Drawing Out the Artistic Talents of Database Query Optimizers

Jayant Haritsa Database Systems Lab Indian Institute of Science Bangalore, India

Query Execution Plans

- SQL, the standard database query interface, is a declarative language
 - Specifies only what is wanted, but not how the query should be evaluated (i.e. ends, not means)
 - Example:
 - select StudentName, CourseName
 - from STUDENT, COURSE, REGISTER
 - where STUDENT.RollNo = REGISTER.RollNo and REGISTER.CourseNo = COURSE.CourseNo

join order [((S join R) join C) or ((R join C) join S) ?] and join techniques [Nested-Loops, Sort-Merge, Hash ?] are left unspecified

 DBMS query optimizer identifies efficient execution strategy: "query execution plan"

December 2005

December 2005

Need for careful plan selection

 Cost difference between best plan choice and a random choice can be enormous (orders of magnitude)

 Only a small percentage of really good plans over the search space

Relation Selectivity

- An optimizer's choice of execution plan for a query is dependent on a large number of factors. But, for a given database and system configuration, the plan choice is primarily a function of the selectivities of the base relations participating in the query
 - selectivity is the estimated percentage of rows of a relation used in producing the query result

Plan and Cost Diagrams

- A plan diagram is a pictorial enumeration of the plan choices of a database query optimizer over the relational selectivity space
- A cost diagram is a visualization of the associated (estimated) plan execution costs over the same relational selectivity space

Example Query [Q7 of TPC-H]

Determines the values of goods shipped between nations in a time period

```
select
  supp_nation, cust_nation, l_year, sum(volume) as revenue
from
(select n1.n_name as supp_nation, n2.n_name as cust_nation,
        extract(year from l_shipdate) as l_year,
        I_extendedprice * (1 - I_discount) as volume

Value determines Orders, customer nation p1 patien p2

Value determines
from
                                                        Value determines
                             bkey and o orderkey = I
wher
           selectivity of
                                                              selectivity of
                             key and s nationkey = r
      ORDERS relation n2.n_nationkey and CL
((n1.n_name - RANCE' and n2.n_name = 'GF
                                                         CUSTOMER relation
                                                                NY
                                                                      or
       (n1.n_name = 'C___MANY' and n2.n_name = /
                                                            ANCE')) and
       shipdate between late '1995-01-01' and da '1996-12-31'
        and o_totalprice < C1 and c_acctbal < C2 ) as shipping
 group by supp nation, cust nation, I year
 order by supp nation, cust nation, I year
```

Plan Diagram for Example Query

December 2005

Plan Diagram for Example Query

December 2005

Specific Plan Choices

December 2005

Cost Diagram for Example Query

PICASSO

Picasso

- A Java tool that, given a query template, automatically generates plan and cost diagrams
 - Fires queries at user-specified granularity (default 100x100 grid)
 - Currently produces 2-D plan diagrams and 3-D cost diagrams
- Using the tool, enumerated the plan/cost diagrams produced by industrial-strength query optimizers on TPC-H-based queries
 - IBM DB2 v8, Oracle 9i, Microsoft SQL Server 2000
 - Oracle 10g and SQL Server 2005 soon
 - Ports of Picasso to Sybase and PostgreSQL ongoing

Picasso Output

- Plan diagrams often similar to cubist paintings
 - [Pablo Picasso founder of cubist genre]

Woman with a guitar

Georges Braque, 1913

Picasso Architecture

Picasso GUI

	agram Settings Help					
Select Fire	Interval, Selectivity Range: Fire-Interval 🖗 1					
X-Low	0 X-High					
Y-Low	0 Y-High (100					
Select Ope	ration: 🖲 Plan Diagram 🔿 Cost Diagram					
select	n name, sum(Lextendedprice * (1 - L discount)) as revenue					
from	customer, orders, lineitem, supplier, nation, region					
where	c_custkey = o_custkey and I_orderkey = o_orderkey					
	and I_suppkey = s_suppkey and c_nationkey = s_nationkey					
and s_nationkey = n_nationkey and n_regionkey = r_regionkey						
		122				
	and r_name = 'ASIA' and o_orderdate >= date '1994-01-01'	BERRER				
	and r_name = 'ASIA' and o_orderdate >= date '1994-01-01' and o_orderdate < date '1994-01-01' + interval '1' year					
aroun by	and r_name = 'ASIA' and o_orderdate >= date '1994-01-01' and o_orderdate < date '1994-01-01' + interval '1' year an <mark>d c_acctbal < C1</mark> an <mark>d s_acctbal < C</mark> 2 n_name					
group by order by	and r_name = 'ASIA' and o_orderdate >= date '1994-01-01' and o_orderdate < date '1994-01-01' + interval '1' year an <mark>d c_acctbal < C1</mark> an <mark>d s_acctbal < C</mark> 2 n_name revenue desc					

Testbed Environment

• Database

- TPC-H database (1 GB scale) representing a manufacturing environment, featuring the following relations:
- Query Set
 - Queries based on TPC-H benchmark [Q1 through Q22]
 - Uniform 100x100 grid (10000 queries)
 [0.5%, 0.5%] to [99.5%, 99.5%]
- Relational Engines
 - Default installations (with all optimization features on)
 - Stats on all columns; no extra indices
- Computational Platform
 - Pentium-IV 2.4 GHz, 1GB RAM, Windows XP Professional

Relation	Cardinality
REGION	5
NATION	25
SUPPLIER	10000
CUSTOMER	150000
PART	200000
PARTSUPP	800000
ORDERS	1500000
LINEITEM	6001215

RESULTS

- Optimizers randomly identified as Opt A, Opt B, Opt C
- NOT intended to make comparisons across optimizers
- Black-box testing \Rightarrow <u>our remarks are speculative</u>
- Full result listing at http://dsl.serc.iisc.ernet.in/projects/PICASSO

Smooth Plan Diagram [Q7, Opt B]

December 2005

Skew in Plan Space Coverage

80-20 Rule Gini skew index > 0.7

	Opt A					Opt C			
TPC-H	Plan	80%	Gini	Plan	80%	Gini	Plan	80%	Gini
Query	Cardin	ality Coverag	je Index	Cardinality	Coverage	Index	Cardinalit	y Coverag	e Index
2									
5									
7									
8	31			25			38		
9	63			44			41		
10									
18	5			13			5		
21									
Avg(dense)									
Den	se ⇒	Plan Cardin	ality ≥ 10)					

Remarks

 Modern optimizers tend to make extremely fine-grained and skewed choices

– even these stats are conservative (100x100 grid) !

- Is this an over-kill, perhaps not merited by the coarseness of the underlying cost space – i.e. are optimizers "doing too good a job" ?
- Is it feasible to reduce the plan diagram complexity without materially affecting the plan quality?

Cost Domination Principle

Cost of executing any "foreign" query point in the first quadrant of q_s is an upper bound on the cost of executing the foreign plan at q_s

Cost of executing q_s with foreign plan P_4 or P_1 is less than or equal to 91 or 90, respectively.

December 2005

Formal Definition

• Dominating Point

Given a pair of distinct poir 2-D selectivity space, we s $x_2 \ge x_1, y_2 \ge y_1$ and result can

Intuition: more input + more output \Rightarrow more work \Rightarrow more cost

Cost Domination Principle

If points $q_1(x_1, y_1)$ and $q_2(x_2, y_2)$ are associated with distinct plans P₁ and P₂ respectively, in the original space, and $q_2 \succ q_1$, the cost of executing query q_1 with plan P₂ is upper-bounded by the cost of executing q_2 with P₂

Caution on CDP:

- Sometimes not followed by commercial optimizers (as we shall see later)
- Also a few genuine cases where the principle does not hold

Plan Cardinality Reduction

1. Order the plans in list, checking for p

Given plan p, for e

replacements by "f

first quadrant relat

Guarantee: No query point in the original space has its (estimated) cost increased, post-swallowing, by more than λ percent

- 3. For the foreign points that are within λ (e.g. λ =10%) cost degradation threshold, choose the point with lowest cost as potential replacement.
- 4. An entire plan is "swallowed" only if all its query points are replaceable by single plan or group of plans.

2.

December 2005

Note:

- A 10% threshold is *well within* the confidence intervals of the cost estimates of modern optimizers
- The average and maximum degradation values are *upper bounds* – the actual costs may be even lower in practice
- Plan Cardinality Reduction ≠ Change in Optimization Levels

Remarks

- "Two-thirds of the plans in a dense plan diagram are liable to be eliminated through plan swallowing, without materially affecting query processing quality."
- Would it be possible to simplify current optimizers to produce only reduced plan diagrams, perhaps leading to a lowering of the high computational overheads associated with query optimization?
 - Open research question ...

Indirect Reduction Approach

 Notion of reduction fits in perfectly with our earlier PLASTIC [VLDB 2002] approach of plan recycling based on query clustering, since cluster regions *inherently coarsen* the plan diagram granularity.

Pattern Gallery

- Duplicates and Islands
- Plan Switch Points
- Footprint Pattern
- Speckle Pattern

Duplicates and Islands [Q10, Opt A]

December 2005

December 2005

Duplicates and Islands Removal

Databases	# Dupli Original	icates Reduced [λ=10%]	# Isla Original	ands Reduced [λ=10%]
Opt A	130	13	38	3
Opt B	80	15	1	0
Opt C	55	7	8	3

 With Plan Reduction by Swallowing, significant decrease in duplicates and islands

Plan Switch Points [Q9, Opt A]

December 2005

Venetian Blinds [Q9, Opt B]

Six plans simultaneously change with rapid alternations to produce a "Venetian blinds" effect.

Left-deep hash join across NATION, SUPPLIER and LINEITEM relations gets replaced by a right-deep hash join.

December 2005

Footprint Pattern [Q7, Opt A]

December 2005

December 2005

Non-Monotonic Cost Behavior

Plan-Switch Non-Monotonic Costs
Intra-Plan Non-Monotonic Costs

Intra-Plan Non-Monotonic Costs [Q21, Opt A]

Nested loops join whose cost decreases with increasing input cardinalities

December 2005

Remarks

 Optimizers may have become too complex over time, making it difficult to anticipate the interactions and side-effects of their modules

 Well-kept secret by optimizer developers? Perhaps worth having a re-look at optimizer design ...

Relationship to PQO

PQO (Parametric Query Optimization)

- Active research area for last 15 years
 VLDB 1992, 1998, 2002, 2003
 - IIT Kanpur (Sumit Ganguly), IIT Bombay (Sudarshan)
- Identify the optimal set of plans for the entire relational selectivity space at compile time
- At run time, use actual selectivity values to identify the appropriate plan choice

PQO Assumptions

- Plan Convexity: If a plan is optimal at two points, then it is optimal at all points on the straight line joining them
- *Plan Uniqueness:* An optimal plan appears at only one contiguous region in the entire space
- Plan Homogeneity: An optimal plan is optimal within the entire region enclosed by its plan boundaries

Validity of PQO [Q8, Opt A*]

Remarks:

 PQO assumptions do not hold, even approximately, in current optimizers

 But, PQO may be a more viable proposition in the world of reduced plan diagrams due to the removal of most duplicates and islands

Conclusions

- Conceived and developed the **Picasso tool** for automatically generating plan and cost diagrams
 - optimizer debugger / research platform / teaching aid
- Presented and analyzed representative plan and cost diagrams on popular commercial query optimizers
 - Optimizers make fine grained choices
 - Plan optimality regions can have intricate patterns and complex boundaries
 - Complexity of plan diagrams can be drastically reduced without materially affecting the query processing quality
 - Non-Monotonic cost behavior exists where increasing input and result cardinalities decrease the estimated cost
 - Basic assumptions of PQO research literature on PQO do not hold in practice; hold approximately for reduced plan diagrams

Recently Added Features of Picasso

- (estimated) Result Cardinality diagrams
- PlanDiff (highlight differences in plans)
- 3-D Integrated plan-cost diagrams
- 3-D Integrated plan-cardinality diagrams
- n-D Query Templates

Work Involved in Porting

• Porting to a new dbms depends on

- extent to which the dbms consistently uses tables to store internal data – e.g. plan steps, statistics
- extent to which it exposes this data to SQL access
- method used for computing selectivities

Related Efforts

- Sumit Ganguly had considered many of these issues in set of (unpublished) MTech theses at IIT Kanpur [1999]
 - Home-brewed simple System-R style optimizer
 - Pure SPJ queries with star or linear join-graphs
 - Focus on coming up with theoretical formulas
- Arvind Hulgeri's Phd thesis [2003] at IIT Bombay evaluates cardinality of optimal plan set, and reduced plan sets in context of PQO and Volcano-style optimizer
- In contrast, our evaluation is in the context of "industrial-strength" queries and optimizers
 - we find high plan density even away from the axes
 - highly irregular optimality boundaries

Query Optimization is truly an "art"

Additional Information

 Paper: "Analyzing Plan Diagrams of Database Query Optimizers"
 [Proc. of VLDB 2005 Conference]

 Project Website <u>http://dsl.serc.iisc.ernet.in/projects/PICASSO</u>

END PICASSO

