Distributed Concurrency Control with Limited Wait-Depth

P. A. Franaszek, J. R. Haritsa*, J. T. Robinson, and A. Thomasian

IBM T. J. Watson Research Center

P. O. Box 704

Yorktown Heights, NY 10598, USA

Abstract

We describe Distributed Wait-Depth Limited (DWDL)
concurrency control, a locking based method that limits
the wait-depth of blocked transactions to one, which
assures that deadlocks are resolved as part of regular
transaction processing. The performance of DWDL is
compared with that of distributed two-phase locking
(2PL) and the wound-wait concurrency control method
through a detailed simulation. Our results show that
DWDL behaves similarly to 2PL for low data contention
levels, but at high lock contention levels DWDL outper-
forms the other methods to a significant degree.

1. Introduction

High-end transaction processing systems have strin-
gent requirements for CPU processing power, 1O
bandwidth, high availability, etc. It has been argued
[13] that the Shared Nothing (SN) or data partitioned
systems are superior to the Shared Everything (SE) or
centralized systems and Shared Disk (SD) or data
sharing systems from the viewpoint of cost effective-
ness, scalability, availability, etc. (however, SD sys-
tems, especially when equipped with a shared
intermediate storage, can be more robust than SN sys-
tems to load imbalance [17]). The performance of SN
systems in a transaction processing environment is af-
fected by the number of internode messages generated
by transactions, since the cost of sending and receiving
messages tends to be non-negligible [8] and may con-
stitute a significant CPU processing overhead that does
not arise in centralized systems. On the other hand
there is the advantage of low cost per MIPS micro-
processor technology, which makes SN systems attrac-
tive for processing high volumes of transactions [7].

Two-phase locking (2PL) is the prevalent Concurrency
Control (CC) method in commercial database systems.
It has been shown in numerous studies (see e.g., [3],
[14], [15]) that the performance of a system with 2PL
may be constrained by data rather than hardware re-
source contention. SN systems are more susceptible to
performance degradation than centralized systems due
to the increased lock holding time. In this paper we
adapt the Wait-Depth Limited (WDL) Concurrency Con-
trol (CC) method for data partitioned systems and
compare its performance with that of other methods.

The WDL CC method (described in Section 2) limits the
wait-depth of blocked transactions and is shown in [4,5]
to have superior performance with respect to 2PL, other
locking methods such as running priority [3], and even
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optimistic CC methods (when the hardware resources
of the system are finite). In this paper we propose an
appropriate modification of centralized WDL for distrib-
uted database systems, which has the twin goals of
maintaining the main characteristics of WDL, while
minimizing the number of additional messages that
would be required for a straightforward implementa-
tion.

Simulation is used to compare the performance of
DWDL with that of 2PL and the Wound-Wait (WW)
method [11]. A key issue in distributed 2PL is the issue
of deadlock detection and resolution. Alternative
deadlock resolution schemes are based on centralized
and distributed combining of wait-for graphs or using
timeouts. An advantage of the WW and DWDL methods
with respect to 2PL is that they are deadlock-free. Fur-
thermore, in the case of WW the decision as to which
transaction is to be restarted is reached at the node
where the lock conflict occurs (without requiring addi-
tional messages). Our choice of CC methods covers
the three main categories of priority-less (2PL), strict
priority (WW), and approximate essential blocking
(DWDL) [3].

A large number of papers have been written describing
new distributed CC methods and comparing their per-
formance through analysis or simuiation. Early works
dealing with performance issues of distributed CC
methods are surveyed in [12]. A more recent compar-
ative study of CC methods and a survey of other works
appears in [2]. A simulation study dealing with the ef-
fect of locking on the performance of SN systems is re-
ported in [9].

In Section 2 we describe the DWDL method. The model
for the computer systems, the database, and the trans-
action characteristics considered in the simulation
study are described in Section 3. Simulation results
are presented in Section 4 and conclusions appear in
Section 5.

2. Distributed WDL (DWDL) Concurrency Control

In this section, we first describe the general structure
of a distributed transaction in our model, followed by a
detailed description of DWDL.

Each distributed giobal transaction consists of a master
(or coordinator) process and a set of subtransactions
(or cohort processes). The transaction runs at one of
the nodes of the system, making database calls to the
DBMS at the local (remote) nodes to access local (re-
mote) data. For simplicity, only sequential transaction
execution with a single end-of-transaction commit point
is considered here. For all the CC methods the two-
phase commit protocol is used to assure transaction
atomicity.
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When a new transaction arrives at one of the nodes of
the system it is assigned a timestamp. The timestamp
is constructed by appending the node identifier of the
‘parent node to the current system clock time at that
node, thus ensuring that all transaction timestamps are
unique. The global transaction’s timestamp is also as-
signed to all of its cohorts.

The WDL(d) CC methods [4,5] constitute a family of CC
methods, which restrict the wait-depth to d levels (only
d = 1 is considered here). Lock conflicts resulting in a
violation of the wait-depth limit are resolved in WDL by
comparing the progress made by the transactions in-
volved in the lock conflict or their “length” (denoted by
L(T) for transaction T) and restarting the transaction
which has made less progress.

Consider two active transactions T’ and T with m and
n transactions waiting on each, respectively (where m
or n could be zero) as shown in Figure 1.a. Since for
WDL(1) no wait trees greater than one are allowed,
there cannot be any transactions waiting on T', or T; and
thus this represents the general case for two active
transactions. Supposing that ' makes a lock request
that conflicts with T or with one of the T, then if m >0,
temporary states in which wait trees of 2 or 3 can occur
are shown in Figures 1.a(b,c) (if m =0 than the wait-
depths are one less). Note that for Figure 1.a(c) we
must have n >0 in order for this state to arise, also
without loss of generality we assume that the conflict is
with T,. In case T is blocked by one of the transactions
blocked by it, the resulting deadlock is resolved by
aborting the transaction with the smaller length. One
set of rules for implementing WDL(1) is as follows:

1. Case of Figure 1a(b):
a. m=0: T’ waits (the wait tree is of depth 1).

b. m>0: Restart T’ unless L(T') = L(T) and, for
each i, L(T") > L(T"). in which case restart T.

2. Case of Figure 1a(c):

a. m=0: Restart T, unless L(T)>L(7T) and
L(T,) = L(T"), in which case restart T.

b. m>0: Restart T’ unless L(T’) > L(T) and, for
each i, L(T") = L(T’), in which case restart T;.

In the centralized case it is convenient to define L(T) as
the number of locks held by T, and this has been shown
to yield good performance [4,5]. However in the dis-
tributed case, given a particular subtransaction, deter-
mination of the total number of locks held by all
subtransactions of the global transaction would involve
excessive communication, and in any case the infor-
mation could be obsolete by the time it was finally col-
lected. Therefore, for distributed WDL, a length
function based on time is used, as follows. Each global
transaction is assigned a starting time (for its latest in-
vocation if a transaction is restarted) and this starting
time is included in the startup message for each

subtransaction so that the starting time of a global.

transaction is locally known at any node executing one
of its subtransactions. The length of a transaction is
defined as the difference of current time and the start-
ing time of the global transaction.

We expect that transaction length defined in this fash-
ion is highly correlated with the total number of locks
held by all subtransactions of a global transaction, and
therefore will have similar performance characteristics
when used as a WDL length function (note that
subtransactions are executed sequentially in our
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Figure 1a: Initial and temporary states for WDL(1).

model). This conjecture is verified by the simulation
results in Section 4. In the case of centralized WDL the
cumulative number of locks requested by restarted
lra‘ns.actions was also considered [4,5]. This assures a
gain in transaction priority as the duratiop of its stay in
the system increases, such that a transaction is not de-
layed in the system indefinitely due to restarts. It was
observed however that this length function provides
performance which is inferior to the one based on the
number of locks obtained in the latest invocation. Al-
though distributed clock synchronization has been
widely studied, extremely accurate clock synchroniza-
tion is not required for our purposes, since typical
time-of-day clocks, correctly set to an external standard
reference time, would suffice.

The following notation and conventions is used in ex-
plaining the DWDL paradigm:

1. At any point in time there is a set of global trans-
actions { T, }.

2. Each transaction T, has an originating or primary
node, denoted by P(T)), with starting time denoted
by t(Ty‘).

3. If T, has a subtransaction at node Kk,
subtransaction is denoted by T.

4. There are two CC subsystems at each node k,-the
LCC (local CC) which manages locks and wait re-
lations for all subtransactions T, executing at node
k, and the GCC (giobal CC) which manages all wait
relations that include any transaction 7, with
P(T) = k, and that makes global restart decisions
{o;" any of the transactions in this set of wait re-
ations.

5. There is a send function that transparently sends
messages between subsystems whether they are at
the same or different nodes.

The general idea of the DWDL method is that (1) when-
ever a LCC schedules a wait between two
subtransactions, this information is sent via messages
to the GCCs of the primary nodes of the corresponding
global transactions and (2) each GCC wil! asynchro-
nously determine if transactions should be restarted,
using its waiting and starting time information. Due to
LCCs and GCCs operating asynchronously, conditions:
may temporarily arise in which the wait-depth  of
subtransactions is greater than one; however, such
conditions will eventually be resolved either by a
transaction committing or by being restarted by a GCC.
The operation of the DWDL method will now be de-
scribed in more detail.

this

‘In addition to the usual functions- of granting lock re-

quests, scheduling subtransaction waits, and releasing
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locks as part of commit or abort processing, each LCC
does the following: whenever a wait T, — T, is
scheduled, the message (T, - T;, P(T), t(T))) is sent to
the GCC at node P(7) and the message
(P(T)), ¢(T)), T. — T)) is sent to the GCC at node P(T)),
unless P(T;) = P(T;) in which case only one message
(T — T)is sent to the GCC at node P(T)) (= P(T)) ).

Each GCC dynamically maintains a wait graph of global
transactions which is updated using the messages it
receives from LCCs of the form just described. Note
that starting time and primary node information is in-
cluded in these messages for those transactions that
have a primary node different than that of the node to
which the message was sent, so that each GCC has
starting time and primary node information available
for all transactions in its wait graph. Each GCC ana-
lyzes this wait information every time a message is re-
ceived, and using the WDL method determines whether
transactions should be restarted.

‘Whenever it is decided that a transaction T, should be
restarted, a restart message for T; is sent to node P(T)).
However, no wait relations are modified by the GCC at
this time (since T, could currently be in a commit or
abort phase); instead, the status of 7, is marked as
pending. Actual commit or abort (followed by restart)
of a transaction T, is handied by the transaction coor-
dinator at node P(T;). Commit is initiated upon receiv-
ing successful completion messages from all
subtransactions; abort is initiated upon receiving a re-
start message from some GCC (or also possibly due to
receiving an abort message from some other trans-
action coordinator at a subtransaction node, for exam-
ple due to a disk error). The commit or abort is
handied by communicating with the transaction coordi-
nators and LCCs at each subtransaction node using
known techniques. Additionally, it is necessary to send
the appropriate information to each GCC that is cur-
rently maintaining wait information for 7. This can be
determined locally using the wait information main-
tained by the GCC at node P(T): the GCCs for the pri-
mary nodes of the transactions that are waiting on T,
or on which T; is waiting must be notified. Each such
GCC removes T, from its wait graph and acknowledges.
In the case of transaction restart, restart can be initi-
ated after receiving acknowledgment from all
subtransaction nodes and each such GCC.

The above can be illustrated by a simple example, as
illustrated in Figure 1b. As shown, there are three
transactions T, T,, T;, with primary nodes 1, 5, and 9,
and with various subtransactions possibly scattered
around the system. Only those subtransactions that
enter a wait relation are indicated in the figure.

1. At node 3, Ty; requests a lock held in an incompat-
ible mode by Ty, the LCC schedules (T3 — Ta),
and messages are sent as shown to the GCCs at
nodes P(T,) and P(T,).

2. Concurrently at node 7. T, requests a lock held in
an incompatible mode by Ty, the LCC schedules
(T» — Ty), and messages are sent as shown to the
GCCs at nodes P(T,) and P(T;).

3. At some later time these various messagés ate re-
ceived and wait graphs are updated by the GCCs
at nodes 1, 5, and 9. After both messages for the
GCC at node 5 are received, there is a wait chain
of depth 2, as shown in the figure.

4, The GCC at node 5 determines, using local current
time and the recorded starting time for each trans-
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Figure 1b: A simple example of distributed WDL cc
action (since P(T,) = 5 its starting time is available
locally), that L(T,) > L(T,) and L(T,) > L(T))..
Therefore, following the WDL CC method, it decides
to restart T;, and sends a restart message to the
transaction coordinator at node P(T;) = 9.

5. The transaction coordinator at node 9 receives the
restart message and begins transaction restart by
sending restart messages for all nodes executing a
subtransaction T; and GCC update messages to the
local GCC and the one at node 5.

Note that in practice situations could develop that
would be far more compiex than that of this simple ex-
ample: due to GCCs operating independently and
asynchronously, decisions could be made concurrently
by two or more GCCs to restart different transactions in
the same wait chain, a situation that would not occur in
the centralized case. The case when this situation
arises is illustrated in Figure 2. Nodes 1 and 2 receive
messages from Node 3 about the conflict between
transactions T, and T, and incorporating this new con-
flict information results in the wait-for graphs shown in
Figure 2. In this scenario, as per the basic WDL method
(refer to Figure 1a), Node 1 will decide to either restart
T or send a restart message for T, to Node 2. At the
same time, Node 2 will decide to either restart T, or
send a restart message for T, to its parent node. The
important point to note is that for three of the four pos-
sible restart combinations

Site 1 Site 2

Restart 7, Restart T,
Restart 7, Restart 7,
Restart T, Restart 7,
Restart 7, Restart 7,

two transactions are restarted. If we consider the con-
flict from a global perspective, however, we see that
only'one of 7, or T, need have been restarted to satisfy
the limit on wait-depth. Since CC performance is usu-
ally dominated by the way in which simple cases are
handled, we expect the DWDL method described here
to have a performance characteristic similar to the
centralized WDL method.
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Figure 2: Basic operations in distributed WDL

3. The Distributed Database Model

A detailed simulation model of a distributed DBMS was
developed for studying the performance behavior of the
distributed 2PL, WW, and WDL CC methods (further
references to 2PL, WW, and WDL are to their distrib-
uted versions). In this model, the database is parti-
tioned among a number of nodes, each of which has a
complete local DBMS. The nodes communicate with
each other using messages transmitted on an intercon-
nection network. The database itself is modeled as a
collection of pages. A transaction consists of a se-
quence of data accesses, which involves a lock request,
accessing the data item, followed by a period of CPU
processing.

3.1 The Computer System Model

The system model and the settings for the simulation
parameters are as follows:

1. Multi-system configuration: There are N = 4 com-
puter systems, consisting of tightly-coupled multi-
processors with P = 4 processors per system.

2. Inter-system communication: A high bandwidth
interconnection network which introduces negligi-
ble delay interconnects the computer systems. We
take into account, however, the CPU overhead to
send and receive messages (similar assumptions
are made in [2] among others).

3. 110 subsystem: The disk service time including any
queueing delays is assumed to be fixed and equal
to 20 milliseconds in the simulator.

4. Database cache: A database cache with an LRU
policy for caching local data is available at each
node. High contention items (see Section 3.2) are
always in the cache, while the hit ratio for low con-
tention items is Fps 0w = 0.50. The cache is large
enough that data referenced by in-progress trans-
actions is not replaced before they are compieted.

5. Logging and recovery: Non-voiatile (random ac-
cess) storage is considered for logging, thereby
circumventing the need for synchronous disk 1/0.
Logging time is therefore an order of magnitude
smaller than the time required to write onto disk
and it is ignored in the simulator.
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3.2 The Database Access Model

The database model considered in this study is de-
scribed below:

1. Database Objects: We distinguish high and low
contention data items based on their access fre-
quency by transactions, At each system there are
Dyign = 256 (Diow = 7936) data items in the high
(low) contention category. A fraction Frign = 0.25
(Fow = 0.75) of all transaction accesses are uni-
formly to high (low) contention items. Therefore,
the level of data contention is determined by the
high contention data items, since they are accessed
roughly ten times more frequently than low con-
tention items. A small value of Dy, is modeled in
the experiments described here in order to high-
light differences in the performance of the methods.

The overall cache hit ratio for a transaction execut-
ing for the first time (i.e. not a restarted transaction)
is Ppit = Fps_jow X Fiow + Fnign = 0.625 (typical of
some high-end transaction processing systems).
This hit ratio also applies to data accesses at re-
mote nodes.

2. Access mode: All data items are accessed in ex-
clusive mode since we are interested in the relative
performance of the CC methods, rather than the
absolute performance attained by the methods.

3. Deadlock detection: Deadlock detection is required
only for 2PL, since WW and WDL prevent dead-
locks. In our simulation implementation, the dead-
lock detection is immediate, that is, a deadiock is
detected as soon as a lock conflict occurs and a
cycle is formed. Also the overhead for detecting
deadlocks is set to zero. These simplifications are
justifiable because the frequency of deadlocks
tends to be negligibly small at least for the locking
modes considered here [16]. The choice of a victim
in resolving a deadlock is made based on trans-
action timestamps: the youngest transaction in the
cycle is restarted to resoive the deadlock. When a
transaction is restarted, it retains the timestamp
that it was assigned when it first entered the sys-
tem. Deadlock detection and resolution is handled
in this fashion in order to observe how WW and
WDL compares with the "best” possible perform-
ance of 2PL.

3.3 The Transaction Processing Model

The construction and characteristics of the transaction
workload are described below:

1. Transaction "Arrivals”: We consider a closed sys-
tem with M transactions in each system (and N x M
transactions in the complex), i.e., a completed
transaction is immediately replaced by a new
transaction at the same system. This implies that
we have a system with a fixed number of users and
zero “think times”. The parameter M is varied to
study the effect of transaction concurrency on per-
formance.

2. Transaction Classes: We consider four transaction

classes based on transaction size. Transaction
sizes and associated frequencies are as follows
4(0.20), 8(0.20), 16(0.35), 32(0.25), respectively.

3. Transaction Processing Stages:

Transaction initialization: This requires CPU proc-
essing only and the pathlength for this stage is

Authorized licensed use limited to: J.R.D. Tata Memorial Library Indian Institute of Science Bengaluru. Downloaded on September 16,2023 at 08:56:51 UTC from IEEE Xplore. Restrictions apply.



=acCcOxI~

L K=l

500 -
400 1
300 -
200 - o———o 20
o0 WW
100 1 +—————+ WDL
0——0—-0
0 v ¥ v v
0.0 100.0 200.0 300.0 4000

Figure 3a: Throuéhpul (50 MIPS/cpu)

liaiy = 100,000 instructions. |f the transaction is
restarted due to failed validation or having been
selected as the victim for deadlock resolution, then
Iz = 50,000. Restarted transactions follow the
same access pattern as their original incarnation.

Data processing: There are n steps in this-stage,
where n is the number of data items accessed by
the transaction (from local or remote partitions).
Each transaction is routed to the system at which it
exhibits a high degree of locality. The fraction of
local accesses at each system is F,,, while the re-
maining 1 — F,.» accesses are uniformly distrib-
uted over the remaining systems.

A data item may be available in the database cache
in which case the pathlength per data item is
lcacne = 20,000. This includes the overhead for CC.
Otherwise, when data has to be accessed from disk,
an additional /I, = 5000 instructions are required
(the processing required to retrieve cached data is
considered to be negligible). In addition, it takes
lsene = 5000 instructions to send or receive a mes-
sage. Therefore, 20,000 instructions are executed
for inter-system communication when the data is
not available locally.

Transaction completion: The CPU processing in this
stage requires Ilcompere = 50,000 instructions. In
case a transaction has accessed local data only, it
may commit at this point without requiring a two-
phase . commit protocol. Commit processing re-
quires /.ommp = 5000 instructions to force a log
record onto stable storage.

If multiple systems are involved in processing a
transaction as part of two-phase commit,
lore - commit = 5000 instructions are executed at the
primary node of transaction execution (mainly to
write a pre-commit log record). There is also a per
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Figure 3b: Throughput (100 MIPS/cpu)

system overhead Of /.oy aNd /rceive t0 SENd and re-
ceive PRECOMMIT messages. Pre-commit proc-
essing at secondary nodes from which data was
accessed requires l,.mo.e = 5000 instructions, which
includes writing pre-commit records. Each remote
system after forcing modified data onto stable stor-
age sends an ACK message to the primary system,
which in turn sends a COMMIT message to all of the
nodes involved after forcing a commit record onto
the log. On receiving this message, each system
releases all locks that are held locally by the com-
mitting transaction.

4. Simulation Results

In this section, we present performance results for the
2PL, WW and DWDL CC methods obtained from a sim-
ulator written in DeNet [10]. The performance metric
employed in comparing the CC methods is the overall
system throughput across all N nodes as a function of
the aggregate system Multi-Programming Level (MPL).
In particular, we are interested in the peak throughput
that is achievable by each of the CC methods as it de-
termines the limit on system performance due to con-
tention for data and hardware resources. Each
simulation was run until steady state behavior is
achieved (this excludes the thrashing region for 2PL).
The batch means method was used to obtain relative
half-widths of 5% about the mean throughput at 90%
confidence level. The simulations also generated a
host of other statistical information, including resource
utilization, the restart ratio defined as the ratio of the
number of transaction restarts and the number of
transactions completed, mean transaction blocking
time, etc. These secondary measures help in explain-
ing the behavior of the CC methods under various
loading conditions, but are reported here to a limited
extent due to space limitations.
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Our experiments profiled the performance of the CC
methods as a function of system processing capacity.
The experiments were conducted for varying processor
speeds, using the four-class distribution and keeping
all other parameters at the levels specified in Section
3. Figures 3a and 3b present the transaction through-
puts obtained under each CC method for per-processor

speeds of 50 and 100 MIPS, respectively. In Figures 4a.

and 4b, the corresponding restart ratios for each of
these experiments are shown. This metric helps to an-
alyze how heavily a CC method is biased towards using
either restarts or blocking. Note that the number of
transaction restarts is not an adequate indicator of
wasted processing, therefore, in Figures 5a and 5b we
present the processor utilization characteristics for this
set of experiments. In these utilization figures, three
curves are shown for each CC method. First, the fotal
utilization (solid line) indicates the actual processor
utilization generated by the CC method; second, the

useful utilization (dashed line) plots the resource usage-

made by those transaction executions that resulted in
completion (i.e., they exclude the resources spent on
work that was later undone by restarts); and, finally, the
message utilization (dotted line) plots the fraction of the
total resource utilization that is spent in the processing
of messages. This breakup of processor utilization
helps to identify the source of performance limitations
and the overheads associated with each CC method.

We observe that the peak throughput attained by 2PL is
considerably smaller than that of the other CC meth-
ods. At low MPLs, since few transactions are blocked

and there is little wasted work due to deadlock-
resolution restarts, 2PL behaves as well as the other
CC methods. As the system MPL is increased, how-
ever, the number of blocked transactions in the system
increases steeply causing the throughput to level off.
For MPLs beyond this peak throughput, a sharp fall in

transaction throughput is seen and constitutes the.

thrashing region for 2PL (see e.g., [15]). An important
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point to observe here is that the performance of 2PL
shows only negligible improvement with increase in
processor speeds (compare Figures 3a and 3b).- The
reason that 2PL is unable to take advantage of in-
creased resource capacity is that its conflict resolution
mechanism results in most of the transactions being
blocked under high lock contention [3,14,1,4,5,15]. 'In
this situation, it is not possible to gain higher concur-
rency by just adding resources to the system since
there are no transactions available to make use of the
additional capacity when the level of lock contention is
high. This explanation is confirmed by looking at the
utilization graphs for 2PL in Figures 5a and 5b, which
show that the total utilization of 2PL decreases as the
processor speeds are increased, thus' resulting in
maintaining essentially the same throughput character-
istic. Since restarts in 2PL are caused only when
deadlocks occur, its restart ratio numbers are signif-
icantly smaller than those of the other CC methods.

Turning our attention now to WW, we observe that it
delivers a peak throughput intermediate to that of WDL
and 2PL. Due to the significant restart component of its
conflict resolution policy, which allows for higher levels
of concurrent transaction execution, it is able to in-
crease its use of system resources when the MPL is
raised. In addition, its peak throughput performance
improves, to a limited extent, with an increase in proc-
essing capacity. Once the processing capacity reaches
sufficiently high values, however, the peak throughput
of WW remains virtually the same and is unaffected by
the availability of faster resources.

Finally, with regard to WDL, we observe that it delivers
a peak throughput greater than the other CC methods
for the set of processors speeds considered in these
experiments. More importantly, the performance of
WDL improves with increased processor speeds which
means that unlike 2PL and WW, WDL is capable of uti-
lizing additional resource capacity to achieve high
throughputs. Therefore, as the processing capacity of
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the system is increased, WDL performs increasingly
better than the other two CC methods. From Figures
4a and 4b and 5a and 5b, it can be observed that WDL
has significantly higher processor utilization and restart
ratio characteristics than the other CC methods. The
reason for this behavior is that WDL attempts to ap-
proximate the essential blocking property {3] by ensur-
ing that wait-chains never involve more than two
transactions. At high MPLs, when the number of lock
conflicts is extremely high, this wait-chain limiting pol-
icy results in a high restart rate. The increased restart
rate also means that fewer transactions are blocked,
thereby resulting in more parallelism and higher re-
source utilization. Due to this ability of DWDL to fully
utilize the resources, its performance noticeably de-
grades beyond the peak throughput since increases in
MPL after this point result in a significant increase in
both data and resource contention. An important point
to note here is that, as observed in Section 2, some of
the restarts of WDL are unnecessary and are caused
by the distributed nature of the conflict resolution algo-
rithm. Elimination of such restarts may help further
improve the performance of DWDL. Alternative conflict
resolution protocols that eliminate these unnecessary
restarts (at the cost of extra delay and increased num-
ber of messages) are described in [6]. In [6] we also
investigate the effect of varying message costs, locality,
and the distribution of transaction sizes.
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5. Conclusions

A new distributed CC method, Distributed WDL
(DWDL), is presented in this paper. DWDL utilizes
transaction restarts to prevent thrashing in high lock
contention environments. Deadlocks (local or distrib-
uted) are also prevented since the wait-depth of
blocked transactions is kept at one.

If the cost of sending messages and the associated de-
lay is negligibly small then the centralized WDL method
[4,5] can be approximated rather closely in a distrib-
uted environment. Since this is usually not the case in
practice, it is desirable to utilize a DWDL implementa-
tion that requires a reduced number of inter-node
messages, but bases decisions on less accurate infor-
mation. Appropriate modifications are therefore made
to the centralized WDL paradigm to minimize the num-
ber of extra messages, while retaining desirable WDL
properties.

‘Detailed simulation results showed that DWDL outper-

forms standard 2PL and the wound-wait method in high
MIPS systems and that the difference in performance
increases as the processing capacity of the system is
increased.
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