begins by examining the most recent begin_checkpoint
record, whose LSN is denoted in Figure 18.4, and proceeds forward in the
log until the last log record. The Redo phase follows Analysis and redoes all
changes to any page that might have been dirty at the time of the crash; this set,
of pages and the starting point for Redo (the smallest recLSN of any dirty page) -
are determined during Analysis. The Undo phase follows Redo and undoes the
changes of all transactions active at the time of the crash: again, this set of
transactions is identified during the Analysis phase. Note that Redo reapplies
changes in the order in which they were originally carried out; Undo reverses
changes in the opposite order, reversing the most recent change first,

Observe that the relative order of the three points A, B, and C in the log may
differ from that shown in Figure 18.4. The three phases of restart are described
in more detail in the following sections.

18.6.1 Analysis Phase

The Analysis phase performs three tasks:

1. It determines the point in the log at which to start the Redo pass.

2. It determines (a conservative superset of the) pages in the buffer pool that
were dirty at the time of the crash.

3. It identifies fransactions that were active at the time of the crash and must
be undone.

Analysis begins by examining the most recent begin_checkpoint log record and
initializing the dirty page table and transaction table to the copies of those
structures in the next end_checkpoint record. Thus, these tables are initialized
to the set of dirty pages and active transactions at the time of the checkpoint.

Crash Recovery 589

(1f additional log records are between the begin_checkpoint and end_checkpoint
records, the tables must be adjusted to reflect the information in these records,
but we omit the details of this step. See Exercise 18.9.) Analysis then scans
the log in the forward direction until it reaches the end of the log:

s If an end log record for a transaction T is encountered, T 18 removed from
the transaction table because it is no longer active.

s If alog record other than an end record for a transaction T is encountered,
an entry for T is added to the transaction table if it is not already there.
Further, the entry for T'is modified:

1. The lastLSN field is set to the LSN of this log record.

9. If the log record is a commit record, the status is set to C, otherwise
it is set to U (indicating that it is to be undone).

« If a redoable log record affecting page P is encountered, and P is not in
the dirty page table, an entry is inserted into this table with page id P and
recLSN equal to the LSN of this redoable log record. This SN identifies
the oldest change affecting page P that may not have been written to disk.

At the end of the Analysis phase, the transaction table contains an accurate
list of all transactions that were active at the time of the crash—this is the
set of transactions with status U. The dirty page table includes all pages that
were dirty at the time of the crash but may also contain some pagdes that were
written to disk. If an end_write log record were written at the completion of
each write operation, the dirty page table constructed during Analysis could
be made more accurate, but In ARIES, the additional cost of writing end_write
log records is not considered to be worth the gain. '

As an example, consider the execution illustrated in Figure 18.3. Let us extend
‘this execution by assuming that T2000 commits, then 71000 modifies another
page, say, P700, and appends an update record to the log tail, and then the
system crashes (before this update log record is written to stable storage).

The dirty page table and the transaction table, held in memory, are lost in the
crash. The most recent checkpoint was taken at the beginning of the execution,
with an empty transaction table and dirty page table; it is not shown in Figure
18.3. After examining this log record, which we assume is just before the
first log record shown in the figure, Analysis initializes the two tables to be
empty. Scanning forward in the log, T'1000 is added to the transaction table;
in addition, P500 is added to the dirty page table with recLSN equal to the
LSN of the first shown log record. Similarly, 72000 is added to the transaction
table and P600 is added to the dirty page table. There is no change based on
the third log record, and the fourth record results in the addition of P505 to

590 ‘ CHAPTER 18

the dirty page table. The commit record for T 2000 (not in the figure) is now
encountered, and 72000 is removed from the transaction table.

The Analysis phase is now complete, and it is recognized that the only active
transaction at the time of the crash is 71000, with lastLSN equal to the LSN
of the fourth record in Figure 18.3. The dirty page table reconstructed in the
Analysis phase is identical to that shown in the figure. The update log record
for the change to P700 is lost in the crash and not seen during the Analysis
pass. Thanks to the WAL protocol, however, all is well—the corresponding
change to page P700 cannot have been written to disk either!

Some of the updates may have been written to disk; for concreteness, let us
assume that the change to P600 (and ouly this update) was written to disk
before the crash. Therefore P600 is not dirty, yet it is included in the dirty
page table. The pageLSN on page P600, however, reflects the write because it
is now equal to the LSN of the second update log record shown in F igure 18.3.

18.6.2 Redo Phase

During the Redo phase, ARIES reapplies the updates of all transactions, com-
mitted or otherwise. Further, if a transaction was aborted before the crash
and its updates were undone, as indicated by CLRs, the actions described in
the CLRs are also reapplied. This repeating history paradigm distinguishes
ARIES from other proposed WAL-based recovery algorithms and causes the
database to be brought to the same state it was in at the time of the crash.

The Redo phase begins-with the log record that has the smallest recL.SN of all
pages in the dirty page table constructed by the Analysis pass because this log
record identifies the oldest update that may not have been written to disk prior
to the crash. Starting from this log record, Redo scans forward until the end
of the log. For each redoable log record (update or CLR) encountered, Redo
checks whether the logged action must be redone. The action must be redone
unless one of the following conditions holds:

= The affected page is not in the dirty page table.

® The affected page is in the dirty page table, but the recLSN for the entry
is greater than the LSN of the log record being checked.

= The pageLSN (stored on the page, which must be retrieved to check this

condition) is greater than or equal to the LSN of the log record being
checked.

The first condition obviously means that all changes to this page have been
written to disk. Because the recLSN is the first update to this page that may

-:-'Cmsh Recovery 591

_pot have been written to disk, the second condition means that the update
" peing checked was indeed propagated to disk. The third condition, which 18
. checked last because it requires us to retrieve the page, also ensures that the
- ypdate being checked was written to disk, because either this update or & later
_ update to the page was written. (Recall our assumption that & write to a page
' js atomic; this assumption is important here!)

~ 1f the logged action must be redone:

1. The logged action is reapplied.

9. ‘The pageLSN on the page is set to the LSN of the redone log record. No
additional log record is written at this time.

Let us continue with the example discussed in Section 18.6.1. From the dirty
page table, the smallest recLSN is seen to be the LSN of the first log record
shown in Figure 18.3. Clearly, the changes recorded by earlier log records
(there happen to be none in this example) have been written to disk.- Now,
Redo fetches the affected page, P500, and compares the LSN of this log record
with the pageLSN on the page and, because we assumed that this page was not
written to disk before the erash; finds that the pageL.SN 1s less. The update
is therefore reapplied; bytes 91 through 23 are changed to ‘DEF’, and the
pageLSN is set to the LSN of this update log record.

Redo then examines the second log record. Again, the affected page, P600, is
fetched and the pageLSN is compared to the LSN of the update log record. In
this case, because We ass_umed that P600 was written to disk before the crash,
they are equal, and the update does not have to be redone.’

The remaining log records are processed similarly, bringing the system back
to the exact state it was in at the time of the crash. Note that the first two
conditions indicating that a redo is unnecessary never hold in this example.
Intuitively, they come into play when the dirty page table contains a very old
recLSN, going back to before the most recent checkpoint. In this case, a5 Redo
scans forward from the log record with this LSN, it encounters log records for
pages that were written to disk prior to the checkpoint and therefore not in
the dirty page table in the checkpoint. Some of these pages may be dirtied
again after the checkpoint; nonetheless, the updates to these pages prior to the
checkpoint need not be redone. Although the third condition alone is sufficient
to recognize that these updates need not be redone, it requires us %o fetch
the affected page. The first two conditions allow us to recognize this situation
without fetching the page. (The reader 18 encouraged to construct examples
that illustrate the use of each of these conditions; see Exercise 18.8.)

592 CHAPTER 18

At the end of the Redo phase, end type records are written for all transactions
with status C, which are removed from the transaction table.

18.6.3 Undo Phase

The Undo phase, unlike the other two phases, scans backward from the end
of the log. The goal of this phase is to undo the actions of all transactions
active at the time of the crash, that is, to effectively abort them. This set of
transactions is identified in the transaction table constructed by the Analysis
phase.

The Undo Algorithm

Undo begins with the transaction table constructed by the Analysis phase,
which identifies all transactions active at the time of the crash, and includes the
LSN of the most recent log record (the lastL.SN field) for each such transaction.
Such transactions are called loser transactions. All actions of losers must be
undone, and further, these actions must be undone in the reverse of the order
in which they appear in the log.

Consider the set of lastLSN values for all loser transactions. Let us call this set
ToUndo. Undo repeatedly chooses the largest (i.e., most recent) LSN value in
this set and processes it, until ToUndo is empty. To process a log record:

1. If it is a CLR and the undoNextLSN value is not null, the undoNextLSN
value is added to the set ToUndo; if the undoNextLSN is null, an end

record is written for the transaction because it is completely undone, and
the CLR is discarded.

2. If it is an update record, a CLR is written and the corresponding action is
undone, as described in Section 18.2, and the prevLSN value in the update
log record is added to the set ToUndo.

When the set ToUndo is empty, the Undo phase is complete. Restart is now
complete, and the system can proceed with normal operations.

Let us continue with the scenario discussed in Sections 18.6.1 and 18.6.2. The
only active transaction at the time of the crash was determined to be 71000.
From the transaction table, we get the LSN of its most recent log record, which
is the fourth update log record in Figure 18.3. The update is undone, and a
CLR is written with undoNextL.SN equal to the LSN of the first log record in
the figure. The next record to be undone for transaction T1000 is the first log
record in the figure. After this is undone, a CLR and an end log record for
T1000 are written, and the Undo phase is complete.

© (Crash Recovery 503

In this example, undoing the action recorded in the first log record causes the
action of the third log record, which is due to a committed transaction, to be
- pverwritten and thereby lost! This situation arises because T2000 overwrote
a data item written by 71000 while T1000 was still active; if Strict 9PL were
followed, 72000 would not have been allowed to overwrite this data item.

Aborting a Transaction

Aborting a transaction is just a special case of the Undo phase of Restart in
which a single transaction, rather than a set of transactions, is undone. The
example in Figure 18.5, discussed next, illustrates this point.

Crashes during Restart

It is important to understand how the Undo algorithm presented in Section
18.6.3 handles repeated system crashes. Because the details of precisely how
the action described in an update log record is undone are straightforward,
we discuss Undo in the presence of system crashes using an execution history,
shown in Figure 18.5, that abstracts away unnecessary detail. This example
illustrates how aborting a transaction is a special case of Undo and how the use
of CLRs ensures that the Undo action for an update log record is not applied
twice.

LSN LOG

00, 05 —"" heginhcheckpoint, end_checkpoint

10 -'—' update: T1 writes P5 o prevLSN

20 —— update: T2 writes P3

5

30 —— Tiabort
40,45 —— CLR: UndoT1LSN 10, T1 ¢nd
um}oncx[LSN
50 -7 update:T3 writes P1
; =
60 update: T2 writes PS

» CRASH, RESTART

70 CLR: Undo T2 LSN 60
80,85 —— CLR:Undo T3 LSN 50, T3 end
X CRASH, RESTART
90, 95 —"'" CLR: Undo T2 LSN 20, T2 end

Figure 18.3 Example of Undo with Repeated Crashes

594 CHAPTER 18

The log shows the order in which the DBMS executed various actions; note that
the LSNs are in ascending order, and that each log record for a transaction has
a prevLSN field that points to the previous log record for that transaction. We
have not shown nul/ prevLSNs, that is, some special value used in the prevLSN
field of the first log record for a transaction to indicate that there is no previous
log record. We also compacted the figure by occasionally displaying two log
records (separated by a comma) on a single line.

Log record (with LSN) 30 indicates that T1 aborts. All actions of this trans-
action should be undone in reverse order, and the only action of T'1, described
by the update log record 10, is indeed undone as indicated by CLR 40.

After the first crash, Analysis identifies P1 {with recLSN 50), P3 (with recLSN
20), and P5 (with recLSN 10) as dirty pages. Log record 45 shows that 7'1 is a
completed transaction; hence, the transaction table identifies T2 (with lastLSN
60) and T3 (with lastLSN 50) as active at the time of the crash. The Redo
phase begins with log record 10, which is the minimum recLSN in the dirty
page table, and reapplies all actions (for the update and CLR records), as per
the Redo algorithm presented in Section 18.6.2. :

The ToUndo set consists of LSNs 60, for T2, and 50, for T3. The Undo phase
now begins by processing the log record with LSN 60 because 60 is the largest
LSN in the ToUndo set. The update is undone, and a CLR (with LSN 70)
Is written to the log. This CLR has undoNextLSN equal to 20, which is the
prevLSN value in log record 60; 20 is the next action to be undone for T2. Now
the largest remaining LSN in the ToUndo set is 50. The write corresponding
to log record 50 is now undone, and a CLR describing the change is written:
This CLR has LSN 80, and its undoNextL.SN field is null because 50 is the
only log record for transaction T3. Therefore T3 is completely undone, and an
end record is written. Log records 70, 80, and 85 are written to stable storage
before the system crashes a second time; however, the changes described by
these records may not have been written to disk.

When the system is restarted after the second crash, Analysis determines that
the only active transaction at the time of the crash was T'2; in addition, the dirty
page table is identical to what it was during the previous restart. Log records
10 through 85 are processed again during Redo. (If some of the changes made
during the previous Redo were written to disk, the pageLSNs on the affected
pages are used to detect this situation and avoid writing these pages again.)
The Undo phase considers the only LSN in the ToUndo set, 70, and processes it
by adding the undoNextLSN value (20) to the ToUndo set. Next, log record 20
is processed by undoing 72’s write of page P3, and a CLR is written (LSN 90).
Because 20 is the first of T2’s log records—and therefore, the last of its records

Crash Recovery ' 595

to be undone—the undoNextLSN field in this CLR is null, an end record is
written for T2, and the ToUndo set is now empty.

Recovery is now complete, and normal execution can resume with the writing
of a checkpoint record.

This example illustrated repeated crashes during the Undo phase. For com-
pleteness, let us consider what happens if the system crashes while Restart is
in the Analysis or Redo phase. If a crash occurs during the Analysis phase, all
the work done in this phase is lost, and on restart the Analysis phase starts
afresh with the same information as before. If a crash occurs during the Redo
phase, the only effect that survives the crash is that some of the changes made
during Redo may have been written to disk prior to the crash. Restart starts
again with the Analysis phase and then the Redo phase, and some update log
records that were redone the first time around will not be redone a second time
because the pageLSN is now equal to the update record’s LSN (although the
pages have to be fetched again to detect this).

We can take checkpoints during Restart to minimize repeated work in the event
of a crash, but we do not discuss this point.

18.7 MEDIA RECOVERY

Media recovery is based on periodically making a copy of the database. Be-
cause copying a large database object such as a file can take a long time, and
the DBMS must be allowed to continue with its operations in the meantime,
creating a copy is handled in a manner similar to taking a fuzzy checkpoint.

When a database object such as a file or a page is corrupted, the copy of that
object is brought up-to-date by using the log to identify and reapply the changes
of committed transactions and undo the changes of uncommitted transactions
(as of the time of the media recovery operation).

The begin_checkpoint LSN of the most recent complete checkpoint is recorded
along with the copy of the database object to minimize the work in reapplying
changes of committed transactions. Let us compare the smallest recLSN of
a dirty page in the corresponding end_checkpoint record with the LSN of the
begin_checkpoint record and call the smaller of these two LSNs I. We observe
that the actions recorded in all log records with LSNs less than I must be
reflected in the copy. Thus, only log records with LONs greater than I need be
reapplied to the copy.

596 CHAPTER 18

Finally, the updates of transactions that are incomplete at the time of media
recovery or that were aborted after the fuzzy copy was completed need to be
undone to ensure that the page reflects only the actions of committed transac-
tions. The set of such transactions can be identified as in the Analysis pass,
and we omit the details,

18.8 OTHER APPROACHES AND INTERACTION WITH
CONCURRENCY CONTROL

Like ARIES, the most popular alternative recovery algorithms also maintain a
log of database actions according to the WAL protocol. A major distinction

history, that is, redoes the actions of qal] transactions, not just the non-losers.
Other algorithms redo only the non-losers, and the Redo phase follows the
Undo phase, in which the actions of losers are rolled back.

Thanks to the repeating history paradigm and the use of CLRs, ARIES sup-
ports fine-granularity locks (record-level locks) and logging of logical operations
rather than just byte-level modifications. For example, consider a transaction
T that inserts a data entry 15+ into a B+ tree index. Between the time this
insert is done and the time that T is eventually aborted, other transactions may
also insert and delete entries from the tree. If record-level locks are set rather
than page-level locks, the entry 15% may be on a different physical page when
T aborts from the one that T inserted it into. In this case, the undo operation
for the insert of 15% must be recorded in logical terms because the physical
(byte-level) actions involved in undoing this operation are not the inverse of
the physical actions involved In inserting the entry.

Logging logical operations yields considerably higher concurrency, although the
use of fine-granularity locks can lead to increased locking activity (because more
locks must be set). Hence, there is a trade-off between different WAL-based
recovery schemes. We chose to cover ARIES because it has several attractive
properties, in particular, its simplicity and its ability to support fine-granularity
locks and logging of logical operations.

One of the earliest recovery algorithms, used in the System R prototype at
IBM, takes a very different approach. There is no logging and, of course,
no WAL protocol. Instead, the database is treated as a collection of pages
and accessed through a page table, which maps page ids to disk addresses.
When a transaction makes changes to a data bage, it actually makes a copy
of the page, called the shadow of the page, and changes the shadow page.
The transaction copies the appropriate part of the page table and changes the
entry for the changed page to point to the shadow, so that it can see the

B
|

Crash Recovery ' 597

" changes; however, other transactions continue to see the original page table,

- and therefore the original page, until this transaction commits. Aborting a

~transaction is simple: Just discard its shadow versions of the page table and

~ the data pages. Committing a transaction involves making its version of the

- page table public and discarding the original data pages that are superseded
by shadow pages.

© This scheme suffers from a number of problems. First, data becomes highly
fragmented due to the replacement of pages by shadow versions, which may be
located far from the original page. This phenomenon reduces data clustering
and makes good garbage collection imperative. Second, the scheme does not
yield a sufficiently high degree of concurrency. Third, there is a substantial
storage overhead due to the use of shadow pages. Fourth, the process aborting
a transaction can itself run into deadlocks, and this situation must be specially
nandled because the semantics of aborting an abort transaction gets murky.

For these reasons, even in System R, shadow paging was eventually superseded
by WAL-based recovery techniques.

18.9 REVIEW QUESTIONS

Answers to the review questions can be found in the listed sections.

= What are the advantages of the ARIES recovery algorithm? (Section 18.1)

s Describe the three steps in crash recovery in ARIES? What is the goal of
the Analysis phase? The redo phase? The undo phase? (Section 18.1)

s What is the LSN of a log record? (Section 18.2)

s What are the different types of log records and when are they written?
(Section 18.2)

= What information is maintained in the transaction table and the dirty page
table? (Section 18.3)

s What is Write-Ahead Logging? What is forced to disk at the time a trans-
action commits? (Section 18.4)

= What is a fuzzy checkpoint? Why is it useful? What is a master log record?
(Section 18.5)

= In which direction does the Analysis phase of recovery scan the log? At
which point in the log does it begin and end the scan? (Section 18.6.1)

» Describe what information is gathered in the Analysis phase and how.
(Section 18.6.1)

CHAPTER 18

» In which direction does the Redo phase of recovery process the log? At
which point in the log does it begin and end? (Section 18.6.2)

® What is a redoable log record? Under what conditions is the logged ac-
tion redone? What steps are carried out when a logged action is redone?
(Section 18.6.2)

» In which direction does the Undo phase of recovery process the log? At
which point in the log does it begin and end? (Section 18.6.3)

= What are loser transactions? How are they processed in the Undo phase
and in what order? (Section 18.6.3)

= Explain what happens if there are crashes during the Undo phase of re-
covery. What is the role of CLRs? What if there are crashes during the
Analysis and Redo phases? (Section 18.6.3)

= How does a DBMS recover from media failure without reading the complete.
log? (Section 18.7) ‘

® Record-level logging increases concurrency. What are the potential prob-
lems, and how does ARIES address them? (Section 18.8)°

® What is shadow paging? (Section 18.8)

EXERCISES

Exercise 18.1 Briefly answer the following questions:

1.

oo W

How does the recovery manager ensure atomicity of transactions? How does it ensure
durability?

What is the difference between stable storage and disk?

. What is the difference between a system crash and a media failure?

Explain the WAL protocol.

Describe the steal and no-force policies.

Exercise 18.2 Briefly answer the following questions:

1. What are the properties required of LSNs?

2. What are the fields in an update log record? Explain the use of each field.
3
4

What are redoable log records?

. What are the differences between update log records and CLRs?

Exercise 18.3 Briefly answer the following questions:

L.
2.

What are the roles of the Analysis, Redo, and Undo phases in ARIES?

Consider the execution shown in Figure 18.6.

Yrash Recovery | 599

LSN LOG

0w begin_checkpoint

10 -— end_checkpoint

20 —" update: T1 writes PS
30 "-'— update: T2 writes P3
40 — T2 commit

50 —" T2 end

60 -"— update: T3 writes P3
70 — T1 abort

CRASH, RESTART

Figure 18.6 Execution with a Crash

LSN LOG

00 —— update: T1 writes P2
10 -'— update: T1 writes P1
20 —'- update: T2 writes Ps
30 -—' update: T3 writes P3
4 —— T3 commit

50 -'— update: T2 writes PS5
60 ——' update: T2 writes P3

70 —— T2abort

Figure 18.7 Aborting a Transaction

(a) What is done during Analysis? (Be precise about the points at which Analysis
begins and ends and describe the contents of any tables constructed in this phase.)

(b) What is done during Redo? (Be precise about the points at which Redo begins and
ends.)

- (¢) What is done during Undo? (Be precise about the points at which Undo begins
and ends.)

Exercise 18.4 Consider the execution shown in Figure 18.7.

1. Extend the figure to show prevLSN and undonextLSN values.

2. Describe the actions taken to rollback transaction T2.

600

3.

CHAPTER 18

LSN LOG
00 == begin_checkpoint

10 -"*- end_checkpoint

20 -"— update: T1 writes P1
30 —— update: T2 writes P2
40 —“" update: T3 writes P3
50 — T2 commit

60 —*- update: T3 writes P2
70 "— T2 end

30 "— update: T1 writes P5
920 "'— T3 abort

X CRASH, RESTART
Figure 18.8 Execution with Multiple Crashes

Show the log after T2 is rolled back, including all prevLSN and undonextLSN values in
log records.

Exercise 18.5 Consider the execution shown in Figure 18.8. In addition, the system crashes
during recovery after writing two log records to stable storage and again after writing another
two log records. :

SR W e

What is the value of the LSN stored in the master log record?
What is done during Analysis?

What is done during Redo?

What is done during Undo?

Show the log when recovery is complete, including all non-null prevLSN and undonextLSN
values in log records.

Exercise 18.6 Briefly answer the following questions:

1. How is checkpointing done in ARIES?

Checkpointing can also be done as follows: Quiesce the system so that only checkpointing
activity can be in progress, write out copies of all dirty pages, and include the dirty page
table and transaction table in the checkpoint record. What are the pros and cons of this
approach versus the checkpointing approach of ARIES?

What happens if a second begin_checkpoint record is encountered during the Analysis
phase?

. Can a second end_checkpoint record be encountered during the Analysis phase?

Why is the use of CLRs important for the use of undo actions that are not the physical
inverse of the original update?

Crash Recovery 601

LSN LOG
00 —'-' begin_checkpoint
10 — update: T1 writes P1
20 == Ticommit
30 "'"" update: T2 writes P2
40 -'— T1 end
50 -'—‘ T2 abort
60 —"' update: T3 writes P3
70 —" end_checkpoint
80 -*— T3 commit

X CRASH, RESTART

Figure 18.9 Log Records between Checkpoint Records

6. Cive an example that illustrates how the paradigm of repeating history and the use of
CLRs allow ARIES to support locks of finer granularity than a page.

Exercise 18.7 Briefly answer the following questions:

1. If the system fails repeatedly during recovery, what is the maximum number of log
records that can be written (as a function of the number of update and other log records
written before the crash) before restart completes successfully?

9. What is the oldest log record we need to retain?

3. If a bounded amount of stable storage is used for the log, how can we always ensure
enough stable storage to hold all log records written during restart?

Exercise 18.8 Consider the three conditions under which a redo is unnecessary (Section

20.2.2).

1. Why is it cheaper to test the first two conditions?
2. Describe an execution that illustrates the use of the first condition.

3. Describe an execution that illustrates the use of the second condition.

Exercise 18.9 The description in Section 18.6.1 of the Analysis phase made the simplifying
assumption that no log records appeared between the begin_checkpoint and end_checkpoint
records for the most recent complete checkpoint. The following questions explore how such
records should be handled.

1. Explain why log records could be written between the begin_checkpoint and end_checkpoint
records.
2. Describe how the Analysis phase could be modified to handle such records.

3. Consider the execution shown in Figure 18.9. Show the contents of the end_checkpoint
record.

4. Mlustrate your modified Analysis phase on the execution shown in Figure 13.9.

602 CHAPTER 18

Exercise 18.10 Answer the following questions briefly:

. ‘Explain how media recovery is handled in ARIES.

[

What are the pros and cons of using fuzzy dumps for media recovery”
. What are the similarities and differences between checkpoints and fuzzy dumps?

. Contrast ARIES with other WAL-based recovery schemes.

NS

wn

. Contrast ARIES with shadow-page-based recovery.

BIBLIOGRAPHIC NOTES

Our discussion of the ARIES recovery algorithm is based on [544]. [282] is a survey article
that contains a very readable, short description of ARIES. [541, 545] also discuss ARIES.
Fine-granularity locking increases concurrency but at the cost of more locking activity; [542]
suggests a technique based on LSNs for alleviating this problem. [438] presents a formal
verification of ARIES.

[355] is an excellent survey that provides a broader treatment of recovery algorithms than our
coverage, in which we chose to concentrate on one particular algorithm. [17] considers perfor-
mance of concurrency control and recovery algorithms, taking into account their interactions.
The impact of recovery on concurrency control is also discussed in [769]. [625] contains a °
performance analysis of various recovery techniques. [236] compares recovery techniques for
main memory database systems, which are optimized for the case that most of the active data-
set fits in main memory.

[478] presents a description of a recovery algorithm based on write-ahead logging in which ;
‘loser’ transactions are first undone and then (only) transactions that committed before the
crash are redone. Shadow paging is described in [493, 337]. A scheme that uses a combination
of shadow paging and in-place updating is described in [624].

