
Towards Generating HiFi Databases

Anupam Sanghi(�)?, Rajkumar S., and Jayant R. Haritsa

Indian Institute of Science, Bengaluru, India
{anupamsanghi,srajkumar,haritsa}@iisc.ac.in

Abstract. Generating synthetic databases that capture essential data
characteristics of client databases is a common requirement for database
vendors. We recently proposed Hydra, a workload-aware and scale-free
data regenerator that provides statistical fidelity on the volumetric sim-
ilarity metric. A limitation, however, is that it suffers poor accuracy on
unseen queries. In this paper, we present HF-Hydra (HiFi-Hydra), which
extends Hydra to provide better support to unseen queries through (a)
careful choices among the candidate synthetic databases and (b) incor-
poration of metadata constraints. Our experimental study validates the
improved fidelity and efficiency of HF-Hydra.

Keywords: Big Data Management, Data Summarization, Data Ware-
house, OLAP Workload, DBMS Testing

1 Introduction

Database vendors often need to generate synthetic databases for a variety of
use-cases, including: (a) testing engine components, (b) testing of database ap-
plications with embedded SQL, and (c) performance benchmarking. Several ap-
proaches to synthetic data generation have been proposed in the literature (re-
viewed in [7]) – in particular, a declarative approach of workload-aware data
regeneration has been advocated over the last decade ([2], [1], [4], [5]).

Workload-Aware Data Regeneration. Consider the database schema with three
relations shown in Fig. 1(a), and a sample SQL query (Fig. 1(b)) on it. In the
corresponding query execution plan (Fig. 1(c)), each edge is annotated with the
associated cardinality of tuples flowing from one operator to the other. This
is called an annotated query plan (AQP). From an AQP, a set of cardinality
constraints (CCs) are derived, as enumerated in Fig. 1(d). The goal here is to
achieve volumetric similarity – that is, on a given query workload, when these
queries are executed on the synthetic database, the result should produce similar
AQPs. In other words, the database should satisfy all the CCs.

? This work was supported by IBM PhD Fellowship Award.

Fig. 1. Example Annotated Query Plan (AQP) and Cardinality Constraints (CC)

1.1 Hydra

Hydra ([5], [6]) is a workload-aware generator recently developed by our group.
For each relation in the database, Hydra first constructs a corresponding denor-
malized relation (without key columns), called a view. To generate a view R, the
domain space of R is partitioned into a set of disjoint regions determined by the
filter predicates in the CCs. Further, a variable is created for each region, repre-
senting its row cardinality in the synthetic database. Next, an SMT Problem is
constructed, where each CC is expressed as a linear equation in these variables.
After solving the problem, the data generator picks a unique tuple within the
region-boundaries and replicates it as per the region-cardinality obtained from
the solution.

To make the above concrete, consider the constraint for relation S (from
Fig. 1) shown by the red box (A in [20, 40) and B in [15000, 50000)) in Fig. 2,
and having an associated row-count 150 (say). Likewise, a green constraint is also
shown – say with row-count 250. Accordingly, the SMT problem constructed is:

x1 + x2 = 250, x2 + x3 = 150, x1, x2, x3, x4 ≥ 0

The process of extracting relations from the views, while ensuring referential
integrity (RI), forces the addition of some (spurious) tuples in the dimension
tables. At the end, the output consists of concise constructors, together called
as the database summary. An example summary is shown in Fig. 3 – the entries
of the type a - b in the PK column (e.g. 101-250 for S pk), represent rows with
values (a, a+ 1,...,b) for that column, keeping others unchanged. The summary

Fig. 2. Domain Partitioning Fig. 3. Hydra Example Database Summary

makes Hydra amenable to handle Big Data volumes because the data can now
be generated dynamically, i.e., “on-demand” during query execution, thereby
obviating the need for materialization. Also, the summary construction time is
data-scale-free, i.e., independent of the database size.

Limitations. As discussed above, Hydra is capable of efficiently delivering vol-
umetric similarity on seen queries. However, the ability to generalize to new
queries can be a useful feature for the vendor as part of the ongoing evaluation
exercise. This is rendered difficult for Hydra due to the following design choices:

No Preference among Feasible Solutions: There can be several feasible so-
lutions to the SMT problem. However, Hydra does not prefer any particular
solution over the others. Moreover, due to the usage of Simplex algorithm
internally, the SMT solver returns a sparse solution, i.e., it assigns non-zero
cardinality to very few regions. This leads to very different inter-region dis-
tribution of tuples in the original and synthetic databases.

Artificial Skewed Data: Within a region that gets a non-zero cardinality as-
signment, Hydra generates a single unique tuple. As a result, a highly skewed
data distribution is generated, which leads to an inconsistent intra-region dis-
tribution of tuples. Furthermore, the artificial skew can cause hindrance in
efficient testing of queries, and gives an unrealistic look to the data.

Non-compliance with the Metadata: The metadata statistics present at
the client site are transferred to the vendor and used to ensure matching
plans at both sites. However, these statistics are not used in the data gener-
ation process, leading to data that is out of sync with the client meta-data.

1.2 HF-Hydra

In this work, we present HF-Hydra (High-Fidelity Hydra), which materially ex-
tends Hydra to address the above robustness-related limitations while retaining
its desirable data-scale-free and dynamic generation properties.

The end-to-end pipeline of HF-Hydra’s data generation is shown in Fig. 4.
The client AQPs and metadata stats are given as input to LP Formulator. Using
the inputs, the module constructs a refined partition, i.e. it gives finer regions.
Further, a linear program (LP) is constructed by adding an objective function to
pick a desirable feasible solution. From the LP solution, which is computed using
the popular Z3 solver [8], the Summary Generator produces a richer database
summary.

A sample summary produced by HF-Hydra on our running example is shown
in Fig. 5. We see that the number of regions, characterized by the number of
rows in the summary tables, are more in comparison to Hydra. Also, intervals
are stored instead of points which support generation of a spread of tuples within
each region. Tuples are generated uniformly within the intervals using the Tuple
Generator module. These stages are discussed in detail in Sections 2 and 3.

Fig. 4. HF-Hydra Pipeline Fig. 5. HF-Hydra Database Summary

In a nutshell, the addition of an objective function in the LP improves the
inter-region tuple distribution. Further, having refined regions, plus uniform tu-
ple distribution within these finer regions, improves the intra-region tuple dis-
tribution. Finally, addition of constraints from the metadata statistics ensures
metadata-compliance.

We evaluate the efficacy of HF-Hydra by comparing its volumetric similarity
with Hydra on unseen queries. Our results, elaborated in Section 4, indicate a
substantive improvement – specifically, the volumetric similarity on filter con-
straints of unseen queries was better by more than 30 percent, as measured
by the UMBRAE model-comparison metric [3]. Further, we also show that HF-
Hydra ensures metadata compliance. A sample table illustrating HF-Hydra de-
livers more realistic databases in comparison to Hydra is shown in [7].

2 LP Formulation

We now show how the LP is constructed from the AQPs and metadata. The
summary steps are the following (complete details in [7]):

1. Creating Metadata CCs. Constraints are derived from the metadata
statistics. Typically, the statistics include histograms and most common
values (MCVs) with the corresponding frequencies. These are encoded as
metadata CCs:

i. |σA=a(R)| = ca, for a value a stored in MCVs with frequency ca (for
column A).

ii. |σA∈[l,h)(R)| = B, for a histogram bucket (for column A) with boundary
[l, h), having total row-count equal to B.

Let there be a total of m such metadata CCs.
2. Region Partitioning. Refined regions are constructed using region-based

domain partitioning, leveraging the CCs derived from both AQPs and
metadata. Let the total number of resultant regions be n, where the row-
cardinality of region i is captured in variable xi.

minimize
∑m

j=1 εj , subject to:
1. −εj ≤ (

∑
i:Iij=1 xi)−kj ≤ εj ,∀j ∈ [m],

2. C1, C2, ..., Cq,
3. xi ≥ 0 ∀i ∈ [n], εj ≥ 0 ∀j ∈ [m]

Fig. 6. MDC LP Formulation

minimize
∑n

i=1 εi, subject to:
1. −εi ≤ xi − x̃i ≤ εi, ∀i ∈ [n],
2. C1, C2, ..., Cq,
3. xi, εi ≥ 0, ∀i ∈ [n]

Fig. 7. OE LP Formulation

3. Formulating LP Constraints. The CCs from AQPs are added as explicit
LP constraints, as in the original Hydra. Let there be q such CCs denoted
by C1, C2, ..., Cq.

4. Constructing Objective. An optimization function is added to find a fea-
sible solution that is close to the estimated solution. We use two notions of
estimated solution:

i. Metadata Constraints Satisfaction (MDC): Here the distance be-
tween the output cardinalities from metadata CCs and the sum of vari-
ables that represent the CCs is minimized. The LP thus obtained is
shown in Figure 6, with Iij being an indicator variable, which takes
value 1 if region i satisfies the filter predicate in the jth metadata CC,
0 otherwise.

ii. Optimizer Estimates Satisfaction (OE): Here, instead of directly
enforcing metadata CCs, the estimated cardinality for each region is
obtained from the database engine using the optimizer’s selectivity esti-
mation logic. The objective function minimizes the distance between the
solution and these estimates. The estimated cardinality x̃i for a region i
is computed by constructing an SQL query equivalent for the region and
using the query’s estimated selectivity obtained from its compile-time
plan. The LP produced using OE strategy is shown in Figure 7.

Our choice of minimizing L1 distance is because query execution perfor-
mance is linearly dependent on the row count, especially when all joins are
PK-FK joins. In picking between the MDC and OE strategies, the following
considerations apply: MDC has better metadata compliance due to explicit
enforcement of the associated constraints. Further, its solution has higher
sparsity because no explicit constraint is applied at a per-region level. How-
ever, while sparsity does make summary production more efficient, it ad-
versely affects volumetric accuracy for higher levels of joins, as compared to
OE.

3 Data Generation

Post LP-solving, the data generation pipeline proceeds in the following stages
(complete details in [7]):

1. Ensuring Referential Integrity. Since each view is processed indepen-
dently, these solutions may have inconsistencies. Specifically, when F , the
fact table view, has a tuple whose value combination for the attributes that

it borrows from D, the dimension table view, does not have a matching tuple
in D, then it causes a reference violation. To avoid it, for each region f of F ,
we maintain the populated regions in D that have an interval intersection
with f for the borrowed columns. If no such region in D is found, then a
new region with the intersection portion is added and assigned a cardinality
of 1. This fixes the reference violation but leads to an additive error of 1 in
the relation cardinality for the dimension table.

2. Generating Relation Summary. Here the borrowed attribute-set in a
view is replaced with appropriate FK attributes. In contrast to Hydra’s
strategy of picking a single value in the FK column for a region, here we
indicate a range to achieve a good span. To compute the FK column values
for a region f , the corresponding matching regions from dimension table are
fetched and the union of PK column ranges of these regions is returned.

3. Tuple Generation. The aim here is generate tuples uniformly within each
region. Based on interval lengths that are contained for an attribute in the
region, the ratio of tuples to be generated from each interval is computed.
Now, if n values have to be generated within an interval I, then I is split
into n equal sub-intervals and the center point within each interval is picked.
If the range does not allow splitting into n sub-intervals, then it is split into
the maximum possible sub-intervals, followed by a round-robin instantiation.
The PK column values are generated consecutively, similar to row-numbers.
This deterministic approach is well-suited for dynamic generation. If a mate-
rialized output is desired, then random values can be picked within intervals.

4 Experimental Evaluation

We now move on to empirically evaluating the performance of HF-Hydra against
Hydra. For our experiments, we used a 1 GB version of the TPC-DS benchmark,
hosted on a PostgreSQL v9.6 engine operating on a vanilla workstation. The
SMT/LP problems were solved using Z3 [8].

We constructed a workload of 110 representative queries, which was then
split randomly into training and testing sets of 90 and 20 queries. The associated
AQPs led to formulation of 225 and 51 CCs, respectively. These CCs were a mix
of pure filters on base relations, and CCs that involve filters along with 1 to
3 joins. Further, 2622 metadata CCs were derived from histograms and MCVs
data.

4.1 Volumetric Similarity

For evaluating volumetric accuracy, we used the UMBRAE (Unscaled Mean
Bounded Relative Absolute Error) model-comparison metric [3], with Hydra
serving as the reference model. An UMBRAE value U ranges over positive num-
bers, where U < 1 implies (1 − U) ∗ 100% better performance wrt baseline
model, U > 1 implies (U − 1) ∗ 100% worse performance and U = 1 shows no
improvement.

Fig. 8. Accuracy

The UMBRAE values obtained by the two flavors of HF-Hydra over the 20
test queries are shown in Fig. 8 (a)-(b). For clear understanding, the results for
base filters and join nodes are shown separately. We see that HF-Hydra delivers
more than 30% better performance on filters, and an improvement of over 20%
with regard to joins. The higher improvement on filters is expected because the
accuracy of metadata statistics, being on a per-column basis, is best at the lower
levels of the plan tree.

Metadata compliance is evaluated in Fig. 8(c). A substantial improvement
over Hydra is seen here – 98% and 70% for MDC and OE, respectively.

Interestingly, HF-Hydra outperforms Hydra even on the volumetric accuracy
for seen queries, as captured in Fig. 8(d). Specifically, an improvement of 48%
and 26% for MDC and OE, respectively, with regard to the base filter nodes
on dimension tables. This benefit is an outcome of better distribution of tuples
over regions, reducing the likelihood of mismatch between populated regions in
the fact-table and empty regions in the dimension-table.

On the metrics considered thus far, MDC outperformed OE. However, for
higher level joins, OE did better than MDC. Specifically, 33% better for two-join
cases and 13% better for three-join cases. This is primarily because OE adheres
to constraints at a per region level while MDC generates a sparse solution.

4.2 Database Summary Overheads

The database summaries generated by HF-Hydra and Hydra differ significantly
in their structures. The former has many more regions, and stores intervals
instead of points within a region. Due to these changes, a legitimate concern
could be the impact on the size of the summary and the time taken to generate

Hydra MDC OE

Summary Size 40 KB 6 MB 985 MB

Tuple Instantiation Time 6 s 37 s 51 s
Table 1. Space and Time Analysis

data from it at run-time. To quantitatively evaluate this concern, the space and
time overheads are enumerated in Table 1. We see here that there is certainly
a large increase in summary size, going from kilobytes to megabytes – however,
in absolute terms, the summary size is still small enough to be easily viable on
contemporary computing platforms. When we consider the time aspect, again
there is an expected increase in the generation time from a few seconds to several
tens of seconds, but here too the absolute values are small enough (sub-minute)
to make HF-Hydra usable in practice. Further, it is important to recall that
these summary sizes and their construction time are independent of the client
database size (experiments validating this claim are described in [7]).

5 Conclusions

Testing database engines efficiently is a critical issue in the industry, and the
ability to accurately mimic client databases forms a key challenge in this effort.
In contrast to the prior literature which focused solely on capturing database
fidelity with respect to a known query workload, in this paper we have looked
into the problem of generating databases that are robust to unseen queries. In
particular, we presented HF-Hydra, which materially extends the state-of-the-
art Hydra generator by bringing the potent power of metadata statistics and
optimizer estimates to bear on the generation exercise. The resulting fidelity
improvement was quantified through experimentation on benchmark databases,
and the UMBRAE outcomes indicate that HF-Hydra successfully delivers high-
fidelity databases.

Acknowledgements. We thank Tarun Kumar Patel and Shadab Ahmed for their
valuable inputs in the implementation of this work.

References

1. A. Arasu, R. Kaushik, and J. Li. Data Generation using Declarative Constraints.
In ACM SIGMOD Conf., 2011, pgs. 685-696.

2. C. Binnig, D. Kossmann, E. Lo, and M. T. Özsu. QAGen: Generating Query-Aware
Test Databases. In ACM SIGMOD Conf., 2007, pgs. 341-352.

3. C. Chen, J. Twycross, and J. M. Garibaldi. A new accuracy measure based on
bounded relative error for time series forecasting. PLoS ONE, 12(3): e0174202,
2017.

4. Y. Li, R. Zhang, X. Yang, Z. Zhang, and A. Zhou. Touchstone: Generating Enormous
Query-Aware Test Databases. In USENIX ATC, 2018, pgs. 575–586.

5. A. Sanghi, R. Sood, J. R. Haritsa, and S. Tirthapura. Scalable and Dynamic Re-
generation of Big Data Volumes. In 21st EDBT Conf., 2018, pgs. 301-312.

6. A. Sanghi, R. Sood, D. Singh, J. R. Haritsa, and S. Tirthapura. HYDRA: A Dynamic
Big Data Regenerator. PVLDB, 11(12):1974-1977, 2018.

7. A. Sanghi, Rajkumar S., and J. R. Haritsa. High Fidelity Database Gener-
ators. Tech. Report TR-2021-01, DSL/CDS, IISc, 2021, dsl.cds.iisc.ac.in/

publications/report/TR/TR-2021-01.pdf
8. Z3. https://github.com/Z3Prover/z3

