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Relational DBMS

» Workhorse of today’s Information Industry
— Commercial
 |IBM DB2, MS SQL Server, Oracle Exadata, HP SQL/MX

— Public-domain
* PostgreSQL, MySQL, Berkeley DB

» Extensively researched for over four decades

— Journals
« ACMTODS, IEEE TKDE, VLDBJ, ...

— Conferences
« ACM SIGMQOD, IEEE ICDE, VLDB, EDBT, CIKM, ...
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Typical RDBMS Engine

Application

Query Processor

Indexes Buffer Manager

Concurrency Control Recovery

Operating System

Hardware
[Processors, Memory, Disks]
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Design of RDBMS Engines

* Transaction Processing (ACID)
— WAL/ARIES for Atomicity/Recovery
— 2PL for Concurrency Control
» Data Access Methods
— B-trees/Hashing for Large Ordered Domains
— Bitmaps for Small Categorical Domains
— R-trees for Geometric Domains
 Memory Management
— LRU-k (k=2 balances history and responsiveness)

* Query Processing (SQL)
—“Black Art”
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Query Execution Plans

SQL is a declarative language
— Specifies ends, not means

select STUDENT.Name, COURSE.Title

from STUDENT, COURSE, REGISTER
where STUDENT.RolINo = REGISTER.RolINo and
REGISTER.CourseNo = COURSE.CourseNo

Unspecified: join order [((SMR)XC)or ((RXC)NXS) ?]
join technique [Nested-Loops / Sort-Merge / Hash?]

DBMS query optimizer identifies the optimal
evaluation strategy: “query execution plan”
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Sample Execution Plan

ara:

RETURN
Cost: 286868
Card: 1
Output Cardinality (rows) ard: 10000
HASH JOIN

Cost: 286868

Card: 10000
MERGE JOIN
Cost: 278751

Cost:
Execution Cost (time)

Card: 10000
SORT
Cost: 225103

Card: 100
INDEX SCAN
Cost: 6745

Card: 1000
TABLE SCAN
Cost: 6834

Card: 10000
TABLE SCAN
Cost: 209760

REGISTER

i
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Query Optimization Framework

Declarative .| Query Optimizer Optinzal [Min Cost]
Query (Q) (Dynamic Programming) Plan P(Q)

I

Operator Execution Cost  Operator Output Cardinality
Estimation Model @ Estimation Model

Function of Function of
Hardware and DB Engine Data Distributions and Correlations
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Run-time Sub-optimality

The supposedly optimal plan-choice may actually turn
out to be highly sub-optimal (e.g. a 1000 times worsel)
when the query is executed with this plan. This adverse
effect is due to errors in:

(a) cost model
* Reasons: Simple linear models, operator-agnostic features,
fixed coefficients, system dynamics ...

(b) cardinality model

* Reasons: Coarse statistics, outdated statistics, attribute value
independence (AVT) assumption, multiplicative error
propagation, query construction, ...
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What have the QP guys been doing all these years?

DB2 Oracle SQL Server

[ % |
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“Elephants”T are highly sensitive animals!

(T Stonebraker-speak for enterprise DBMS)
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Cardinality Sensitivity Example

EMPLOYEE

MANAGER

mm
mm- EMPLOYEE.AGE M MANAGER.AGE

Cohen Trump
) Giuliani )5 2 Pence 50 = Qutput cardinality of the join is
_ ZERO
3 Mnuchin 50
3 Manafort 25
4 Shanahan 50 =  One new employee aged 50 joins
4 Melania 25 the company
5 Whitaker 50
5 lvanka 25 o .
6 Bernhardt 50 = Qutput cardinality of the join jumps
to a million!
6 Donald 25 7 Perdue 50
7 Jared 25 50 = No summary mechanism can
capture such “nanoscopic” changes
25 106 Ross 50
10° Eric 25
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Proof by Authority [Guy Lohman, IBM]

Snippet from April 2014 Sigmod blog post on

“Is Query Optimization a “Solved” Problem?”

The root of all evil, the Achilles Heel of query optimization, is
the estimation of the size of intermediate results, known as
cardinalities. The cardinality model can easily introduce errors
of many orders of magnitude!l With such errors, the wonder
isn't "Why did the optimizer pick a bad plan?” Rather, the
wonder is "Why would the optimizer ever pick a decent plan?”

April 2019 ICDE Tutorial 11




Sound-bites

» Little difference between worst-case and
average-case in Query Processing

It is far easier to win money at the Macau
casinos than to get query processing right!
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Prior DB Research (lots!)

* Sophisticated estimation techniques

— SIGMOD 1999/2010, VLDB 2001/2009/2011, ..., CIDR 2019
— e.g. wavelet histograms, self-tuning histograms, deep learning

e Selection of stable plans

— SIGMOD 1994/2005/2010, PODS 1999/2002, VLDB 2008, ..., VLDB 2017
— e.g. Variance-aware plan selection

* Runtime re-optimization techniques

— SIGMOD 1998/2000/2004/2005, ..., arXiv 2019 [Stonebraker et al]
— e.g. POP (progressive optimization), RIO (re-optimizer)

Several novel ideas and formulations,
but are they robust?
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Is there any hope?

Over last decade, several promising advances
that collectively promise to soon make
robusthess a contemporary reality — we will
survey these techniques in the tutorial.
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QP Robustness
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Importance of Robustness

* Dagstuhl Seminars
— 2010 (#10381), 2012 (#12321), 2017 (#17222)

» ICDE 2011 panel on Robust Query Processing

 Immediate relevance to database vendors
* Huge impact on database users and customers

 Critical for Big Data world!
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ROBUSTNESS DEFINITION

Multiple perspectives, no consensus

— If worst-case performance is improved at the expense of average-
case performance, is that acceptable?

— Is it to be defined on a query instance basis, or “in expectation™?

Ultimately, robustness definition is application dependent
Graceful performance profile — no “cliffs”

Seamless scaling with workload complexity, database size,
distributional skew, join correlations

Provable guarantees on worst-case performance (relative to
an offline ideal that makes all the right decisions)
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TUTORIAL OUTLINE

« Stage 1:
« Stage 2:
« Stage 3:
« Stage 4.

« Stage 5:

Robust Operators
Robust Plans
Robust Query Execution

Robust Cost Models

Future Research Directions
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Stage 1: Robust Operators




Approaches

* Unified operators

— Basic Idea: If choice Is eliminated, cannot make mistakes, by
definition! The key challenge Is retaining, in the absence of
choice, comparable performance to the multi-choice environment.

— Smooth Scan (ICDE 2015, VLDBJ 2018 [7])

« Unifying Table Scan, Index Scan
— G-join (CS R&D, 2012 [16])

« Unifying Nested-loops, Sort-merge, Hash-join

» Scaling operators
— Flow-join (ICDE 2016 [36])

» Broadcast “heavy hitter” tuples to handle skew in distributed
systems
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Smooth Scan

(Morph between Index Scan and Sequential Scan)

April 2019
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Sub-optimal Access Paths: Example

Setting: TPC-H, SF10, DBMS-COM, Tuned Indexes

to cardinality underestimation

Chose index instead of scan due J
1000 (time: minutes to hours)

B Tuned ==Qriginal

100 r

10

Execution Time
(log, normalized)

0.1
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Access path selection problem

Tipping Point: One tuple

difference in estimation has huge Index Scan
impact on performance -
v .
£ .
= .
c |
O m
) -
o . Full Scan
Q L : )
X Switching strategies results in

performance cliff; cost of
change may not be amortized
\g y

0 Estimated Actual 100%
Selectivity
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Quest for robust access paths

Execution Time

0 Selectivity

Index Scan

Robust Execution
(no estimation

Full Scan

100%

Near-optimal (= min(IS,FS)) throughout entire selectivity range
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Smooth Scan in a nutshell

» Statistics-oblivious access path
* Learn result distribution at run-time
* Adapt as you go
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Morphing mechanism

* Modes:
1. Index Access: Traditional index access
2. Entire Page Probe: Index access probes entire page
3. Gradual Flattening Access: Probe adjacent region(s)

i o, INDEX
e—— - -
e 2L - — HEAP
11O 1 B 1 PAGES
Mode 1 Mode 2 Mode 3
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Morphing policies

e

— Greedy
— Selectivity Incre
— Elastic

Selectivity increase - Mode Increase
SEL region > SEL global

Selectivity decrease - Mode Decrease
SEL region < SEL _global

i ~~“~~ X:  Page with result
: \\ ,7~*: ‘"“~~~ ~“~~~~ SR: Region selectivity
y
l ,\'\ \ \:*~-‘~~~ ~"~~~ SG: Global selectivity
HEATAGES / \ \\ \\\"‘~~:~~~~ ~~“~-|.~
~
X XXX T XXX E XIX] ix XDAXX
|

Region snooping = Selectivity driven adaptation
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Smooth Scan benefits

Index Scan Full Scan Sort Scan Smooth Scan

Avoid repeated x ‘/ ‘/ ‘/

accesses

Fast sequential
1/0 X ‘/ ‘/ ‘/
Avoid full table |/ % v v

read

Tuples ‘/ ‘/ % ‘/

pipelining

Sort Scan: Get all qualifying RIDs from the index, sort them, and
then sequentially retrieve the records.
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Experimental setup

Hardware:
2 Intel Xeon 6-core CPU @2.8 GHz, 48GB RAM
HDD: I/O transfer rate 120 MB/s, Random vs. Sequential ratio = 10

Software:
PostgreSQL 9.2.1: Index Scan, Full Scan, Sort Scan, Smooth Scan
Workload:

TPC-H: SF 10
Micro-benchmark: 400M tuples, 10 columns random (1 — 10°), 25GB
Q1: select * from relation where c2 >= 0 and c2< X% [order by c2];

Experimental Condition:
Cold file system cache
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TPC-H with Smooth Scan

Setting: TPC-H, SF10, PostgreSQL with Smooth Scan

1400 7 High selectivity Low selectivity

1200 -

=

)

)

o
|

800
600

15% Ig I I I-
0

400
200
Ql (Sort Scan) Q4 (Full Scan) Q6 (Index Scan) Q7 (Index Scan) Q14 (Index Scan)
MW PostgreSQL B PostgreSQL with Smooth Scan

Robust execution for all queries

|

Execution time (sec)
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1/O drill-down

Q4 Q6 Q7 Q14
pSQL [Smooth S.| pSQL [Smooth S. [ pSQL |Smooth S. | pSQL |Smooth S. |pSQL |Smooth S.
#1/0 Requests (K) 70 77 224 235 566 95 745 124 416 87

1200 -+

< 1000 -

Execution time (se

200

0

800 -
600 -

400 -

W CPU Utilization
1/O Wait time

1

) WA

/
//

%

| 4

pSQL pSQL w.
Smooth
Scan

Q1 (Sort Scan)

pSQL pSQL w.
Sm oth

Q4 (Full Scan)

pSQL pSQL w.
Smooth
Scan

Q6 (Index Scan)

pSQL pSQL w.
Smooth
Scan

Q7 (Index Scan)

pSQL pSQL w.
Smooth
Scan

Q14 (Index Scan)

Smooth Scan significantly decreases 1/0 wait time
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Snooping I/O access

Block address

9.50e+07 1.00e+08 1.05e+08 1.10e+08

Setting: TPC-H, Q1, Lineitem table, iosnoop tool

Sequential Scan

Index Scan

Smooth Scan

0 50 100 150 200

Time (sec)

250 0 50 100 150

Time (sec)

....

0

5 100 150 200 250 300

Time (sec)

Smooth Scan reduces random 1/0 requests
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Adaptivity over selectivity range

Setting: Micro-benchmark, Q1 (w. and w/o. order), Selectivity 0-100%

100000 100000 r
ORDER BY NO ORDER BY
10000 [ 10000 F
15x
_ 1000 LRobust S 1000 |-
8) O
Q L
< 100 F v 100 )
2 =#=Full Scan £ Robust Execution
+ 10 ===|ndex Scan Z 10 =#=Full Scan
S Sort o «==|ndex Scan
2 1 ort Scan *é 1 Sort Scan
O =}¥=Smooth Scan J ==Smooth Scan
0 01 S 0.1
L O o4+ 4 1 O O n O O « +H +H +4 O O n O
o O g N N~ O o O g N 1 N O
< .. Q o i 0 —
oS Selectivity(%) oS Selectivity(%)

Near-optimal performance throughout entire range
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Performance Guarantee

ldeal: SortScan without Sorting Cost — i.e. sequentially
read only the relevant pages.

SmoothScan rand io cost
4 _10_

< . )
Ideal seq_Io_cost

For representative HDD parameters, factor is 11, while
for SSD, factor is 6.
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Limitations

» Several book-keeping data structures required to
maintain result semantics (duplicates/ordering)
— Page ID cache (to not process page twice)
— Tuple ID Cache (to not produce same tuple twice)
— Result Cache (for ordered output)
— Memory Management (for above structures)

* Requires changes to database engine internals
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G-join: Generalized Join

(Morph across Indexed-NL Join, Sort-Merge Join, Hybrid-Hash Join)

April 2019
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Comparative Algorithm Strengths

differences

INL Join | SM Join | HH Join G-join
Sorted v v
inputs
Indexed v v
input
Input size v v

April 2019
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Basic Idea

mplement Sort-Merge using concepts from Hash-Join
f inputs are already sorted, just do Merge Join

f inputs are not sorted, create internally sorted runs as
usual for both inputs, but do not carry out merging steps.

Instead, similar to hash partitions, store “key-covering
pages” from the small-input (R) in a buffer pool, and a
single buffer page for the large-input (S). Dynamically
expand the R buffer pool until it key-covers the buffer page
of S — then join the memory-resident pages. After this is
done, bring the next S page into memory. Shrink the R
buffer pool if any page goes below the key coverage range.

April 2019 ICDE Tutorial 39




G-join: Phase 1

Phase 1

¢

Ri,R,,....Rk

0 (

S],SQ,. . 'aSK

:

< Cut point
then buM

Hash table for
Ry
(M-B pages)

Buffers (B
pages) for run
generation

.

—>

>Cut point, then generate runs

O

Rk

< Cut pot
then pyarg

Hash table for

Ry
(M-B pages)

Buffers (B
pages) for run
generation

.

.
| o

>Cut point, then generate runs

Figure 3.1 Phase 1 of G-Join

=0 (
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G-join: Phase 2

LK: Low Key. For example, LK, ; represents the Low Key from Run#1 Page #1

HK: High Hey. For example, HK, , represents the High Key from Run#2 Page#0
E i

|k, omky | |k HKy, | T

R pages from
LK, HK, , | | LKy, HKg, runs Ry,..., Ry

( Drop R pages guided by priority queue B

Lowest HighKey(HK) from all R
runs
>

HighKey(HK) from current S page

l Join

| LK HK | Output if a match

Priority
queue A

Priority
queue B

Priority
queue C

S page from
one of its runs

__________________________________________________________________________

Figure 3.2 Phase 2 of G-Join
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Merge algorithm illustrated

Already dropped In bufferpool Yetto be read
l l

4 pages of 3runs [ €= = = = pie Pt — —p
from InputR  { <= = = —po—ij j— = —
in the bufferpool | = - E—— ! P = == =)
. f -_——e—_—d
5 runs from input S € e p e = PP = = P == P
to be joined | - = = S = e =
) 4——»4———-»4——|-><———->
one page at atime - = ) — pg e = — =

‘ I [
> >

Covered key range
Key value domain
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Unsorted inputs

execution time [S]

5000

4000

3000

2000

1000

left I

right
intermediate N
merge I

avg deviation ——+—

GJ HJ MJ GJ HJ MJ GJ HJ MJ
250 500 750

scale [number of warehouses]

GJ HI MJ
1000
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~Sorted inputs

execution time [S]

5000

4000

3000

2000

1000

left

right
intermediate
merge

avg deviation

A

GJ HI MJ GJ HIJ MIJ GJ HJ MJ
250 500 750
scale [number of warehouses]

GJ HJ MJ
1000
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Erroneous optimizer choices

5000
left
right DI
intermediate I
4000 merge N
- avg deviation +——+—
D)
£ 3000 f
=
2
S 2000 -
Q
]
>
D)
1000
0

GJ HJ MJ GJ HIJ MJ GJ HJ MJ GJ HJ MJ
250 500 750 1000
scale [number of warehouses]
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Performance

« Similar “unified” algorithms available for grouping and set
operations. [106]

« Performance Guarantee:
* First-cut theoretical analysis shows rough equivalence
to best of existing algorithms

« Limitations:
« Skew in sizes of runs and skew in key value
distribution can adversely impact performance
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Flow Join
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Flow Join

« Data Skew is a critical problem on distributed
machines connected over a high-speed network.

* Performance determined by slowest server.
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Problem with Skew

* Foreign key join with
skewed probe relation

e Attribute value skew can
cause severe imbalances

« One server receives more
tuples than the others

e Join duration determined
by slowest server

node 0

node 1

April 2019 ICDE Tutorial
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Skew Threatens Scalability

number of servers

10B
¥ Hash-Join (no skew) & Hash-Join (Zipf 1.25)
8B
6B
: 5X slower
=
2B
= i e -, — —dr 4y
OB
4 8 12 16 20 24 28
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ldeal Solution: Selective Broadcast

Assumption: Skewed values
are known beforehand

Broadcast the skewed
build tuples

Keep skewed probe local
Avoids load imbalance

Subset-Replicate [VLDB 92],
Partial Redistribution &
Duplication [SIGMOD 08]

node O

node 1

April 2019 ICDE Tutorial 51




Dynamic Discovery of Heavy Hitters

« Space Saving Algorithm (ICDT 05)
existing key new key new key (full)

key count key count key count key count

insert 17

insert 22 insert 71

fast access Us replace minimum
by key ' when full
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Data Structures: Hash Table + Sorted Array

10,000,000 random keys
..»ﬂ —». 300 M/s
. HashTable

200M/s 1

L] VN \ 2" & 38X faster

._bn—b. “5‘5\ 1000/ —9 ' HashTabIe +

._>ﬂ ~9-9""Sorted Array
“‘ NN 0M/s BB -

k = 128 entries . P v v N N 0 2 4 6 8 10 12 14
Sl el [3h ——

Sorted array for minimum

Update only sometimes shifts an element to the left
Increment key — worst case O(k)

 Remove minimum O(1)

April 2019 ICDE Tutorial 53




Evaluation

128B

4 Hash-Join
1} Flow-Join

10B

8B

skewed input (Zipf 1.25)

O Skew-List

6B

tuples/s

4B

2B ¢ D
0B
4 8 12 16 20 24 28
number of servers
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Summary

* Designing a 1:1 mapping between logical operators and
physical implementations is a viable proposition

* Tuning of these implementations is a function of schema
information and not statistical estimates

 However, the operator-implementation mapping is only
the first part of the problem, the sequencing of these
operators still remains ...
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Stage 2: Robust Plans




APPROACHES

» Least Expected Cost (PODS 99 [11], PODS 02 [12])

— estimate Distributions instead of Values for parameters

» Cost-Greedy (VLDB 2007 [17])

— reduce parametrlc optlmal set of plans (POSP) space into
low-cardinality ("anorexic”) approximation featuring
relatively stable plans

. SEER (VLDB 2008 [18])

— reduce POSP space into anorexic approximation that can
handle arbitrary estimation errors
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LEC Basic Principle

» Typically optimize for either the estimated values
of execution parameters (data/query/system), or
for “magic constants” assigned to them.

* An alternative approach is to assume that an
approximate probability distribution of the
parameter values is known (e.g. through
histograms or learnt models)
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Least Expected Cost (LEC) Plan

This allows, in principle, identification of plan with
least expected cost over the parameter space.

» But, significantly increases optimization overheads,
especially with large number of POSP plans
» Addressable by “anorexic reduction” (VLDB 2007 [17])
— Significant uncertainty in the distributions
— Restricted to left-deep plans
— Assumes LEC plan = some plan from POSP space
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LEC = LSC plan

» Standard optimizer — optimizes for the expected

va

lue of the parameter distribution (i.e. the Least

Specific Cost (LSC) plan)

- W

nen is LSC = LEC ?

f the cost of a plan is linear In its input parameters

f the cost of a plan is a sum of products of independent
parameters

 Guarantee:

For an n-way left-deep join, the LSC plan is within a

factor of n of the LEC plan (if plan cost includes variance)
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Cost-Greedy
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Query Template [Q8 of TPC-H]

Determines how the market share of Brazil within America has
changed over 1995-1996 for Steel parts

select o_year, sum(case when nation = 'BRAZIL' then volume else 0 end) / sum(volume)
from (select YEAR(o_orderdate) as o year,
| _extendedprice * (1 - |_discount) as volume, n2.n_name as nation
from part, supplier, lineitem, orders, customer, nation n1, nation n2, region
where p_partkey =1 _partkey and s_suppkey = | suppkey and
|_orderkey = 0_orderkey and o_custkey = ¢_custkey and

c_nationkey = nl.n_nationkey and nl.n_regionkey =r_regionkey and
r_name = 'AMERICA’ and s_nationkey = n2.n_nationkey and
o_orderdate between '1995-01-01' and '1996-12-31’ and

p_type = 'ECONOMY ANODIZED STEEL'

and s_acctbal < C1 and |_extendedprice < C2
) as all_nations
group by o_year
order by o_year
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POSP Plan Diagram

QueryTemplate | Plan Diag | Reduced Plan Diag | Comp Cost Diag | Comp Card Diag | Exec Cost Diag  Exec Card Diag = SelLog

Plan Diagram QTD: DB2 9 opp U 100 g8 30apl

100

80—

60 -

40+

LINEITEM.L EXTENDEDPRICE

20-

t

t Cost:

t
t

[ Parameter -+ Operator Diff ]

Regenerale Diagram

0 20 40 60 80 100

SUPPLIER.S_ACCTBAL

Gini Coeff: 0.83

| I

B~
B+

P4
es
s
|
e
P

P10
| 2T
ez

P13
| BT
B
B ris
B r7
[ es

P19
2
| B2
B ez
B ez

P24

| ZE

<

29.60 %
17.69 %
847 %
473 %
4.19 %
4.02%
285%
249 %
243 %
238%
238 %
163 %
156 %
130 %
127 %
121 %
1.06 %
091 %
0.82%
0.76 %
0.71 %
0.71%
0.71 %
0.62 %
058 %
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Problem Statement

Can the plan diagram be recolored with a smaller

set of colors (i.e. some plans are “swallowed” by
others), such that

Guarantee:

No query point in the original diagram has
Its estimated cost increased, post-swallowing,
by more than 4 percent (user-defined)

Analogy: (with due apologies to Macanese in the audience)
Macau agrees to be annexed by China if it is
assured that the cost of living of each Macanese
citizen is not increased by more than 4 percent
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CostGreedy

* Optimal plan diagram reduction (w.r.t. minimizing
the number of plans/colors) is NP-hard

— through problem-reduction from classical Set Cover

» CostGreedy is a greedy heuristic-based algorithm

with following properties:
[m Is number of query points, n is number of plans in diagram]

— Time complexity is O(mn)
* linear in number of plans for a given diagram resolution
— Approximation Factoris O(In m)

* bound is both tight and optimal
* in practice, closely approximates optimal
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Reducaomidex(Plagbiagram

April 2019

QueryTemplate | Plan Diag | Reduced Plan Diag | Comp Cost Diag | Comp Card Diag | Exec Cost Diag || Exec Card Diag | Sel Log
QTD: QT8_OptA*_100

Reduced Plan Diagram

100+

80

60

40+

LINEITEM.L EXTENDEDPRICE

20

Comparatively
smoother contours

| | |
40 60 80

PLIER.S ACCTBAL

ICDE Tutorial

100

# of Plans: 3
Cost Imnc Thresh: 10.0

Reduced
to 5 plans
from76! /.

% Cost Inc: 9.33%

Regenerate Diagrarm

Gini Coeff: 0.71

87.20 %
6.77 %
269 %
2.02%
1.32 %
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Applications of Plan Diagram Reduction

* Quantifies redundancy in plan search space
* Provides better candidates for plan-cacheing

« Enhances viability of Parametric Query
Optimization (PQO) techniques

* Improves efficiency/quality of LEC plans
* |dentifies selectivity-error resistant plan choices

— retained plans are robust choices over larger
selectivity parameter space

* Minimizes overheads of multi-plan approaches
(e.g. Adaptive Query Processing)
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Limitation

Cost Greedy can cause arbitrarily poor performance
If the selectivity error is large enough that the actual
location of the query falls outside the swallowing
region of the estimated location.
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Notation

Celect * )

from STUDENT, COURSE, REGISTER

where S.RolINo = R.RolINo and
C.CourseNo = R.CourseNo and

\_ C.fees <1000 )

________________________

® q e(5%, 2%, 8%)
sel (o (COURSE)) 100%

Jd. — estimated selectivity location
In SS (Selectivity Space)

d, — actual run-time location in SS : -
Poe — Opt|ma| p|an for o 1007 _____ s EI (S'I}_J_DENT[X] REGISTER)
P, — optimal plan for q,

P.. — replacement plan for q,
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Error Locations wrt Plan Replacement Regions

T

o>

Q
S
S | el o T > Endo-optimal,,
Z
2
8
o Y --» Swallow,,
v
%)
---------------- > Exo-optimal,,
00 )
0 Selectivity X 100
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Positive Impact of Reduction

In most cases, replacement plan provides robustness
to selectivity errors even in exo-optimal region

QT5
q. = (0.36, 0.05)

Estimated Plan Cost

4- - -Original Plan
(Poe)

Replacement Plan

/’/(Pre)
3

al
= Pa  PaY__ _
Local Optimal Plan

P3

e (Poa)

10OIO

2020 4040 60,60 8080 100,100
Actual Selectivity Location qa(xa,ya)
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Negative Impact of Reduction

But, occasionally, the replacement is
much worse than the original plan |

< - Replacement Plan
(Pro
QT5 g 10°%
q. = (0.03, 0.14) s
% 10% _-Original
= .-~ Plan (P,)
— ©
LIUJ) 102_ 4 ;41\\
~Local Optimal Plan
101 P37 (Poa)

0,0 2020 4040 6060 8080 100100
Actual Selectivity Location a,(x_y,)
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SEER
[Selectivity Estimate Error Resistance]




Globally Safe Replacement

 Earlier local constraint:
P. can replace P, if

— V points ¢ in P_,'s endo-optimality region,
cost(P,.,q) < (1+ A) cost(P,. ,q)

* New global constraint:
P, can replace P, only if it guarantees a
globally safe space

— VY points g in selectivity space S,
cost(P,.,q) < (1+ A) cost(P,. ,q)

April 2019 ICDE Tutorial

74




Globally Safe Replacement

----» Safe (Pre, Poe)
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Analogy Update

China can annex Macau only if the Chinese
passport can guarantee cost of living of

Macanese citizen is within A of that obtained
with the Chinese passport, irrespective of
the country to which the Macanese citizen
emigrates.
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Solution Strategy

Characterize behavior of all plans throughout the selectivity

space SS

Accomplished using the Abstract Plan Costing (APC)

feature of current DBMS

— Supports costing of plans in their exo-optimal regions

But, not a viable solution in practice
— Requires O(mn) APC to be performed (exp in SS dimensionality)
* m: number of query points; n: number of optimal plans

— Although costing cheaper than optimization (1:100), the sheer
number makes it prohibitively expensive

Can we reduce the number of APC invocations
to a manageable extent?

April 2019
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Plan Cost Model (2D)

Given selectivity variations x and vy,
for any plan P in the plan dia( j,gex scan:
optimizers, we can fit: Aggregate

urrer

PlanCostp(x,y) = a; x + aZVy +a, Xy +

S Xlogx+azylogy +
Group Ag XY Iog Xy +a; :| TabIeScan]

The specific values of a, through a, are a function of P .
Extension to n-dimensions is straightforward.
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Cost Model Fit Example

1400 = e Rl S e 1400 =

T L —

800 ~-- ----- e = BOQ ~eeeesessensberees

PAST STRR o e s e R SRS S 600

400 = ............. g i A 400 -

200~ ...... - 200 —-

00 02 04 55 g5 1 o 0z 64 o oy

Original Cost Function Fitted Cost Function
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Main Result

Given the 7-coefficient plan cost model,
need to perform APC at only the
perimeter of the selectivity space to
determine global safety

i.e. Border Safety = Interior Safety !
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Anorexic Reduction Remains!

III P3
III P7

P103

Cost Greedy
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Limitation

* Although SEER introduces stability into the plan
choices, its performance guarantees are with
respect to P, , the optimal plan at the
estimated location.

 |deally, we would like performance guarantees
to be with respect to P, , the optimal plan at the
actual location (this is the “God’s plan”™).
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Stage 3: Robust Execution




APPROACHES

* Bounded Impact (PVLDB 2009 [33])

— performance guarantee with quartic dependency on error magnitude

* Plan Bouquet (SIGMOD 14 / TODS 16 [14])

— discovery-based approach to selectivities

— error-independent guarantees with linear dependency on plan
diagram density

. Spill-Bound (ICDE 16 / TKDE 19 [22])

— platform-independent guarantee with quadratic dependency on error
dimensionality

* Frugal Spill-Bound (PVLDB 2018 [23])

— extension to ad-hoc queries
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Measuring Cardinality Estimation Errors

Popular error metrics (= optimization goals)
[, = \/(fe(x) — fa(x))?
loo=max |(fe(x) — fa(x)

Minimizing these error metrics can lead to
arbitrarily bad plans!
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Q(uotient) Error

* Errors propagate multiplicatively, so metric should also be
multiplicative

* It should be symmetric wrt over- and under-estimation

g-error is defined as:

max (fo(x), fa (x))
g = max —
min (fe(x), fq (x))
- actual cardinality 10, estimation 100 = [, = 10
- actual cardinality 10, estimation 1 = [, = 10
- note that [, IS the maximum over the whole domain of x

Knowing g-error provides bounds on resulting plan performance!
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Cost Bounds Implied by Q-error

 Theorem:
Let joins be all Sort-Merge joins or
all Grace-Hash joins. Then

Cost (P, q,) < g*Cost(P,, q,)

where g Is the maximum g-error taken over all
Intermediate results.

Problem: g can be arbitrarily large!
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Plan Bouquet

April 2019
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Approach

* Plan Bouquet is a new query processing technique, that
completely abandons estimating operator selectivities

 Instead, run-time selectivity discovery using compile-time
selected bouquet of plans

— provides worst case performance guarantees wrt ideal

that magically knows the correct selectivities
e.g. for single error-prone selectivity, relative guarantee of 4

— empirical performance well within guaranteed bounds
on industrial-strength environments

April 2019 ICDE Tutorial 920




Problem Framework
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Performance Metrics

100% ooy
/A sel (COURSE x REGISTER)

* (. — estimated selectivity location in SS

* Q, — actual run-time location in SS /o
q,(75%, 62%, 85%)
® / s

-« P_,— optimal plan for q, o e

°
P,, — optimal plan for q, 9 ’ >
sel (o (COUR§E)) 100%

t Poer a
Subopt(Qer qa) — zzztEPoa,iIIai

MaxSubOpt (MSO) = MAX|SubOpt(q.,q,)] Vq. q, €SS

Note: Metric is now with respect to the “God’s plan”
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Main Assumption

* Plan Cost Monotonicity

A
. . :’. ........................................... .'
For any plan P and distinct g
] . .............................................
locations g, and q, cost(P, g,) =100

cost(P, q;) < 100

Cost (P, g,) < Cost(P, q.,)
if g, < Qq,

(.e. q4 is dominated by q,)
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Contemporary Optimizer Behavior
on 1D Selectivity Space




Parametric Optimal Set of Plans (POSP)

m’arametric version of Example Query) \

select *

from STUDENT, COURSE, REGISTER

where S.RollINo = R.RollNo and
C.CourseNo = R.CourseNo and

\ C.credits < $1 /

S: Student NL: Nested Loop Join
C: Course MJ: Merge Join
R: Register HJ: Hash Join

Estimated Costs log-scale

6.1E+06

1.5E+06

3.8E+05

9.6E+04

2.4E+04

6.0E+03

-  =—Optimal /MJ\H

2 2 ® ® ® x® x
S rz @ I O
o o o o o~ o —

i <

Selectivity COURSE log-scale

100.00%
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POSP Performance Profile (across SS)

Estimated Costs (log-scale)

6.1E+06

1.5E+06

3.8E+05

9.6E+04

2.4E+04

6.0E+03

|/=—P1 —P2 --P3 /]
o
e
==-P4 +¢« P5 K
_ '/// .
: /
roooooooooccccccccqcc.at-i!.lu"wfﬁ'-.of::';l-‘;-:s:
_'----------------_-_—{,»:-':-/:-“-“"""P4
CT T T 77 P
P2
_ -—_-__‘_;"'
!/-
4 o~ Pl
/
I T T I I |
= = 3 3 32 se s s
i w0 ) S N N
s § 8 ¥ 8 § 8 8
o () o o o S ! 2

Selectivity COURSE (log-scale)
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Sub-optimality Profile (across SS)

P1

—QOptimal SubOpt

(9.=1%, q,= 99%)
=20

6.1E+06 -
—\Worst Case (Native Optimizer)

1.5E+06 -

P5

A P5

3.8E+05 - SubOpt
(9.= 80%, q,= 0.01%)

P4

=100

9.6E+04 - MaxSubOpt = 100

Estimated Costs (log-scale)

2.4E+04 -

6.0E+03

0.01%
0.04%
0.16%
0.64% -
2.60% —
10.40% -
41.60% -

100.00%

Selectivity COURSE (log-scale)
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Plan Bouguet Behavior
on 1D Selectivity Space




Bouquet Identification

Estimated Costs {log-scale)

6.1E+06

1.5E+06

3.8E+05

9.6E+04

2.4E+04

6.0E+03

= 0®x  ® 0® 0® 0® R
— S (o) 3 Q =) ()
(=] — D S 0
(=) (=) (=) (=] o~ o —

i =3

Selectivity COURSE (log-scale)

100.00%

IC7
IC6
IC5
IC4
IC3
1C2
IC1

Step 1: Draw cost steps

with cost-ratio r=2
(geometric progression).

Step 2: Find plans at
intersection of optimal
profile with cost steps

Bouquet = {P1, P2, P3, P5}
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Bouquet Execution

R

Let q,=5%

— —_— - . /
6.1E+06 | — Pt —FP2 —=P3 -
7/
E ==P4 s+ P5 e /
g 1.5E+06 - 7, s
E tttiictoottoc-.qcaa...........cy‘ao:‘:-c::‘.._‘rﬁ-.
% 38E+05 | L ws P5
2 e ,i - :
% / P2 |
2 9.6E+04 | __ __ — |
- . |
s P !
Wo2.4E+04 | K :
* l
P1 |q -5
6.05+03‘A{ . . . - |
X 32 32 N 3@ s © ©
g & 5 ¥ 8 § § 8
o o o (=) ol o - 8
i <t =

April 2019 Selectivity COURSE (log-scale)

ICDE Tutorial

IC7
IC6
IC5
IC4
IC3
IC2
IC1

(1) Execute P1

with budget IC1(1.2E4)
Throw away results of P1
(2) Execute P1

with budget 1C2(2.4E4)
Throw away results of P1
(3) Execute P1

with budget IC3(4.8E4)
Throw away results of P1
(4) Execute P1

with budget IC2(9.6E4)
Throw away results of P1
(5) Execute P2

with budget IC5(1.9E5)
Throw away results of P2
(6) Execute P3

with budget I1C6(3.8E5)
P3 completes with cost 3.4E5

\
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Bouquet Execution

ﬁetqa-S%

@quet Cost=3.4 E5 (P3)\

/ 1.92 E5 (P2) +
|—pP1 —pP2 --P3 _ )
0.1E+06 i 0.96 E5 (P1) +
T ~=-P4 +«+P5 g 0.48 E5 (P1) +
8 1.5E+06 - RV IRt 0.24 E5 (P1) +
gﬂ S e 000NN EREERROR S B t/iy":‘/ """" ’::‘_:-"n.:. 0-12 E5(P1)
» 38E+05 | AR P3 = 7.1 E5
8 b ¢ e s oams s o ¢ s s e s 8T I
ht £ *PZ ]
E 9.6E+04 1 - 1 SubOpt (*, 5%) = 7.1/3.4 =2.1
£ ‘ '
o - K : With obvious optimization
2.4E+04 1 *’* | \goom(*, 5%) = 6.3/3.4 = 1y
% P1 ] q, = 5%
6.0E+03 . . . —&— | ] with budget 1C6(3.8E5)
§ 3 § 3 § § E‘;ﬂ E,‘ P3 completes with cost 3.4E5
g & =42 & & S @& 8
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Bouquet Performance (EQ)

—QOptimal
6.1E+06 | —worst Case (Native Optimizer)

—Bouquet (Enhanced)
1.5E+06 -

3.8E+05

9.6E+04 -

Estimated Costs (log-scale)

2.4E+04

6.0E+03

0.01% A
0.04% -
0.16% -
0.64% —
2.60% -
10.40% -

Selectivity COURSE (log-scale)

41.60%

100.00%

Native Optimizer

MaxSubOpt = 100

Bouquet

MaxSubOpt = 3.1
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Worst Case Cost Analysis

A P
ar” — —_ Bouquet (upper bound) a+..+ar™?
m-1 ---- Optimal (lower bound) ‘
(ICm) arcm___ '
ax m-2
ar
c el
k
c (G, Jar

o k-1
< (|Ck)ar —

P, would complete
within its budget

——Mqa € (qk_ll oM

t (|Ck_1)ark'2— P3
a+ar+ar’
P 2
(IC5) ar’— : ar
atar ar
(IC;) ar4 P [ --=--
(ic,) a 4—2—L-2.
C +
min
a, a, d,
selectivity
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1D Performance Bound

Chouquet (Ak—1, 9x] = cost(ICy) + cost(IC;) + ...+ cost(ICx_1) + cost(ICy)

= a + a + .+ ar¥? + arkl
_a@r* -1)
- (r—1)

Coptimal (dx—1, qic] = ar¥? (Implication of PCM)

T 2
1 ><a(r 1)< r

SubOptyouquet(*, da) < Vqq € (9k-1,9k]

arss — (p—1) "~ 1—1
Reaches minima atr =2
Best performance achievable by any = MSO =4

deterministic online algorithm!
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Bouquet Approach in 2D SS

April 2019 ICDE Tutorial 105




2D Bouquet Identification

Cost

(normalized)

nl

01

80

g0

(W) 1500 pagdwo)
99

¥o
(N) 360 papdwa)
90

¥o

Multiple Plans
per contour
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Characteristics of 2D Contours

origin

sel - X

Third quadrant coverage (due to PCM)

P’z‘ can complete any query with actual selectivitiy (q,)
in the shaded region within cost(IC,)

2D contours
* Hyperbolic curves
 Multiple plans per contour
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Crossing 2D Contours

'-'j__ff--P 17, Covered by
Covered by S |-<-2-- only one plan
all plans in f P, P, in contour
contour
Y ee
PP, !
PP, + PP P, P
origin >
sel- X
C N
—=> Entire set of contour plans must be executed to
fully cover all locations under IC,
ApriI:\ y 108




2D Performance Analysis

* When q, €(IC,,, IC,]

Number of plans on it" contour
k

Cbouquet(qa) — E[ni X COSt(ICi)]
i=1

p = max(n)
\ k
Cbouquet(qa) = P XZCOSt(ICi)
i=1

SubOptyouque:(qa) = 4p  (Using 1D Analysis)

[Bound for N-dimensions: SubOpt,,,quet(qa) = 4 X P 1csurface J
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Dealing with large p

* In practice, p can often be large, even in 100s,
making the performance guarantee of 4p

impractically weak

* Reducing p:

Anorexic POSP reduction

(from CostGreedy)

April 2019
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MSO guarantees (compile time)

| TPC-H |

| TPC-DS |

Query MSO Bound
(dim)
Q5 (3D) 14.4
Q7 (3D) 14.4
Q8 (4D) 33.6
Q7 (5D) 43.2
— Q15 (3D) 14.4
Q96 (3D) 14.4
Q7 (4D) 19.2
Q19 (5D) 38.4
Q26 (4D) 24.0
— Q91 (4D) 43.2

ICDE Tutorial
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Empirical Evaluation
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Experimental Testbed

« Database Systems: PostgreSQL and COM (commercial engine)
« Databases: TPC-H and TPC-DS (standard benchmarks)

* Physical Schema: Indexes on all attributes present in
qguery predicates

Workload: 10 complex queries from TPC-H and TPC-DS

— with SS having upto 5 error dimensions (join-selectivities)

Metrics: Computed MSO using Abstract Plan Costing over SS
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Performance on PostgreSQL

Native
Optimizer

Plan
Bouquet

MSO ZNAT  SBOU
1.E+08
Log-scale e = %
1.E+04 | 2
1.E+02 - Y 2 9 U4 4 MSO
é; % é é bounds
1.E+00 A8 Z Z

WLad oo s?x"sf’geo"g‘ 59\’95916599
- 20~ pO- 30/%09 30/0 pS)/c)oP &0,0 &0,0
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Performance with Commercial System

MSO

NAT B BOU
1.E+04

1.E+02

W
M

1.E+00

0
o>
39}-\; &ﬂ}\_ﬂ
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Summary

* Plan bouquet approach achieves

— bounded performance sub-optimality

* using a (cost-limited) plan execution sequence guided by isocost
contours defined over the optimal performance curve

— robust to changes in data distribution
 only q, changes — bouquet remains same
— easy to deploy
* bouquet layer on top of the database engine
— repeatability in execution strategy (important for industry)

* g, Is always zero, depends only on q,
 independent of metadata contents
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Limitations of PlanBouquet

* Enormous offline computational effort to produce
the plan diagram, suitable only for “canned” queries

 Partially addressed by enumerating only the contours,
not the entire diagram
* Practical guarantee values are predicated on
anorexic reduction holding true

* Guarantee of 4p depends on plan diagram
complexity, making it not portable across query
optimizers, databases and hardware systems
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Spill Bound

Tackling the Platform and Reduction Dependencies

April 2019
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Spilling

The output tuples of a node are dropped without
forwarding to the downstream tree.

Cost Budget

= =

—

Spill tuples out

of the tree _ -~

\

~

Budd
Cost Bu t
Sy R

Bottom up execution

[ ¢ / ~ \
[ | Table Scan’ ® \
N _l_ y; \
Table Scan - ( T / Table Table Scan
7y | Sian -
Index Scan | | TableScan || \| Part I\
Part T T \ M Orders Lineitem
N\ _—
Orders Lineitem N S o - Y 4
~ _
N—— _ — -

April 2019
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Learn single selectivity instead of combinations

When paiel slaxdtidexeatiembati tisiokyeP (pst(P, q),
and does not complete =

additional-space

N

i 7 7
Budget = Cost(P,q) Spill tuples out _
M SpillBound
—— — — _ Of the tree 7
B s 0
\ > A S S TSI qa
7 ! ¢
N )
—

Table Scany

A ! Sel-X
able
\ l Index Scan A
Part | \ 1‘
\ \ PlanBouquet
N\ ™ Orders Linei p o
q
N < > > a
\ — ]| »
Spill-mode execution
In practice, spill-mode execution can learn more than q.x selectivity _
Sel-X g
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Generalizing to Contours: Hypograph to Half-space Pruning

When plan P is executed (in spill-mode) with budget
equal to Cost(IC},), and does not complete

Hypograph Pruning Half-space Pruning
(PlanBouquet) (SpillBound)
o o
> da > 9a
p ) p
ICy IC,
Sel - X > Sel - X >

Spilling is done on the currently lowest unknown predicate in the plan tree
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Benefits of Half-space pruning

Sel-Y

« 2 Executions for jumping
contour in 2 dimensions

« D Executions for jumping
contour in D dimensions

Sel-X

Exec

9a
L

te topmost P” plan: P;

learn$ maximum Y selectivit

Exec

te rightmost P* plan: P

learns maximum X selectivity

P* - plans spilling
on predicate X
P” - plans spilling
on predicate Y

y
Pe

Only 2 (not p)
executions
for jumping a
contour!

April 2019
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SpillBound Execution

Sel-Y

Qrun Sel-X

Procedure

In every contour starting from IC4,
execute in spill-mode

1. rightmost P* plan

2. topmost P? plan

Repeat until all the selectivities are learnt

2D ESS Executions (spill-mode)

« ICq: Plan P4 (only available plan)
« IC,: Plan P; (P, has been pruned)
« IC3: Plan P (choices: Pg, Pg)

1D ESS Executions (full-plan)
e | C 3 Plan P6

« IC,4: Plan P9 (complete)

q.,.n represents selectivity inferred during
execution across error-prone predicates

April 2019 ICDE Tutorial
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Proof of 2D MSO Guarantee

Lemma: If q, lies between contour IC;, and ICy, ¢, then plan
executions in IC,., Will take the query to completion

Proof:

« Case 1: Right-most P* and top-most P” in IC},; both don’t complete
— But this contradicts q, lying below contour ICj, ¢

« Case 2: One of P* and P? in IC, ., reach completion
— The only dominating plan’s execution in 1Cj,; will take query to completion
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Contd ...

Lemma: At most one contour in ICy, ...,ICy 41, has atmost 3
executions while the rest have at most 2 executions each.

* For simplici
mpr I For 2 dimensions, MSO guarantee is 10
 Hence, opti

The guarantee is better than PlanBouquet
when p = 3 which is 12

For instance, p = 4 for Q91 from TPC-DS
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Extending to Higher Dimensions

For D dimensions,

arantee is D* + 3D

Platform-independent
for a query
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Empirical Evaluation

* Does platform-independence cause
an increase in the MSO guarantee?

* [|s SpillBound empirically worse
than PlanBouquet for queries?
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Experimental Setup

* System
— workstation with 8 GB memory, 1TB Hard disk
* Queries

— chosen from 100 GB TPC-DS benchmark
— number of error-prone predicates range from 2 to 5

 Database

— PostgreSQL: implemented spilling inside the
executor module of the engine

— Physical Schema: indexes on all columns

April 2019 ICDE Tutorial
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MSO Guarantees

80

60

MSO

40

20

SpillBound provides platform-independent
MSO guarantees without quality deterioration
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MSO Empirical Values

50

BN e B ss

40

30

MSO

20

10

o My T T M W M
NN o NN N N0,V O N RN Qs

MSO empirical: SpillBound << PlanBouquet !
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Lower Bound on MSO

Can prove lower bound of 2(D) among class of
half-space pruning algorithms.

Open Problem:
Can we bridge the quadratic-to-linear MSO gap?
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Frugal Spill Bound

Tackling the Compilation Overheads

April 2019
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Frugal SpillBound

« Apart from PCM, additional assumption that
Plan Cost Functions satisfy concave property

A /\/
Extensively validated

the assumption on
TPCDS benchmark

/\/

PCF

>
Selectivity
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Results

» Using concavity assumption, for upto twice increase in MSO

guarantees, the overheads reduction factor is

7"D

(Dlogy )P—1

Q(

* |n theory, the reduction factor is two orders of magnitude.
Empirically, it often reaches three orders of magnitude.

 For D=5 and r =100, the compilation efforts reduces from
few days to few minutes on contemporary servers
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Dimensionality Reduction

« Both the MSO guarantees and the compilation overheads
of SpillBound, are prey to the curse of dimensionality

* For queries with large number of dimensions, practical
experience suggests that only some of these dimensions
are relevant wrt robustness

* Open Problem: Identify such dimensions and remove
them, thereby resulting in improved MSO guarantees and
reduced compilation overheads
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Stage 4: Robust Cost Models




Approaches

» Learning-based approaches (ICDE 2009, ICDE 2012 [4])

— received Influential Paper Award in this conference!

— Several papers on Arxiv in recent months

* Plan-Structured Deep Neural Network Models for Query
Performance Prediction (arXiv:1902.00132, Jan 2019)

 Statistical approaches (ICDE 2013 [40], PVLDB 2013
[41], SIGMOD 2016 [42])
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Optimizer’s Cost Estimates: Unusable

10 :
avgerr: 120%

Direct Scaling: e
Predict the execution time T 8 5| "
by scaling the cost estimate C, » ; reastSquaresFitLine
l.e.,, T=a"C ; -

g 107k X

° X X

X
Fig. 5 of [4] o .
10° 10’
Optimizer Cost Estimate
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Why Does Direct Scaling Fail?

« PostgreSQL's cost model

C = ngcs + n,.c,. + necy + njc; + nyc,

‘ Scaling

Cy Ct
T =a-C =

S S

c
-(ns+nr—+ntc—+nl noc—o)

Ci

Cs

hﬁ\ €—— mﬁ‘

=a-c;=a-10=a

« Assumptions for scaling fail in practice
— Ratios between the ¢ values are incorrect.

— n values are incorrect.

« Solution: Proper calibration

April 2019

ICDE Tutorial

Cost Unit

c.: seq_page_cost

c,: rand_page_cost 4.0

c,: cpu_tuple_cost 0.01
c;: cpu_index_tuple_cost | 0.005
C,: Cpu_operator_cost 0.0025

Should be
correct!
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Calibrated cand n

Cost models become much more effective.

Query Execution Time (s)

1000

100 F

10

Prediction by Scaling:
red = a-(Qc-n)

10

100

Predicted Time By Naive Scaling (s)

1000

g

Query Execution Time (s)

1000

100 f

—
o
T

10

100

Predicted Time By Calibration (s)

1000

Prediction by Calibration:
reqa = %€ -1
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Main ldea

« Calibrate c: use profiling queries
« Calibrate n: refine cardinality estimates

calibration
queries

offline calibrated
profiling cost units

J

N

h 4

uery time —
i qpregictor

DB Server

{}

A

final query
plan

” corrected
online o
. cardinality
sampling

estimation

J
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Calibrating the c values

« Basic idea (an example)

— Want to know the true ¢; and c,

q,: select * from R

e General case

Rin memory

q,: select count(*) from R E—)

C.: seq_page_cost

c,: rand_page_cost

c,: cpu_tuple_cost

c: cpu_index_tuple_cost

C,: Cpu_operator_cost

t1=Ct'Tlt
to =C Ny + ¢, M,

— k cost units (i.e., k unknowns) = k queries (i.e., k equations)
— k = 5 in the case of PostgreSQL
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How to Pick Profiling Queries?

 Completeness
— Each ¢ should be covered by at least one query.

» Conciseness
— Set of queries is incomplete if any query is removed.

« Simplicity
— Each query should be as simple as possible, both for
efficiency and for unambiguous measurement.
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Profiling Queries For PostgreSQL

Isolate the unknowns and solve them one per equation!

q,: select * from R

q,: select count(*) from R

q5: select * from R where R A<a
(R.A with an index)

q,: select * from R

qs: select * from Rwhere R.B<b
(R.B unclustered index)

R in memory

l

Rin memory

l

Rin memory

l

R on disk

l

R on disk

l

21 =@ M1

ty = Ct* Ny ' No2

t3 = Ct * Mt3 @ni3+co'n03

t4_ :@' n54 + Ct * nt4_

ts
= Cs * Ngs Ny + Cp * Ny
+ ¢ Nnig +C, * Ny
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Calibrating the n values

* The nvalues are functions of N values (i.e., input cardinalities).
— Calibrating the n values = Calibrating the N values

Example 1 (In-Memory Sort) n,
sc =2 - N, - log N.]» ¢, + tc of child
rc = Ct * Nt

Example 2 (Nested-Loop Join)
sc = sc of outer child + sc of inner child
rc = ¢y @ NP - rc of inner child
nt

sc: start-cost rc:run-cost tc = sc + rc: total-cost
N;: # of input tuples
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Refine Cardinality Estimates

« Different perspective than the norm

Traditional Role Our Case (Execution
(Query Optimization) Time Prediction)
# of Plans Hundreds/Thousands of |1
Time per Plan Must be very short Can be a bit longer
Precision Important Critical
Approach Histograms (dominant) Sampling (one option)
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A Sampling-Based Estimator

* Estimate the selectivity p, of a select-join query q.
[Haas et al., J. Comput. Syst. Sci. 1996]

q:R]_MRZ

Partition

Bi1 B4
B, B3
Bin, B,

R, R,

Sy

n samples

(w/ replacement)

l_l_\ l_l_\

_ |B11 ™ By,

/1 1= |B11| X |B32|
1 n
........... Pq = EEizlpi

The estimator p,is unbiased and strongly consistent!
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Cardinality Refinement Algorithm

« Design the refinement algorithm based on the previous
sampling formula.

Problem Solution

The estimator needs random 1/Os | Take samples offline and store them

at runtime to take samples. as tables in the database.

Query plans usually contain more | Estimate multiple operators in a
than one operator. single run, by reusing partial results.
The estimator only works for Rely on PostgreSQL’s cost models for
select/join operators. aggregates.

April 2019 ICDE Tutorial a8




Cardinality Refinement Algorithm (Example)

q1 = Ry W R;
Plan for q: qd, = Ry XM R, X R,
agyg agyg

pCI1_ DS XlRl
' |FR§|

[RY| X [Rg| X||R3]

/i

Ri, R3, R3 are samples (as tables) of Ry, R, R3 Reuse

For agg, use PostgreSQL’'s estimates based on
the refined input estimates from gq,.

April 2019 ICDE Tutorial 149




Experimental Settings

* PostgreSQL 9.0.4, Linux 2.6.18

« TPC-H 1GB and 10GB databases

— Both uniform and skewed data distribution

« Two different hardware configurations
— PC1: 1-core 2.27 GHz Intel CPU, 2GB memory
— PC2: 8-core 2.40 GHz Intel CPU, 16GB memory
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Calibrating Cost Units

PC1: Cost Unit Calibrated Calibrated Default
(ms) (normalized to c,)
C,: seq_page_cost 5.53e-2 1.0 1.0
¢, rand_page_cost 6.50e-2 1.2 4.0
c,: cpu_tuple_cost 1.67e-4 10.003 0.0 >
c;: cpu_index_tuple_cost | 3.41e-5 0.0006 0.005
C,: Cpu_operator_cost 1.12e-4 0.002 0.0025
PC2: Cost Unit Calibrated Calibrated Default
(ms) (normalized to c,)
C,: seq_page_cost 5.03e-2 1.0 1.0
¢, rand_page_cost 4.89e-1 9.7 4.0
c,: cpu_tuple_cost 1.41e-4 0.0028 0.01
c;: cpu_index_tuple_cost | 3.34e-5 0.00066 0.005
C,: Cpu_operator_cost 7.10e-5 0.0014 0.0025
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Prediction Precision

» Metric of precision 1 i TPred _ Tact
— Mean Relative Error (MRE) M et
— (questionable as compared to g-error)

* Dynamic database workloads
— Unseen queries frequently occur

« Compare with existing approaches
— Direct scaling
— Machine learning approaches
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Precision on TPC-H 1GB DB

Uniform data:

4 xx==z1 PC1
3.5 I === PC2
3 =
2.9 F
2 =
1.5 F
1 =
05 F
0

Relative Error

ST

B e T ]
| N T N A NN
B A R ]

ET

.3

'

Approach

E,: c’s (calibrated) + n’s (true cardinalities)
E_: c’s (calibrated) + n’s (cardinalities by optimizer)
E.: c’s (calibrated) + n’s (cardinalities by sampling)

Direct
Scaling
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Precision on TPC-H 1GB DB (Cont.)

Skewed data:

4 zz=z1 PCH
35 I e=mmm PC2
3 =
2.5 F
2 =
1.5 F
'1 =
05 |
0

Relative Error

05 R
E;~ Esym Egep E,

Approach

E,: c’s (calibrated) + n’s (true cardinalities)
E_: c’s (calibrated) + n’s (cardinalities by optimizer)
E.: c’s (calibrated) + n’s (cardinalities by sampling)
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Precision on TPC-H 10GB DB

Uniform data (similar results on skewed data):

4 I T |
xxxx1 PCH1
3.5 F =3 PC2
- 3
O
T 25 F
s 2fr
©
E 1.5 F
'1 o
05 AL
E E%% | E E
t 5 SVM REP
Approach

E,: c’s (calibrated) + n’s (true cardinalities)
E_: c’s (calibrated) + n’s (cardinalities by optimizer)
E.: c’s (calibrated) + n’s (cardinalities by sampling)
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Overhead of Sampling

. Additional overhead is measured as Isampling
t
query

 More samples mean higher additional overhead

* For close-to-ideal prediction on 1GB DB
— 30% samples (0.3GB) = 20% additional overhead

* For close-to-ideal prediction on 10GB DB
— 5% samples (0.5GB) = 4% additional overhead
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Conclusion

« Systematic framework to calibrate the cost units
and refine the cardinality estimates used by
current cost models.

« Showed that current cost models are much
more effective in query execution time prediction
after proper calibration, and the additional
overhead is affordable in practice.
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Stage 5: Future Research




1) Structure of Query Graphs

« Graph structure (chain, star, cycle, etc.) has significant
Impact on robustness guarantees
— Tighter guarantees for chain (8D — 6) as compared to star (D%+3D )

500 +

400 ~

MSO

200 A

100 +

0

300 A

+ Chain
+ \Worst Branch

Best Branch

= Star

T T T
4 6 8

T T T T T T T
10 12 14 16 18 20 22 24
Mo. of Edges

Open Problem: MSO derivations based on query graph type
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2) Graceful Performance Degradation

l.e. prevent Boeing 737 Max situations!

Like SmoothScan or CliffGuard (SIGMOD 2015) for
physical design

Performance “walls”, not cliffs, occur with Plan Bouquet,
between queries located just below a contour and just
above the contour.

Open Problem: Design a smooth version of Plan Bouquet
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3) Refined Cost Model Calibration

« Calibration assumed the Postgres basic 5-parameter
model as a given for the entire suite of operators.

* Open Problem: Add operator-specific features and
operator-specific calibration of the coefficients, and see if
accuracy can be improved.
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4) Robustness Benchmarks

« Standard industry benchmarks (e.g. TPC-DS) are
oriented towards performance, not robustness.

* Recent proposals on benchmarks:

— Optimizer Benchmark (OptMark) (CIKM 16 [28])

« TPC-DS synthetic data, examines plan coverage and estimation of plans
better than optimizer’s choice; does not cover magnitude of cost differences

— Join-Order Benchmark (JOB) (VLDBJ 18 [26])

- Based on IMDB real data with heavy skew and correlation, and join-heavy
queries, g-error

— Optimizer Torture Test (OTT) (SIGMOD 16 [43])

« Two-column relations, one join attribute and one selection, the two columns
are highly correlated (in fact, identical values!)

* Open Problem: Design non-pathological realistic
benchmarks that highlight the same issues
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5) Machine Learning

Estimating Join Selectivities using Bandwidth-optimized Kernel Density Models
(TU Berlin, VLDB 2017 [24])

Neo: A Learned Query Optimizer (Brown/MIT, arXiv:1904.03711, April 2019)
Learned Cardinalities: Estimating Correlated Joins with Deep Learning

(TU Munich, CIDR 2019 [25])

Multi-attribute Selectivity Estimation Using Deep Learning

(UT Arlington, arXiv:1903.09999, March 2019)

Towards a Hands-Free Query Optimizer through Deep Learning (Brown, CIDR 2019)
Plan-Structured Deep Neural Network Models for Query Performance Prediction
(Brown, arXiv:1902.00132, Jan 2019)

Flexible Operator Embeddings via Deep Learning (Brown, arXiv: 1901.09090, Jan 2019)
Learning to Optimize Join Queries with Deep Reinforcement Learning

(UC Berkeley, arXiv:1808.03196)

Learning State Representations for Query Optimization with DRL

(UWash, DEEM Workshop@SIGMOD 2018)
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Limitations of Learning approaches

* Universality
— Ability to handle unseen adhoc queries is suspect
* Explainability
— Does not provide an intuitive confirmation of the approach
* Guarantees
— Average case may be excellent, but worst-case can be arbitrarily poor
* Heavy-weight

— Require expensive training phase

Open Problem:

Compare Algorithmic (Algebra+Geometry) vs Function-fitting approaches

April 2019 ICDE Tutorial 164




RECOMMENDED SOLUTION




Good news

The proposed techniques are

complementary and can work together!

April 2019 ICDE Tutorial

166




Robust Query Processing

* Implement “universal” operators
— SmoothScan, G-Join, etc.

* Implement “"anorexic” reduction
— Cost Greedy

* Implement PlanBouquet-style execution
— SpillBound for canned, FrugalBound for ad-hoc queries

* Implement Calibration-based cost modeling
— Augment off-line calibration with online tuning
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New RQP Architecture: Plan-level

SpillBound for
Performance Guarantees

\

" | CostGreedy for
Anorexic Plan Density

Q-Calibrated Cost
Model for Contours

%
%
%
Y
%
LY
%
LY
LY
L
ht
sy
&'

origin
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New RQP Architecture: Intra-Plan

N

G-Join, FlowlJoin for
Data Processing

SmoothScan for
Data Access
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