
Analyzing Plan Diagrams of Database Query Optimizers

Naveen Reddy Jayant R. Haritsa
�

Database Systems Lab, SERC/CSA
Indian Institute of Science, Bangalore 560012, INDIA

Abstract

A “plan diagram” is a pictorial enumeration of the
execution plan choices of a database query opti-
mizer over the relational selectivity space. In this
paper, we present and analyze representative plan
diagrams on a suite of popular commercial query
optimizers for queries based on the TPC-H bench-
mark. These diagrams, which often appear simi-
lar to cubist paintings, provide a variety of inter-
esting insights, including that current optimizers
make extremely fine-grained plan choices, which
may often be supplanted by less efficient options
without substantively affecting the quality; that
the plan optimality regions may have highly in-
tricate patterns and irregular boundaries, indicat-
ing strongly non-linear cost models; that non-
monotonic cost behavior exists where increasing
result cardinalities decrease the estimated cost;
and, that the basic assumptions underlying the re-
search literature on parametric query optimization
often do not hold in practice.

1 Introduction
Modern database systems use a query optimizer to iden-
tify the most efficient strategy to execute the SQL queries
that are submitted by users. The efficiency of the strate-
gies, called “plans”, is usually measured in terms of query
response time. Optimization is a mandatory exercise since
the difference between the cost of the best execution plan
and a random choice could be in orders of magnitude. The
role of query optimizers has become especially critical in
recent times due to the high degree of query complexity
characterizing current data warehousing and mining ap-
plications, as exemplified by the TPC-H decision support
benchmark [20].

��
Contact Author: haritsa@dsl.serc.iisc.ernet.in

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Very Large Data Base Endowment. To copy otherwise, or to republish,
requires a fee and/or special permission from the Endowment.

Proceedings of the 31st VLDB Conference,
Trondheim, Norway, 2005

While commercial query optimizers each have their own
“secret sauce” to identify the best plan, the de-facto stan-
dard underlying strategy, based on the classical System R
optimizer [17], is the following: Given a user query, ap-
ply a variety of heuristics to restrict the combinatorially
large search space of plan alternatives to a manageable size;
estimate, with a cost model and a dynamic-programming-
based processing algorithm, the efficiency of each of these
candidate plans; finally, choose the plan with the lowest es-
timated cost.

Plan and Cost Diagrams

For a query on a given database and system configuration,
the optimal plan choice is primarily a function of the se-
lectivities of the base relations participating in the query –
that is, the estimated number of rows of each relation rele-
vant to producing the final result. In this paper, we use the
term “plan diagram” to denote a color-coded pictorial enu-
meration of the execution plan choices of a database query
optimizer over the relational selectivity space. An example
2-D plan diagram is shown in Figure 1(a), for a query based
on Query 7 of the TPC-H benchmark, with selectivity vari-
ations on the ORDERS and CUSTOMER relations1.

[Note to Readers: We recommend viewing all diagrams pre-
sented in this paper directly from the color PDF file, available
at [25], or from a color print copy, since the greyscale version
may not clearly register the various features.]

In this picture, produced with a popular commercial
query optimizer, a set of six optimal2 plans, P1 through
P6, cover the selectivity space. The value associated with
each plan in the legend indicates the percentage space cov-
erage of that plan – P1, for example, covers about 38% of
the area, whereas P6 is chosen in only 1% of the region.

Complementary to the plan diagram is a “cost diagram”,
shown in Figure 1(b), which is a three-dimensional visual-
ization of the estimated plan execution costs over the same
relational selectivity space (in this picture, the costs are nor-
malized to the maximum cost over the space, and the col-
ors reflect the relative magnitudes with blue indicating low
cost, white – medium cost, and red – high cost).

1Specifically, the variation is on the o totalprice and
c acctbal attributes of these relations.

2The optimality is with respect to the optimizer’s restricted search
space, and not in a global sense.

(a) Plan Diagram (b) Cost Diagram

Figure 1: Smooth Plan and Cost Diagram (Query 7)

The Picasso Tool

As part of our ongoing project on developing value-
addition software for query optimization [24], we have cre-
ated a tool, called Picasso, that given a query and a rela-
tional engine, automatically generates the associated plan
and cost diagrams. In this paper, we report on the fea-
tures of the plan/cost diagrams output by Picasso on a suite
of three popular commercial query optimizers for queries
based on the TPC-H benchmark. [Due to legal restrictions,
these optimizers are anonymously identified as OptA, OptB
and OptC, in the sequel.]

Our evaluation shows that a few queries in the bench-
mark do produce “well-behaved” or “smooth” plan dia-
grams, like that shown in Figure 1(a). A substantial remain-
der, however, result in extremely complex and intricate plan
diagrams that appear similar to cubist paintings3, providing
rich material for investigation. A particularly compelling
example is shown in Figure 2(a) for Query 8 of the bench-
mark with optimizer OptA4, where no less than 68 plans
cover the space in a highly convoluted manner! Further,
even this cardinality is a conservative estimate since it was
obtained with a query grid of 100 x 100 – a finer grid size
of 300 x 300 resulted in the plan cardinality going up to 80
plans!

Before we go on, we hasten to clarify that our goal in
this paper is to provide a broad overview of the intrigu-
ing behavior of modern optimizers, but not to make judge-
ments on specific optimizers, nor to draw conclusions about
the relative qualities of their execution plans. Further, not
being privy to optimizer internals, some of the remarks

3Hence, the name of our tool – Pablo Picasso is considered to be a
founder of the cubist painting genre [23].

4Operating at its highest optimization level.

made here are perforce speculative in nature and should
therefore be treated as such. Our intention is primarily to
alert database system designers and developers to the phe-
nomena that we have encountered during the course of our
study, with the hope that they may prove useful in building
the next generation of optimizers.

Features of Plan and Cost Diagrams

Analyzing the TPC-H-based query plan and cost diagrams
provides a variety of interesting insights, including the fol-
lowing:

Fine-grained Choices: Modern query optimizers often
make extremely fine-grained plan choices, exhibiting
a marked skew in the space coverage of the individual
plans. For example, 80 percent of the space is usu-
ally covered by less than 20 percent of the plans, with
many of the smaller plans occupying less than one
percent of the selectivity space. Using the well-known
Gini index [22], which ranges over [0,1], to quantify
the skew, we find that all the optimizers, across the
board, exhibit a marked skew in excess of 0.5 for most
queries, on occasion going even higher than 0.8.

Further, and more importantly, we show that the
small-sized plans may often be supplanted by larger
siblings without substantively affecting the quality.
For example, the plan diagram of Figure 2(a) which
has 68 plans can be “reduced” to that shown in Fig-
ure 2(b) featuring as few as seven plans, without in-
creasing the estimated cost of any individual query
point by more than 10 percent.

Overall, this leads us to the hypothesis that current
optimizers may perhaps be over-sophisticated in that

(a) Complex Plan Diagram (b) Reduced Plan Diagram

Figure 2: Complex Plan and Reduced Plan Diagram (Query 8, OptA)

they are “doing too good a job”, not merited by the
coarseness of the underlying cost space. Moreover,
if it were possible to simplify the optimizer to pro-
duce only reduced plan diagrams, it is plausible that
the considerable processing overheads typically asso-
ciated with query optimization could be significantly
lowered.

Complex Patterns: The plan diagrams exhibit a variety
of intricate tessellated patterns, including speckles,
stripes, blinds, mosaics and bands, among others. For
example, witness the rapidly alternating choices be-
tween plans P12 (dark green) and P16 (light gray)
in the bottom left quadrant of Figure 2(a). Further,
the boundaries of the plan optimality regions can be
highly irregular – a case in point is plan P8 (dark
pink) in the top right quadrant of Figure 2(a). These
complex patterns appear to indicate the presence of
strongly non-linear and discretized cost models, again
perhaps an over-kill in light of Figure 2(b).

Non-Monotonic Cost Behavior: We have found quite a
few instances where, although the base relation selec-
tivities and the result cardinalities are monotonically
increasing, the cost diagram does not show a corre-
sponding monotonic behavior.5 Sometimes, the non-
monotonic behavior arises due to a change in plan,
perhaps understandable given the restricted search
space evaluated by the optimizer. But, more surpris-
ingly, we have also encountered situations where a
plan shows such behavior even internal to its optimal-
ity region.

5Our query setup is such that in addition to the result cardinality mono-
tonically increasing as we travel outwards along the selectivity axes, the
result tuples are also supersets of the previous results.

Validity of PQO: A rich body of literature exists on para-
metric query optimization (PQO) [1, 2, 5, 6, 7, 8, 12,
13, 14]. The goal here is to apriori identify the optimal
set of plans for the entire relational selectivity space
at compile time, and subsequently to use at run time
the actual selectivity parameter settings to identify the
best plan – the expectation is that this would be much
faster than optimizing the query from scratch. Much
of this work is based on a set of assumptions, that we
do not find to hold true, even approximately, in the
plan diagrams produced by the commercial optimiz-
ers.

For example, one of the assumptions is that a plan is
optimal within the entire region enclosed by its plan
boundaries. But, in Figure 2(a), this is violated by the
small (brown) rectangle of plan P14, close to coordi-
nates (60,30), in the (light-pink) optimality region of
plan P3, and there are several other such instances.

On the positive side, however, we show that some
of the important PQO assumptions do hold approxi-
mately for reduced plan diagrams.

1.1 Organization

The above effects are described in more detail in the re-
mainder of this paper, which is organized as follows: In
Section 2, we present the Picasso tool and the testbed en-
vironment. Then, in Section 3, the skew in the plan space
distribution, as well as techniques for reducing the plan set
cardinalities, are discussed. The relationship to PQO is ex-
plored in Section 4. Interesting plan diagram motifs are
presented in Section 5. An overview of related work is pro-
vided in Section 6. Finally, in Section 7, we summarize

the conclusions of our study and outline future research av-
enues.

2 Testbed Environment
In this section, we overview the Picasso tool and the ex-
perimental environment under which the plan and cost dia-
grams presented here were produced.

2.1 Picasso Tool

The Picasso tool is part of our ongoing project on de-
veloping value-added tools for query optimization [24].
Through its GUI, users can submit a query template [3], the
grid granularity at which instances of this template should
be distributed across the plan space, the relations (axes)
and their attributes on which the diagrams should be con-
structed, and the choice of query optimizer. A snapshot of
the interface for a template based on Query 2 of the TPC-H
benchmark, is shown in Figure 3 (the predicates “p size
< C1” and “ps supplycost < C2” determine the se-
lectivity axes).

With this information, the tool automatically generates
SQL queries that are evenly spaced across the relational
selectivity space (the statistics present in the database cat-
alogs are used to compute the selectivities). For exam-
ple, with a grid spacing of 100 x 100, a plan diagram
is produced by firing 10000 queries, each query covering
0.01 percent of the plan diagram area. The resulting plans
are stored persistently in the database, and in the post-
processing phase, a unique color is assigned to each distinct
plan, and the area covered by the plan is also estimated.
The space is then colored according to this assignment, and
the legend shows (in ranked order) the space coverage of
each plan. Differences between specific plans are easily
identified using a PlanDiff component that only requires
dragging the cursor from one plan to the other in the plan
diagram.

For each plan diagram, the corresponding cost diagram
is obtained by feeding the query points and their asso-
ciated costs to a 3-D visualizer – currently, the freeware
Plot3D [21] is used for this purpose.

2.2 Database and Query Set

The database was created using the synthetic generator
supplied with the TPC-H decision support benchmark,
which represents a commercial manufacturing environ-
ment, featuring the following relations: REGION, NATION,
SUPPLIER, CUSTOMER, PART, PARTSUPP, ORDERS and
LINEITEM. A gigabyte-sized database was created on this
schema, resulting in cardinalities of 5, 25, 10000, 150000,
200000, 800000, 1500000 and 6001215, for the respective
relations.

All query templates were based on the TPC-H bench-
mark, which features a set of 22 queries, Q1 through Q22.
To ensure coverage of the full range of selectivities, the re-
lational axes in the plan diagrams are chosen only from the
large-cardinality tables occurring in the query (i.e. NATION

and REGION, which are very small, are not considered).
An additional restriction is that the selected tables should
feature only in join predicates in the query, but not in any
constant predicates. For a given choice of such tables, ad-
ditional one-sided range predicates on attributes with high-
cardinality domains in these tables are added to the queries
to support a fine-grained continuous variation of the asso-
ciated relational selectivities. As a case in point, the plan
diagram in Figure 2(a) on the SUPPLIER and LINEITEM
relations, was produced after adding to Q8 the predicates
s acctbal

�
C1 and l quantity

�
C2, where C1

and C2 are constants that are appropriately set to generate
the desired selectivities on these relations. In the remainder
of this paper, for ease of exposition, we will use the bench-
mark query numbers for referring to the associated Picasso
templates.

While plan and cost diagrams have been generated for
most of the benchmark queries, we focus in the remainder
of this paper only on those queries that have “dense” plan
diagrams – that is, diagrams whose optimal plan set cardi-
nality is 10 or more, making them interesting for analysis
– for at least one of the commercial optimizers. For com-
putational tractability, a query grid spacing of 100 x 100 is
used, unless explicitly mentioned otherwise. Further, for
ease of presentation and visualization, the query workloads
are restricted to 2-dimensional selectivity spaces (with the
exception of queries Q1 and Q6, which feature only a sin-
gle relation, and therefore have a 1-D selectivity space by
definition).

2.3 Relational Engines

A suite of three popular commercial relational optimizers
were evaluated, but, as mentioned earlier, we are unable to
provide their details due to legal restrictions. Some of the
engines offer a range of optimization levels that tradeoff
quality against time, or result latency versus response time.
We have experimented with all these levels, but for ease of
exposition, the diagrams presented here, unless explicitly
mentioned otherwise, are restricted to those obtained with
the default optimization levels. Also, we ensured that the
full choice of candidate algorithms for each query operator
was made available. To support the making of informed
plan choices, commands were issued to collect statistics on
all the attributes participating in the queries. Finally, for
every query submitted to the database systems, commands
were issued to only “explain” the plan – that is, the plan
to execute the query was generated, but not executed. This
is because our focus here is on plan choices, and not on
evaluating the accuracy of the associated cost estimations.

2.4 Computational Platform

A vanilla platform consisting of a Pentium-IV 2.4 GHz
PC with 1 GB of main memory and 120 GB of hard disk,
running the Windows XP Pro operating system, was used
in our experiments. For this platform, the complete set
of evaluated queries and their associated plan, cost, and

Figure 3: Picasso GUI

reduced-plan diagrams, over all three optimizers, are avail-
able at [25] – in the remainder of this paper, we discuss
their highlights.

3 Skew in Plan Space Coverage
We start off our analysis of plan diagrams by investigating
the skew in the space coverage of the optimal set of plans.
In Table 1, we show for the various benchmark queries,
three columns for each optimizer: First, the cardinality of
the optimal plan set; second, the (minimum) percentage of
plans required to cover 80 percent of the space; and, third,
the Gini index [22], a popular measure of income inequality
in economics – here we treat the space covered by each
plan as its “income”. Our choice of the Gini index is due to
its desirable statistical properties including being Lorenz-
consistent, and bounded on the closed interval [0,1], with
0 representing no skew and 1 representing extreme skew.
Finally, the averages across all dense queries (10 or more
plans in the plan diagram) are also given at the bottom of
Table 1 (the averages are computed for each optimizer w.r.t.
to its dense queries).

These statistics show that the cardinality of the optimal
plan set can reach high values for a significant proportion of
the queries. For example, the average (dense) cardinality is
considerably in excess of twenty, across all three optimiz-
ers. Q9, in particular, results in more than 40 plans for all
the optimizers. But it is also interesting to note that high
plan density is not solely query-specific since there can
be wide variations between the optimizers on individual
queries – for example, Q18 results in 13 plans for OptB, but
only 5 plans each for OptA and OptC. Conversely, OptB
requires only 6 plans for Q7, but OptA and OptC employ

13 and 19 plans, respectively. It should also be noted that
a common feature between Q8 and Q9, which both have
large number of plans across all three systems, is that they
are join-intensive nested queries with the outer query fea-
turing dynamic source relations (i.e. the relations in the
from clause are themselves the output of SQL queries).

When the fractional cardinality required to cover 80 per-
cent of the space is considered, we see that on average it
is in the neighborhood of 20 percent, highlighting the in-
equity in the plan space distribution. This is comprehen-
sively captured by the Gini index values, which are mostly
in excess of 0.5, and even reaching 0.8 on occasion, indicat-
ing very high skew in the plan space distribution. Further,
note that this skew is present, across the board, in all the
optimizers.

Overall, the statistics clearly demonstrate that modern
optimizers tend to make extremely fine-grained choices.
Further, these numbers are conservative in that they were
obtained with a 100 x 100 grid – with finer-granularity
grids, as mentioned in the Introduction, the number of plans
often increased even further. For example, using a 1000 x
1000 grid for Q9 on OptB, the number of plans increased
from 44 to 60!

3.1 Plan Cardinality Reduction by Swallowing

Motivated by the above skewed statistics, we now look into
whether it is possible to replace many of the small-sized
plans by larger-sized plans in the optimal plan set, without
unduly increasing the cost of the query points associated
with the small plans. That is, can small plans be “com-
pletely swallowed” by their larger siblings, leading to a re-
duced plan set cardinality, without materially affecting the

TPC-H OptA OptB OptC
Query Plan 80% Gini Plan 80% Gini Plan 80% Gini

Number Card Coverage Index Card Coverage Index Card Coverage Index
2 22 18% 0.76 14 21% 0.72 35 20% 0.77
5 21 19% 0.81 14 21% 0.74 18 17% 0.81
7 13 23% 0.73 6 50% 0.46 19 15% 0.79
8 31 16% 0.81 25 25% 0.72 38 18% 0.79
9 63 9% 0.88 44 27% 0.70 41 12% 0.83
10 24 16% 0.78 9 22% 0.69 8 25% 0.75
18 5 60% 0.33 13 38% 0.57 5 20% 0.75
21 27 22% 0.74 6 17% 0.80 22 18% 0.81

Avg(dense) 28.7 17% 0.79 22.0 23% 0.72 28.8 16% 0.8

Table 1: Skew in Plan Space Coverage

associated queries.
To do this, we first fix a threshold, � , representing the

maximum percentage cost increase that can be tolerated.
Specifically, no query point in the original space should
have its cost increased, post-swallowing, by more than � .
Next, to decide whether a plan can be swallowed, we use
the following formulation:

Cost Domination Principle: Given a pair of distinct
query points �����
	��������� and ������	��������� in the two-
dimensional selectivity space, we say that point ���
dominates � � , symbolized by � ��� � � , if and only if
	 ��� 	 � , ��� � , and result cardinality ���! � �"�$#
(note that result cardinality estimations are, in prin-
ciple, independent of plan choices).6 Then, if points
� � ��	 � �� � � and � � �
	 � �� � � , are associated with distinct
plans %&� and %'� , respectively, in the original space,(�� , the cost of executing query �)� with plan %'� is
upper-bounded by

(�� , the cost of executing ��� with
%'� , if and only if ��� � �*� .

Intuitively, what is meant by the cost domination prin-
ciple is that we expect the optimizer cost functions to be
monotonically non-decreasing with increasing base rela-
tion selectivities and result cardinalities. Equivalently, a
plan that processes a superset of the input, and produces a
superset of the output, as compared to another plan, is esti-
mated to be more costly to execute. However, as discussed
later in Section 5, this (surprisingly) does not always prove
to be the case with the current optimizers, and we therefore
have to explicitly check for the applicability of the princi-
ple.

Based on the above principle, when considering swal-
lowing possibilities for a query point ��+ , we only look
for replacements by “foreign” (i.e. belonging to a different
plan) query points that are in the first quadrant relative to
��+ as the origin, since these points upper-bound the cost of
the plan at the origin. This is made clear in Figure 4, which
shows that, independent of the cost model of the dominat-
ing plan, the cost of any foreign query point in the first

6Result cardinalities are usually monotonically non-decreasing with
increasing , and - , but this need not always be the case, especially for
nested queries.

quadrant will be an upper bound on the cost of executing
the foreign plan at the swallowed point. We now need to
find the set of dominating foreign points that are within the
� threshold, and if such points exist, choose one replace-
ment from among these – currently, we choose the point
with the lowest cost as the replacement. Finally, an entire
plan can be swallowed if and only if all its query points can
be swallowed by either a single plan or a group of plans. In
our processing, we first order the plans in ascending order
of size, and then go up the list, checking for the possibility
of swallowing each plan.

Note that the cost domination principle is conservative
in that it does not capture all swallowing possibilities, due
to restricting its search only to the first quadrant. But, as
we will show next, substantial reductions in plan space car-
dinalities can be achieved even with this conservative ap-
proach.

Figure 4: Dominating Quadrant

For the experiments presented here, we set � , the cost
increase threshold, to 10 percent. Note that in any case
the cost computations made by query optimizers are them-
selves statistical estimates, and therefore allowing for a 10
percent “fudge factor” may be well within the bounds of
the inherent error in the estimation process. In fact, as

mentioned recently in [15, 19], cost estimates can often be
signficantly off due to modeling errors, prompting the new
wave of “learning” optimizers (e.g. LEO [19]) that itera-
tively refine their models to improve their estimates.

When the above plan-swallowing technique is imple-
mented on the set of plans shown in Table 1, and with
�/.10�2�3 , the resulting reductions (as a percentage) in the
plan cardinalities are shown in Table 2. We see here that the
reductions are very significant – for example, Q8 reduces
by 87% (31 to 4), 84% (25 to 4) and 86% (38 to 5), for
OptA, OptB and OptC, respectively. On average over dense
queries, the reductions are of the order of 60% across all
three optimizers, with OptC going over 70%. Also note that
these reductions are conservative because when the grid
granularity is increased – from 100 x 100 to, say, 1000 x
1000 – the new plans that emerge tend to be very small and
are therefore highly likely to be subsequently swallowed.
In a nutshell, the following thumb rule emerges from our
results: “two-thirds of the plans in a dense plan diagram
are liable to be eliminated through plan swallowing”.

In Table 2, we have also shown the average percentage
increase in the costs of swallowed query points, as well as
the maximum cost increase suffered across all query points.
Note that, although the threshold is set to 10%, the actual
average cost increase is rather low – less than 2%, which
means that most of the swallowed query points hardly suf-
fer on account of the replacement by an alternative plan.
In fact, even the maximum increase does not always reach
the threshold setting. Further, note that these averages and
maxima are upper bounds, and the real cost estimates of
the replacement plans at the swallowed points may be even
lower in practice. Overall, our observation is that there ap-
pears to be significant potential to drastically reduce the
complexity of plan diagrams without materially affecting
the query processing quality.

A key implication of the above observation is the follow-
ing: Suppose it were possible to simplify current optimizers
to produce only reduced plan diagrams, then the consider-
able computational overheads typically associated with the
query optimization process may also be substantially low-
ered. We suggest that this may be an interesting avenue to
be explored by the database research community.

3.2 Plan Reduction 4. Optimization Levels

As mentioned earlier, optimizers typically have multiple
optimization levels that trade off plan quality versus opti-
mization time, and at first glance, our plan reduction tech-
nique may appear equivalent to choosing a coarser opti-
mization level. However, the two concepts are completely
different because the optimal plan sets chosen at different
levels by the optimizer may be vastly dissimilar. A strik-
ing example is Q8, where none of the 68 plans chosen by
OptA at the highest level are present among the 8 plans
chosen at the lowest level. Further, going to a coarser level
of optimization does not necessarily result in lower plan
cardinalities – a case in point is OptA on Q2, producing
only 4 plans at the highest level, but as many as 22 plans at

a lower level. Again, there is zero overlap between the two
optimal plan sets.

In contrast, with plan reduction by swallowing, only
a subset of the original plans chosen by the optimizer
are used to cover the entire plan space. In fact, plan
reduction fits in perfectly with the query clustering ap-
proach previously proposed in our Plastic plan recycling
tool [3, 16, 18, 24], where queries that are expected to have
identical plan templates are grouped together based on sim-
ilarities in their feature vectors. This is because the cluster
regions inherently coarsen the plan diagram granularity.

4 Relationship to PQO
A rich body of literature exists on parametric query opti-
mization (PQO) [1, 2, 5, 6, 7, 8, 12, 13, 14]. The goal here is
to apriori identify the optimal set of plans for the entire re-
lational selectivity space at compile time, and subsequently
to use at run time the actual selectivity parameter settings to
identify the best plan – the expectation is that this would be
much faster than optimizing the query from scratch. Most
of this work is based on assuming cost functions that would
result in one or more of the following:

Plan Convexity: If a plan P is optimal at point A and at
point B, then it is optimal at all points on the straight
line joining the two points;

Plan Uniqueness: An optimal plan P appears at only one
contiguous region in the entire space;

Plan Homogeneity: An optimal plan P is optimal within
the entire region enclosed by its plan boundaries.

However, we find that none of the three assumptions
hold true, even approximately, in the plan diagrams pro-
duced by the commercial optimizers. For example, in Fig-
ure 2(a), plan convexity is severely violated by the regions
covered by plans P12 (dark green) and P16 (light gray).
The plan uniqueness property is violated by plan P4 (ma-
roon) which appears in two non-contiguous locations in the
top left quadrant, while plan P18 appears in finely-chopped
pieces. Finally, plan homogeneity is violated by the small
(brown) rectangle of plan P14, close to coordinates (60,30),
in the (light-pink) optimality region of plan P3.

The prior literature [6, 14] had also estimated that high
plan densities are to be expected only along the selectivity
axes – that is, where one or both base relations in the plan
diagram are extremely selective, providing only a few tu-
ples. However, we have found that high plan densities can
be present elsewhere in the selectivity space also – for ex-
ample, see the region between plans P5 (dark brown) and
P11 (orange) in Figure 2(a). This is also the reason for
our choosing a uniform distribution of the query instances,
instead of the exponential distribution towards finer selec-
tivity values used in [6].

In the following section, more detailed statistics about
the violations of the above assumptions are presented, as
part of a discussion on interesting plan diagram patterns.

OptA OptB OptC
TPC-H Percent Average Maximum Percent Average Maximum Percent Average Maximum
Query Card Cost Cost Card Cost Cost Card Cost Cost

Number Decrease Increase Increase Decrease Increase Increase Decrease Increase Increase
2 59.2 1.0 4.4 64.2 0.6 5.9 77.1 3.2 6.4
5 67.3 2.6 8.1 42.9 0.1 0.6 61.1 0.2 8.1
7 46.1 0.1 9.5 16.6 0.4 0.7 54.5 1.1 9.5
8 87.6 0.4 9.4 84 0.9 9.1 86.8 1.2 8.4
9 84.4 1.6 8.6 36.4 1.4 8.9 80.5 2.1 8.3
10 67.6 0.8 4.4 44.4 0.5 6.1 62.5 0.4 2.4
18 40.0 0.1 0.5 46.2 3.7 9.6 0 0 0
21 59.8 0.0 0.2 66.7 0.9 2.5 68.2 0.7 6.9

Avg(dense) 67.4 0.9 6.4 56.9 0.7 6.1 71.4 1.4 7.9

Table 2: Plan Cardinality Reduction by Swallowing

5 Interesting Plan Diagram Patterns
We now move on to presenting representative instances of
a variety of interesting patterns that emerged in the plan
diagrams across the various queries and optimizers that we
evaluated in our study.

5.1 Plan Duplicates and Plan Islands

In several plan diagrams, we noticed that a given optimal
plan may have duplicates in that it may appear in several
different disjoint locations. Further, these duplicates may
also be spatially quite separated. For example, consider the
plan diagram for Q10 with OptA in Figure 5. Here, we
see that plan P3 (dark pink) is present twice, being present
both in the center, as well as along the right boundary of
the plan space. An even more extreme example is plan P6
(dark green), which is present around the 20% and 95%
markers on the CUSTOMER selectivity axis.

A different kind of duplicate pattern is seen for Q5
with OptC, shown in Figure 6, where plan P7 (magenta) is
present in three different locations, all within the confines
of the region occupied by plan P1 (dark orange). When
plans P7 and P1 are compared, we find that the former uses
a nested-loops join between the small relations NATION
and REGION, whereas the latter employs a sort-merge-
join instead.

Apart from duplicates, we also see that there are in-
stances of plan islands, where a plan region is completely
enclosed by another. For example, plan P18 is a (magenta)
island in the optimality region of the (dark green) plan P6
in the lower left quadrant of Figure 5. Investigating the
internals of these plans, we find that plan P18 has a hash-
join between CUSTOMER and NATION followed by a hash-
join with a sub-tree whose root is a nested-loop join. The
only difference in plan P6 is that it first hash-joins the CUS-
TOMER relation with the sub-tree, and then performs the
hash-join with NATION.

The number of such duplicates and islands for each opti-
mizer, over all dense queries of the benchmark, is presented
in Table 3 (Original columns). We see here that all three op-
timizers generate a significant number of duplicates; OptA
also generates a large number of islands, whereas OptB and

Figure 5: Duplicates and Islands (Query 10, OptA)

OptC have relatively few islands.

Databases # Duplicates # Islands
Original Reduced Original Reduced

OptA 130 13 38 3
OptB 80 15 1 0
OptC 55 7 8 3

Table 3: Duplicates and Islands

In general, the reason for the occurrence of such du-
plicates and islands is that two or more competing plans
have fairly close costs in that area. So, the optimizer due
to its extremely fine grained plan choices, obtains plan dia-
grams with these features. This is confirmed from Table 3
(Reduced columns), where after application of the plan re-
duction algorithm, a significant decrease is observed in the
number of islands and duplicates. This also means that
PQO, which, as mentioned in the previous section, appears
ill-suited to directly capture the complexities of modern op-
timizers, may turn out to be a more viable proposition in the
space of reduced plan diagrams.

Figure 6: Duplicates and Islands (Query 5, OptC)

5.2 Plan Switch Points

In several plan diagrams, we find lines parallel to the axes
that run through the entire selectivity space, with a plan
shift occurring for all plans bordering the line, when we
move across the line. We will hereafter refer to such lines
as “plan switch-points”.

In the plan diagram of Figure 7, obtained with Q9 on
OptA, an example switch-point appears at approximately
30% selectivity of the SUPPLIER relation. Here, we found
a common change in all plans across the switch-point – the
hash-join sequence PARTSUPP 576 SUPPLIER 586 PART is al-
tered to PARTSUPP 586 PART 586 SUPPLIER, suggesting an in-
tersection of the cost function of the two sequences at this
switch-point.

Figure 7: Plan Switch-Point (Query 9, OptA)

For the same Q9 query, an even more interesting switch-
point example is obtained with OptB, shown in Figure 8.
Here we observe, between 10% and 35% on the SUPPLIER
axis, six plans simultaneously changing with rapid alterna-

tions to produce a “Venetian blinds” effect. Specifically,
the optimizer changes from P6 to P1, P16 to P4, P25 to
P23, P7 to P18, P8 to P9, and P42 to P47, from one vertical
strip to the next.

Figure 8: Venetian Blinds Pattern (Query 9, OptB)

The reason for this behavior is that the optimizer alter-
nates between a left-deep hash join and a right-deep hash
join across the NATION, SUPPLIER and LINEITEM rela-
tions. Both variations have almost equal estimated cost,
and their cost-models are perhaps discretized in a step-
function manner, resulting in the observed blinds.

5.3 Footprint Pattern

A curious pattern, similar to footprints on the beach, shows
up in Figure 9, obtained with Q7 on the OptA optimizer,
where we see plan P7 exhibiting a thin (cadet-blue) bro-
ken curved pattern in the middle of plan P2’s (orange) re-
gion. The reason for this behavior is that both plans are of
roughly equal cost, with the difference being that in plan
P2, the SUPPLIER relation participates in a sort-merge-
join at the top of the plan tree, whereas in P7, the hash-join
operator is used instead at the same location. This is con-
firmed in the corresponding reduced plan diagram where
the footprints disappear.

5.4 Speckle Pattern

Operating Picasso with Q17 on OptA (at its highest opti-
mization level) results in Figure 10. We see here that the
entire plan diagram is divided into just two plans, P1 and
P2, occupying nearly equal areas, but that plan P1 (bright
green) also appears as speckles sprinkled in P2’s (red) area.

The only difference between the two plans is that an ad-
ditional SORT operation is present in P2 on the PART rela-
tion. However, the cost of this sort is very low, and there-
fore we find intermixing of plans due to the close and per-
haps discretized cost models.

Figure 9: Footprint Pattern (Query 7, OptA)

Figure 10: Speckle Pattern (Query 17, OptA)

5.5 Non-Monotonic Cost Behavior

The example switch-points shown earlier, were all cost-
based switch-points, where plans were switched to de-
rive lower execution costs. Yet another example of such
a switch-point is seen in Figure 11(a), obtained with query
Q2 on OptA, at 97% selectivity of the PART relation. Here,
the common change in all plans across the switch-point is
that the hash-join between relations PART and PARTSUPP
is replaced by a sort-merge-join.

But, in the same picture, there are switch-points occur-
ring at 26% and 50% in the PARTSUPP selectivity range,
that result in a counter-intuitive non-monotonic cost behav-
ior, as shown in the corresponding cost diagram of Fig-
ure 11(b). Here, we see that although the result cardi-
nalities are monotonically increasing, the estimated costs
for producing these results show a marked non-monotonic
step-down behavior in the middle section. Specifically,
at the 26% switch-point, an additional ‘sort’ operator

(on ps supplycost) is added, which substantially de-
creases the overall cost – for example, in moving from plan
P2 to P3 at 50% PART selectivity, the estimated cost de-
creases by a factor of 50! Conversely, in moving from P3
to P1 at the 50% switch-point, the cost of the optimal plan
jumps up by a factor of 70 at 50% PART selectivity.

Step-function upward jumps in the cost with increas-
ing input cardinalities are known to occur – for example,
when one of the relations in a join ceases to fit completely
within the available memory – however, what is surprising
in the above is the step-function cost decrease at the 26%
switch-point. We conjecture that such disruptive cost be-
havior may arise either due to the presence of rules in the
optimizer, or due to parameterized changes in the search
space evaluated by the optimizer.

The above example showed non-monotonic behavior
arising out of a plan-switch. However, more surprisingly,
we have also encountered situations where a plan shows
non-monotonic behavior internal to its optimality region.
A specific example is shown in Figure 12 obtained for Q21
with OptA. Here, the plans P1, P3, P4 and P6, show a re-
duction in their estimated costs with increasing input and
result cardinalities. An investigation of these plans showed
that all of them feature a nested-loops join, whose esti-
mated cost decreases with increasing cardinalities of its in-
put relations – this may perhaps indicate an inconsistency
in the associated cost model. Further, such instances of
non-monotonic behavior were observed with all three opti-
mizers.

6 Related Work
To the best of our knowledge, there has been no prior work
on the analysis of plan diagrams with regard to real-world
industrial-strength query optimizers. However, similar is-
sues have been studied in the parametric query optimization
(PQO) literature in the context of simplified self-crafted op-
timizers. Specifically, in [1, 13, 14], an optimizer modeled
along the lines of the original System R optimizer [17] is
used, with the search space restricted to left-deep join trees,
and the workload comprised of pure SPJ queries with “star”
or “linear” join-graphs. The metrics considered include
the cardinality and spatial distribution of the set of optimal
plans – while [1] considered only single-relation selectivi-
ties, [13, 14] evaluated two-dimensional relational selectiv-
ity spaces, similar to those considered in this paper. Their
results in the 2-D case indicate that for linear queries, the
average number of optimal plans is linear in the number of
join relations, while for star queries, this number is almost
quadratic. Also, the optimal plans are found to be densely
packed close to the origin and the selectivity axes. An anal-
ysis of plan reduction possibilities in [1], given a plan op-
timality tolerance threshold, indicates that a larger fraction
of plans can be removed with increasing query complexity.
In [5, 6], an optimizer modeled along the lines of the Vol-
cano query optimizer [4] is used, and they find the cardinal-
ity of the optimal plan set for queries with two, three and
four-dimensional relational selectivities. They also present

(a) Plan Diagram (b) Cost Diagram

Figure 11: Plan-Switch Non-Monotonic Costs (Query 2, OptA)

efficient techniques for approximating the optimal plan set.
Finally, a complexity analysis of the optimal plan set cardi-
nality is made in [7] for the specific case of linear (affine)
cost functions in two parameters.

While the above efforts do provide important insights,
the results presented in this paper indicate that plan dia-
grams with sophisticated real-world optimizers and queries
show much more variability with regard to both plan set
cardinalities and spatial distributions, as compared to those
anticipated from the PQO literature. For example, as men-
tioned earlier, we find that plan densities can be high even
in regions far from the plan diagram axes, and that the
optimality region geometries can have extremely irregular
boundaries.

There has also been work on characterizing the sensi-
tivity of query optimization to storage access cost parame-
ters [15], but this work focuses on the robustness of optimal
plan choices to inaccuracies in the optimizer input parame-
ters, and when suboptimal choices are made, the impact of
these errors. So, the focus is on plan quality, not quantity or
spatial distribution. Further, their analysis shows that when
all tables and indexes are on a single device (as in our case),
the optimizer proved relatively insensitive to inaccurate re-
source costs in terms of plan choices – however, we find
strong sensitivity with regard to selectivity values. Further,
many of the queries for which they did find some degree of
sensitivity also feature in our list of “dense” queries.

Cost-based attempts to reduce the optimizer’s search
space include a “pilot-pass” approach [11], where a com-
plete plan is initially computed and the cost of this plan is
used to prune the subsequent dynamic programming enu-
meration by removing all subplans whose costs exceed that
of the complete plan. But, it has been reported [9] that
such pruning has only marginal impact in real-world envi-

ronments. Finally, a preliminary study of a sampling-based
approach to find acceptable quality plans, evaluated on a
commercial optimizer, is discussed in [10], but its impact
on the optimal plan set cardinality is an open issue.

7 Conclusions
In this paper, we have attempted to analyze the behavior of
(1-D and 2-D) plan and cost diagrams produced by mod-
ern optimizers on queries based on the TPC-H benchmark.
Our study shows that many of the queries result in highly
intricate diagrams, with several tens of plans covering the
space. Further, there is heavy skew in the relative coverage
of the plans, with 80 percent of the space typically covered
by 20 percent or less of the plans. We showed that through a
process of plan reduction where the query points associated
with a small-sized plan are swallowed by a larger plan, it is
possible to significantly bring down the cardinality of the
plan diagram, without materially affecting the query cost.

We also demonstrated that a variety of complex and in-
tricate patterns are produced in the diagrams, which may
be an overkill given the coarseness of the underlying cost
space. These patterns also indicate that the basic assump-
tions of parametric query optimization literature do not
hold in practice. However, with reduced plan diagrams, the
gap between theory and practice is considerably narrowed.

Not being privy to the internals of optimizers, our work
is perforce speculative in nature. However, we hope that it
may serve as a stimulus to the database research commu-
nity to investigate mechanisms for pruning the plan search
space so as to directly generate reduced plan diagrams, and
thereby perhaps achieve substantial savings in the signif-
icant overheads normally associated with the query opti-
mization process.

(a) Plan Diagram (b) Cost Diagram

Figure 12: Intra-plan Non-Monotonic Costs (Query 21, OptA)

In the future, we would like to conduct a deeper inves-
tigation into the kinds of queries that result in dense plan
diagrams, such as, for example, the presence of dynamic
base relations. Also, a major limitation of our current work
is its restriction to 1-D and 2-D plan diagrams – in practice,
there may be many more schema and system dimensions
affecting plan choices. Therefore, we intend to investigate
higher dimensional plan diagrams in our future research.

Acknowledgments. This work was supported in part by a Swar-
najayanti Fellowship from the Dept. of Science & Technology,
Govt. of India.

References
[1] A. Betawadkar, “Query Optimization with One Parameter”,

Master’s Thesis, Dept. of Computer Science & Engineering,
IIT Kanpur, February 1999.

[2] R. Cole and G. Graefe, “Optimization of Dynamic Query
Evaluation Plans”, Proc. of ACM SIGMOD Intl. Conf. on
Management of Data, May 1994.

[3] A. Ghosh, J. Parikh, V. Sengar and J. Haritsa, “Plan Selec-
tion based on Query Clustering”, Proc. of 28th Intl. Conf. on
Very Large Data Bases (VLDB), August 2002.

[4] G. Graefe and W. McKenna, “The Volcano optimizer gener-
ator: Extensibility and efficient search”, Proc. of 9th IEEE
Intl. Conf. on Data Engineering (ICDE), April 1993.

[5] A. Hulgeri and S. Sudarshan, “Parametric Query Optimiza-
tion for Linear and Piecewise Linear Cost Functions”, Proc.
of 28th Intl. Conf. on Very Large Data Bases (VLDB), Au-
gust 2002.

[6] A. Hulgeri and S. Sudarshan, “AniPQO: Almost Non-
intrusive Parametric Query Optimization for Nonlinear Cost
Functions”, Proc. of 29th Intl. Conf. on Very Large Data
Bases (VLDB), September 2003.

[7] S. Ganguly, “Design and Analysis of Parametric Query Op-
timization Algorithms”, Proc. of 24th Intl. Conf. on Very
Large Data Bases (VLDB), August 1998.

[8] S. Ganguly and R. Krishnamurthy, “Parametric Query Op-
timization for Distributed Databases based on Load Con-
ditions”, Proc. of COMAD Intl. Conf. on Management of
Data, December 1994.

[9] I. Ilyas, J. Rao, G. Lohman, D. Gao and E. Lin, “Estimat-
ing Compilation Time of a Query Optimizer”, Proc. of ACM
SIGMOD Intl. Conf. on Management of Data, June 2003.

[10] F. Waas and C. Galindo-Legaria, “Counting, enumerating,
and sampling of execution plans in a cost-based query opti-
mizer”, Proc. of ACM SIGMOD Intl. Conf. on Management
of Data, May 2000.

[11] A. Rosenthal, U. Dayal and D. Reiner, “Speeding a
query optimizer: the pilot pass approach”, Unpublished
Manuscript, Computer Corporation of America, 1990.

[12] Y. Ioannidis, R. Ng, K. Shim, and T. Sellis, “Parametric
Query Optimization”, Proc. of 18th Intl. Conf. on Very Large
Data Bases (VLDB), August 1992.

[13] V. Prasad, “Parametric Query Optimization: A Geometric
Approach”, Master’s Thesis, Dept. of Computer Science &
Engineering, IIT Kanpur, April 1999.

[14] S. Rao, “Parametric Query Optimization: A Non-Geometric
Approach”, Master’s Thesis, Dept. of Computer Science &
Engineering, IIT Kanpur, March 1999.

[15] F. Reiss and T. Kanungo, “A Characterization of the Sensi-
tivity of Query Optimization to Storage Access Cost Param-
eters”, Proc. of ACM SIGMOD Intl. Conf. on Management
of Data, June 2003.

[16] P. Sarda and J. Haritsa, “Green Query Optimization: Taming
Query Optimization Overheads through Plan Recycling”,
Proc. of 30th Intl. Conf. on Very Large Data Bases (VLDB),
September 2004.

[17] P. Selinger, M. Astrahan, D. Chamberlin, R. Lorie and T.
Price, “Access Path Selection in a Relational Database Sys-
tem”, Proc. of ACM SIGMOD Intl. Conf. on Management of
Data, June 1979.

[18] V. Sengar and J. Haritsa, “PLASTIC: Reducing Query Opti-
mization Overheads through Plan Recycling”, Proc. of ACM
SIGMOD Intl. Conf. on Management of Data, June 2003.

[19] M. Stillger, G. Lohman, V. Markl and M. Kandil, “LEO –
DB2’s LEarning Optimizer”, Proc. of 27th VLDB Intl. Conf.
on Very Large Data Bases (VLDB), September 2001.

[20] http://www.tpc.org/tpch

[21] http://www.orchardhouse.vtrading.co.uk/Plot3D.htm

[22] http://en.wikipedia.org/wiki/Gini coefficient

[23] http://www.artlex.com/ArtLex/c/cubism.html

[24] http://dsl.serc.iisc.ernet.in/projects/PLASTIC

[25] http://dsl.serc.iisc.ernet.in/projects/PICASSO

