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Abstract—A critical need for enterprise DBMS vendors is to
generate synthetic databases for testing their engines and appli-
cations in a range of environments. These synthetic databases
are targeted toward capturing the desired schematic properties,
and the statistical profiles of the data hosted on these schemas.

Several data generation frameworks have been proposed for
OLAP over the past three decades. The early efforts focused
on ab initio generation based on standard mathematical distri-
butions. Subsequently, there was a shift to database-dependent
regeneration, which aims to create a database with similar
statistical properties to a specific client database. This client-
specific perspective has been taken further in recent times
through workload-dependent database regeneration, where the
databases generated ensure similar query executions to those
observed at the client site.

In this tutorial, we present a holistic coverage of synthetic
data generation, highlighting the strengths and limitations of
the above-mentioned framework classes. At the end, a suite
of open technical problems and future research directions are
enumerated.

Index Terms—Synthetic Data Generation, DBMS Testing.

I. INTRODUCTION

In industrial practice, a critical requirement for database
vendors is to adequately test their database engines with
representative data and workloads that accurately mimic the
data processing environments at customer deployments. These
simulations aid in a variety of ways, including evaluation
of new engine designs, root-cause analysis of operational
problems encountered by clients, proactive assessment of
the performance impacts of planned engine upgrades, data
masking for business analytics, query execution tuning, and
system benchmarking.

The enormous inherent variety in database usage envi-
ronments makes it challenging to create test protocols that
adequately cover this diversity. While, in principle, clients
could transfer their original data to the vendor for the intended
evaluation purposes, this is often infeasible because of: (a)
Client privacy concerns; (b) Regulatory protocols such as
GDPR [2]; and (c) Data transfer overheads from client to
vendor, especially in the current Big Data era. Therefore, it is
essential to continue our efforts to develop synthetic databases
that exercise application functionality, efficiency and robust-
ness. The contemporary need for such database generation
tools was highlighted in a recent Dagstuhl seminar [1].

Generation of synthetic databases is targeted toward cap-
turing the desired schematic properties (e.g. keys, referential
constraints, functional dependencies, domain constraints), and

the statistical profiles (e.g. value distributions, column correla-
tions, data skew, output volumes) of the data hosted on these
schemas. A rich body of literature exists on synthetic data
generation, covering a wide variety of frameworks, especially
in the context of modeling OLAP-driven data warehouses.
Further, the recent advent of machine learning techniques
has triggered the development of several new approaches that
leverage their potent modeling power.

Data generation frameworks can be broadly classified into
the following three categories: (a) Ab Initio Generation,
(b) Database Dependent Regeneration, and (c) Query-
Workload Dependent Regeneration. In this tutorial, we
cover, as described in Sections II through V, representative
database generation techniques from each of these taxonomy
dimensions, and highlight their strengths and limitations. At
the end, a suite of open technical problems and future research
directions are enumerated.

II. AB INITIO GENERATION

The frameworks in this category deal with the ab initio
generation of new databases using standard mathematical
distributions. Descriptive languages for the definitions of data
dependencies and column distributions were proposed in [14],
[23], [34]. For example, [14] proposed Data Generation
Language (DGL) for generating synthetic data distributions
through iterators that sequentially created the tables in schema
graph dependency order. Popular benchmarks such as TPC-
D [4], and its successors, TPC-H [5] and TPC-DS [6], which
model OLAP environments, have been developed over the past
three decades using similar approaches. Very recently, the DSB
benchmark [19] proposes to extend TPC-DS with complex
data distributions, and feature evaluation mechanisms for both
workload-driven and traditional database systems.

In this context, a variety of techniques have been proposed
to improve the speed of database production. For instance,
MUDD [42] and PSDG [23] generate all related data at the
same time. These frameworks decouple data generation from
data description, facilitating customization to suit user needs.
In the distributed setting, a fast way of generating references
is through recomputing since it eliminates the I/O costs in-
curred to satisfy referential constraints across relations that are
present across different nodes. PDGF [34] was designed with
this goal of achieving scalability and decoupling. To regenerate
the same sequences, it exploits determinism in pseudo-random
number generators (PRNG).
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A recent high-performance technique, Myriad [7], also
leverages parallelism for achieving scalability. It implements
an efficient parallel execution strategy with extensive use of
PRNGs having random access support. With these PRNGs,
Myriad distributes the generation process across the compute
nodes and ensures that they run independently, without impos-
ing any restrictions on the data modeling language.

In the tutorial, we cover Myriad and DSB as exemplars of
ab initio generators. Their limitations, such as the difficulty of
matching standard distributions to real-world data, especially
over multivariate spaces, are also highlighted.

III. DATABASE-DEPENDENT REGENERATION

We now turn our attention to database-dependent regenera-
tion techniques. DBSynth [33], an extension to PDGF, builds
data models from an existing database by extracting schema
information, and using sampling to construct histograms and
dictionaries of text-valued data. For textual data, Markov chain
generators are employed to analyze the word combination
frequencies and probabilities. After the model construction,
PDGF is invoked to generate the corresponding data. Similar
to DBSynth, RSGen [41] takes a metadata dump, including
1-D histograms, as the input. It uses a bucketization technique
that is capable of generating trillions of records within a small
memory footprint.

UpSizeR [43] is a graph-based tool that uses attribute
correlations extracted from an existing database to generate
an equivalent synthetic database. A derivative work, Rex [15]
produces a uniformly scaled version of the original database,
while maintaining referential constraints and the distributions
between the consecutive linked tables. In contrast, the more
recent Dscaler [51] addresses the problem of generating a
non-uniformly scaled version of a database, where individual
tables are scaled by different factors, using fine-grained, per-
tuple correlations for key attributes.

Learning-based Approaches

A different trajectory of synthetic data regeneration has been
followed by the ML community, captured in the comprehen-
sive survey by Fan et al [20]. In this corpus, the frameworks
fall into the following classes:

a) Statistical Models: Here the input data is modeled
with a multivariate distribution, which is then used to sample
the output synthetic data. The dependence between variates is
captured using techniques such as copulas [24], [32], Bayesian
networks [50], Gibbs sampling [30], and Fourier decompo-
sitions [12]. Alternatively, synopses-based approaches such
as wavelets and multi-dimensional sketches, build compact
data summaries that are amenable to the estimation of joint
distributions [16], [47].

b) Neural Models: The frameworks here use deep gen-
erative models to approximate the input data. The underlying
techniques include autoencoders [22], variational autoencoders
(VAE) [44], and more recently, generative adversarial networks

(GANs) [11], [17], [18], [29], [31], [48]. For instance, CT-
GAN [48] uses a conditional generator to model complex real-
world data featuring multimodal distributions of continuous
columns, and highly imbalanced categorical columns.

In the tutorial, we cover Dscaler and CTGAN in detail.
Their limitations, such as the propensity for empty results over
complex queries due to not fully capturing subtle correlations
across attributes and tables, are also highlighted.

IV. PARAMETERIZED WORKLOAD-BASED REGENERATION

The query-workload-based regeneration techniques focus on
ensuring volumetric similarity. That is, assuming a common
choice of query execution plans at the client and vendor sites,
the output row cardinalities of individual operators in these
plans are very similar in the original and synthetic databases.
This similarity helps to preserve the multi-dimensional layout
and flow of the data, a prerequisite for achieving similar
performance on the client’s workload.

With parameterized workload inputs, the queries are pa-
rameterized on the constants in the query, and the generators
provide some parameter settings for which the intermediate
cardinalities are matched. Supporting parameterized inputs
allows for generating volumetrically similar databases for
input query workloads while preserving client data security.

The concept of using cardinalities from a query plan tree
was first introduced in QAGen [13], [26]. Given a query plan,
it constructs a symbolic database, where attribute values are
generalized to symbols (variables), and models the volumetric
constraints using the symbols in the database. Subsequently, a
constraint satisfaction program (CSP) is invoked to identify
values for these symbols such that all the constraints are
satisfied. While QAGen supported only one query plan in the
input, a follow-up tool called MyBenchmark [27], [28], created
a symbolic database on a per-query basis and then heuristically
merged these individual databases to the extent possible.

In practice, constructing a database on a per-query basis
can lead to impractical overheads. This scalability limitation
was recently addressed by Touchstone [25], [46]. Touchstone
builds a group of random column generators, which determine
the data distributions of all non-key columns. It chooses
the query parameter values by adjusting the related column
generators and decomposes the query trees in a manner that
decouples the dependencies among the columns. The data is
finally generated over a distributed platform for independent
and parallel tuple generation.

We cover Touchstone as an exemplar of parameterized
workload-based regeneration in the tutorial. Limitations such
as the inherent difficulty in satisfactorily modeling new queries
that may be evaluated at the vendor site are also highlighted.

V. INSTANTIATED WORKLOAD-BASED REGENERATION

In this class of workload-dependent generation, the predi-
cate constants in the queries are pre-specified in the input. This
restriction renders the generation problem more difficult since
we now need to ensure that the intermediate cardinalities are
matched for precisely these constants. The benefit, however, of
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ensuring volumetric similarity in this “strict” environment is
that the resultant databases are closer to the original, thereby
providing better modeling of new queries that are evaluated at
the vendor site as part of the testing process.

A unified and declarative mechanism for representing vol-
umetric constraints from the query plans, called cardinality
constraints (CCs), was proposed in DataSynth [8], [9]. In
particular, a CC dictates that the output of a given relational
expression over the generated database should feature a speci-
fied number of rows. Given a set of CCs, DataSynth proposed
algorithms based on the LP solver and graphical models to
instantiate tables that satisfy the constraints. Specifically, the
data space is partitioned into a set of regions and a variable
is created wrt each region encoding its volume. Using these
variables, the CCs are expressed as a linear feasibility problem.
The solution is used to generate the output database with a
sampling-based approach.

HYDRA [3], [40], extends DataSynth by adding function-
ality, dynamism, scale, and robustness. It provides extended
workload coverage by additionally handling queries with
(duplicate eliminating) Projection-based SQL constructs such
as Distinct, Group By, Union [36], [37]. Workload
scalability is provided by optimizing the data-space partition-
ing strategy leading to a significant reduction in the complexity
of the LP without compromising on the solution quality [39].

Inspired by the “dataless database” philosophy of the CODD
metadata processor [10], [45], a unique feature of Hydra is
that it delivers a minuscule database summary as the output
rather than the materialized data itself. This summary can be
used for dynamically generating data during query execution.
Also, the summary production pipeline is inherently data-
scale-free, and does not depend on the size of the database.
Further, to improve the accuracy for new queries, Hydra
additionally exploits metadata statistics maintained by the
database engine and adds an objective function to the LP to
create a more representative database [38].

In an interesting twist, [21] focused specifically on gen-
erating key columns that comply with referential integrity
constraints. To model these requirements, a novel approach
that leverages denial constraints was proposed. These denial
constraints forbid tuples from having the same foreign-key
value under specified conditions. The foreign-key column is
constructed using graph-theoretic concepts of conflict hyper-
graphs and hypergraph coloring.

Learning-based Approaches

A learning-based framework, called SAM (Supervised Deep
Autoregressive Model) [49], was recently proposed in this
generation category. SAM trains an autoregressive model to
capture the joint data distribution of the database tables.
Further, inverse probability weighting and scaling algorithms
are used to efficiently sample from the model to produce
the base relations. Finally, the join keys are assigned using
a Group-and-Merge algorithm.

In the tutorial, we discuss the Hydra and SAM approaches in
detail. Open challenges such as ensuring workload scalability

in LP-based techniques, and enhancing the coverage of SQL
operators in learning-based techniques, are also highlighted.

VI. FUTURE RESEARCH DIRECTIONS

In the final stage of the tutorial, we outline a set of open
technical problems and future research directions, including:

a) Dynamic Data Distribution: All the generators dis-
cussed in this proposal are passive in the sense that the
database is produced once and subsequently consumed. How-
ever, we could also consider the creation of active databases
that adapt their contents based on the testing environment.
As a case in point, the DSB benchmark could be made truly
dynamic by incorporating active databases as a complementary
addition to its adaptive query workload.

b) GAN-based Synthesis for Multi-Relational Databases:
The GAN-based approaches have shown impressive results in
producing realistic tabular data. However, for viability, it is
essential to extend them to multi-relational environments. This
would require dealing with challenges such as: (a) modelling
join cross correlations, (b) ensuring referential integrity, (c)
ensuring volumetric similarity, which typically gets harder as
the number of joins increase [38].

c) Going Beyond Volumetric Similarity: While volumet-
ric similarity captures the critical characteristic of data flow,
it lacks fine-grained information such as data skew and data
ordering. These characteristics can be especially important for
mimicking performance of (a) hash operations, due to the
potential for data spilling to disk in presence of duplicates,
and (b) sort operations, due to the impact on data movement
and number of comparisons. Therefore, there is a need to
expand the generator scope to include data characteristics such
as duplication distribution and the extent of presortedness [35].

d) Expand SQL Coverage: As described previously, the
contemporary workload-dependent frameworks do support the
core SQL operators. However, for comprehensive testing it is
necessary to expand the scope to include other common SQL
constructs such as group filters, nested queries, conditional
statements and set operators.

e) Improve Workload Scalability: While the workload-
dependent techniques achieve volumetric similarity, the size of
the input workloads that they can handle does not scale well.
For instance, the LP constraint solver used in most of these
techniques is crippled by the exponential increase in the num-
ber of variables with workload scale. A promising recourse is
to introduce approximation, whereby volumetric accuracy is
marginally compromised to achieve solution tractability.

f) Improve Robustness to Unseen Queries: Due to the
under-determined nature of the constraint space, there are
many feasible solutions to the LP constructed by workload-
dependent techniques. The solvers produce a random outcome
from the convex polytope of feasible solutions. However,
from the perspective of robustness to future unseen queries,
it is preferable to identify a geometrically-centric solution as
compared to a sparse corner solution that assigns zeros to
many variables.
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